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1. Infinitely fine partitions

Let (X,.A) be a measurable space, i. e. X is a set and A is an algebra of its subsets.
Let @ be the Stone space of the algebra A whose points are the ultrafilters of measurable
sets, and let ¢ be the canonical boolean isomorphism between A and the algebra Clop @ of
all clopen subsets of @, namely, 1(A) = {g € Q| A € ¢}.

Fix a nonstandard extension *X of the set X. We assume the nonstandard model be
k-saturated, where k is the cardinality of A.

Definition 1.1. A measurable partition P of * X is said to be an infinitely fine partition
(ifp), if *A =J{p € P|p C *A} for every measurable set A.

The saturation principle implies the existence of a hyperfinite ifp for any measurable
space (X, A) (see, for example, [1]) and even for a Boolean algebra. All the following results
except section 3 are valid for arbitrary Boolean algebras, not only for algebras of subsets.

Thus, in what follows, we denote by P some ifp of (X, A). Denote by P, and P,
respectively the totalities of standard and nonstandard elements of P. Note that if all
singletons are measurable, then P; D {{z} |z € X'}.

Definition 1.2. Let p;,ps € P. We say that p; is equivalent to po and denote this
relation by p; ~ po if P\ {p1,p2} U{p1 Ups} is an ifp. An element of the partition p; is
called joinable if there exists another element p, € P such that p; ~ ps. In such situation
we say that ps integrates pq.

Theorem 1.3. An element of an ifp is nonjoinable if and only if it is standard.

Proof. Obviously all the elements of P; nonjoinable. We must show that any element
po € P, is joinable. Consider the measurable ultrafilter ¢ = {A € A|py C *A}. Let S be
a finite subset of ¢ and let S =\ S. Evidently pg C *S, but since py € P,, it follows that
po # *S. Therefore there exists p € P such that p C *S and p # po.

By the saturation principle, this implies that there exists an element p € P other than
po contained in the extension of every set belonging to ¢. This means that the element pg
is joinable.

In [1] it was shown that a standard bounded measurable function is approximately
equal to a constant on every element of ifp. This has the following consuquence.

Lemma 1.4. Let p1,ps € P, then p; ~ po if and only if the values of the extension
of any standard bounded measurable function f : X — R on p; and ps are approximately
equal.
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Proof. The implication from left to right follows from the fact that P\ {p1,p2}U{p1 U
p2} is an ifp. The converse can be easily obtained by considering characteristic functions
of standard measurable sets.

2. Nonatomicity

In this section we present some interpretations of nonatomicity in the language of
infinitely fine partitions.

Let a standard measurable space (X,.A) be endowed with a standard finitely additive
measure p. Set Pr = {p € P|*u(p) > 0}y Py = {p € P|*ulp) = 0}; Ay ={4 €
Alp(A) > 0} Ay = {A € A|u(A) = 0}. We call the elements of P, the essential
elements of the ifp P. Notice that all the points of elements of P, are random (recall that
an element z € *X is random if z ¢ *N whenever N is p-null (N C X)).

Definition 2.1. Let p € P;. We say that p is essentially joinable if there exists
p' € P, integrating p. We call p essentially divisible if there exist disjoint py,ps € *Ay
such that p = p; U ps.

Definition 2.2. A measurable set F' is said to be an atom of measure p if u(F) > 0
and E C F implies either u(E) = 0 or pu(E) = p(F) for any measurable set E. A measure
is said to be nonatomic if it has no atoms. A measure is said to be strongly continuous if
for any positive ¢, there exists a finite measurable partition of X such that the measure of
each of its elements is less than €. A measure y is said to be strongly nonatomic if for every
measurable set F' and real number ¢ € [0, u(F')] there exists a measurable set £ C F' such
that u(F) = c.

It was shown in [2] that the strong nonatomicity of a measure implies its strong con-
tinuity, strong continuity implies nonatomicity, and in case of a o-additive measure, all
the three properties are equivalent.

Theorem 2.3. The following statements are equivalent:
E very essential element of an ifp is essentially divisible;
E very essential element of an ifp is essentially joinable;
T he measure p is nonatomic.

Proof. To prove the implication from (1) to (2) consider an essential element py. By
the assumption, it is essentially divisible. Define ¢ = {A € A|pg C *A}; let S be a finite
subset of ¢, and let S = [ S. Evidently, pg C *S. Essential divisibility of py implies that
there exists p; € *A4 such that 0 < *u(p1) < *p(po) < p(S). By the transfer principle
there exists a standard set B C S such that the both B and S\ B belong to A. Apparently,
either pg C *B or py C *S'\ *B; let pg C *B. It is easily verified that there is an essential
element p C *S\ *B. If we set Fy = {p € Py |p C *A, p # po} where A € ¢ then this
collection has the finite intersection property, and, by the saturation principle, there exists
an essential element of ifp P, integrating pg.

