|
SIGMA 21 (2025), 040, 48 pages arXiv:2108.12692
https://doi.org/10.3842/SIGMA.2025.040
Integrable Dynamics in Projective Geometry via Dimers and Triple Crossing Diagram Maps on the Cylinder
Niklas Christoph Affolter abc, Terrence George d and Sanjay Ramassamy e
a) Technische Universität Berlin, Institute of Mathematics, Strasse des 17. Juni 136, 10623 Berlin, Germany
b) Département de mathématiques et applications, École Normale Supérieure, CNRS, PSL University, 45 rue d'Ulm, 75005 Paris, France
c) Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
d) Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA
e) Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France
Received December 23, 2024, in final form May 20, 2025; Published online June 03, 2025
Abstract
We introduce twisted triple crossing diagram maps, collections of points in projective space associated to bipartite graphs on the cylinder, and use them to provide geometric realizations of the cluster integrable systems of Goncharov and Kenyon constructed from toric dimer models. Using this notion, we provide geometric proofs that the pentagram map and the cross-ratio dynamics integrable systems are cluster integrable systems. We show that in appropriate coordinates, cross-ratio dynamics is described by geometric $R$-matrices, which solves the open question of finding a cluster algebra structure describing cross-ratio dynamics.
Key words: discrete integrable systems; dimer model; cluster algebras; pentagram map; triple crossing diagram maps.
pdf (853 kb)
tex (72 kb)
References
- Affolter N., Glick M., Pylyavskyy P., Ramassamy S., Vector-relation configurations and plabic graphs, Selecta Math. (N.S.) 30 (2024), 9, 55 pages, arXiv:1908.06959.
- Affolter N., Glick M., Ramassamy S., Triple crossing diagram maps and multiple cluster structures, in preparation.
- Affolter N.C., Discrete differential geometry and cluster algebras via TCD maps, Ph.D. Thesis, Technische Universität Berlin, 2023, arXiv:2305.02212.
- Arnold M., Fuchs D., Izmestiev I., Tabachnikov S., Cross-ratio dynamics on ideal polygons, Int. Math. Res. Not. 2022 (2022), 6770-6853, arXiv:1812.05337.
- Berenstein A., Kazhdan D., Geometric and unipotent crystals, Geom. Funct. Anal. (2000), special issue, 188-236, arXiv:math.QA/9912105.
- Bobenko A., Pinkall U., Discrete isothermic surfaces, J. Reine Angew. Math. 475 (1996), 187-208.
- Bobenko A.I., Suris Yu.B., Integrable systems on quad-graphs, Int. Math. Res. Not. 2002 (2002), 573-611, arXiv:nlin.SI/0110004.
- Bobenko A.I., Suris Yu.B., Discrete differential geometry. Integrable structure, Grad. Stud. Math., Vol. 98, American Mathematical Society, Providence, RI, 2008, arXiv:math.DG/0504358.
- Chepuri S., Plabic R-matrices, Publ. Res. Inst. Math. Sci. 56 (2020), 281-351, arXiv:1804.02059.
- Cimasoni D., Reshetikhin N., Dimers on surface graphs and spin structures. II, Comm. Math. Phys. 281 (2008), 445-468, arXiv:0704.0273.
- Eager R., Franco S., Schaeffer K., Dimer models and integrable systems, J. High Energy Phys. 2012 (2012), no. 6, 106, 25 pages, arXiv:1107.1244.
- Etingof P., Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation, Comm. Algebra 31 (2003), 1961-1973, arXiv:math.QA/0112278.
- Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
- Fock V.V., Marshakov A., Loop groups, clusters, dimers and integrable systems, in Geometry and Quantization of Moduli Spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser, Cham, 2016, 1-66, arXiv:1401.1606.
- Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0602259.
- Gekhtman M., Shapiro M., Tabachnikov S., Vainshtein A., Integrable cluster dynamics of directed networks and pentagram maps, Adv. Math. 300 (2016), 390-450, arXiv:1406.1883.
- Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899-934, arXiv:math.QA/0208033.
- Gekhtman M., Shapiro M., Vainshtein A., Poisson geometry of directed networks in an annulus, J. Eur. Math. Soc. 14 (2012), 541-570, arXiv:0901.0020.
- George T., Ramassamy S., Discrete dynamics in cluster integrable systems from geometric $R$-matrix transformations, Comb. Theory 3 (2023), 12, 29 pages, arXiv:2208.10306.
- Glick M., The pentagram map and $Y$-patterns, Adv. Math. 227 (2011), 1019-1045, arXiv:1005.0598.
- Glick M., Pylyavskyy P., $Y$-meshes and generalized pentagram maps, Proc. Lond. Math. Soc. 112 (2016), 753-797, arXiv:1503.02057.
