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1 Introduction

There are many remarkable results in the cohomology theory of modular Lie algebras. Any
simple module over the restricted Lie algebra with nontrivial cohomology is restricted, see [9,
Theorem 2]. Modules over a Lie algebra with nonzero cohomology are called peculiar. For any
finite-dimensional Lie algebra, the number of non-isomorphic peculiar indecomposable modules
is finite, see [10, Theorem 1].

Now, let g = sl3(k). The cohomology with coefficients in simple g -modules is completely
described only in small characteristics p = 2, 3, see [18, Theorem 1], [19, Theorem 1]. In the case
where p > 3, the cohomology of simple g-modules are known in the following cases: forH1(g,M),
see [21, p. 301], for H2(g,M), see [11, Theorem 1.1]. In small degrees, the cohomology has
the following interpretations: H1(g, g) is identified with the space of outer differentiation and
H2(g, g) is identified with the space of local deformations of the Lie algebra g. It is known
that these spaces are trivial, see [23, p. 124], [6, p. 125], [2, Lemma 2.2.1b], [3, p. 32]. The
cohomology of g with coefficients in the trivial module is also known, see [3, p. 42]. In other
cases, the interpretation of the cohomology with coefficients in simple modules remains open.
In this paper, we give a complete description of the cohomology of sl3(k) with coefficients in the
simple modules for p > 3.

1.1 Notation

Let g = sl3(k) over an algebraically closed field k of characteristic p > 3 and M a simple g-mo-
dule. Let L(r, s) denote a simple g-module with the highest weight rω1 + sω2, where ω1, ω2 are
fundamental weights.

LetG = SL3(k); it is an algebraic group, its Lie algebra is sl3(k). We will consider cohomology
of sl3(k) as G-modules. Let V be a G-module and M be a simple G-module. We define
a composition coefficient [V :M ] for M from the formula

ch(V ) =
∑

M is simple

[V :M ] ch(M),

where ch(V ) is the formal character of the G-module V . If [V :M ] ̸= 0, then we say that M is
a composition factor of V .
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For a vector space L over k, we denote by L(1) the vector space over k that coincides with L
as an additive group and with the scalar multiplication given by

a · v = p
√
av for all a ∈ k, v ∈ L,

where the left hand side is the new multiplication and the right hand side the old one. If L is a G-
module, then L(1) is also a G-module using the given action of any g ∈ G on the additive group
L(1) = L. The new G-module L(1) is called the Frobenius twist of L. We define higher Frobenius

twists inductively: L(d+1) =
(
L(d)

)(1)
. To each weight µ of the space L there corresponds the

weight pdµ of the space L(d).
A weight rω1 + sω2 is restricted if 0 ≤ r, s ≤ p− 1. The composition factors of Hn(g,M) are

Frobenius twists of some simple G-modules with restricted highest weights.
A G-module L is rational if the corresponding representation is a homomorphism from G

to GL(L). Suppose V is the Frobenius twist of some rational G-module. Then, there is a unique
d > 0 and rational G-module L such that L(d) = V . Denote this module by V (−d).

We will usually denote Hn(g, k) by Hn(g), and use the following short notation:

mV := V ⊕ · · · ⊕ V (m summands),

where V is a G-module.

1.2 Main result

In this paper, k is always algebraically closed field k of characteristic p > 3.

Theorem 1.1. Let g = sl3(k) and M be a simple g-module. Then, the following isomorphisms
of G-modules hold:

(a) Hn(g) ∼= k for n = 0, 3, 5, 8;

(b) Hn(g, L(p− 2, 1)) ∼=

{
L(1, 0)(1) if n = 1, 7,

2L(1, 0)(1) if n = 4;

(c) Hn(g, L(1, p− 2)) ∼=

{
L(0, 1)(1) if n = 1, 7,

2L(0, 1)(1) if n = 4;

(d) Hn(g, L(p− 3, 0)) ∼= L(1, 0)(1) for n = 2, 3, 5, 6;

(e) Hn(g, L(0, p− 3)) ∼= L(0, 1)(1) for n = 2, 3, 5, 6;

(f) Hn(g, L(p− 2, p− 2)) ∼=


k if n = 1, 7,

L(1, 1)(1) if n = 3, 5,

2L(1, 1)(1) ⊕ 2k if n = 4.

Otherwise, Hn(g,M) = 0.

This theorem completes the description of the cohomology of sl3(k) with coefficients in simple
modules over an algebraically closed fields of positive characteristics.

1.3 Some applications of the main result

Using Theorem 1.1, one can easily describe the cohomology of gl3(k) with coefficients in simple
modules. LetM be an sl3(k)-module. Since gl3(k)

∼= sl3(k)⊕I, where I is the subspace spanned
by the identity 3× 3 matrix, a gl3(k)-module structure on M can be determined by setting

(x, a)m = xm+ µ(a)m for any (x, a) ∈ gl3(k), x ∈ sl3(k), and a ∈ I, (1.1)
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where µ is a linear form on I. We denote the obtained gl3(k)-module also by M . Using
Theorem 1.1 and the isomorphism (see [18, p. 737])

Hn(gl3(k),M) ∼= Hn(sl3(k),M)⊕Hn−1(sl3(k),M)

for µ = 0, we obtain for the cohomology of simple gl3(k)-modules the following

Corollary 1.2. Let g = gl3(k), let M be a simple g-module defined by the formula (1.1).
If µ = 0, then the following isomorphisms of G-modules hold:

(a) Hn(g) ∼= k for n = 0, 1, 3, 4, 5, 6, 8, 9;

(b) Hn(g, L(p− 2, 1)) ∼=

{
L(1, 0)(1) if n = 1, 2, 7, 8,

2L(1, 0)(1) if n = 4, 5;

(c) Hn(g, L(1, p− 2)) ∼=

{
L(0, 1)(1) if n = 1, 2, 7, 8,

2L(0, 1)(1) if n = 4, 5;

(d) Hn(g, L(p− 3, 0)) ∼=

{
L(1, 0)(1) if n = 2, 4, 5, 7,

2L(1, 0)(1) if n = 3, 6;

(e) Hn(g, L(0, p− 3)) ∼=

{
L(0, 1)(1) if n = 2, 4, 5, 7,

2L(0, 1)(1) if n = 3, 6;

(f) Hn(g, L(p− 2, p− 2)) ∼=


k if n = 1, 2, 7, 8,

L(1, 1)(1) if n = 3, 6,

3L(1, 1)(1) ⊕ 2k if n = 4, 5.