Let us prove the implication (2) = (3) now. Take an arbitrary set A € A,. There
exists p € P, such that p C *A. Since p is essentially joinable, then there is p’ € Py
such that p’ C *A \ p; it follows *u(p) < p(A). By using the transfer principle we obtain
the result.

The implication (3) = (1) is transparent.

Theorem 2.4. A measure is strongly continuous if and only if the measure of every
element of an ifp is infinitesimal.
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Proof. This s transparent.

Theorem 2.5. A measure p is strongly nonatomic if and only if (Vp € P.)(V\ €
0,1)(Ep € * A Cp & HEL =)

Proof. Theimplication frolgfieft to right is obvious. To prove the converse implication,
for any F' € A and ¢ € [0, u(F')). Consider an internal subset E of *F such that

(1) E=u{pe P|pC E};

(2) *u(E) <

(B)Vp L E *u(E)+*ulp) >c

It is easily verified that such a set exists (since *F' consists of a hyperfinite number of
p’s). Then, if *u(E) < ¢, take any p ¢ E, divide it into p; and ps so that *p(E)+*u(p1) = ¢
and append p; to E. The transfer principle completes the proof.

3. Representation of L,

In the following section we develop one of the results obtained by P.Loeb in his paper
[1]. For this subsection, let u be a standard o-additive measure and P a hyperfinite ifp for
a standard measurable space (X,A). In [1] Loeb introduced the map Tp : Lo, — RY by
the following rule: in every p € P, choose a point ¢,; for f € Ly set (To(f))p, = *f(cp) for
p € Py and (Ty(f)), = 0 for p € Py. Loeb proved in [1] that a vector p € R is equal to
To(f) for some f € Ly if and only if the following three conditions hold:

(1) pp, =0 for all p € Py;

(2) The value max |pp| is nearstandard;

(8) Vp € Py and Ve > 0 in R, 34 € A such that p C *A4 and |p, — p,| < € for every
essential p’ C * A.

Lemma 3.1. The condition (3) is equivalent to the following statement:

(3") For any pi1,ps € Py if p1 ~ py then py, = pp,.

Proof. (3') follows from (3) since (Ve > 0inR |p,, — pp,| < €) implies p,, = pp,.
We the converse using reductio ad absurdum. Assume that (3¢ € RY)(VA € A)(p C *A —
(I ePy pC*A & |pp—ppy| >¢€)). Let q ={A € A|p C *A}; Let S be a finite
subset of ¢ and S = [ S. By the assumption, there exists an essential p’ C *S such that
lpp — ppr| = €. By the saturation principle, there exists an element p’ € Py, such that
(VAeq)(p' C*A & |pp — pp| = €), but this contradicts to (3').

4. Monads of ifp

Let P be an ifp for a standard measurable space (X,.A).

Definition 4.1. A collection of equivalent elements of P is called a monad: m, =
{p" € P|p’ ~p}.

Since «~» is an equivalence relation, 9 = {(Jm,}yep is an partition of *X. Let
A, = {*A|A € A}. Clearly, every standard measurable set is exactly the union of the
elements of all monads, contained in this set.

Lemma 4.2. The partition 9 coincides with the partition generated by the alge-
bra A..

Proof. On the one hand, if z1,20 € Um € 9 for some monad m, then there
exist p1,p2 € m such that z; € p;, € P for ¢ = 1,2. Since p; ~ po, it follows that
P\ {p1,p2} U{p1 Ups} is an ifp; and, therefore, for any set A € A either p; Upy, C *A or
(prUpa) N*A =0;i. e. 21 and x5 cannot be separated by sets from A,.
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On the other hand, if z; and z5 are not separated by the extensions of standard
measurable sets, then the elements of P containing them are, obviously, equivalent.

There are one-to-one correspondeces between the monads of an ifp, the ultrafilters
of A, the zero-one measures on A, and the Stone space (). Consider a monad m of an ifp P.
The corresponding ultrafilter ¢,, is {A € A| |Um C *A}, i. e., the elements of ¢, are
exactly the standard measurable sets containing the monad m. On the other hand, m =
{p € PI(VA € gu)(p C *A)}, i. e, Um = (¢m. Any monad m corresponds to some
zero-one measure on A defined by

1, if C *A,
O (A) = it Urm
0 otherwise.
It is easy to see that ¢, = {4 € A|d,,(A) = 1}. Finally, for any monad m we can consider
the ultrafilter ¢,, as a point of the Stone space @ of A. Notice that | J{c(p) |p € m}, where

¢ is the canonical boolean isomorphism between A and Clop @, is the usual topological
monad of ¢,,, in Q. Notice also, that {g,, | [Jm C A} = (A) for any A in A.