- Glick M., Rupel D., Introduction to cluster algebras, in Symmetries and Integrability of Difference Equations, CRM Ser. Math. Phys., Springer, Cham, 2017, 325-357, arXiv:1803.08960.
- Goncharov A.B., Kenyon R., Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér. 46 (2013), 747-813, arXiv:1107.5588.
- Hertrich-Jeromin U., Introduction to Möbius differential geometry, London Math. Soc. Lecture Note Ser., Vol. 300, Cambridge University Press, Cambridge, 2003.
- Hertrich-Jeromin U., McIntosh I., Norman P., Pedit F., Periodic discrete conformal maps, J. Reine Angew. Math. 534 (2001), 129-153, arXiv:math.DG/9905112.
- Inoue R., Lam T., Pylyavskyy P., Toric networks, geometric $R$-matrices and generalized discrete Toda lattices, Comm. Math. Phys. 347 (2016), 799-855, arXiv:1504.03448.
- Inoue R., Lam T., Pylyavskyy P., On the cluster nature and quantization of geometric $R$-matrices, Publ. Res. Inst. Math. Sci. 55 (2019), 25-78, arXiv:1607.00722.
- Izosimov A., Dimers, networks, and cluster integrable systems, Geom. Funct. Anal. 32 (2022), 861-880, arXiv:2108.04975.
- Izosimov A., Polygon recutting as a cluster integrable system, Selecta Math. (N.S.) 29 (2023), 21, 31 pages, arXiv:2201.12503.
- Kajiwara K., Noumi M., Yamada Y., Discrete dynamical systems with $W(A_{m-1}^{(1)}\times A_{n-1}^{(1)})$ symmetry, Lett. Math. Phys. 60 (2002), 211-219, arXiv:nlin.SI/0106029.
- Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A., Affine crystals and vertex models, in Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., Vol. 16, World Scientific Publishing, River Edge, NJ, 1992, 449-484.
- Kashiwara M., Nakashima T., Okado M., Tropical $R$ maps and affine geometric crystals, Represent. Theory 14 (2010), 446-509, arXiv:0808.2411.
- Kasteleyn P.W., Dimer statistics and phase transitions, J. Math. Phys. 4 (1963), 287-293.
- Khesin B., Soloviev F., The geometry of dented pentagram maps, J. Eur. Math. Soc. 18 (2016), 147-179, arXiv:1308.5363.
- Lam T., Pylyavskyy P., Inverse problem in cylindrical electrical networks, SIAM J. Appl. Math. 72 (2012), 767-788, arXiv:1104.4998.
- Lam T., Pylyavskyy P., Total positivity in loop groups, I: Whirls and curls, Adv. Math. 230 (2012), 1222-1271, arXiv:0812.0840.
- Lam T., Pylyavskyy P., Crystals and total positivity on orientable surfaces, Selecta Math. (N.S.) 19 (2013), 173-235, arXiv:1008.1949.
- Lester J.A., Triangles. II. Complex triangle coordinates, Aequationes Math. 52 (1996), 215-245.
- Nijhoff F., Capel H., The discrete Korteweg-de Vries equation, Acta Appl. Math. 39 (1995), 133-158.
- Ovenhouse N., Non-commutative integrability of the Grassmann pentagram map, Adv. Math. 373 (2020), 107309, 56 pages, arXiv:1810.11742.
- Ovsienko V., Schwartz R., Tabachnikov S., The pentagram map: a discrete integrable system, Comm. Math. Phys. 299 (2010), 409-446, arXiv:0810.5605.
- Ovsienko V., Schwartz R.E., Tabachnikov S., Liouville-Arnold integrability of the pentagram map on closed polygons, Duke Math. J. 162 (2013), 2149-2196, arXiv:1107.3633.
- Schur J., Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205-232.
- Schwartz R., The pentagram map, Experiment. Math. 1 (1992), 71-81.
- Schwartz R.E., Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl. 3 (2008), 379-409, arXiv:0709.1264.
- Soloviev F., Integrability of the pentagram map, Duke Math. J. 162 (2013), 2815-2853, arXiv:1106.3950.
- Springer T.A., Linear algebraic groups, 2nd ed., Mod. Birkhäuser Class., Birkhäuser, Boston, MA, 2008.
- Thurston D.P., From dominoes to hexagons, in Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F.R. Jones' 60th Birthday, Proc. Centre Math. Appl. Austral. Nat. Univ., Vol. 46, Australian National University, Canberra, 2017, 399-414, arXiv:math.CO/0405482.
- Weinreich M.H., The algebraic dynamics of the pentagram map, Ergodic Theory Dynam. Systems 43 (2023), 3460-3505, arXiv:2104.06211.
|
|