Otherwise, Hn(g,M) = 0.

The results of Corollary 1.2 can be applied to describe the cohomology of the general Lie
algebra of Cartan type W3(m) (for the definition of Wn(m), see [18, Section 1.3]). For example,
using in [25, Theorem 0.2] and the statement (a) of Corollary 1.2, one can easily describe the
cohomology of the restricted Lie algebra of Cartan type W3(1) with coefficients in the divided
power algebra.

Let V (λ) be the Weyl module with highest weight λ = rω1 + sω2 (for the definition, see
Section 2.2) and H0(λ) = V (−w0(λ))

∗, where w0 is the longest element of the Weyl group W
of the Lie algebra g. As an G-module, H0(λ) is isomorphic to the induced G-module IndGB(kλ),
where B is the Borel subgroup of G, corresponding to the negative roots, and kλ is a one-
dimensional B-module. A module V over G is G-acyclic, if Hn(G,V ) = 0 for all n > 0. The
restricted weights λ and µ are linked if there is w ∈W such that

λ+ ρ ≡ w(µ+ ρ) mod pX(T ),

where ρ is the half-sum of positive roots and X(T ) is the additive character group of the maximal
torus T of G. We say that two G-modules with highest weights are linked if their highest weights
are linked. As is well-known, H0(λ) and V (λ) are G-acyclic, see [8, Corollary 3.4]. But, from
the proof of Theorem 1.1, we will see that the g-modules H0(λ) and V (λ), linked with simple
peculiar modules, are peculiar for g. For the cohomology of these modules, the following result
occurs:

Corollary 1.3. Let g = sl3(k) and V = H0(λ). Then, the following isomorphisms of G-modules
hold:
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(a) Hn(g, H0(0, 0)) ∼= k for n = 0, 3, 5, 8;

(b) Hn(g, H0(p− 2, 1)) ∼=

{
L(1, 0)(1) if n = 1, 2, 3, 5, 6, 7,

2L(1, 0)(1) if n = 4;

(c) Hn(g, H0(1, p− 2)) ∼=

{
L(0, 1)(1) if n = 1, 2, 3, 5, 6, 7,

2L(0, 1)(1) if n = 4;

(d) Hn(g, H0(p− 3, 0)) ∼= L(1, 0)(1) for n = 2, 3, 5, 6;

(e) Hn(g, H0(0, p− 3)) ∼= L(0, 1)(1) for n = 2, 3, 5, 6;

(f) Hn(g, H0(p− 2, p− 2)) ∼=


L(1, 1)(1) if n = 3,

2L(1, 1)(1) ⊕ k if n = 4,

L(1, 1)(1) ⊕ k if n = 5,

k if n = 7, 8.

Otherwise, Hn(g, V ) = 0.

Corollary 1.4. Let g = sl3(k) and V = V (λ). Then, the following isomorphisms of G-modules
hold:

(a) Hn(g, V (0, 0)) ∼= k for n = 0, 3, 5, 8;

(b) Hn(g, V (p− 2, 1)) ∼=

{
L(1, 0)(1) if n = 1, 2, 3, 5, 6, 7,

2L(1, 0)(1) if n = 4;

(c) Hn(g, V (1, p− 2)) ∼=

{
L(0, 1)(1) if n = 1, 2, 3, 5, 6, 7,

2L(0, 1)(1) if n = 4;

(d) Hn(g, V (p− 3, 0)) ∼= L(1, 0)(1) for n = 2, 3, 5, 6;

(e) Hn(g, V (0, p− 3)) ∼= L(0, 1)(1) for n = 2, 3, 5, 6;

(f) Hn(g, V (p− 2, p− 2)) ∼=


k if n = 0, 1,

L(1, 1)(1) ⊕ k if n = 3,

2L(1, 1)(1) ⊕ k if n = 4,

L(1, 1)(1) if n = 5.

Otherwise, Hn(g, V ) = 0.

2 Preliminary facts

2.1 Properties of cohomology

In this section, we give some properties of the cohomology for the Lie algebra g that are used
to prove the main results. Cohomology

H•(g,M) =
⊕
n≥0

Hn(g,M)

can be computed using a complex
(∧• g∗

⊗
M,d

)
, see [22, Section I.9.17]. Therefore, we

can identify the space of cochains Cn(g,M) with the space
∧n g∗

⊗
M and regard the space
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Cn(g,M) as the G-module. We decompose the space of cochains Cn(g,M) into a direct sum of
the eigenspaces with respect to the maximal torus T of the group G:

Cn(g,M) =
⊕

µ∈X(T )

Cn
µ (g,M),

where X(T ) is the additive character group of the torus T . Then,

Hn(g,M) =
⊕

µ∈X(T )

Hn
µ (g,M).

Denote by
∏
(V ) the set of weights of the subspace V of the G-module Cn(g,M). Since∏

(Hn(g,M)) ⊆ pX(T )
⋂∏(∧

ng∗
⊗

M
)
,

we will consider elements of the subspace C
n
(g,M) of the space Cn(g,M) with weights from

the set

pX(T )
⋂∏(∧

ng∗
⊗

M
)
.

The corresponding subspaces of cocycles and cohomology are denoted by Z
n
(g,M) andH

n
(g,M),

respectively. Note that

Hn(g,M) = H
n
(g,M).

By the definition of Hn(g,M),

dimHn(g,M) = dimZn(g,M)− dimBn(g,M),

and by the definition of Bn(g,M),

dimBn(g,M) = dimCn−1(g,M)− dimZn−1(g,M).

