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Abstract. We discuss a fine tuning of the co- and contra-variant transforms through con-
struction of specific fiducial and reconstructing vectors. The technique is illustrated on three
different forms of induced representations of the Heisenberg group. The covariant transform
provides intertwining operators between pairs of representations. In particular, we obtain
the Zak transform as an induced covariant transform intertwining the Schrödinger represen-
tation on L2(R) and the lattice (nilmanifold) representation on L2

(
T2
)
. Induced covariant

transforms in other pairs are Fock–Segal–Bargmann and theta transforms. Furthermore,
we describe peelings which map the group-theoretical induced representations to convenient
representation spaces of analytic functions. Finally, we provide a condition which can be
imposed on the reconstructing vector in order to obtain an intertwining operator from the
induced contravariant transform.

Key words: Heisenberg group; covariant transform; coherent states; Zak transform; Fock–
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1 Introduction

The purpose of this paper is to present an advanced use of the induced co- and contra-variant
transform, which is created by the Gilmore–Perelomov coherent states (see [40] and [3, Sec-
tion 7.1]). The transform is an intertwining operator to an induced representation, which ex-
plains our choice of the name for it. The approach is illustrated here by the crucial example
of the Heisenberg group H1, however the technique is not limited to this case, cf. [5, 33, 36].
The topics of coherent states and covariant transform (also known under many other names)
are extensively covered in the existing literature, e.g., [28, Section 13], [30, Appendix V.2], and
[9, 18, 19, 22, 34, 37, 40], and we refer to authoritative surveys [3, 15, 20] for further references.
Our purpose is to present some additional aspects which are commonly shadowed or missing in
the existing sources. If these properties are explicitly stated then many known important results
immediately follow as their direct corollaries.

For example, the standard induction (see [16, Chapter 6], [30, Appendix V.2] and [7, 20, 27])
from a character of the Heisenberg group centre gives the representation (2.5) below, which is
different from the commonly used celebrated Fock–Segal–Bargmann (FSB) representation (4.4)
in the space of analytic function [15, Section 1.6]. Those two representations are linked by
the peeling map which transforms the annihilator of the representation space to the Cauchy–
Riemann operator, see Section 4. The origin of the annihilator operator is revealed as the Lie
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derivative with a special relation to the chosen fiducial vector, see Section 3. Section 5 provides
the respective consideration of the reconstructing vector for the contravariant transform.

In this paper we present a machinery which allows to design fiducial and reconstructing
vectors to ensure specific properties within the induced co- and contra-variant transforms. This
technique does not rely on ad hoc knowledge and allows one to get new insights even within
the much-studied framework of the Heisenberg group [7, 21]. As an basic illustration, we apply
this technique to find contra- and co-variant transforms, which intertwine the coordinate and
momentum representations of H1, and predictably obtain the Fourier transform and its inverse,
see Example 3.2. Less elementary example is the interpretation of the Zak transform as an
induced covariant transform in Theorem 3.6, which emerges as follows.

There are three forms of induction of representations of the Heisenberg group [30, Section 2.2]:
the left quasi-regular representation, the Schrödinger representation and the lattice representa-
tion (see Section 2.2) for details. We systematically and uniformly use the covariant transform for
them. In particular, the Zak transform and its inverse are expressed as the covariant transform
between the Schrödinger and lattice representations, with the Jacobi theta function appearing as
a vacuum state of the latter, see Theorem 3.6. Similarly, expressing the pre-theta transform and
its inverse throughout the same technique is also new, see Theorems 3.10 and 5.6. The pre-theta
transform and its inverse intertwine the (pre-)FSB and the lattice representations. The (pre-)
Fock–Segal–Bargamann (FSB) transform and its inverse (see [39, Section 4.2] and [15]) inter-
twines the Schrödinger representation on L2(R) and left quasi-regular representation on L2

(
R2
)
.

We name it as the FSB transform from quantum mechanics (see [39, Section 4.2] and [15]),
it is also known as the Gabor or time-frequency transform or windowed Fourier transform of
a signal [17, 38].

The classical Zak transform [44], also known as Weil–Brezin transform [15, Section 1.10], can
be traced back to the works of Gelfand in 1950, see also [40, Section 1.5], [17, Chapter 8], [39,
Section 8.1] and [20, 21, 22] for further applications and historical notes. This transform is an
isometric isomorphism from L2(R) onto L2

(
T2
)
given, for f ∈ L2(R), by[

Z̃f
]
(u, v) =

∑
n∈Z

f(u+ n) e2πimnv, (u, v) ∈ T2.

Weil [43] defined the abstract Zak transform on arbitrary locally compact abelian (LCA) groups
with respect to arbitrary closed subgroups. Subsequently, the Zak transform was reviewed and
generalised by many authors, see for example [6, 8, 20, 22, 26]. Various connections between the
Zak transform and (left) shift-invariant spaces were studied by several authors, cf. [7, 21, 24, 25],
further references may be found in the recent survey paper [20]. Yet, an explicit interpretation
of the Zak transform and its inverse as a co- and contravariant transforms respectively, cf.
Theorems 3.6 and 5.6, appears to be new in this paper.

2 Preliminaries on the Heisenberg group
and its induced representations

2.1 The Heisenberg group and its Lie algebra

The polarised Heisenberg group Hn
p is the set of triples (s, x, y), where s ∈ R and x, y ∈ Rn,

with the group law given as follows [15, Section 1.2]

(s, x, y) · (s′, x′, y′) = (s+ s′ + xy′, x+ x′, y + y′).

For the sake of simplicity in this paper, we will work with the one-dimensional case of H1
p and

call it the Heisenberg group. It is a non-commutative group and its centre is a one-dimensional
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subgroup

Z =
{
(s, 0, 0) ∈ H1

p : s ∈ R
}
. (2.1)

The left action of H1
p on itself is given by

Λ̃(g) : g′ 7→ g−1g′.

We extend this action to a linear representation

Λ(g) : F (g′) 7→ F
(
g−1g′

)
, g, g′ ∈ H1

p (2.2)

on a certain linear space of functions on H1
p [10, Section 1.1]. The Lebesgue measure dg =

ds dx dy on H1
p ∼ R3 is a Haar measure invariant under the left and right shifts. The ac-

tion (2.2) on the Hilbert space L2
(
H1
p,dg

)
of square-integrable functions on H1

p is unitary [30,
Appendix V.2] and is called the left regular representation.

Here, we introduce

S = (1, 0, 0), X = (0, 1, 0), Y = (0, 0, 1),

which forms the basis of the Lie algebra h1 of H1
p. The commutator of X and Y is given by the

celebrated Heisenberg commutation relation

[X,Y ] = S. (2.3)

It is common for a representation ρ of a Lie group to pass to the derived representations dρ
of the respective Lie algebra (cf. [30, Chapter 2]). Consider the derived representations of h1
spanned by

dρS =
d

dt
ρ
(
etS
)∣∣∣∣
t=0

, dρX =
d

dt
ρ
(
etX
)∣∣∣∣
t=0

, dρY =
d

dt
ρ
(
etY
)∣∣∣∣
t=0

.

If ρ is irreducible, dρS is a multiple of the identity operator I; that is, dρS = −iℏI (cf. [30,
Section 2.2], [11, Section II.3]).

