CYCLICALLY COMPACT OPERATORS IN BANACH SPACES

A. G. Kusraev

The Boolean-valued interpretation of compactness gives rise to the new notions of cyclically compact sets and operators which deserves an independent study. A part of the corresponding theory is presented in this work. General form of cyclically compact operators in KaplanskyHilbert module as well as a variant of Fredholm Alternative for cyclically compact operators are also given.

1. Preliminaries

In this section we present briefly some basic facts about Boolean-valued representations which we need in the sequel.
1.1. Let B be a complete Boolean algebra and let A be a nonempty set. Recall (see [3]) that $B(\mathrm{~A})$ denotes the set of all partitions of unity in B with the fixed index set A. More precicely, assign

$$
\begin{aligned}
B(A):=\{\nu: A \rightarrow B: & (\forall \alpha, \beta \in A)(\alpha \neq \beta \rightarrow \nu(\alpha) \wedge \nu(\beta)=0) \\
& \left.\wedge \bigvee_{\alpha \in A} \nu(\alpha)=1\right\}
\end{aligned}
$$

If A is an ordered set then we may order the set $B(A)$ as well:

$$
\nu \leq \mu \leftrightarrow(\forall \alpha, \beta \in A)(\nu(\alpha) \wedge \mu(\beta) \neq 0 \rightarrow \alpha \leq \beta) \quad(\nu, \mu \in B(A))
$$

It is easy to show that this relation is actually a partial order in $B(A)$. If A is directed upward (downward) then so does $B(A)$. Let Q be the Stone space of the algebra B. Identifying an element $\nu(\alpha)$ with a clopen subset of Q, we construct the mapping $\bar{\nu}: Q_{\nu} \rightarrow A, Q_{\nu}:=\bigcup\{\nu(\alpha): \alpha \in A\}$, by letting $\bar{\nu}(q)=\alpha$ whenever $q \in \nu(\alpha)$. Thus, $\bar{\nu}$ is a step-function that takes the value α on $\nu(\alpha)$. Moreover, $\nu \leq \mu \rightarrow\left(\forall q \in Q_{\nu} \cap Q_{\mu}\right)(\bar{\nu}(q) \leq \bar{\mu}(q))$.
(C) 2000 Kusraev A. G.
1.2. Let X be a normed space. Suppose that $\mathcal{L}(X)$ has a complete Boolean algebra of norm one projections \mathcal{B} which is isomorphic to B. In this event we will identify the Boolean algebras \mathcal{B} and B, writing $B \subset \mathcal{L}(X)$. Say that X is a normed B-space if $B \subset \mathcal{L}(X)$ and for every partition of unity $\left(b_{\xi}\right)_{\xi \in \Xi}$ in B the two conditions hold:
(1) If $b_{\xi} x=0(\xi \in \Xi)$ for some $x \in X$ then $x=0$;
(2) If $b_{\xi} x=b_{\xi} x_{\xi}(\xi \in \Xi)$ for $x \in X$ and a family $\left(x_{\xi}\right)_{\xi \in \Xi}$ in X then $\|x\| \leq$ $\sup \left\{\left\|b_{\xi} x_{\xi}\right\|: \xi \in \Xi\right\}$.

Conditions (1) and (2) amount to the respective conditions (1^{\prime}) and (2^{\prime}):
(1') To each $x \in X$ there corresponds the greatest projection $b \in B$ such that $b x=0$;
(2') If $x,\left(x_{\xi}\right)$, and $\left(b_{\xi}\right)$ are the same as in (2) then $\|x\|=\sup \left\{\left\|b_{\xi} x_{\xi}\right\|: \xi \in \Xi\right\}$. From (2') it follows in particular that

$$
\left\|\sum_{k=1}^{n} b_{k} x\right\|=\max _{k:=1, \ldots, n}\left\|b_{k} x\right\|
$$

