Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 21 (2025), 046, 49 pages      arXiv:2409.09472      https://doi.org/10.3842/SIGMA.2025.046

Correlated Gromov-Witten Invariants

Thomas Blomme a and Francesca Carocci b
a) Université de Neuchâtel, rue Émile Argan 11, Neuchâtel 2000, Switzerland
b) Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133, Italy

Received September 24, 2024, in final form June 09, 2025; Published online June 18, 2025

Abstract
We introduce a geometric refinement of Gromov-Witten invariants for $\mathbb P^1$-bundles relative to the natural fiberwise boundary structure. We call these refined invariant correlated Gromov-Witten invariants. Furthermore, we prove a refinement of the degeneration formula keeping track of the correlation. Finally, combining certain invariance properties of the correlated invariant, a local computation and the refined degeneration formula we follow floor diagram techniques to prove regularity results for the generating series of the invariants in the case of $\mathbb P^1$-bundles over elliptic curves. Such invariants are expected to play a role in the degeneration formula for reduced Gromov-Witten invariants for abelian and K3 surfaces.

Key words: Gromov-Witten invariants; enumerative geometry; elliptic curves; decomposition formula.

pdf (1610 kb)   tex (873 kb)  

References

  1. Abramovich D., Chen Q., Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), 465-488, arXiv:1102.4531.
  2. Abramovich D., Marcus S., Wise J., Comparison theorems for Gromov-Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014), 1611-1667, arXiv:1207.2085.
  3. Ardila F., Brugallé E., The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial, Int. Math. Res. Not. 2017 (2017), 614-641, arXiv:1412.4563.
  4. Behrend K., Fantechi B., The intrinsic normal cone, Invent. Math. 128 (1997), 45-88, arXiv:alg-geom/9601010.
  5. Birkenhake C., Lange H., Complex abelian varieties, 2nd ed., Grundlehren Math. Wiss., Vol. 302, Springer, Berlin, 2004.
  6. Blomme T., Tropical curves in abelian surfaces III: pearl diagrams and multiple cover formulas, arXiv:2205.07684.
  7. Blomme T., Floor diagrams and enumerative invariants of line bundles over an elliptic curve, Compos. Math. 159 (2023), 1741-1790, arXiv:2112.05439.
  8. Blomme T., Gromov-Witten invariants of bielliptic surfaces, J. Lond. Math. Soc. 111 (2025), e70081, 61 pages, arXiv:2401.01627.
  9. Borne N., Vistoli A., Parabolic sheaves on logarithmic schemes, Adv. Math. 231 (2012), 1327-1363, arXiv:1001.0466.
  10. Bosch S., Lütkebohmert W., Raynaud M., Néron models, Ergeb. Math. Grenzgeb., Vol. 21, Springer, Berlin, 1990.
  11. Bousseau P., Refined floor diagrams from higher genera and lambda classes, Selecta Math. 27 (2021), 43, 42 pages, arXiv:1904.10311.
  12. Brugallé E., Mikhalkin G., Enumeration of curves via floor diagrams, C. R. Math. Acad. Sci. Paris 345 (2007), 329-334, arXiv:0706.0083.
  13. Brugallé E., Mikhalkin G., Floor decompositions of tropical curves: the planar case, in Proceedings of Gökova Geometry-Topology Conference 2008, Gökova Geometry/Topology Conference (GGT), Gökova, 2009, 64-90, arXiv:0812.3354.
  14. Carocci F., Nabijou N., Rubber tori in the boundary of expanded stable maps, J. Lond. Math. Soc. 109 (2024), e12874, 36 pages, arXiv:2109.07512.
  15. Chen Q., The degeneration formula for logarithmic expanded degenerations, J. Algebraic Geom. 23 (2014), 341-392, arXiv:1009.4378.
  16. Esteves E., Gagné M., Kleiman S., Autoduality of the compactified Jacobian, J. London Math. Soc. 65 (2002), 591-610, arXiv:math.AG/9911071.
  17. Fantechi B., Göttsche L., Illusie L., Kleiman S.L., Nitsure N., Vistoli A., Fundamental algebraic geometry: Grothendieck's FGA explained, Math. Surveys Monogr., Vol. 123, American Mathematical Society, Providence, RI, 2005.