The important operators produced by the derived representations of h1 are ladder operators
(cf. [1, Section 5.3], [11, Section II.3], [30, Section 2.2.1]).

Definition 2.1. Let κ > 0 be some fixed number and ρ be a representation of Hp such that

ρ(s, 0, 0) = e2πiℏsI. The ladder operators are defined as follows

a− =
1√
2ℏκ

(
κi dρX − dρY

)
, a+ =

1√
2ℏκ

(
κi dρX + dρY

)
, ℏ > 0.

The operators a+ and a− are known as the creation and annihilation operators, respectively.

In this paper, we fix the parameter κ > 0 of the ladder operators a± [4] and indicate the
dependence of ladder operators upon it. The Heisenberg commutator relation (2.3) implies

[a−, a+] = a−a+ − a+a− = I.

Also, for a unitary representation ρ, we have
(
a−1
)∗

= a+.

Definition 2.2 ([1, Section 5.3] and [30, Section 2.6]). In the above notations, a vector ϕ0 ∈ H
is called a vacuum vector if it is a null solution of the annihilation operator:

a−ϕ0 = 0.

We will need the following properties of the vacuum (see [30, Section 2.6]):

Lemma 2.3. If ϕ0 is a vacuum of an irreducible representation ρ, then

1. ϕ0 is unique up to a scalar multiple.

2. For an intertwining operator W between ρ and another representation ρ1, the image Wϕ0
is a vacuum for ρ1.
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2.2 Induced representations of the Heisenberg group

We are interested in three representations of H1
p, which are induced by characters of certain

subgroups of H1
p. Here, we briefly set the notations for this particular case of a general theory of

representations induced in the sense of Mackey (the reader is referred to [16, 27, 28] for detailed
presentations).

Let H be a subgroup of H1
p and χ be a (complex unitary) character of H. Let X = H1

p/H
be the corresponding left H1

p-homogeneous space with the measure dx, which factorises the
Haar measure dg = dx dh for a Haar measure dh of H. We write Lχ2

(
H1
p

)
for the space of

functions F (g) on H1
p having these properties:

(C) H-covariance

F (gh) = χ̄ℏ(h)F (g), for all g ∈ H1
p, h ∈ H

(S) L2-summability over X∫
X
|F (g)|2 dx <∞,

where the integral is meaningful since |F (g)| = |F (gh)| for all h ∈ H by H-covariance
of F .

The space Lχ2
(
H1
p

)
is invariant under the left H1

p-shifts (2.2) because the left and right shifts
commute. An alternative realisation of the same representation is obtained from a given sec-
tion s : H1

p/H → H1
p which is a right inverse for the quotient map p : H1

p → H1
p/H; that is,

p(s(w)) = w for all w ∈ H1
p/H. For such a section s and the character χ, we can define the

lifting Lχ : L2
(
H1
p/H

)
→ Lχ2

(
H1
p

)
:

[Lχf ](g) = χ̄(r)f(p(g)), where r = (s(p(g)))−1g.

Then, the lifting Lχ intertwines a representation ρχ on L2
(
H1
p/H

)
and the left regular represen-

tation Λ (2.2) restricted to Lχ2
(
H1
p

)
:

Lχ ◦ ρχ(g) = Λ(g)|Lχ2 (H1
p)
◦ Lχ, for all g ∈ H1

p.

Combining the previous identities, we obtain an explicit expression for the induced representation

[ρχ(g)f ](x) = χ̄
(
r
(
g−1 ∗ s(x)

))
f
(
g−1 · x

)
, where f(x) ∈ L2

(
H1
p/H

)
. (2.4)

We now provide three forms of induced representations of H1
p acting on Hilbert spaces of

square-integrable functions on homogeneous spaces, where the inductions are performed from
characters of subgroups H of H1

p (cf. [1, Section 5.1]).

1. For the centre Z (2.1) of H1
p, the homogeneous space H1

p/Z is isomorphic to R2. Any real

number ℏ ̸= 0 defines the non-trivial character χℏ(s, 0, 0) = e2πiℏs of Z. The respective
maps are

p(s, x, y) = (x, y), s(x, y) = (0, x, y), r(s, x, y) = (s, 0, 0).

The representation Λℏ, which is induced from χℏ on the space of square-integrable functions
L2
(
R2
)
, is given by

[Λℏ(s, x, y)f ](x
′, y′) = e2πiℏ(s+x(y

′−y))f(x′ − x, y′ − y). (2.5)
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This is called the left quasi-regular representation. It is unitary reducible, and it can
be decomposed into unitary irreducible components in many different ways (see [1, Sec-
tion 6.4]). For physical (aka mathematical) reasons, the most popular irreducible module
is the pre-Fock–Segal–Bargmann space (pre-FSB space):

Fϕℏκ
(
R2
)
=
{
f :
(
κiLX + LY

)
f = 0 and f ∈ L2(R)

}
, (2.6)

where the Lie derivative LA = dRAℏ is the derivation of the right quasi-regular representa-
tion [1, Section 5.4.2] on L2

(
R2
)
:

[Rℏ(g)f ](x
′, y′) = e−2πiℏ(s+x′y)f(x′ + x, y′ + y). (2.7)

We will explain the origin of pre-FSB space in Section 3.2.

2. For a two-dimensional maximal Abelian continuous subgroup of H1
p:

H ′
x =

{
(s, 0, y) ∈ H1

p : s, y ∈ R
}
,

the homogeneous space H1
p/H

′
x can be identified with R. The respective maps are

p(s, x, y) = x, s(t) = (0, t, 0), r(s, x, y) = (s− xy, 0, y). (2.8)

The character χℏ(s, 0, y) = e2πiℏs of H ′
x induces the representation ρℏ on a space of square-

integrable functions, L2(R), is given by

[ρℏ(s, x, y)f ](t) = e2πiℏ(s−ty)f(t− x). (2.9)

This is the celebrated Schrödinger representation, which is a unitary irreducible represen-
tation on L2(R) [15, Chapter 1].

There is another two-dimensional maximal Abelian continuous subgroup of H1
p:

H ′
y =

{
(s, x, 0) ∈ H1

p : s, x ∈ R
}
.

Subgroups H ′
x and H ′

y are conjugated by the automorphism of i : H1
p → H1

p:

i(s, x, y) = (s− xy,−y, x).

There exist small but important differences between the respective maps cf. (2.8):

p(s, x, y) = y, s(λ) = (0, 0, λ), r(s, x, y) = (s, x, 0). (2.10)

The character χℏ(s, x, 0) = e2πiℏs of H ′
y induced an alternative form of the Schrödinger

representation

[ρ′ℏ(s, x, y)f ](λ) = e2πiℏ(s+x(λ−y)) f(λ− y). (2.11)

In quantum mechanics, (2.9) and (2.11) serve as coordinate andmomentum representations
of H1

p.