Then, we get

dimHn(g,M) = dimZ
n
(g,M) + dimZ

n−1
(g,M)− dimC

n−1
(g,M). (2.1)

Since Tr(adx) = 0 for all x ∈ g, then, according to the main theorem in [15, p. 639], we get the
following isomorphism:

Hn(g,M∗) ∼=
(
Hdim g−n(g,M)

)∗
. (2.2)

The weight subspaces are invariant under the coboundary operator. Therefore, the formula (2.1)
also holds for weight subspaces:

dimHn
µ (g,M) = dimZ

n
µ(g,M) + dimZ

n−1
µ (g,M)− dimC

n−1
µ (g,M). (2.3)

2.2 Peculiar modules

In this section, we describe simple peculiar sl3(k)-modules. Let {e1, e2, e3, h1, h2, f1, f2, f3} be
the Chevalley basis of g with the nonzero brackets

[ei, fi] = hi, [hi, ei] = 2ei, [hi, fi] = −2fi, i = 1, 2, 3,

[h1, e2] = −e2, [h1, e3] = e3, [h2, e1] = −e1, [h2, e3] = e3,
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[h1, f2] = f2, [h1, f3] = −f3, [h2, f1] = f1, [h2, f3] = −f3,
[e1, e2] = e3, [e3, f1] = −e2, [e3, f2] = e1,

[f1, f2] = −f3, [e1, f3] = −f2, [e2, f3] = f1,

where h3 = h1 + h2. It is known (see [11, p. 145]) that there are six simple peculiar g-modules:

L(0, 0), L(p− 2, 1), L(1, p− 2), L(p− 3, 0), L(0, p− 3), L(p− 2, p− 2).

A linear span of a set {v1, . . . , vm} of vectors of a vector space V over k is the smallest linear
subspace of V that contains the set {v1, . . . , vm}. Let ⟨v1, . . . , vm⟩k denote the linear span of
the set {v1, . . . , vm} of vectors of the vector space V over k. For a detailed description of the
peculiar simple modules, consider the restricted Verma module

W (r, s) :=

〈
vi,j,t :=

f t3f
j
2f

i
1

t!j!i!
ur,s

∣∣∣∣ 0 ≤ i, j, t ≤ p− 1

〉
k

with the following action of sl3(k):

e1vi,j,t = −(j + 1)vi,j+1,t−1 + (r − i+ 1)vi−1,j,t,

e2vi,j,t = (s+ i− j − t+ 1)vi,j−1,t + (i+ 1)vi+1,j,t−1,

e3vi,j,t = (r + s− i− j − t+ 1)vi,j,t−1 + (r − i+ 1)vi−1,j−1,t,

h1vi,j,t = (r − 2i+ j − t)vi,j,t, h2vi,j,t = (s+ i− 2j − t)vi,j,t,

f1vi,j,t = −(t+ 1)vi,j−1,t+1 + (i+ 1)vi+1,j,t,

f2vi,j,t = (j + 1)vi,j+1,t, f3vi,j,t = (t+ 1)vi,j,t+1.

The restricted Verma moduleW (r, s) has a submodule I(r, s) generated by the vectors vr+1,0,0

and v0,s+1,0. The quotient V (r, s) = W (r, s)/I(r, s) is also restricted; let us call it the Weyl
module. In the modular case, the term “Weyl module” was first used in [26, p. 321], see also [13,
p. 59]. For groups of Lie type over a field of positive characteristic, the term “Weyl module” has
also been used for a long time (see, for example, [5, p. 213], [17, p. 262], [20, p. 291]). Obviously,
for the Weyl module V (r, s), the following relations hold:

vr+1,0,0 = 0, v0,s+1,0 = 0.

The submodule structure of V (r, s) is well-known, see [4, p. 484], [24, pp. 151 and 157].
The results of these papers say that the quotient of V (r, s) by the maximal submodule is the
restricted simple module isomorphic to L(r, s). In particular, for the peculiar simple g-modules
we get

L(0, 0) = V (0, 0), L(p− 3, 0) = V (p− 3, 0), L(0, p− 3) = V (0, p− 3),

L(p− 2, 1) = V (p− 2, 1)/L(p− 3, 0), L(1, p− 2) = V (1, p− 2)/L(0, p− 3),

L(p− 2, p− 2) = V (p− 2, p− 2)/L(0, 0).

To describe simple modules, we will use the basis vectors of the corresponding restricted Verma
modules. The maximal submodules of these Weyl modules are generated by the highest weight
vectors

wp−3,0 = v1,1,0 − 2v0,0,1 for V (p− 2, 1),

w0,p−3 = v1,1,0 + v0,0,1 for V (1, p− 2),

w0,0 =

p−2∑
i=0

(p− 2− i)i!vp−2−i,p−2−i,i for V (p− 2, p− 2),
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respectively. Then, for simple non-trivial peculiar modules, we obtain the following descriptions
in terms of the basis vectors of the restricted Verma module:

L(p− 3, 0) = ⟨vi,j,t | 0 ≤ i ≤ p− 3, 0 ≤ j ≤ i, 0 ≤ t ≤ p− 3− i⟩k,
L(0, p− 3) = ⟨vi,j,t | 0 ≤ i ≤ j, 0 ≤ j ≤ p− 3, 0 ≤ t ≤ p− 3− j⟩k,
L(p− 2, 1) = ⟨vi,j,t | 0 ≤ i ≤ p− 2, 0 ≤ j ≤ i+ 1, 0 ≤ t ≤ p− 1− i; wp−3,0 = 0⟩k,
L(1, p− 2) = ⟨vi,j,t | 0 ≤ i ≤ j + 1, 0 ≤ j ≤ p− 2, 0 ≤ t ≤ p− 1− j; w0,p−3 = 0⟩k,
L(p− 2, p− 2) = ⟨vi,j,t | 0 ≤ i ≤ p− 2, 0 ≤ j ≤ p− 2, 0 ≤ t ≤ p− 2− i− j; w0,0 = 0⟩k.

3 Proof of Theorem 1.1

As noted above, there are only six peculiar simple modules. Let us prove the theorem for each
peculiar simple module separately.

(a) Since p > 3, then the Killing form on g is non-degenerate. Then, for the trivial one-
dimensional module M = L(0, 0), the result obtained earlier for zero characteristic remains true
in our case as well. So, we consider only non-trivial peculiar simple modules.

(b) Let M = L(p− 2, 1).

Lemma 3.1. Let g = sl3(k) and M = L(p−2, 1). Then, Hn(g,M) = 0, except for the following
cases:

(i) H1(g, L(p− 2, 1)) ∼= H7(g, L(p− 2, 1)) ∼= L(1, 0)(1),

(ii) H4(g, L(p− 2, 1)) ∼= 2L(1, 0)(1).