for $x \in X$ and pairwise disjoint projections b_{1}, \ldots, b_{n} in B.
Given a partition of unity $\left(b_{\xi}\right)$, we refer to $x \in X$ satisfying the condition $(\forall \xi \in \Xi) b_{\xi} x=b_{\xi} x_{\xi}$ as a mixing of $\left(x_{\xi}\right)$ by $\left(b_{\xi}\right)$. If (1) holds then there is a unique mixing x of $\left(x_{\xi}\right)$ by $\left(b_{\xi}\right)$. In these circumstances we naturally call x the mixing of $\left(x_{\xi}\right)$ by $\left(b_{\xi}\right)$. Condition (2) maybe paraphrased as follows: The unit ball U_{X} of X is closed under mixing or is mix-complete.
1.3. Consider a normed B-space X and a net $\left(x_{\alpha}\right)_{\alpha \in \mathrm{A}}$ in it. For every $\nu \in$ $B(\mathrm{~A})$ put $x_{\nu}:=\operatorname{mix}{ }_{\alpha \in \mathrm{A}}\left(\nu(\alpha) x_{\alpha}\right)$. If all the mixings exist then we come to a new net $\left(x_{\nu}\right)_{\nu \in B(\mathrm{~A})}$ in X. Every subnet of the net $\left(x_{\nu}\right)_{\nu \in B(\mathrm{~A})}$ is called a cyclical subnet of the original net $\left(x_{\alpha}\right)_{\alpha \in \mathrm{A}}$. If $s: \mathrm{A} \rightarrow X$ and $\varkappa: \mathrm{A}^{\prime} \rightarrow B(\mathrm{~A})$ then the mapping $s \bullet \varkappa: \mathrm{A}^{\prime} \rightarrow X$ is defined by $s \bullet \varkappa(\alpha):=x_{\nu}$ where $\nu=\varkappa(\alpha)$. A cyclical subsequence of a sequence $\left(x_{k}\right)_{k \in \mathbb{N}} \subset X$ is a sequence of the form $\left(x_{\nu_{k}}\right)_{k \in \mathbb{N}}$ where $\left(\nu_{k}\right)_{k \in \mathbb{N}}$ is a sequence in $B(\mathbb{N})$ with $\nu_{k} \ll \nu_{k+1}$ for all $k \in \mathbb{N}$.
1.4. Let Λ be the bounded part of the universally complete K-space $\mathcal{C} \downarrow$, i. e. Λ is the order-dense ideal in $\mathcal{C} \downarrow$ generated by the order-unity $\mathbf{1}:=1^{\wedge} \in \mathcal{C} \downarrow$. Take a Banach space \mathcal{X} inside $\mathbf{V}^{(B)}$. Denote (see [1])

$$
\mathcal{X} \downarrow \downarrow^{\infty}:=\{x \in \mathcal{X} \downarrow:|x| \in \Lambda\} .
$$

Then $\mathcal{X} \downarrow{ }^{\infty}$ is a Banach-Kantorovich space called the bounded descent of \mathcal{X}. Since Λ is an order complete $A M$-space with unity, $\mathcal{X} \downarrow^{\infty}$ is a Banach space with mixed norm over Λ. If \mathcal{Y} is another Banach space and $\mathcal{T}: \mathcal{X} \rightarrow \mathcal{Y}$ is a bounded linear
operator inside $\mathbf{V}^{(B)}$ with $|\mathcal{T} \downarrow| \in \Lambda$ then the bounded descent of \mathcal{T} is the restriction of $\mathcal{T} \downarrow$ to $\mathcal{X} \downarrow^{\infty}$. Clearly, the bounded descent of \mathcal{T} is a bounded linear operator from $\mathcal{X} \downarrow^{\infty}$ to $\mathcal{Y} \downarrow^{\infty}$.
1.5. A normed B-space X is B-cyclic if we may find in X a mixing of each norm-bounded family by any partition of unity in B.

Theorem. A Banach space X is linearly isometric to the bounded descent of some Banach space inside $\mathbf{V}^{(B)}$ if and only if X is B-cyclic.