Among the elements of a monad there is one distinguished (we shall call it central).
It will be shown that properties of measures are essentially determined by their values at
the central elements. The only element of m which belongs to *g,, is called central central
and is denoted p,,. On the other hand, p,, is the only element of m such that *J,, takes
value 1 on it. Finally, p,, is the only element of m such that *.(p) contains a standard point
of *Q, namely, ¢,, € *t(p). Denote P. the collection of all central elements of ifp P.

The following is some interesting and usefull tools on monads, central elements, and
measures on A. Let u be a standard finitely additive measure on 4. We assume for
simplicity that p is finite.

Theorem 4.3. Let p € P. and *u(p) € R. Then

(1) *u(p') = 0 for any noncentral p' equivalent to p.

(2) There exists a set A € A such that p C *A and pu(A) = *u(p).

Proof. Let p = p,, for some monad m. Since p € *q,, and *u(p) € R, then by
the transfer principle we can find a standard A € ¢, such that pu(A) = *u(p). Thus, we
have (2). (1) follows apparently from (2).

Corollary 4.4. If pe P., *u(p) =0, and p’ ~ p then, *u(p’) = 0.

Theorem 4.5. If m is a monad of an ifp then for every standard positive ¢ there
exists a standard measurable set A such that * A contains m and p(A) < *u(pm) + ¢.

Proof. Assume that for any A € ¢, holds u(A) > °(*u(pm)) + €. Then, by the
transfer principle, *u(py,) > °(*(pm)) + €. The obtained contradiction gives the desired
result.

Corollary 4.6. Measure of any noncentral element is infinitesimal. Moreover, measure
of any measurable subset of | Jm, *i-image of which does not contain q,,, is infinitesimal.

Lemma 4.7. For any p € P, the inequality u(p) > °u(p) holds.
Proof. For any A € ¢,,, we have p C A, and, therefore, °u(p) < u(A). By the transfer
principle, °u(p) < pu(p).
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5. Sobczik—Hammer Decomposition Theorem

The constructions developed above give us an opportunity to present a simple proof
of the Sobczik—Hammer Decomposition Theorem.

Theorem 5.1 (Sobczik-Hammer Decomposition Theorem). Let u be a finite
finitely additive measure on a measurable space (X, A). Then there exists a sequence
(0n )nen of distinct zero-one measures on A, a sequence (a,, )nen of nonnegative real numbers,

e, 0) [e0)
and a strongly continuous measure o on A, such that Y a, < oo and = pg~+ Y, ap0p,.
n=1 n=1
Further, this decomposition is unique.

Proof. Let P be an ifp for (X, .A). Take as p; an element of P of maximum measure.
Let a3 = st(*u(p1)) and §; = 6. If p is strongly continuous, then a; = 0. Otherwise,
p1 is central and, by Lemma 4.7, we have a; < *u(p1). It follows that pu; = p — a10;
is a nonnegative standard measure. Now we can apply this procedure to p; and obtain
lo = j11 — a209, etc. Tterating this process, we obtain the nonincreasing sequence (ay,)nen
of standard positive real numbers, the sequence (9, ),en of standard distinct zero-one mea-

n
sures, and the sequence (u,)nen of standard measures, such that p, = pu — Y a;d; for

1=1
n

n
every n € N. In particular, u(X) > > a;0;(X) = Y a,; for every natural n; it follows that
-t :

1 1=1
00

a; < 00.
i=1
oo
It is easily verified that uo defined by po = pu — > a,d, is a standard nonnegative
n=1
measure, and pg < p, for all n € N. Assume that g is not strongly continuous; then there

exists p € P such that st(*u(p)) > 0. Since a,, converges to zero, we can find n € N such
that a,, < st(*u(p)); by the definition of a,, it follows that st(*u,(p)) < st(*u(p)), but
this contradicts to the fact that p < py,.

We see that the numbers a,, and measures §,, are determined by the values of u on
the central elements of P up to the order. Thus, the constructed decomposition is unique.

The concept of an infinitely fine partition also gives us an opportunity to prove
the Sobczik-Hammer Decomposition Theorem for the case of a vector measure. Let X be
a standard Banach space, and let F': A — X be a standard X-valued measure on (X, .A).