Proof. Obviously, H0(g, L(p− 2, 1)) = 0. It is also known that H1(g, L(p− 2, 1)) ∼= L(1, 0)(1),
see [21, p. 301], and H2(g, L(p− 2, 1)) = 0, see [11, Theorem 1.1].

Now we show that H3(g, L(p− 2, 1)) = 0. We get∏(
C

•
(g, L(p− 2, 1))

)
= {pω1, p(−ω1 + ω2),−pω2}.

The subspace C
2
(g, L(p − 2, 1)) is 21-dimensional and its set of weights consists of three ele-

ments pω1, p(−ω1 + ω2), −pω2. We have

dimC
2
pω1

(g, L(p− 2, 1)) = dimC
2
p(−ω1+ω2)(g, L(p− 2, 1))

= dimC
2
−pω2

(g, L(p− 2, 1)) = 7.

The subspace C
2
pω1

(g, L(p− 2, 1)) is spanned by the 2-cochains

ψ2
1 = h∗1 ∧ f∗1 ⊗ v0,0,0, ψ2

2 = h∗2 ∧ f∗1 ⊗ v0,0,0, ψ2
3 = e∗2 ∧ f∗3 ⊗ v0,0,0,

ψ2
4 = h∗1 ∧ f∗3 ⊗ v0,1,0, ψ2

5 = h∗2 ∧ f∗3 ⊗ v0,1,0,

ψ2
6 = f∗1 ∧ f∗2 ⊗ v0,1,0, ψ2

7 = f∗1 ∧ f∗3 ⊗ v0,0,1.

Let
∑7

i=1 aiψ
2
i ∈ Z2(g, L(p− 2, 1)), where ai ∈ k for all i. Then, by the cocycle condition,

a1 = a2 = a4 = a5 = 0, a3 = a6 = a7.

This means that dimZ2
pω1

(g, L(p− 2, 1)) = 1.

The subspace C
3
pω1

(g, L(p− 2, 1)) is spanned by the 3-cochains

ψ3
1 = h∗1 ∧ h∗2 ∧ f∗1 ⊗ v0,0,0, ψ3

2 = h∗1 ∧ e∗2 ∧ f∗3 ⊗ v0,0,0,
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ψ3
3 = h∗2 ∧ e∗2 ∧ f∗3 ⊗ v0,0,0, ψ3

4 = e∗2 ∧ f∗1 ∧ f∗1 ⊗ v0,0,0,

ψ3
5 = e∗3 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0, ψ3

6 = e∗2 ∧ f∗1 ∧ f∗3 ⊗ v1,0,0,

ψ3
7 = e∗1 ∧ f∗1 ∧ f∗3 ⊗ v0,1,0, ψ3

8 = h∗1 ∧ h∗2 ∧ f∗3 ⊗ v0,1,0,

ψ3
9 = e∗2 ∧ f∗2 ∧ f∗3 ⊗ v0,1,0, ψ3

10 = h∗2 ∧ f∗1 ∧ f∗2 ⊗ v0,1,0,

ψ3
11 = h∗1 ∧ f∗1 ∧ f∗2 ⊗ v0,1,0, ψ3

12 = h∗1 ∧ f∗1 ∧ f∗3 ⊗ v0,0,1,

ψ3
13 = h∗2 ∧ f∗1 ∧ f∗3 ⊗ v0,0,1, ψ3

14 = f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,1,1.

So, dimC
3
pω1

(g, L(p− 2, 1)) = 14. Suppose
∑14

i=1 biψ
3
i ∈ Z3(g, L(p− 2, 1)), where bi ∈ k for all i.

Then, using the cocycle condition, we get

b1 = b8 = 0, b2 + b4 − b5 − 2b6 − b7 = 0, −b2 − b3 + b5 + b7 + b9 − 2b14 = 0,

b10 − b3 = 0, b11 − b2 = 0, b12 − b2 = 0, b13 − b3 = 0.

Consider these equalities as a system of equations for bi, where i = 1, . . . , 14. The rank of the
matrix of this system is equal to 8. Therefore, dimZ3

pω1
(g, L(p − 2, 1)) = 14 − 8 = 6. Then,

by (2.3),

dimH3
pω1

(g, L(p− 2, 1)) = dimZ3
pω1

(g, L(p− 2, 1)) + dimZ2
pω1

(g, L(p− 2, 1))

− dimC2
pω1

(g, L(p− 2, 1)) = 6 + 1− 7 = 0.

Thus, all 3-cocycles with dominant highest weight pω1 are coboundaries. Therefore,

H3(g, L(p− 2, 1)) = 0.

Now we will calculate H4(g, L(p− 2, 1)). The subspace C
4
pω1

(g, L(p− 2, 1)) is 18-dimensional
and is spanned by the 4-cochains

ψ4
1 = h∗1 ∧ h∗2 ∧ e∗2 ∧ f∗3 ⊗ v0,0,0, ψ4

2 = h∗1 ∧ e∗2 ∧ f∗1 ∧ f∗2 ⊗ v0,0,0,

ψ4
3 = h∗2 ∧ e∗2 ∧ f∗1 ∧ f∗2 ⊗ v0,0,0, ψ4

4 = h∗1 ∧ e∗3 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0,

ψ4
5 = h∗2 ∧ e∗3 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0, ψ4

6 = e∗1 ∧ e∗2 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0,

ψ4
7 = h∗1 ∧ e∗2 ∧ f∗1 ∧ f∗3 ⊗ v1,0,0, ψ4

8 = h∗2 ∧ e∗2 ∧ f∗1 ∧ f∗3 ⊗ v1,0,0,

ψ4
9 = h∗1 ∧ h∗2 ∧ f∗1 ∧ f∗2 ⊗ v1,0,0, ψ4

10 = h∗1 ∧ e∗1 ∧ f∗1 ∧ f∗3 ⊗ v0,1,0,

ψ4
11 = h∗2 ∧ e∗1 ∧ f∗1 ∧ f∗3 ⊗ v0,1,0, ψ4

12 = h∗1 ∧ e∗2 ∧ f∗2 ∧ f∗3 ⊗ v0,1,0,

ψ4
13 = h∗2 ∧ e∗2 ∧ f∗2 ∧ f∗3 ⊗ v0,1,0, ψ4

14 = e∗3 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,1,0,

ψ4
15 = h∗1 ∧ h∗2 ∧ f∗1 ∧ f∗3 ⊗ v0,0,1, ψ4

16 = e∗2 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,0,1,

ψ4
17 = h∗1 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,1,1, ψ4

18 = h∗2 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,1,1.

