Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 033, 41 pages      arXiv:2411.04206      https://doi.org/10.3842/SIGMA.2025.033

Uniformity of Strong Asymptotics in Angelesco Systems

Maxim L. Yattselev
Department of Mathematical Sciences, Indiana University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA

Received November 08, 2024, in final form April 28, 2025; Published online May 08, 2025

Abstract
Let $ \mu_1 $ and $ \mu_2 $ be two complex-valued Borel measures on the real line such that $ \operatorname{supp} \mu_1 =[\alpha_1,\beta_1]$ < $\operatorname{supp} \mu_2 =[\alpha_2,\beta_2] $ and $ {\rm d}\mu_i(x) = -\rho_i(x){\rm d}x/2\pi {\rm i}$, where $ \rho_i(x) $ is the restriction to $ [\alpha_i,\beta_i] $ of a function non-vanishing and holomorphic in some neighborhood of $ [\alpha_i,\beta_i] $. Strong asymptotics of multiple orthogonal polynomials is considered as their multi-indices $ (n_1,n_2) $ tend to infinity in both coordinates. The main goal of this work is to show that the error terms in the asymptotic formulae are uniform with respect to $ \min\{n_1,n_2\} $.

Key words: multiple orthogonal polynomials; Angelesco systems; strong asymptotics; Riemann-Hilbert analysis.

pdf (971 kb)   tex (244 kb)  

References

  1. Angelesco A., Sur deux extensions des fractions continues algébraiques, C. R. Acad. Sci. 168 (1919), 262-265.
  2. Aptekarev A.I., Asymptotics of simultaneously orthogonal polynomials in the Angelesco case, Math. USSR Sb. 64 (1989), 57-84.
  3. Aptekarev A.I., Denisov S.A., Yattselev M.L., Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials, Trans. Amer. Math. Soc. 373 (2020), 875-917, arXiv:1806.10531.
  4. Aptekarev A.I., Denisov S.A., Yattselev M.L., Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum, J. Spectr. Theory 11 (2021), 1511-1597, arXiv:2004.04113.
  5. Aptekarev A.I., Denisov S.A., Yattselev M.L., Strong asymptotics of multiple orthogonal polynomials for Angelesco systems. Part I: Non-marginal directions, arXiv:2404.14391.
  6. Aptekarev A.I., Kalyagin V.A., Lysov V.G., Toulyakov D.N., Equilibrium of vector potentials and uniformization of the algebraic curves of genus 0, J. Comput. Appl. Math. 233 (2009), 602-616.
  7. Aptekarev A.I., Kozhan R., Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class, J. Approx. Theory 255 (2020), 105409, 21 pages, arXiv:1908.04540.
  8. Baratchart L., Yattselev M., Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights, Int. Math. Res. Not. 2010 (2010), 4211-4275, arXiv:0911.3850.
  9. Deift P., Kriecherbauer T., McLaughlin K.T.R., Venakides S., Zhou X., Strong asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure Appl. Math. 52 (1999), 1491-1552, arXiv:1209.6366.
  10. Deift P., Zhou X., A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), 295-368.
  11. Denisov S.A., Yattselev M.L., Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality, Adv. Math. 396 (2022), 108114, 79 pages, arXiv:2008.08210.
  12. Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents: the Riemann-Hilbert approach, Math. Surveys Monogr., Vol. 128, American Mathematical Society, Providence, RI, 2006.
  13. Fokas A.S., Its A.R., Kitaev A.V., Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), 313-344.
  14. Fokas A.S., Its A.R., Kitaev A.V., The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys. 147 (1992), 395-430.
  15. Gakhov F.D., Boundary value problems, Dover Publications, Inc., New York, 1990.
  16. Gonchar A.A., Rakhmanov E.A., On convergence of simultaneous Padé approximants for systems of functions of Markov type, Proc. Steklov Inst. Math. 157 (1983), 31-50.
  17. Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia Math. Appl., Vol. 98, Cambridge University Press, Cambridge, 2005.
  18. Its A.R., Kuijlaars A.B.J., Östensson J., Critical edge behavior in unitary random matrix ensembles and the thirty-fourth Painlevé transcendent, Int. Math. Res. Not. 2008 (2008), rnn017, 67 pages, arXiv:0704.1972.
  19. Kaljagin V.A., On a class of polynomials determined by two orthogonality relations, Math. USSR Sb. 38 (1981), 563-580.
  20. Kuijlaars A.B.J., McLaughlin K.T.R., Van Assche W., Vanlessen M., The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$, Adv. Math. 188 (2004), 337-398, arXiv:math.CA/0111252.
  21. Lysov V.G., Tulyakov D.N., On a vector potential-theory equilibrium problem with the Angelesco matrix, Proc. Steklov Inst. Math. 298 (2017), 170-200.
  22. Lysov V.G., Tulyakov D.N., On the supports of vector equilibrium measures in the Angelesco problem with nested intervals, Proc. Steklov Inst. Math. 301 (2018), 180-196.
  23. Nuttall J., Trojan G.M., Asymptotics of Hermite-Padé polynomials for a set of functions with different branch points, Constr. Approx. 3 (1987), 13-29.
  24. Van Assche W., Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Approx. Theory 163 (2011), 1427-1448, arXiv:1104.3778.
  25. Van Assche W., Geronimo J.S., Kuijlaars A.B.J., Riemann-Hilbert problems for multiple orthogonal polynomials, in Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, 23-59.
  26. Xu S.-X., Zhao Y.-Q., Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight with a jump at the edge, Stud. Appl. Math. 127 (2011), 67-105.
  27. Yattselev M.L., Strong asymptotics of Hermite-Padé approximants for Angelesco systems, Canad. J. Math. 68 (2016), 1159-1200, arXiv:1507.07596.

Previous article  Next article  Contents of Volume 21 (2025)