According to above theorem there is no loss of generality in assuming that X is a decomposable subspace of the Banach-Kantorovich space $\mathcal{X} \downarrow$, where \mathcal{X} is a Banach space inside $\mathbf{V}^{(B)}$ and every projection $b \in B$ coincides with the restriction of $\chi(b)$ onto X. More precisely, we will assume that X is the bounded descent of \mathcal{X}, i.e., $X=\{x \in \mathcal{X} \downarrow:|x| \in \Lambda\}$, where Λ is the Stone algebra $\mathcal{S}(B)$ identified with the bounded part of the complex algebra $\mathcal{C} \downarrow$. In this event a subset $C \subset X$ is mix-complete if and only if $C=C \uparrow \downarrow$.
1.6. Given a sequence $\sigma: \mathbb{N}^{\wedge} \rightarrow C \uparrow$ and $\varkappa: \mathbb{N}^{\wedge} \rightarrow \mathbb{N}^{\wedge}$, the composite $\sigma \downarrow \circ \varkappa \downarrow$ is a cyclical subsequence of the sequence $\sigma \downarrow: \mathbb{N} \rightarrow C$ if and only if $\llbracket \sigma \circ \varkappa$ is a subsequence of $\sigma \rrbracket=\mathbf{1}$. Given a sequence $s: \mathbb{N} \rightarrow C$ and $\varkappa: \mathbb{N} \rightarrow B(\mathbb{N})$, the composite $s \uparrow \circ \varkappa^{\wedge}$ is a subsequence of the sequence $\sigma \uparrow: \mathbb{N}^{\wedge} \rightarrow C \uparrow$ inside $\left.\mathbf{V}^{(} B\right)$ if and only if $s \bullet \varkappa$ is a cyclical subsequence of the sequence s.

2. Cyclically compact sets and operators

In this section we introduce cyclically compact sets and operators and consider some of their properties.
2.1. A subset $C \in X$ is said to be cyclically compact if C is mix-complete (see 1.5) and every sequence in C has a cyclic subsequence that converges (in norm) to some element of C. A subset in X is called relatively cyclically compact if it is contained in a cyclically compact set.
A set $C \subset X$ is cyclically compact (relatively cyclically compact) if and only if $C \uparrow$ is compact (relatively compact) in \mathcal{X}.
\triangleleft It suffices to prove the claim about cyclical compactness. In view of [1; Theorem 5.4.2] we may assume that $X=\mathcal{X} \downarrow$. Suppose that $\llbracket C \uparrow$ is compact $\rrbracket=1$. Take an arbitrary sequence $s: \mathbb{N} \rightarrow C$. Then $\llbracket s \uparrow: \mathbb{N}^{\wedge} \rightarrow C \uparrow$ is a sequence in $C \uparrow \rrbracket=1$. By assumption $C \uparrow$ is compact inside $\mathbf{V}^{(B)}$, so that there exist $\rho, x \in \mathbf{V}^{(B)}$ with $\llbracket \rho$ is a subsequence of $s \uparrow \rrbracket=\llbracket x \in C \uparrow \rrbracket=\llbracket \lim (\rho)=x \rrbracket=\mathbf{1}$. Since C is mix-complete, we obtain that $\rho \downarrow$ is a cyclical subsequence of s and lim $(\rho \downarrow)=x \in C$. Conversely, suppose that C is a cyclically compact set. Take a sequence $\sigma: \mathbb{N}^{\wedge} \rightarrow C \uparrow$ in C. By assumption the sequence $\sigma \downarrow: \mathbb{N} \rightarrow C$ has a cyclic subsequence $\rho: B(\mathbb{N}) \rightarrow C$ converging to some $x \in C$. It remains to observe that $\llbracket \rho \uparrow$ is a subsequence of the sequence $\sigma \rrbracket=\mathbf{1}$ and $\llbracket \lim (\rho \uparrow)=x \rrbracket=\mathbf{1} . \triangleright$
2.2. Theorem. A mix-complete set C in a Banach B-space X is relatively cyclically compact if and only if for every $\varepsilon>0$ there exist a countable partition of unity $\left(\pi_{n}\right)$ in the Boolean algebra $\mathfrak{B}(X)$ and a sequence $\left(\theta_{n}\right)$ of finite subsets $\theta_{n} \subset C$ such that the set $\pi_{n}\left(\operatorname{mix}\left(\theta_{n}\right)\right)$ is an ε-net for $\pi_{n}(C)$ for all $n \in \mathbb{N}$. The last means that if

$$
\theta_{n}:=\left\{x_{n, 1}, \ldots, x_{n, l(n)}\right\}
$$

then for every $x \in \pi_{n}(C)$ there exists a partition of unity $\left\{\rho_{n, 1}, \ldots, \rho_{n, l(n)}\right\}$ in $\mathfrak{B}(X)$ with

$$
\left\|x \Leftrightarrow \sum_{k=1}^{l(n)} \pi_{n} \rho_{n, k} x_{n, k}\right\| \leq \varepsilon
$$