Suppose
∑18

i=1 ciψ
4
i ∈ Z4(g, L(p−2, 1)), where ci ∈ k for all i. Then, using the cocycle condition,

we get

c1 = c9 = c15, c1 − c3 + c5 + 2c8 + c11 = 0, c2 + c3 + c5 − c6 − c14 − c16 = 0,

c2 − 2c7 + c12 − c15 − 2c17 = 0, c3 − 2c8 + c13 − 2c18 = 0,

c4 − c2 + 2c7 + c10 = 0, c4 − c9 + c10 + c12 − 2c17 = 0,

c5 + c9 + c11 + c13 − 2c18 = 0, c6 − c11 − c12 + c14 + c16 = 0.

The rank of the matrix of this system is equal to 8. Therefore,

dimZ4
pω1

(g, L(p− 2, 1)) = 18− 8 = 10.
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Then, by (2.3),

dimH4
pω1

(g, L(p− 2, 1)) = dimZ4
pω1

(g, L(p− 2, 1)) + dimZ3
pω1

(g, L(p− 2, 1))

− dimC3
pω1

(g, L(p− 2, 1)) = 10 + 6− 14 = 2.

Thus, H4(g, L(p − 2, 1)) is generated by the two cohomological classes with weight pω1. So,
H4(g, L(p− 2, 1)) ∼= 2L(1, 0)(1).

Similar calculations give us

dimC5
pω1

(g, L(p− 2, 1)) = 14, dimZ5
pω1

(g, L(p− 2, 1)) = 8,

dimC6
pω1

(g, L(p− 2, 1)) = 7, dimZ6
pω1

(g, L(p− 2, 1)) = 6,

dimC7
pω1

(g, L(p− 2, 1)) = 2, dimZ7
pω1

(g, L(p− 2, 1)) = 2.

Then, using (2.3), we get

dimH5
pω1

(g, L(p− 2, 1)) = 0, dimH6
pω1

(g, L(p− 2, 1)) = 0,

dimH7
pω1

(g, L(p− 2, 1)) = 1.

This completes the proof of the lemma. ■

(c) LetM = L(1, p−2). Obviously,M is dual to L(p−2, 1). Then, using (2.2) and Lemma 3.1,
we get the following

Lemma 3.2. Let g = sl3(k) and M = L(1, p−2). Then, Hn(g,M) = 0, except for the following
cases:

(i) H1(g, L(1, p− 2)) ∼= H7(g, L(1, p− 2)) ∼= L(0, 1)(1),

(ii) H4(g, L(1, p− 2)) ∼= 2L(0, 1)(1).

(d) Let M = L(p− 3, 0).

Lemma 3.3. Let g = sl3(k) and M = L(p−3, 0). Then, Hn(g,M) = 0, except for the following
cases:

(i) H2(g, L(p− 3, 0)) ∼= H6(g, L(p− 3, 0)) ∼= L(1, 0)(1),

(ii) H3(g, L(p− 3, 0)) ∼= H5(g, L(p− 3, 0)) ∼= L(1, 0)(1).

Proof. It is easy to see that∏(
C

•
(g, L(p− 3, 0))

)
= {pω1, p(−ω1 + ω2),−pω2}.

Then, it is obvious that∏(
C

i
(g, L(p− 3, 0))

)⋂∏(
C

∗
(g, L(p− 3, 0))

)
= ∅ for i = 1, 2.

Therefore,

H0(g, L(p− 3, 0)) = 0 and H1(g, L(p− 3, 0)) = 0.

Further, we get∏(
C

2
(g, L(p− 3, 0))

)
= {pω1, p(−ω1 + ω2),−pω2}.
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Any composition factor of H2(g, L(p − 3, 0)), as a G-module, is uniquely determined by its
highest weight. The highest weight of a simple G-module is dominant, see [17, p. 260]. Recall
that the weight λ = rω1 + sω2 is dominant if r ≥ 0 and s ≥ 0. Then, H2(g, L(p − 3, 0))
can be generated only by the classes of cocycles with dominant weight pω1. Therefore, it
is sufficient to determine the multiplicity of pω1. Consider the subspace of 2-cochains with

dominant weight pω1. The subspace C
2
pω1

(g, L(p − 3, 0)) is one-dimensional and is spanned by

the 2-cochain ψ2 = f∗1∧f∗3⊗v0,0,0. It is easy to see that ψ2 is a 2-cocycle. Since C
1
pω1

(g, L(p−3, 0))
= 0, it follows that ψ2 cannot be a coboundary. Therefore, H2(g, L(p − 3, 0)), as a G-module,
is generated by the class

[
ψ2

]
of 2-cocycles with weight pω1 and is isomorphic to L(1, 0)(1).

The set of weights of the subspace
∏(

C
3
(g, L(p− 3, 0))

)
is also equal to {pω1, p(−ω1 + ω2),

−pω2}. The subspace C
3
pω1

(g, L(p− 3, 0)) is two-dimensional and is spanned by the 3-cochains

ψ3
1 = h∗1 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0, ψ3

2 = h∗2 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0.

If a1ψ
3
1 + a2ψ

3
2 is a 3-cocycle, then it follows from the cocycle condition that a2 = 0. Since

dimC
2
pω1

(g, L(p− 3, 0)) = dimZ
2
pω1

(g, L(p− 3, 0)) = 1,

by (2.3), we see that dimH3
pω1

(g, L(p− 3, 0)) = 1 + 1− 1 = 1. Therefore, H3(g, L(p− 3, 0)), as
a G-module, is generated by the class

[
ψ3
1

]
of 3-cocycles with weight pω1 and is isomorphic to

L(1, 0)(1).

Now, we will prove that H4(g, L(p − 3, 0)) = 0. The weight subspace C
4
pω1

(g, L(p − 3, 0)) is
two-dimensional and is spanned by the 4-cochains

ψ4
1 = h∗1 ∧ h∗2 ∧ f∗1 ∧ f∗3 ⊗ v0,0,0, ψ4

2 = e∗2 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,0,0.