3. For a non-commutative discontinuous subgroup Hd of H1
p:

Hd =
{
(s, n, k) := (s, n+ ik) : (n, k) ∈ Z2, s ∈ R

}
(2.12)

we consider a homogeneous space T2 = H1
p/Hd. Let χm(s, 0, 0) = e2πims be a character

of Hd. Let f(u, v) be a function of L2
(
T2
)
. We have two possibilities to treat f :
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(a) f is a square-integrable and double quasi-periodic function on R2 (periodic in u and
quasi-periodic in v), that is, for all (n, k) ∈ Z2, we have

f(u+ n, v + k) = e2πmiukf(u, v); (2.13)

(b) f is a square-integrable function on the torus T2 = {(u, v) : u, v ∈ [0, 1)}.

If f is considered as a double quasi-periodic function on R2, the representation ρm induced
from the character χm of Hd on L2

(
T2
)
is given by

[ρm(s, x, y)f ](u, v) = e2πmi(s+x(v−y))f(u− x, v − y). (2.14)

The representation ρm is unitary irreducible on L2
(
T2
)
and is called the lattice represen-

tation [12]. The respective maps are

p(s, x, y) = ({x}, {y}), s(u, v) = (s, u, v),

r(s, x, y) = (s− {x}[y], [x], [y]), (2.15)

where [x] is the integer part of x and {x} = x− [x] is the fractional part. Using them we
express on T2 as follows

[ρmd (s, x, y)f ](u, v) = e2πmi(s+x{v−y}+u[v−y])f({u− x}, {v − y})
= e2πmi(s+x(v−y)+(u−x)[v−y])f({u− x}, {v − y}).

For a unitary irreducible representation ρ of H1
p, its restriction to the centre Z is a character

ρ(s, 0, 0) = e2πiℏs, where the real parameter ℏ is known as the Planck constant in quantum
mechanical contexts (see [29, Section 2.2], [30, Section 2.4.1] and [15, Section 1.3]) and provides
a mathematical tool to describe a semi-classical limit. See also a meaningful assigning of physical
units (see [32, Convention 2.1] and [4, Remark 3.7]). The theorem of Stone–von Neumann [15,
Section 1.5] states that any two infinite-dimensional irreducible strongly continuous unitary
representations of H1

p with the same Planck constant are unitary equivalent. In this paper,
motivated by the physical framework and for the sake of simplicity, we only consider the positive
Planck constant ℏ > 0.

3 The covariant transform on H1
p

3.1 An induced covariant transform

In this work we need an extended version of the covariant transform which covers the Banach
space situation (see [31, Section 2] and [35]). All representations in this paper are assumed to
be strongly continuous.

Definition 3.1. Let ρ be a representation of a group in a space V , and F be an operator from V
to a space U . We define a covariant transform WF from V to the space L(G,U) of a U -valued
function on G by the formula

WF : v 7→ ṽ = F
(
ρ
(
g−1
)
v
)
, v ∈ V, g ∈ G. (3.1)

The fundamental property of the covariant transform WF (3.1) is that WF intertwines the
representation ρ and the left regular action Λ of G:

WF ◦ ρ(g) = Λ(g) ◦WF for all g ∈ G, (3.2)

where Λ(g) : f(g′) 7→ f
(
g−1g′

)
, g, g′ ∈ G.
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For the Gilmore–Perelomov coherent states (see [40] and [3, Section 7.1.2]), it is enough to
have the covariant transform values on a homogeneous space rather than the entire group. We
name it the induced covariant transform [35] due to its connections with induced representations
(cf. (3.5)). More specifically, for the Heisenberg group it is defined as follows. Let ρ be an
irreducible unitary representation of H1

p on a Hilbert space H, and H be a closed subgroup
of H1

p. Let X = H1
p/H be a homogeneous space. Let ϕ0 ∈ H be a fiducial vector, that is,

ρ(h)ϕ0 = χ(h)ϕ0, for all h ∈ H, (3.3)

for some character χ of H. The induced covariant transform Wρ
ϕ0

is a map from the Hilbert

space H to a space W (X) of functions on X = H1
p/H given as follows

Wρ
ϕ0
: f 7→ f̃(s(x)) = ⟨f, ρ(s(x))ϕ0⟩ , x ∈ X, (3.4)

where s : X 7→ H1
p is a Borel section (the right inverse of the natural projection p : H1

p → H1
p/H).

Note that, in the definition (3.4) we use a linear functional ϕ0 ∈ V ′ as a special case of the
operator F : V → C in (3.1). Then, an adjusted notation of the covariant transform WF will
be Wρ

ϕ0
.

The main algebraic property of the induced covariant transform (3.4) is that it intertwines ρ
on H with a representation ρχ on W (X) induced by the character χ of the subgroup H. That
is,

ρχ ◦W
ρ
ϕ0

= Wρ
ϕ0

◦ ρ. (3.5)

Alternatively, this can be observed by the fact that any function of the image of the induced
covariant transform (3.4) has the H-covariance property

f̃(gh) = χ̄(h)f̃(g). (3.6)

The main analytic property of the induced covariant transform is formulated in terms of the
matrix coefficient :

W(f, ϕ)(x, y) = ⟨f, ρ(0, x, y)ϕ⟩ for f, ϕ ∈ H, (3.7)

which is a continuous linear map H × H → L2
(
R2
)
. Moreover, the map (3.7) is sesqui-unitary,

that is for all f1, ϕ1, f2, ϕ2 ∈ H,

⟨W(f1, ϕ1),W(f2, ϕ2)⟩L2(R2) = ⟨f1, f2⟩H ⟨ϕ1, ϕ2⟩H . (3.8)

Example 3.2 (the inverse Fourier transform). To find the covariant transform which intertwines
two forms of the Schrödinger representations (2.9) and (2.11), we shall take the fiducial vector
which would be the eigenfunction for all representations ρℏ(s, x, 0) (2.9). That is,

[ρℏ(s, x, 0)f ](t) = e2πiℏs f(t− x) = e2πiℏ(s)f(t).

Of course the only solution is the constant function f(t) ≡ c. Then the corresponding induced
covariant transform based on the maps (2.10) is

[Wf ](y) = c

∫
R
f(t)e2πiℏyt dt.

Of course, this transformation is the (inverse) Fourier transform which intertwines the represen-
tations (2.9) and (2.11). The significance of this intertwining property for the harmonic analysis
is revealed in the work of Howe [23].
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Although many functions can be taken as fiducial vectors, some of them turn out to be much
more preferable. The origin of their advantages is revealed by the following observation [33,
Section 5]. Let G be a Lie group and ρ be its representation in a Hilbert space H. Let [Wϕf ](g) =
⟨f, ρ(g)ϕ⟩ be the covariant transform defined by a fiducial vector ϕ ∈ H. Then, the covariant
transform intertwines right shifts R(g) : f(g′) 7→ f(g′g) on the group G with the associated
action ρ on fiducial vectors

R(g) ◦Wϕ = Wρ(g)ϕ.

There are many interesting applications of this simple observation [4, 5, 33, 36, 37], in particular,

Proposition 3.3 ([33, 36]). Let G be a Lie group with a Lie algebra g and ρ be a representation
of G on a Hilbert space L2(Rn). We denote the derived representation of ρ by dρX . Let ϕ be
a fiducial vector in the Schwartz space S(Rn) such that

(∑n
j=1 aj dρ

Xj
)
ϕ = 0, for some aj ∈ C.