\triangleleft According to 1.5 we may assume that $X:=\mathcal{X} \downarrow$ for some Banach space \mathcal{X} inside $\mathbf{V}^{(B)}$. By 2.1 a set $C \subset X$ is relatively cyclically compact if and only if $\llbracket C \uparrow$ is relatively compact $\rrbracket=\mathbf{1}$. By applying the Hausdorff Criterion to $C \uparrow$ inside $\mathbf{V}^{(B)}$, we obtain that relative cyclical compactness of $C \uparrow$ is equivalent to $\llbracket C \uparrow$ is totally bounded $\rrbracket=\mathbf{1}$ or, what amounts to the same, the following formula is valid inside $\mathbf{V}^{(B)}$:

$$
\begin{gathered}
\left(\forall 0<\varepsilon \in \mathbb{R}^{\wedge}\right)\left(\exists n \in \mathbb{N}^{\wedge}\right)(\exists f: n \rightarrow \mathcal{X})(\forall x \in C \uparrow)(\exists k \in n) \\
(\|x \Leftrightarrow f(k)\| \leq \varepsilon) .
\end{gathered}
$$

Writing out Boolean truth values for the quantifiers, we see that the last claim can be stated in the following equivalent form: for every $0<\varepsilon \in \mathbb{R}$ there exist a countable partition of unity $\left(b_{n}\right)$ in B and a sequence $\left(f_{n}\right)$ of elements of $\mathbf{V}^{(B)}$ such that $\llbracket f_{n}: n^{\wedge} \rightarrow \mathcal{X} \rrbracket \geq b_{n}$ and

$$
\llbracket(\forall x \in C \uparrow)\left(\exists k \in n^{\wedge}\right)\left(\left\|x \Leftrightarrow f_{n}(k)\right\| \leq \varepsilon^{\wedge}\right) \rrbracket \geq b_{n}
$$

Substitute f_{n} for mix $\left(b_{n} f_{n}, b_{n}^{*} g_{n}\right)$, where g_{n} is an element of $\mathbf{V}^{(B)}$ with $\llbracket g_{n}: n^{\wedge} \rightarrow$ $\mathcal{X} \rrbracket=1$. Then f_{n} meets the above properties and obeys the additional requirement $\llbracket f_{n}: n^{\wedge} \rightarrow \mathcal{X} \rrbracket=1$. Denote $h_{n}:=f_{n} \downarrow$. So, the above implies that for every $x \in C$ holds

$$
\bigvee\left\{\llbracket\left\|x \Leftrightarrow h_{n}(k)\right\| \leq \varepsilon^{\wedge} \rrbracket: k \in n\right\} \geq b_{n}
$$

Let $\chi: B \rightarrow \mathfrak{B}(X)$ be the isomorphism from 1.5 and put $\pi_{k}:=\chi\left(b_{k}\right)$. If $b_{n, k}:=$ $\llbracket\left\|x \Leftrightarrow h_{n}(k)\right\| \leq \varepsilon^{\wedge} \rrbracket$ and $x^{\prime}:=\sum_{k=0}^{n-1} j\left(b_{n, k}\right) h_{n}(k)$ then $\llbracket\left\|x^{\prime} \Leftrightarrow x\right\| \leq \varepsilon^{\wedge} \rrbracket=\mathbf{1}$, or equivalently $\left|\pi_{n}\left(x \Leftrightarrow x^{\prime}\right)\right| \leq \varepsilon \mathbf{1}$. Thus, putting $\theta_{n}:=\left\{h_{n}(0), \ldots, h_{n}(n \Leftrightarrow 1)\right\}$, we obtain the desired sequence θ_{n} of finite subsets of C. \triangleright
2.3. Denote by $\mathcal{L}_{B}(X, Y)$ the set of all bounded B-linear operators from X to Y. In this event $W:=\mathcal{L}_{B}(X, Y)$ is a Banach space and $B \subset W$. If Y is B-cyclic then so is W. A projection $b \in B$ acts in W by the rule $T \mapsto b \circ T(T \in W)$. We
call $X^{\#}:=\mathcal{L}_{B}(X, \Lambda)$ the B-dual of X. For every $f \in X^{\#}$ define a seminorm p_{f} on X by $p_{f}: x \mapsto\|f(x)\|_{\infty}(x \in X)$. Denote by $\sigma_{\infty}\left(X, X^{\#}\right)$ the topology in X generated by the family of seminorms $\left\{p_{f}: f \in X^{\#}\right\}$.