If b1ψ
4
1 + b2ψ

4
2 is a 4-cocycle, then it follows from the cocycle condition that b1 = 0. Since

dimC
3
pω1

(g, L(p− 3, 0)) = 2 and dimZ
3
pω1

(g, L(p− 3, 0)) = 1,

by (2.3), it follows that

dimH4
pω1

(g, L(p− 3, 0)) = 1 + 1− 2 = 0.

Therefore,

dimH4(g, L(p− 3, 0)) = dimH4
pω1

(g, L(p− 3, 0)) = 0.

The weight subspace C
5
pω1

(g, L(p−3, 0)) is two-dimensional and is spanned by the 5-cochains

ψ5
1 = h∗1 ∧ e∗2 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,0,0, ψ5

2 = h∗2 ∧ e∗2 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,0,0.

It follows from the cocycle condition that c1ψ
5
1 + c2ψ

5
2 is a 5-cocycle for any c1, c2 ∈ k. So,

dimZ
5
pω1

(g, L(p− 3, 0)) = 2. Since

dimC
4
pω1

(g, L(p− 3, 0)) = 2 and dimZ
4
pω1

(g, L(p− 3, 0)) = 1,

then by (2.3), we see that

dimH5
pω1

(g, L(p− 3, 0)) = 2 + 1− 2 = 1.

Therefore, H5(g, L(p − 3, 0)), as a G-module, is generated by the class
[
ψ5
1

]
of 5-cocycles with

weight pω1 and is isomorphic to L(1, 0)(1).
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The weight subspace C
6
pω1

(g, L(p− 3, 0)) is one-dimensional and is spanned by the 6-cochain

ψ6 = h∗1 ∧ h∗2 ∧ e∗2 ∧ f∗1 ∧ f∗2 ∧ f∗3 ⊗ v0,0,0.

It follows from the cocycle condition that ψ6 is a 6-cocycle. So, dimZ
6
pω1

(g, L(p − 3, 0)) = 1.
Since

dimC
5
pω1

(g, L(p− 3, 0)) = 2 and dimZ
5
pω1

(g, L(p− 3, 0)) = 2,

then by (2.3),

dimH6
pω1

(g, L(p− 3, 0)) = 1.

Therefore, H6(g, L(p − 3, 0)), as a G-module, is generated by the class [ψ6] of 6-cocycles with
weight pω1 and is isomorphic to L(1, 0)(1).

Finally, the subspaces C
7
(g, L(p− 3, 0)) and C

8
(g, L(p− 3, 0)) are trivial, therefore,

H7(g, L(p− 3, 0)) = 0 and H8(g, L(p− 3, 0)) = 0.

(e) LetM = L(0, p−3). Obviously,M is dual to L(p−3, 0). Then, using (2.2) and Lemma 3.3,
we get the following

Lemma 3.4. Let g = sl3(k) and M = L(0, p−3). Then, Hn(g,M) = 0, except for the following
cases:

(i) H2(g, L(0, p− 3)) ∼= H6(g, L(0, p− 3)) ∼= L(0, 1)(1),

(ii) H3(g, L(0, p− 3)) ∼= H5(g, L(0, p− 3)) ∼= L(0, 1)(1).

(f) Finally, letM = L(p−2, p−2). In this case, we will use some properties of the connection
between ordinary and restricted cohomologies. The restricted cohomolology of a restricted Lie
algebra with coefficients in a restricted module was introduced by Hochschild in [16, p. 561]. The
restricted n-cohomology of g with coefficients in a restricted g-module V is denoted byHn

res(g, V ).

For M = L(p− 2, p− 2), there is the following short exact sequence of g-modules:

0 −→M −→ H0(p− 2, p− 2) −→ k −→ 0. (3.1)

If the cohomology of H0(p− 2, p− 2) is known, then using the long exact cohomology sequence

· · · −→ Hn(g,M) −→ Hn
(
g, H0(p− 2, p− 2)

)
−→ Hn(g) −→ · · · , (3.2)

corresponding to the short exact sequence (3.1), we can obtain information about Hn(g,M).
We calculate Hn

(
g, H0(p− 2, p− 2)

)
in two steps.

First, we calculate the restricted cohomology Hn
res

(
g, H0(p− 2, p− 2)

)
, using the equivalence

of the cohomologies Hn
res

(
g, H0(p− 2, p− 2)

)
and Hn

(
G1, H

0(p− 2, p− 2)
)
, where G1 is the first

Frobenius kernel for G, see [22, Section I.9.6], and Andersen–Jantzen formula on cohomology
of G1 with coefficients in H0(λ), see [1]. Let p > 3, and λ = w · 0 + pν. Then, see [1, p. 501],

H i
(
G1, H

0(λ)
)(−1) ∼=

{
IndGB

(
S(i−l(w))/2(u∗)⊗ kν

)
if i− l(w) is even,

0 if i− l(w) is odd,
(3.3)

where u is the maximal nilpotent subalgebra of g, corresponding to the negative roots. The Lie
algebra u is the Lie algebra of the unipotent radical U of B.
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Then, to pass to the usual cohomology Hn
(
g, H0(p − 2, p − 2)

)
, we use the Friedlander–

Parshall–Farnsteiner spectral sequence, see [14, Section 5] and [12, Theorem 4.1]. In [12, Theo-
rem 4.1], choosing the zero ideal as an ideal of a given Lie algebra, we obtain the following
spectral sequence for the cohomology of the Lie algebra g with coefficients in the g-module V :⊕

i+j=n

Homk

(∧
i(g), Hj

res(g, V )
)
=⇒ Hn(g, V ).

In particular, the following lemma can be directly obtained from the last spectral sequence:

Lemma 3.5. Let g = sl3(k) p > 3 and V a g-module. Then

(i) if H i
res(g, V ) = 0 for all i ≤ n, then H i(g, V ) = 0 for all i ≤ n,

(ii) if H i(g, V ) = 0 for all i ≤ n− 2, then

Hn−1(g, V ) ∼= Hn−1
res (g, V ) (3.4)

and the following sequence is exact:

0 −→ Hn
res(g, V ) −→ Hn(g, V ) −→ Homk

(
g, Hn−1

res (g, V )
)
−→ Hn+1

res (g, V )

−→ Hn+1(g, V ). (3.5)

We start by calculating the cohomology Hn
(
G1, H

0(p− 2, p− 2)
)
with n ≤ dim g.