Then, the image of the covariant transform consists of functions f such that:(
n∑
j=1

ājL
Xj

)
f̃ = 0,

where LX denotes the Lie derivative – the derivation of the right regular representation R of G:

LX =
dR
(
etX
)

dt

∣∣∣∣∣
t=0

, for X ∈ g.

An induced covariant transform from a representation ρ on a Banach space B can be defined
in a similar fashion. Let H be a closed subgroup of H1

p and X = H1
p/H be a homogeneous

space. Consider a continuous section s : H1
p/H → H1

p, which is the right inverse of the natural
projection p : H1

p → H1
p/H. Denote by B∗ the dual space of the Banach space B and ρ∗ the

adjoint operator to ρ. Let l0 ∈ B∗ be a non-zero test function such that

ρ∗(h)l0 = χ̄(h)l0, for all h ∈ H,

for some character χ of H. The induced covariant transform Wl0 is defined as (see [31, Section 2]
and [35])

ṽ(x) = [Wl0v](x) =
〈
ρ
(
s(x)−1

)
v, l0

〉
= ⟨v, ρ∗(s(x))l0⟩ . (3.9)

Similarly to the Hilbert space case (3.5), the induced covariant transform (3.9) intertwines ρ
on B with a representation ρχ on W (X) induced by the character χ of the subgroup H [31,
Section 2, Proposition 2.6].

Thus the induced covariant transform can be used as

� reproducing formulae on representation spaces, and

� intertwining operators between different realisations of equivalent representations.

Both applications will be illustrated below.

3.2 The (pre-)Fock–Segal–Bargmann transform

We look for an induced covariant transform Wρℏ
ϕ : L2(R) → L2

(
R2
)
, which intertwines the

Schrödinger representation (2.9) and the left quasi-regular representation restricted to an ir-
reducible component of L2

(
R2
)
. In fact, for the character χℏ(s, 0, 0) = e2πiℏs of the centre

Z =
{
(s, 0, 0) ∈ H1

p : s ∈ R
}
, any vector ϕ ∈ L2(R) satisfies the following specialisation of (3.3)

ρℏ(s, 0, 0)ϕ = χℏ(s, 0, 0)ϕ, for all (s, 0, 0) ∈ Z.
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Let s : H1
p/Z → H1

p : (x, y) 7→ (0, x, y) be a continuous section [1, Section 5.1.2]. Thus, for all

f ∈ L2(R), the induced covariant transform Wρℏ
ϕ for any fiducial vector ϕ ∈ L2(R) is

[
Wρℏ
ϕ (f)

]
(x, y) =

∫
R
f(t)e2πiℏtyϕ(t− x) dt.

The main properties of Wρℏ
ϕ follow from the general properties of the covariant transform.

Remark 3.4. Let ϕ ∈ L2(R) be a fiducial vector such that ∥ϕ∥ = 1. The covariant transform
Wρℏ
ϕ : L2(R) → L2

(
R2
)
is a unitary intertwining operator between the Schrödinger representa-

tion ρℏ on L2(R) and the left quasi-regular representation Λℏ restricted on the image space

Fϕ
(
R2
)
:=
{
Wρℏ
ϕ (f) : f ∈ L2(R)

}
.

In particular, Λℏ is an irreducible representation on Fϕ
(
R2
)
.

So far all fiducial vectors seem to be equally suitable, yet its is common to give the strong
preference to a vacuum vector of the Schrödinger representation – the Gaussian

ϕℏκ(t) = 21/4e−
πℏ
κ
t2 . (3.10)

This preference is explained by Proposition 3.3: since the Gaussian is a null-solution to the
annihilation operator

a−ρℏ
= dρκX−iY

ℏ = −2πℏt− κ∂t, (3.11)

the image space of the induced covariant transform Wρℏ
ϕℏκ

(3.4) is annihilated by the Lie deriva-

tive LκX+iY (the derived representation from the right regular action Rℏ). This allows to give
an intrinsic characterisation of the image space.

Explicitly, Wρℏ
ϕℏκ

is given by

f̃(x, y) :=
[
Wρℏ
ϕℏκ
f
]
(x, y) = ⟨f, ρℏ(0, x, y)ϕℏκ⟩

=

(
ℏ
κ

)1/2

21/4
∫
R
f(t)e2πiℏtye−

πℏ
κ
(t−x)2 dt, (3.12)

where the measure is renormalised by the factor ( ℏκ)
1/2. For reasons explained here, we call it

the pre-FSB transform (see [39, Section 4.2] and [15, Section 1.6]) from L2(R) into the pre-FSB
space Fϕℏκ

(
R2
)
(2.6). The image space Fϕℏκ

(
R2
)
is a subspace of square-integrable functions

on R2. The left quasi-regular representation Λℏ restricted on the pre-FSB space Fϕℏκ
(
R2
)
is

called the pre-FSB representation. The prefix “pre-” is removed by a unitary operator – the
peeling, which will produce the FSB space of analytic functions on C in Section 4.1.

3.3 The Zak transform

In this subsection, we derive the Zak transform (see [10, Chapter 9], [12] and [15, Chapter 4]) as
a particular case of the covariant transform. More specifically, we look for the induced covariant
transform

Wρℏ
l0

: L2(R) → L2
(
T2
)
,

which intertwines the Schrödinger representation (2.9) and the lattice representation (2.14). For
an integer m, let χm(s, n.k) = e2πims be the character of the subgroup Hd = {(s, n, k) : s ∈ R,
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n, k ∈ Z} (2.12) of H1
p. A required fiducial vector l0 shall satisfy (3.3), which in this setup

becomes

e2πiℏse−2πiℏtkl0(t− n) = e2πimsl0(t), for all (s, n, k) ∈ Hd. (3.13)

The left- and the right-hand sides of (3.13) are equal if and only if

1) ℏ = m (from considering (1, 0, 0) ∈ Hd),

2) the function l0 is a periodic function (with the period 1) (from considering (0, 1, 0) ∈ Hd),
and

3) supp(l0) ⊆ Z (from considering all (0, 0, k) ∈ Hd).

Of course, the last two conditions imply that supp(l0) = Z. The simplest non-zero vector l0
satisfying (3.13) would be the Dirac comb distribution, that is,

l0(t) =
∑
n∈Z

δ(t− n), (3.14)

which is a periodic distribution constructed from the Dirac delta δ(t).

Remark 3.5. Let K be a compact subset of R, and C(K) be the space of continuous functions
on R supported inK, which is a Banach space equipped with the uniform norm. Let Cc(R) be the
union of these Banach spaces, where Cc(R) inherits a natural inductive limit topology [16, 41].
We denote by C∗

c(R) the space of all continuous functionals (pseudomeasures) on Cc(R), which
is the intersection of all duals of C(K). As the Dirac comb l0(t) (3.14) is a finite measure in any
compact set K, thus l0 ∈ C∗

c(R) is a pseudomeasure. Therefore, we consider the Schrödinger
representation ρℏ of H1

p on Cc(R) ⊂ L2(R) to be restricted to the Banach space C(K), for any
compact subset K of R.

Theorem 3.6. Let l0 be the fiducial vector defined by (3.14). For f ∈ L2(R), let

[Zf ](u, v) = e2πimuv
∑
n∈Z

f(u+ n) e2πimnv

be the so-called [1] co-Zak transform. Then, we have

Zf = Wρℏ
l0
(f).