Recall that the variation of F' is a real-valued measure given by |F|(A) =sup > ||F(B)]l,
T Bemw
where sup is taken over all finite measurable partitions 7w of A. A vector measure is said to

be nonatomic (strongly continuous, strongly nonatomic) if this is true for its variation.
To prove the vector analogue of Sobczik-Hammer Theorem, we need the following
lemma:

Lemma 5.2. Let F be a standard vector measure of bounded variation on (X, A); let
P be an ifp for (X, A), and p € P. Then |*F|(p) = ||*F(p)]|.

Proof. Evidently, |F|(A) > ||[F(A)|| for any measurable A. If p ¢ P. then |*F|(p) =
0 by Corollary 4.6. Therefore, 0 < st(|[*F(p)|)) < st((|*F|(p)) = 0, and we conclude
" F@)l = [*Fl(p) ~ 0.

Let p € P.. Fix an infinitesimal € > 0, consider a finite measurable partition 7 of p such

that |*F|(p) < Y. [[*F(p')]| +e. Denote by p, the element of 7 such that p(m,) € *t(px).
p'em
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Then, by Corollary 4.6, |*F|(p \ p=) = 0. Therefore,

I*F(p)ll < ["Fl(p) < D I"F@)| + e <
p'ET

< Y TFIE) + 1" Fpa)l +e =

p'E€m,p' #px

"Fl(p \ pr) + I"F(px)l + € = ["F(px)ll-
Thus, [[*F(p,)|| = |*F|(p). On the other hand,

I"Fp)ll = 1"F(p) = "Fp \ p)| < I"F@)I + " F(p \ p=) | = " F(p)I,

and

IPE@ = ["F(px) + " Fp \ p)|| < I"F @)l + " F @\ p)ll = " F(p)l];

so that ||*F(p,)|| = ||* F(p)]|-

Now we can proceed to the vector version of the Sobczik—-Hammer Theorem. A similar
result can be found in [4], however, the proof presented there is based on absolutely different
concepts.

Theorem 5.3 (Sobczik—Hammer Decomposition Theorem for vector mea-
sure). Let F' be a standard X-valued measure of bounded variation on (X, A) such that
the range of F is contained in some compact set. Then there exists a strongly additive
vector measure Fy, a sequence (Z,)nen C X, and a sequence (0, )nen of distinct zero-one

[e.°]
measures on (X, A), such that F = Fy + > z,0,. Further, this decomposition is unique

n=1

up to the order of addenda.

Proof. is analogous to the proof of Theorem 5.1. Let P be an ifp for (X, A); let p;
be an element of P of maximum value of [*F|. Since *F'(p;) belongs to some compact
set, it is nearstandard; let z1 = st(*F(p1)), 01 = 6**, F; = F — x16;. Then we have
*F1|(p) = ||*Fi(p1)|| = ||*F(p1) — st(F(p1))|| = 0. It is simple to check, using the transfer
principle, that |Fy| < |F)|.

Iterating this process we obtain the sequences (Fy,)nen, (Zn)nen,  (0n)nen, consisting
of standard elements with the properties F,, = F — > z;0;, |Fn41| < |Fy| < |F|, and

1=1

o0

|Znt1|l < ||zn||. Let Fo = F — > x;01; the examination of the strong continuity of |Fy| is
i=1

the same as in Theorem 5.1.

6. Horn—Tarsky Theorem

Theorem 6.1 (Horn—Tarsky). Let A be an algebra of subsets of a set X, C a sub-
algebra of A, and p a finitely additive measure on C. Then u can be extended to A.

Proof. Let P4 and P¢ be hiperfinite ifp’s for A and C respectively. Without loss of
generality we can assume Py is a refinement of Pe. Take any p € Pe, then some p1, pa, ... ,
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pn from Py form a partition of p (N is hyperfinite). Distribute *u(p) among p1, po, ...,
pn arbitrarily, i. e. assign some pseudoweight w(p;) to each p; (i =1,..., N) such that

' w(pi) = "p(p).

Apply this procedure to every p € Pe. Now each element of P, is assigned some pseu-
doweight.
Let A € A, then *A = p} Upy U Up), for some hyperfinite M and p}; € P4. Let

A(A) =°(
j=1
and \C = p.
Obvioulsly, the same reasoning can be used to prove Horn-Tarsky Theorem for

a Banach-valued measure, but we need its range lie inside some compact set (to be able to
take standard part when defining ).

Mz

w(p;)) It can be easily verified that A is a standard finitely additive measure
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