Lemma 3.6. Let G1 be the first Frobenius kernel of G, and V = H0(p−2, p−2) the G1-module.
Then,

(i) H i(G1, V ) = 0 for i = 0, 1, 2, 4, 6, 8,

(ii) H3(G1, V ) ∼= L(1, 1)(1),

(iii) H5(G1, V ) ∼= L(3, 0)(1) ⊕ L(0, 3)(1) ⊕ L(2, 2)(1).

Proof. (i) Since

λ = (p− 2)(ω1 + ω2) = s1s2s1 · 0 + p(ω1 + ω2),

we get

w = s1s2s1, l(w) = 3, and ν = ω1 + ω2.

Then, by (3.3), H i(G1, V ) = 0 for i = 0, 1, 2, 4, 6, 8. The statement (i) is proved.
(ii) We have

S(3−l(w))/2(u∗)⊗ kν = S0(u∗)⊗ kν ∼= kν = kω1+ω2

and

H0
(
S(3−l(w))/2(u∗)⊗ kν

) ∼= H0(kω1+ω2) = IndGB(kω1+ω2)
∼= L(1, 1).

Then, by (3.3),

H3
(
G1, H

0(p− 2, p− 2)
)(−1) ∼= L(1, 1).

(iii) We have

S(5−l(w))/2(u)∗ ⊗ kν ∼= (kα1 ⊕ kα2 ⊕ kα1+α2)⊗ kω1+ω2
∼= k3ω1 ⊕ k3ω2 ⊕ k2ω1+2ω2

and

H0
(
S(5−l(w))/2(u∗)⊗ kν

)
= IndGB(k3ω1 ⊕ k3ω2 ⊕ k2ω1+2ω2)

∼= L(3, 0)⊕ L(0, 3)⊕ L(2, 2).

Then, by (3.3),

H5
(
G1, H

0(p− 2, p− 2)
)(−1) ∼= L(3, 0)⊕ L(0, 3)⊕ L(2, 2).
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Now, we calculate the cohomology Hn
(
g, H0(p− 2, p− 2)

)
.

Lemma 3.7. Let g = sl3(k) and V = H0(p− 2, p− 2). Then,

(i) H i(g, V ) = 0 for i = 0, 1, 2,

(ii) H3(g, V ) ∼= L(1, 1)(1),

(iii) H4(g, V ) ∼= 2L(1, 1)(1) ⊕ k.

Proof. (i) Follows from the statements (i) of Lemmas 3.5 and 3.6. (ii) Follows from the
statements (ii) of Lemma 3.6 and formula (3.4). (iii) We get

Homk

(
g, H3

res

(
g, H0(p− 2, p− 2)

)(−1)) ∼= g∗ ⊗H3
(
G1, H

0(p− 2, p− 2)
)(−1)

∼= L(1, 1)⊗ L(1, 1)
∼= L(3, 0)⊕ L(0, 3)⊕ L(2, 2)⊕ 2L(1, 1)⊕ k.

Then, by (3.5) and the statement (iii) of Lemma 3.6,

H4
(
g, H0(p− 2, p− 2)

)(−1) ∼= 2L(1, 1)⊕ k.

For Hn(g,M), where M = L(p− 2, p− 2), we obtain the following result:

Lemma 3.8. Let g = sl3(k) and M = L(p − 2, p − 2). Then, Hn(g,M) = 0, except for the
following cases:

(i) H1(g,M) ∼= H7(g,M) ∼= k,

(ii) H3(g,M) ∼= H5(g,M) ∼= L(1, 1)(1),

(iii) H4(g,M) ∼= 2L(1, 1)(1) ⊕ 2k.

Proof. Obviously, H0
(
g, H0(p− 2, p− 2)

)
= H8

(
g, H0(p− 2, p− 2)

)
= 0.

(i) The initial terms of the exact sequence (3.2) give us the following exact sequence:

0 −→ H0(g) −→ H1(g, L(p− 2, p− 2)) −→ H1
(
g, H0(p− 2, p− 2)

)
.

By Lemma 3.7,

H1(g, L(p− 2, p− 2)) ∼= H0(g) ∼= k.

Since L(p− 2, p− 2) is a self-dual module, then by (2.2), we get

H7(g, L(p− 2, p− 2)) ∼= H1(g, L(p− 2, p− 2))∗ ∼= k.

Let us prove that H2(g, L(p − 2, p − 2)) = 0. Obviously, H1(g) = 0, and by Lemma 3.7,
H2

(
g, H0(p − 2, p − 2)

)
= 0. Then, it follows from the exactness of the sequence (3.2) that

H2(g, L(p− 2, p− 2)) = 0. By (2.2),

H6(g, L(p− 2, p− 2)) ∼= H2(g, L(p− 2, p− 2))∗ = 0.

(ii) Since H2(g) = 0, it follows from the exactness of the sequence (3.2) that the sequence

0 −→ H3(g, L(p− 2, p− 2)) −→ H3
(
g, H0(p− 2, p− 2)

)
−→ H3(g). (3.6)

is exact. It is known that H3(g) ∼= k, see [7, p. 113]. Moreover, by Lemma 3.7,

H3
(
g, H0(p− 2, p− 2)

) ∼= L(1, 1)(1).
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Then, the exactness of the sequence (3.6) implies that

H3(g, L(p− 2, p− 2)) ∼= H3
(
g, H0(p− 2, p− 2)

) ∼= L(1, 1)(1),

since there is no G-homomorphism between the modules L(1, 1)(1) and k. By (2.2),

H5(g, L(p− 2, p− 2)) ∼= H3(g, L(p− 2, p− 2))∗ ∼= L(1, 1)(1).

(iii) In the previous statement, we proved that

H3(g, L(p− 2, p− 2)) ∼= H3
(
g, H0(p− 2, p− 2)

)
.

Then, since the sequence (3.2) is exact, the following sequence is exact:

0 −→ H3(g) −→ H4(g, L(p− 2, p− 2)) −→ H4
(
g, H0(p− 2, p− 2)

)
−→ H4(g).

Since H3(g) ∼= k and H4(g) = 0, then the sequence

0 −→ k −→ H4(g, L(p− 2, p− 2)) −→ H4
(
g, H0(p− 2, p− 2)

)
−→ 0

is exact. By the statement (iii) of Lemma 3.7,

H4
(
g, H0(p− 2, p− 2)

) ∼= 2L(1, 1)(1) ⊕ k.