Proof. Let s : T2 → H1
p : (u, v) 7→ (0, u, v) be a continuous section (cf. [1, Section 5.1.3]).

Let Cc(K) be the space of smooth functions that are compact support in K. For f ∈ Cc(K) ⊂
L2(R), we calculate the induced covariant transform as follows:[

Wρℏ
l0
(f)
]
(u, v) = ⟨f, ρℏ(0, u, v)l0⟩

=

∫
R
f(t)e2πiℏtv l̄0(t− u) dt

=

∫
R
f(t) e2πimtv

∑
n∈Z

δ(t− (u+ n))dt, ℏ = m

=
∑
n∈Z

∫
R
f(t)e2πimtvδ(t− (u+ n)) dt

=
∑
n∈Z

f(u+ n)e2πimv(u+n)

= e2πimuv
∑
n∈Z

f(u+ n)e2πimvn. (3.15)

This is the Zak transform (see [10, Chapter 9], [12], [15, Chapter 4]) up to the factor e2πimuv. ■
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Remark 3.7. Since the co-Zak transform is defined on Cc(R), which is dense on L2(R), the
co-Zak transform can be extended to be defined on the entire L2(R).

The general properties of the covariant transform Wρℏ
l0

yield corresponding properties of the
Zak transform.

Corollary 3.8. For f ∈ L2(R), let

[Zf ](u, v) = e2πimuv
∑
n∈Z

f(u+ n)e2πimnv

be the co-Zak transform (3.15). Then, we have the following properties:

1. The operator Z : L2(R) → L2
(
T2
)
intertwines the Schrödinger representation ρℏ and the

lattice representation ρm. That is, ρm ◦ Z = Z ◦ ρℏ, for ℏ = m.

2. The operator Z : L2(R) → L2
(
T2
)
is unitary.

3. The image space of [Zf ](u, v) consists of functions f̃(u, v) that have the double-quasi-
periodic property on R2.

Proof. 1. Since Wρℏ
l0

= Z, the intertwining property in (3.2), for ℏ = m, implies

ρm ◦Wρℏ
l0

= Wρℏ
l0

◦ ρℏ.

2. Since Wρℏ
l0

is an intertwining operator between two irreducible representations of H1
p, by

Schur’s lemma [28, Theorem 8.2.1], the covariant transform Wρℏ
l0

is a bijection L2(R) → L2
(
T2
)
.

“When you have an intertwining operator between irreducible representations, it has to be
terrible not to be unitary” [23], if a right factor is used. The scaling can be checked from the
identity∥∥χ[0,1]

∥∥
L2(R)

=
∥∥Wρℏ

l0
χ[0,1]

∥∥
L2(T2)

for the indicator function χ[0,1] of the interval [0, 1] with Wρℏ
l0
χ[0,1](u, v) = e2πim(u+1)v.

3. The image space of the induced covariant transform f̃ = Wρℏ
l0
(f) has the H-covariance

property (3.6) f̃(gh) = χ̄(h)f̃(g), for all g ∈ G and h ∈ H. For the subgroup Hd = {(s, n, k) =
(s, n+ ik) : s ∈ R, n, k ∈ Z}, it has exactly the double-quasi-periodic property (2.13):

f̃(u+ n, v + k) = e2πmiukf̃(u, v). ■

Example 3.9 (the pre-theta function). It is natural to evaluate the covariant transform of the
vacuum vector – Gaussian ϕℏκ (3.10) with ℏ = m:

Φmκ(u, v) := [Zϕmκ](u, v) = eπκ(3ω
2−ω̄2−2ωω̄)/(4m)

∑
n∈Z

e−
πm
κ
n2
e2πinω

= eπκ(3ω
2−ω̄2−2ωω̄)/(4m)Θmκ

(
ω,

im

κ

)
, (3.16)

where ω = m(v + iu/κ) ∈ C and Θmκ is the Jacobi theta function. We will use the notation
Φmκ(ω, ω̄) = Φmκ(u, v) as well. By Lemma 2.3(2) Φmκ, is a vacuum of the lattice representation.
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3.4 The (pre-)theta transform

In the present subsection, we look for an intertwining operator

Wρm
Φ : L2

(
T2
)
→ L2

(
R2
)

between the lattice representation and the left quasi-regular representation restricted to an
irreducible component of L2

(
R2
)
. Although the formula of the left quasi-regular representa-

tion (2.5) looks very similar to the lattice representation’s formula (2.14): they act on different
spaces L2

(
R2
)
and L2

(
T2
)
, respectively.

Let χℏ(s, 0, 0) = e2πiℏs be the character of the centre Z ⊂ H1
p. As was already mentioned

(Section 3.2), any vector Φ ∈ L2
(
T2
)
satisfies version ρm(s, 0, 0)Φ = χℏ(s, 0, 0)Φ of (3.3), for all

(s, 0, 0) ∈ Z and ℏ = m. Thus, the respective covariant transform WΦ intertwines the lattice
and quasi-regular representations.

We may be more specific and request that WΦ map: L2
(
T2
)
to the pre-FSB space F2

(
R2
)
.

As in the case of the pre-FSB transform, the vacuum Φmκ (3.16) shall be taken as the fiducial
vector. Indeed, by Proposition 3.3, the image space of Wρm

Φmκ
is annihilated by the right ladder

iκLX + LY (2.7).

Theorem 3.10. Let Φmκ(u, v) = eπκ(3ω
2−ω̄2−2ωω̄)/(4m)Θmκ

(
ω, imκ

)
be a fiducial vector defined

in (3.16). Then, the induced covariant transform Wρm
Φmκ

: L2
(
T2
)
→ F2

(
R2
)
is as follows[

Wρm
Φmκ

(f)
]
(x, y) =

∫
T2

f(ω) eπκ[2(ζ−ζ̄)[(ω̄−ζ̄)+(ω−ζ)]+3(ω̄−ζ̄)2−(ω−ζ)2−2(ω−ζ)(ω̄−ζ̄)]/(4m)

×Θmκ

(
ω − ζ,

im

κ

)
κdω ∧ dω̄

im
.

Proof. The induced covariant transform Wρm
Φmκ

: L2
(
T2
)
→ F2

(
R2
)
is calculated (up to normal-

isation) as follows[
Wρm

Φmκ
(f)
]
(x, y) = ⟨f, ρm(s(x, y))Φmκ⟩

=

∫
T2

f(u, v)e−2πimx(v−y)Φ̄mκ(u− x, v − y) du dv

= f(ω)eπκ[2(ζ−ζ̄)[(ω̄−ζ̄)+(ω−ζ)]+3(ω̄−ζ̄)2−(ω−ζ)2−2(ω−ζ)(ω̄−ζ̄)]/(4m)

×Θmκ

(
ω − ζ,

im

κ

)
κdω ∧ dω̄

im
, (3.17)

where ω = m(v + iu/κ) and ζ = m(y + ix/κ). ■

We call Wρm
Φmκ

the pre-theta transform.

The general properties of the covariant transform Wρm
Φmκ

yield corresponding properties of
the pre-theta transform.

