|
SIGMA 21 (2025), 048, 25 pages arXiv:2410.03322
https://doi.org/10.3842/SIGMA.2025.048
Strict Quantization for Compact Pseudo-Kähler Manifolds and Group Actions
Andrea Galasso
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
Received January 29, 2025, in final form June 17, 2025; Published online June 25, 2025
Abstract
The asymptotic results for Berezin-Toeplitz operators yield a strict quantization for the algebra of smooth functions on a given Hodge manifold. It seems natural to generalize this picture for quantizable pseudo-Kähler manifolds in presence of a group action. Thus, in this setting we introduce a Berezin transform which has a complete asymptotic expansion on the preimage of the zero set of the moment map. It leads in a natural way to prove that certain quantization maps are strict.
Key words: CR manifolds; Toeplitz operators; star products; group actions.
pdf (540 kb)
tex (37 kb)
References
- Bordemann M., Meinrenken E., Schlichenmaier M., Toeplitz quantization of Kähler manifolds and ${\rm gl}(N)$, $N\to\infty$ limits, Comm. Math. Phys. 165 (1994), 281-296, arXiv:hep-th/9309134.
- Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Ann. of Math. Stud., Vol. 99, Princeton University Press, Princeton, NJ, 1981.
- Burbea J., Masani P., Banach and Hilbert spaces of vector-valued functions. Their general theory and applications to holomorphy, Res. Notes Math., Vol. 90, Pitman, Boston, MA, 1984.
- Carmeli C., De Vito E., Toigo A., Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem, Anal. Appl. (Singap.) 4 (2006), 377-408.
- Folland G.B., Harmonic analysis in phase space, Ann. of Math. Stud., Vol. 122, Princeton University Press, Princeton, NJ, 1989.
- Folland G.B., Stein E.M., Estimates for the $\bar \partial_{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522.
- Galasso A., Hsiao C.-Y., Toeplitz operators on CR manifolds and group actions, J. Geom. Anal. 33 (2023), 21, 55 pages, arXiv:2108.11061.
- Galasso A., Hsiao C.-Y., Functional calculus and quantization commutes with reduction for Toeplitz operators on CR manifolds, Math. Z. 308 (2024), 5, 40 pages, arXiv:2112.11257.
- Guillemin V., Sternberg S., Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538.
- Hsiao C.-Y., Projections in several complex variables, Mém. Soc. Math. Fr. 123 (2010), viii+136 pages, arXiv:0810.4083.
- Hsiao C.-Y., Huang R.-T., $G$-invariant SzegHo kernel asymptotics and CR reduction, Calc. Var. Partial Differential Equations 60 (2021), 47, 48 pages, arXiv:1702.05012.
- Hsiao C.-Y., Ma X., Marinescu G., Geometric quantization on CR manifolds, Commun. Contemp. Math. 25 (2023), 2250074, 73 pages, arXiv:1906.05627.
- Hsiao C.-Y., Marinescu G., Asymptotics of spectral function of lower energy forms and Bergman kernel of semi-positive and big line bundles, Comm. Anal. Geom. 22 (2014), 1-108, arXiv:1112.5464.
- Hsiao C.-Y., Marinescu G., Berezin-Toeplitz quantization for lower energy forms, Comm. Partial Differential Equations 42 (2017), 895-942, arXiv:1411.6654.
- Karabegov A.V., Schlichenmaier M., Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math. 540 (2001), 49-76, arXiv:math.QA/0006063.
- Kobayashi S., Transformation groups in differential geometry, Class. Math., Springer, Berlin, 1995.
- Kostant B., Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
- Landsman N.P., Mathematical topics between classical and quantum mechanics, Springer Monogr. Math., Springer, New York, 1998.
- Le Floch Y., A brief introduction to Berezin-Toeplitz operators on compact Kähler manifolds, CRM Short Courses, Springer, Cham, 2018.
- Lee J.M., Introduction to smooth manifolds, 2nd ed., Grad. Texts in Math., Vol. 218, Springer, New York, 2013.
- Ma X., Quantization commutes with reduction, a survey, Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), 1859-1872.
- Ma X., Marinescu G., The first coefficients of the asymptotic expansion of the Bergman kernel of the ${\rm Spin}^c$ Dirac operator, Internat. J. Math. 17 (2006), 737-759, arXiv:math.CV/0511395.
- Ma X., Marinescu G., Holomorphic Morse inequalities and Bergman kernels, Progr. Math., Vol. 254, Birkhäuser, Basel, 2007.
- Ma X., Marinescu G., Toeplitz operators on symplectic manifolds, J. Geom. Anal. 18 (2008), 565-611, arXiv:0806.2370.
- McDuff D., Salamon D., Introduction to symplectic topology, 3rd ed., Oxf. Grad. Texts Math., Oxford University Press, Oxford, 2017.
- Meinrenken E., On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc. 9 (1996), 373-389, arXiv:alg-geom/9405014.
- Meinrenken E., Sjamaar R., Singular reduction and quantization, Topology 38 (1999), 699-762, arXiv:dg-ga/9707023.
- Pedrick G., Theory of reproducing kernels of Hilbert spaces of vector valued functions, Ph.D. Thesis, University of Kansas, Lawrence, Kansas, 1957.
- Pham H., The Lie group of isometries of a pseudo-Riemannian manifold, Ann. Math. Sci. Appl. 8 (2023), 223-238.
- Rawnsley J.H., Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 28 (1977), 403-415.
- Rungi N., Pseudo-Kähler geometry of Hitchin representations and convex projective structures, Ph.D. Thesis, SISSA, 2023, available at https://iris.sissa.it/handle/20.500.11767/134510.
- Schlichenmaier M., Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, in Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., Vol. 22, Kluwer, Dordrecht, 2000, 289-306, arXiv:math.QA/9910137.
- Schlichenmaier M., Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results, Adv. Math. Phys. 2010 (2010), 927280, 38 pages, arXiv:1003.2523.
- Shen W.C., Semi-classical spectral asymptotics of Toeplitz operators for lower energy forms on non-degenerate compact CR manifolds, Ph.D. Thesis, University of Cologne, 2024.
- Tian Y., Zhang W., An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), 229-259.
- Vergne M., Multiplicities formula for geometric quantization, Part I, Duke Math. J. 82 (1996), 143-179.
- Vergne M., Multiplicities formula for geometric quantization, Part II, Duke Math. J. 82 (1996), 181-194.
- Waldmann S., Convergence of star products: from examples to a general framework, EMS Surv. Math. Sci. 6 (2019), 1-31, arXiv:1901.11327.
- Zelditch S., Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I, in Spectral Geometry, Proc. Sympos. Pure Math., Vol. 84, American Mathematical Society, Providence, RI, 2012, 299-339, arXiv:1107.0463.
|
|