There is no G-homomorphism between the modules L(1, 1)(1) and k, so the last exact sequence
is split. Then, we get an isomorphism of G-modules of the statement (iii). ■

Theorem 1.1 follows from Lemmas 3.1–3.4 and 3.8.

4 Cohomology with coefficients in Weyl modules

In this section, we prove Corollaries 1.3 and 1.4. Let us start with Corollary 1.3. We use the
following linkage principle (see [17, p. 264]): Let V be indecomposable G-module, having L(λ)
and L(µ) as composition factors. Then λ and µ are linked.

Obviously, H0(λ) is peculiar, if it contains a peculiar composition factor. According to the
linkage principle, any composition factor of H0(λ) is linked to L(λ). By Theorem 1.1, there are
only six peculiar simple modules. Therefore, H0(λ) is peculiar only in the following cases, which
appear in Theorem 1.1:

λ = 0, (p− 2)ω1 + ω2, ω1 + (p− 2)ω2, (p− 3)ω1, (p− 3)ω2, (p− 2)(ω1 + ω2).

Let us consider each of these cases separately.

(a) Obviously, H0(0, 0) ∼= k. Then, the needed statement follows from the statement (a) of
Theorem 1.1.

Further, we will proceed as in the proof of Lemma 3.8.

(b) There is the short exact sequence

0 −→ L(p− 2, 1) −→ H0(p− 2, 1) −→ L(p− 3, 0) −→ 0.

Consider the corresponding long cohomological exact sequence

· · · −→ Hn(g, L(p− 2, 1)) −→ Hn
(
g, H0(p− 2, 1)

)
−→ Hn(g, L(p− 3, 0)) −→ · · · .
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According to Lemmas 3.1, 3.3, the last long cohomological exact sequence splits into the following
exact sequences:

0 −→ H0
(
g, H0(p− 2, 1)

)
−→ 0,

0 −→ L(1, 0)(1) −→ H1
(
g, H0(p− 2, 1)

)
−→ 0,

0 −→ H2
(
g, H2(p− 2, 1)

)
−→ L(1, 0)(1) −→ 0,

0 −→ H3
(
g, H0(p− 2, 1)

)
−→ H3(g, L(p− 3, 0)) −→ 2L(1, 0)(1)

−→ H4
(
g, H0(p− 2, 1)

)
−→ 0,

0 −→ H5
(
g, H0(p− 2, 1)

)
−→ L(1, 0)(1) −→ 0,

0 −→ H6(g, H0(p− 2, 1)) −→ L(1, 0)(1) −→ H7(g, L(p− 2, 1))

−→ H7
(
g, H0(p− 2, 1)

)
−→ 0,

0 −→ H8
(
g, H0(p− 2, 1)

)
−→ 0.

The first and last exact sequences yield Hn
(
g, H0(p− 2, 1)

)
= 0 for n = 0, 8. The second, third,

and fifth exact sequences yield isomorphisms

H1
(
g, H0(p− 2, 1)

) ∼= L(1, 0)(1), H2
(
g, H0(p− 2, 1)

) ∼= L(1, 0)(1),

and

H5
(
g, H0(p− 2, 1)

) ∼= L(1, 0)(1),

respectively. Consider the fourth exact sequence. Composition factors of H3
(
g, H0(p−2, 1)

)
can

only be H3 with coefficients in either L(p−2, 1) or the socle ofH0(p−2, 1)/L(p−2, 1). According
to Lemma 3.1, H3(g, L(p− 2, 1)) = 0. The socle of H0(p− 2, 1)/L(p− 2, 1) is isomorphic to the
simple module L(p− 3, 0). According to Lemma 3.3,

H3(g, L(p− 3, 0)) ∼= L(1, 0)(1).

Therefore,

H3
(
g, H0(p− 2, 1)

) ∼= L(1, 0)(1).

Then, the fourth exact sequence yields an isomorphism

H4
(
g, H0(p− 2, 1)

) ∼= 2L(1, 0)(1).

According to Lemma 3.1, in the sixth exact sequence, the map

H7(g, L(p− 2, 1)) −→ H7
(
g, H0(p− 2, 1)

)
is an epimorphism. Consequently, there are the isomorphisms

H7(g, L(p− 2, 1)) ∼= H7
(
g, H0(p− 2, 1)

) ∼= L(1, 0)(1).

Then the sixth exact sequence yields an isomorphism

H6
(
g, H0(p− 2, 1)

) ∼= L(1, 0)(1).

(c) The proof is similar to the previous statement.
(d) Since H0(p − 3, 0) ∼= L(p − 3, 0), the statement follows from the statement (d) of Theo-

rem 1.1.



16 Sh.Sh. Ibraev

(e) Since H0(0, p − 3) ∼= L(0, p − 3), the statement follows from the statement (e) of Theo-
rem 1.1.

(f) A part of this statement is proved in Lemma 3.7. We will prove only the rest of the
statement. Using the statement (a) of Theorem 1.1 and Lemma 3.8, and the long cohomological
exact sequence (3.2), we obtain the following exact sequences:

0 −→ L(1, 1)(1) −→ H5
(
g, H0(p− 2, p− 2)

)
−→ k −→ 0,

0 −→ H6
(
g, H0(p− 2, p− 2)

)
−→ 0,

0 −→ k −→ H7
(
g, H0(p− 2, p− 2)

)
−→ 0,

0 −→ H8
(
g, H0(p− 2, p− 2)

)
−→ k −→ 0.

These exact sequences yield the isomorphisms

H5
(
g, H0(p− 2, p− 2)

) ∼= L(1, 1)(1) ⊕ k,

H6
(
g, H0(p− 2, p− 2)

)
= 0,

H7
(
g, H0(p− 2, p− 2)

) ∼= k,

H8
(
g, H0(p− 2, p− 2)

) ∼= k.

Using (2.2) and Corollary 1.3 for Hn(g, V (λ)), we get Corollary 1.4.

Corollaries 1.3 and 1.4 show that Hn
(
g, H0(λ)

) ∼= Hn(g, V (λ)), except for the case where

λ = (p− 2)(ω1 + ω2).
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