Corollary 3.11. The pre-theta transform Wρm
Φmκ

: L2
(
T2
)
→ F2

(
R2
)
(3.17) is a unitary in-

tertwining operator between the lattice representation ρm on L2
(
T2
)
and the left quasi-regular

representation Λℏ restricted to FΦ

(
R2
)
.

4 Peeling representations of H1
p and analyticity

Induced representations are a common tool to construct representations of groups. However,
a representation prepared using a generic methodology may not be particularly suited for a spe-
cial situation. It often needs to be tuned to be enriched with useful features. In this section, we



Tuning Co- and Contra-Variant Transforms: the Heisenberg Group Illustration 13

demonstrate such a simple tool which produces the required enhancements needed for various
situations.

For example: since the annihilation operator a− provides a useful characterisation of an
irreducible component of a representation, we are interested in expressing a− in the most trans-
parent form. A map, called here peeling, then simplifies the corresponding annihilation operator
into a linear combination of first-order derivatives only. Therefore, the structure of the eigen-
vectors ϕn (cf. [1, Section 5.4] and [30, Section 2.6]) forms an orthonormal basis of the initial
irreducible space H becomes more transparent.

On the other hand, if a representation is reducible, its irreducible component can be char-
acterised as the space of null-solutions for the Lie derivative (cf. (2.6)). In such cases, we seek
to peel the irreducible component to a space of analytic functions. This allows one to use the
power of complex variable theory to study the induced representations of H1

p.

Definition 4.1. A peeling εd is an invertible operator of multiplication defined by a function d(x)
on X:

εd : f(x) 7→ ed(x)f(x),

The operator εd is unitary for suitably related measures

εd : L2(X,dµ(x)) → L2(X,dν(x))

such that dν(x) = e−2Re d(x)dµ(x).

We use such peeling operators to improve some properties of covariant transform related to
specific representations. In this paper, all considered peelings use smooth d(x) on a domain X
in a Euclidean space. We will discuss the choice of d(x) for the pre-FSB, Schrödinger and lattice
representations in Sections 4.1, 4.2 and 4.3, respectively.

4.1 Peeling the (pre-)FSB representation

Let Λℏ be the pre-FSB representation (2.5), which acts irreducibly on the pre-FSB spaceFϕℏκ(2.6).

Consider the variables z, z̄ ∈ C, where z =
√

h
2κ(x+iκy) and h = 2πℏ > 0. In this subsection, we

peel the representation Λℏ into the corresponding one Λ̃ℏ that acts on the FSB space of analytic
functions. To perform this, we look for a peeling operator satisfying the following conditions:

1. The peeling defined by ed(z,z̄) shall intertwine the right annihilation operator LκX+iY =
2πℏx+ (κ∂x + i∂y) and the Cauchy–Riemann operators ∂z̄ = κ∂x + i∂y:

∂z̄e
d(z,z̄)f(z, z̄) = ed(z,z̄)LκX+iY f(z, z̄). (4.1)

A simple differential equation for (4.1) implies that

d(z, z̄) = ψ̃(z) +
1

4
(z + z̄)2, (4.2)

where ψ̃ is an arbitrary smooth function of z alone.

2. Let a−Λℏ
= dΛκX−iY

ℏ = 2πiℏκy − (κ∂x − i∂y) be the left annihilation operator of Λℏ (2.5).

The same peeling shall intertwine a−Λℏ
with (a multiple of) the complex derivative ∂z =

(κ∂x−i∂y). This fixes ψ̃(z) = −1
2z

2−c, c ∈ C in (4.2). Thus, the peeling operator becomes

εd · I = ed(z,z̄) · I = e
h
4κ

(x2+κ2y2−2iκxy)−c · I = e
1
4
(z̄2−z2+2zz̄)−c · I. (4.3)
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Let c0 ∈ C and c0 ̸= 0. There is a special vacuum of the representation Λℏ annihilated by
both a−Λℏ

and LκX+iY , given as follows

ϕ0(z, z̄) = c0e
− 1

2
z̄2+ 1

4
(z−z̄)2+c = c0e

1
4
(z2−z̄2−2zz̄)+c.

The consequence of the conditions (1) and (2) is that the peeling maps the vacuum ϕ0, which is
killed by both the left and right annihilation operators to the function identically equal to c0,
which is killed by both ∂z and ∂z̄. The peeled representation Λ̃ℏ is

[Λ̃ℏ(s, z)F ](z
′) := e

1
4
(z̄′

2−z′2+2z′z̄′)Λℏ(s, z)e
− 1

4
(z̄′

2−z′2+2z′z̄′)F (z′)

= ehis+
1
4
(z̄2−z2−2zz̄)+z̄z′F (z′ − z), (4.4)

which is called the FSB representation. The composition of the peeling (4.3) with the covariant
transform (3.12) is

F (z) =

(
ℏ
κ

)1/2

e
h
4κ

(x2+κ2y2−2iκxy)−c
∫
R
f(t)e2πiℏty e−

πℏ
κ
(t−x)2 dt

=

(
ℏ
κ

)1/2 ∫
R
f(t)e

− h
2κ
t2+

√
2h
κ
tz− 1

2
z2
dt, (4.5)

where F (z) is an analytic function of z =
√

h
2κ(x + iκy). Indeed, by Proposition 3.3 and the

intertwining property (4.1), the function F (z) (4.5) satisfies

∂z̄F (z) = (κ∂x + i∂y)F (x, y) = 0,

which is essentially the Cauchy–Riemann equation. The integral (4.5) is known as the FSB
transform. The image Fℏ2 of the FSB transforms is called the FSB space. It is a closed subspace
of

L2
(
R2, e−

h
2κ

(x2+κ2y2)+2cdx dy
)
= L2

(
C, e−|z|2+2cdz dz̄

)
consisting of the analytic functions. Note that often, only the values ℏ = 1, κ = 1 and c = 0 are
used [42].

Similar to the pre-FSB transform, we calculate the composition of the pre-theta transform f̃
(3.17) and the peeling (4.3), h = 2πm, as follows

F̃ (z) = e
h
4κ

(x2+κ2y2−2iκxy)−cf̃(x, y)

=

∫
T2

f(u, v)e−
πm
κ

(u2+2iκuv)− 1
2
z2+2

√
πm
κ
uz−cΘ̄mκ(−i(z̄′ − z̄), i) dudv,

where z =
√

h
2κ(x+ iκy) ∈ C as before.

We call F̃ (z) the theta transform of f(u, v). As with the FSB transform, the intertwining
property (4.1) implies that the image of the theta transform consists of analytic functions, which
can be found in many references [10, 15, 39].

4.2 Peeling the Schrödinger representation

In this subsection, we are performing less common peeling the Schrödinger representation
ρℏ (2.9), so that the corresponding annihilation operator will only be the derivative ∂t. For
a representation space realised as a function on a set, we have the following simple result.
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Lemma 4.2. Let the annihilation operator have the form a− = M + D on L2(X), where M
is a multiplication operator and D is a derivative satisfying the Leibniz rule. For the vacuum
vector ϕ(x), such that a−ϕ(x) = 0, the peeling f(x) 7→ ϕ(x)f(x) intertwines the annihilation
operator a− with the derivative D.