  18. Fulton W., Intersection theory, Ergeb. Math. Grenzgeb., Vol. 2, Springer, Berlin, 1984.
  19. Gross M., Siebert B., Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), 451-510, arXiv:1102.4322.
  20. Grothendieck A., Technique de descente et théorèmes d'existence en géométrie algébrique. VI. Les schémas de Picard: propriétés générales, in Séminaire Bourbaki, Vol. 7, Société Mathématique de France, Paris, 1995, Exp. No. 236, 221-243.
  21. Janda F., Pandharipande R., Pixton A., Zvonkine D., Double ramification cycles with target varieties, J. Topol. 13 (2020), 1725-1766, arXiv:1812.10136.
  22. Kajiwara T., Kato K., Nakayama C., Logarithmic abelian varieties, Nagoya Math. J. 189 (2008), 63-138.
  23. Kato F., Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000), 215-232.
  24. Kim B., Logarithmic stable maps, in New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., Vol. 59, Mathematical Society of Japan, Tokyo, 2010, 167-200, arXiv:0807.3611.
  25. Kim B., Lho H., Ruddat H., The degeneration formula for stable log maps, Manuscripta Math. 170 (2023), 63-107, arXiv:1803.04210.
  26. Li J., Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001), 509-578.
  27. Li J., A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002), 199-293, arXiv:math.AG/0110113.
  28. Mandel T., Ruddat H., Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020), 1109-1152, arXiv:1612.02402.
  29. Manolache C., Virtual pull-backs, J. Algebraic Geom. 21 (2012), 201-245, arXiv:0805.2065.
  30. Marcus S., Wise J., Logarithmic compactification of the Abel-Jacobi section, Proc. Lond. Math. Soc. 121 (2020), 1207-1250, arXiv:1708.04471.
  31. Maulik D., Pandharipande R., Thomas R.P., Curves on $K3$ surfaces and modular forms, J. Topol. 3 (2010), 937-996, arXiv:1001.2719.
  32. Maulik D., Ranganathan D., Logarithmic enumerative geometry for curves and sheaves, Camb. J. Math. 13 (2025), 51-172, arXiv:2311.14150.
  33. Melo M., Compactifications of the universal Jacobian over curves with marked points, arXiv:1509.06177.
  34. Melo M., Rapagnetta A., Viviani F., Fourier-Mukai and autoduality for compactified Jacobians. I, J. Reine Angew. Math. 755 (2019), 1-65, arXiv:1207.7233.
  35. Milne J.S., Abelian varieties (v2.00), 2008, available at https://www.jmilne.org/math/.
  36. Mochizuki S., Topics in absolute anabelian geometry I: generalities, J. Math. Sci. Univ. Tokyo 19 (2012), 139-242.
  37. Molcho S., Ulirsch M., Wise J., The logarithmic Deligne pairing, Private communication.
  38. Molcho S., Wise J., The logarithmic Picard group and its tropicalization, Compos. Math. 158 (2022), 1477-1562, arXiv:1807.11364.
  39. Mumford D., Ramanujam C.P., Manin J.I., Abelian varieties, Stud. Math., Vol. 5, Oxford University Press, 1974.
  40. Oberdieck G., Gromov-Witten theory and Noether-Lefschetz theory for holomorphic-symplectic varieties, Forum Math. Sigma 10 (2022), e21, 46 pages, arXiv:2102.11622.
  41. Ogus A., Lectures on logarithmic algebraic geometry, Cambridge Stud. Adv. Math., Vol. 178, Cambridge University Press, Cambridge, 2018.
  42. Ranganathan D., Kumaran A.U., Logarithmic Gromov-Witten theory and double ramification cycles, J. Reine Angew. Math. 809 (2024), 1-40, arXiv:2212.11171.
  43. Ranganathan D., Santos-Parker K., Wise J., Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number Theory 13 (2019), 1765-1805, arXiv:1709.00490.
  44. Ranganathan D., Wise J., Rational curves in the logarithmic multiplicative group, Proc. Amer. Math. Soc. 148 (2020), 103-110, arXiv:1901.08489.
  45. Sturmfels B., On vector partition functions, J. Combin. Theory Ser. A 72 (1995), 302-309.

Previous article  Next article  Contents of Volume 21 (2025)