Recall the annihilation operator a−ρℏ
= dρκX−iY

ℏ = −2πℏt − κ∂t (3.11) for the Schrödinger

representation. By Lemma 4.2, a function εd which intertwines a−ρℏ
with the plain derivative κ∂t

shall satisfy the vacuum condition: a−ρℏ
ε−1
d = 0. Thus, the peeling defined by εd(t) = ce

πℏt2
κ ,

c ∈ C is unitary:

εd : L2(R, dt) −→ L2
(
R, e−2πℏ

κ
t2dt

)
.

The composition of the Schrödinger representation with the peeling acting on L2
(
R, e−2πℏ

κ
t2dt

)
is

[ρ̃ℏ(s, x, y)F ](t) := e
πℏ
κ
t2e2πiℏ(s−ty)e−

πℏ
κ
(t−x)2F (t− x) = e2πiℏse−

πℏ
κ
(x2−2t(x−iκy))F (t− x).

Consequently, the corresponding derived representations of the Lie algebra h1 are

dρ̃Xℏ = 2πℏt− ∂t and dρ̃Yℏ = −2πiℏt,

and the annihilation operator a−ρ̃ℏ is

a−ρ̃ℏ = dρ̃κX−iY
ℏ = −∂t,

which annihilates the vacuum ϕ̃(t) = c. A notable consequence is that εd transforms the

Hermite functions Hn(t)e
−πℏ

κ
t2 ∈ L2(R) to the corresponding Hermite polynomials Hn(t) ∈

L2
(
R, e−2πℏ

κ
t2dt

)
.

4.3 Peeling the lattice representation

The purpose of peeling the lattice representation ρm (2.14) seems to be difficult to formulate
while staying within the framework of the Heisenberg group itself. However, the lattice represen-
tation is better understood if it is extended to the Schrödinger group (aka the Jacobi group [10,
Chapter 9]) – the semi-direct product of H1

p with the group SL2(R) acting on H1
p through sym-

plectic automorphism [15, Section 1.2]. The representation of the Schrödinger group can then
be peeled in a way that its vacuum will be a null-solution of the heat equation.

Since an accurate treatment of the Schrödinger group is beyond the scoop of the present
paper, we simply provide the form of the required peeling, cf. (3.16):

εd · I = e−πκ(3ω
2−ω̄2−2ωω̄)/4m · I, where ω =

m

κ
(κv + iu).

Then, εd is a unitary operator:

εd : L2
(
T2, dωdω̄

)
−→ L̂2

(
T2, eπκ(ω−ω̄)

2/2mdωdω̄
)
.

Note that πκ(ω−ω̄)2/2m = −2Re
[
−πκ

(
3ω2−ω̄2−2ωω̄

)
/4m

]
= −2πmu2/κ. The corresponding

irreducible lattice representation ρ̃m is

[ρ̃m(s, ω)F ](ω
′, ω̄′) = e2πmiseπκ(

1
4
(ω−ω̄)2+ω(ω̄′−ω′))/mF (ω′ − ω, ω̄′ − ω̄).

Therefore, the corresponding annihilation operator is simply

a−ρ̃m = dρ̃κX−iY
m = 2im∂ω̄,

which annihilates the theta function Φ̃ =: cΘmκ

(
ω, imκ

)
. Therefore, the peeling maps the vacuum

vector Φmκ from Section 3.4 to the theta function:

εd : Φ(ω, ω̄) 7→ cΘmκ

(
ω,

im

κ

)
.
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5 A contravariant transform on H1
p

The goal of this section is to introduce the contravariant transform Mψ, which is the adjoint of
the covariant transform Wϕ (see [3, Section 8.1] and [31, Section 2]).

5.1 A Contravariant transform for induced representations

Let H be a closed subgroup of H1
p and X = H1

p/H be the respective homogeneous space, which
is a subset of Euclidean space with the respective Lebesgue measure. Let ρ be a representation
of the Heisenberg group H1

p on the vector space V.

Definition 5.1. For a reconstruction vector ψ ∈ V, the contravariant transform Mψ is a map
Mρ

ψ : L1(X) → V given by

Mρ
ψ : ν̃ 7→ Mψ(ν̃) =

∫
X
ν̃(x)ρ(s(x))ψ dµ(x),

where s is a Borel section from X = H1
p/H to H1

p.

It is naturally to request that the contravariant transform Mρ
ψ shall intertwine the induced

representation ρχ (2.4) and the representation ρ:

Mρ
ψ ◦ ρχ(g) = ρ(g) ◦Mρ

ψ, for all g ∈ H1
p. (5.1)

The left-hand side explicitly is

[Mρ
ψ ◦ ρχ(g)ν̃] =

∫
X
χ̄
(
r
(
g−1 ∗ s(x)

))
ν̃
(
g−1 · x

)
ρ(s(x))ψ dµ(x)

=

∫
X
ν̃(y)χ̄(r(g ∗ s(y)))ρ

(
g ∗ s(y) ∗ (r(g ∗ s(y)))−1

)
ψ dµ(x)

=

∫
X
ν̃(y)χ̄(r(g ∗ s(y)))ρ (s(p(g ∗ s(y))))ψ dµ(x) ,

where y = g−1 · x for x, y ∈ X and g ∈ G. We used the following identities:

s(x) = g ∗ s(y) ∗ (r(g ∗ s(y)))−1, r
(
g−1 ∗ s(x)

)
= r(g ∗ s(y)).

The right-hand side of (5.1) is

[
ρ(g) ◦Mρ

ψν̃
]
=

∫
X
ν̃(y)ρ(g ∗ s(y))ψ dµ(y).

If the intertwining property holds for every function ν̃, then the following condition for the
reconstructing vector ψ is required:

χ̄(r(g))ρ (s(p(g)))ψ = ρ(g)ψ, for all g ∈ G. (5.2)

The abstract framework of the contravariant transform is well known for a unitary irreducible
representation ρ in a Hilbert space V (see for example [3, Section 8.1]).

For suitable fiducial ϕ and reconstruction ψ ∈ V vectors, the contravariant transform Mψ

and the covariant transform Wϕ (3.4) are adjoints.

There are several extensions of the constructions for a strongly continuous representation ρ
in a Banach space V [2, 13, 14, 31, 35]. In this paper we omit generalities and use specialised
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techniques for H1
p [2, 31, 35]. We use W∗ : B∗ → W ∗(X) and M∗ : W ∗(X) → B∗ to denote the

adjoint operators to W and M, respectively. This results in the following identity:

⟨Mv,M∗l⟩W (X) = ⟨v, l⟩B , v ∈ B, l ∈ B∗.

The contravariant transform construction is particularly simple for maps acting from the
pre-FSB space as the next two examples show.

Example 5.2 (the inverse of the (pre-)FSB transform). For the Schrödinger representation
ρℏ (2.9), the intertwining condition (5.2) is trivially satisfied by an arbitrary reconstructing
vector ψ. From the sesqui-unitary property (3.8), it follows thatMψ◦Wϕ = I for vectors ψ and ϕ

such that ⟨ϕ, ψ⟩ = 1. In particular, for the Gaussian ψℏκ(t) = 21/4e−
πℏ
κ
t2 as a reconstruction

vector, the contravariant transform is

[
Mρℏ

ψ f
]
(t) = 21/4

∫
R2

f(x, y)e−2πiℏtye−
πℏ
κ
(t−x)2 dx dy

= 21/4e−
πℏ
κ
t2
∫
R2

f(x, y)e−
πℏ
κ
(x2−2t(x−iκy)) dx dy.

This is known as the inverse of the pre-FSB transform [39, Section 4.2].

Example 5.3 (the inverse of the (pre-)theta transform). A contravariant transform Mρm
ψℏκ

:

L2
(
R2
)
→ L2

(
T2
)
is similar to the previous case: there are no restrictions from the intertwining

condition (5.2), and the only requirement for a reconstruction vector ψ is ⟨ϕ, ψ⟩ = 1. In par-
ticular, if we set the reconstruction vector ψ by the lattice representation’s vacuum (3.16) the
integral transformation Mρm

ψ becomes:

Mρm
ψℏκ

(f) = e−
πm
κ
u2−2iκuv

∫
T2

f(x, y) e−
πm
κ

(x2−2u(x−iκy))

×Θmκ

(√
h

2κ
(κ(v − y) + i(u− x), i

)
dx dy. (5.3)

Thus, we obtain the inverse operator of Wρm
Φℏκ

(3.17). We call the transformation Mρm
ψℏκ

(5.3)
the inverse of the pre-theta transform.

Example 5.4 (the Fourier transform). We can look for a contravariant transform which in-
tertwines the two forms (2.9) and (2.11) and will be an inverse of the covariant transform (the
Fourier transform) from Example 3.2. Using maps (2.10) and representation (2.9), we obtain
the form of the compatibility condition (5.2):

e2πiℏse−2πiℏtyψ(t) = e2πiℏ(s−ty)ψ(t− x),

which again delivers the solution ψ(λ) ≡ 1. The respective contravariant transform is, as
expected, the Fourier transform:

[
Mρℏ

1 f
]
(t) =

∫
R
f(λ)e−2πiℏtλ dλ.

A bit more care is required in the next case.
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5.2 The inverse of the Zak transform

In Section 3.3, we derived the co-Zak transform Z : L2(R) → L2
(
T2
)
(3.15) through the induced

covariant transform Wρℏ
ϕ0
. Now, we calculate its inverse using the contravariant transform. The

intertwining property (5.2) for the map r(s, x, y) = (s− {x}[y], [x], [y]) from (2.15) requires:

χ̄(s− {x}[y], [x], [y])ρ
(
(s, x, y) ∗ (s− {x}[y], [x], [y])−1

)
ψ = ρ(s, x, y)ψ,

χ̄(s− {x}[y], [x], [y])ρ
(
(s, x, y) ∗ (−s+ x[y],−[x],−[y])

)
ψ = ρ(s, x, y)ψ,

χ̄(s− {x}[y], [x], [y])ρ(0, {x}, {y})ψ = ρ(s, x, y)ψ,

e2πim(s−{x}[y])e2πim(−t{y})ψ(t− {x}) = e2πim(s−ty) ψ(t− x),

e2πim((t−{x})[y])ψ(t− {x}) = ψ(t− x). (5.4)

Choosing y = 1 and any 0 < x < 1, we conclude that ψ0 is supported at {0}. Further
analysis shows that the reconstruction vector ψ0 satisfying the condition (5.4) is the Dirac
delta distribution δ(t) (up to a multiple).

Let x̃ = (u, v) ∈ X = T2 = H1
p/Hd, where Hd is the non-commutative subgroup (2.12). For

the section map s(u, v) = (0, u, v) (2.15) and g ∈ L2
(
T2
)
, the contravariant transform becomes:

Mρℏ
ψ0

: g 7→
∫
T

∫
T
g(u, v)ρℏ(s(x̃))ψ0(t) dudv

=

∫ 1

0

∫ 1

0
g(u, v)ρℏ(0, u, v)ψ0(t) dudv

=

∫ 1

0

∫ 1

0
g(u, v)e−2πimtvδ(t− u) dudv

=

∫ 1

0
g(t, v)e−2πimtv dv

=

∫ 1

0
g̃(t, v) dv. (5.5)

Since g(t, v) is contained in the space L2
(
T2
)
of square-integrable functions that are periodic

in t and quasi-periodic in v, multiplying g(t, v) by e−2πimtv produces a function that has the
same double quasi-periodicity property of g(t, v) but in the opposite way. In other words,
g̃(t, v) = g(t, v) · e−2πimtv ∈ L̃2

(
T2
)
is quasi-periodic in t and periodic in v and square-integrable.

Moreover, since t ∈ R ≈ [0, 1]× Z, then t = x+ n, for some x ∈ [0, 1] and n ∈ Z. Therefore, for
t = x+ n, (5.5) becomes∫ 1

0
g̃(x+ n, v) dv =

∫ 1

0
g̃(x, v)e−2πimnv dv =

[
Mρℏ

ψ0
g
]
(x) =

[
Mρℏ

ψ0

(
e2πimxv g̃

)]
(x). (5.6)

Thus, Mρℏ
ψ0

is the inverse of the induced covariant transform Wρℏ
ϕ0

(3.15) from L2
(
T2
)
into L2(R).

We now provide the standard definition of the inverse of the Zak transform. Let L̃2
(
T2
)
be

a space of square-integrable functions g̃(x, v) that are quasi-periodic in x and periodic in v. Let
g̃ = Z̃f be the Zak transform of f ∈ S(R) ⊂ L2(R). The function f can be reconstructed using
the following formula:

Z̃−1 : L̃2
(
T2
)
→ L2(R),[

Z̃−1g̃
]
(x) =

∫
T
g̃(x, v)e−2πimnv dv, n ∈ Z, m ∈ N. (5.7)

Definition 5.5 ([39, Section 8.1]). The operator Z̃−1 (5.7) is called the inverse of the Zak
transform.
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The computations of this subsection allows us to present Z̃−1 as a contravariant transform.

Theorem 5.6. Let g̃(x, v) = g(x, v) · e−2πimxv such that g ∈ L2
(
T2
)
. The contravariant trans-

form (5.6),

[
Mρℏ

ψ0

(
e2πimxv g̃

)]
(x) =

∫ 1

0
g̃(x, v)e−2πimnv dv =

[
Z̃−1g̃

]
(x),

is the inverse of the Zak transform. For g ∈ L2
(
T2
)
, one can write the inverse of the co-Zak

transform as Z−1g = Z̃−1e−2πimuvg.

6 Conclusion

Our work in this paper illustrates the technique which allows to obtain co- and contra-variant
transforms with desired properties. For the covariant transform, the fiducial vector needs to
agree with Proposition 3.3. An induced contravariant transform will be an intertwining operator
with an induced representation if the reconstructing vector satisfies (5.2). This approach is
illustrated on various representations of the Heisenberg group, and produces an interpretation
of the Zak transform and its inverse as induced co- and contra-variant transforms. Furthermore,
we used peeling operators to obtain the familiar representation spaces of analytic function space
of analytic functions.

Of course, this approach is not limited to the illustrative example of the Heisenberg group
and can be fruitfully applied in many other situations.
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