A mix-complete convex set $C \subset X$ is cyclically $\sigma_{\infty}\left(X, X^{\#}\right)$-compact if and only if $C \uparrow$ is $\sigma\left(\mathcal{X}, \mathcal{X}^{*}\right)$-compact inside $\mathbf{V}^{(B)}$.
\triangleleft The algebraic part of the claim is easy. Let the formula $\psi(\mathcal{A}, u)$ formalize the sentence: u belongs to the weak closure of \mathcal{A}. Then the formula can be written as

$$
(\forall n \in \mathbb{N})\left(\forall \theta \in \mathcal{P}_{\text {fin }}(\mathcal{X})\right)(\exists v \in \mathcal{A})(\forall y \in \theta)|(x \mid y)| \leq n^{-1}
$$

where ω is the set of naturals, $(\cdot \mid \cdot)$ is the inner product in \mathcal{X}, and $\mathcal{P}_{\text {fin }}(\mathcal{X})$ is the set of all finite subsets of X. Suppose that $\llbracket \psi(\mathcal{A}, u) \rrbracket=1$. Observe that

$$
\mathcal{P}_{\text {fin }}(X \uparrow)=\left\{\theta \uparrow: \theta \in \mathcal{P}_{\text {fin }}(X)\right\} \uparrow
$$

Using the Maximum Principle and the above relation, we may calculate Boolean truth values and arrive at the following assertion: For any $n \in \omega$ and any finite collections $\theta:=\left\{y_{1}, \ldots, y_{m}\right\}$ in $X^{\#}$, there exists $v \in \mathcal{A} \downarrow$ such that

$$
\llbracket\left(\forall y \in \theta^{\wedge}\right)|(u \Leftrightarrow v \mid y)| \leq 1 / n^{\wedge} \rrbracket=\mathbf{1} .
$$

Moreover, we may choose v so that the extra condition $\llbracket\|v\| \leq|u| \rrbracket=\mathbf{1}$ holds. Therefore,

$$
|v| \leq|u|, \quad\left|\left\langle(u \Leftrightarrow v) \mid y_{l}\right\rangle\right|<n^{-1} \mathbf{1} \quad(k:=1, \ldots, n ; l:=1, \ldots, m) .
$$

There exists a fixed partition of unity $\left(e_{\xi}\right)_{\xi \in \Xi} \subset B$ which depends only on u and is such that $e_{\xi}|u| \in \Lambda$ for all ξ. From here it is seen that $e_{\xi} u \in A$ and $e_{\xi} v \in A$. Moreover,

$$
\left\|\left\langle e_{\xi}(u \Leftrightarrow v) \mid y_{l}\right\rangle\right\|_{\infty}<n^{-1} \quad(k:=1, \ldots, n ; l:=1, \ldots, m)
$$

Repeating the above argument in the opposite direction, we come to the following conclusion: The formula $\psi(\mathcal{A}, u)$ is true inside $\mathbf{V}^{(B)}$ if and only if there exist a partition of unity $\left(e_{\xi}\right)_{\xi \in \Xi}$ in B and a family $\left(u_{\xi}\right)_{\xi \in \Xi}$ such that u_{ξ} belongs to the σ_{∞}-closure of A and $u=\operatorname{mix}\left(e_{\xi} u_{\xi}\right)$.

Now, assume that A is σ_{∞}-closed and the formula $\psi(\mathcal{A}, u)$ is true inside $\mathbf{V}^{(B)}$. Then u_{ξ} is contained in A by assumption and $\llbracket u_{\xi} \in \mathcal{A} \rrbracket=\mathbf{1}$. Hence $e_{\xi} \leq \llbracket u \in \mathcal{A} \rrbracket$ for all ξ, i.e., $\llbracket u \in \mathcal{A} \rrbracket=\mathbf{1}$. Therefore,

$$
\mathbf{V}^{(B)} \models(\forall u \in \mathcal{L}(\mathcal{X})) \psi(\mathcal{A}, u) \rightarrow u \in \mathcal{A}
$$

Conversely, assume \mathcal{A} to be weakly closed. If u belongs to the σ_{∞}-closure of A, then u is contained in the weak closure of \mathcal{A}. \triangleright
2.4. Consider $X^{\# \#}:=\left(X^{\#}\right)^{\#}:=\mathcal{L}_{B}\left(X^{\#}, \Lambda\right)$, the second B-dual of X. Given $x \in X$ and $f \in X^{\#}$, put $x^{\# \#}:=\iota(x)$ where $\iota(x): f \mapsto f(x)$. Undoubtedly, $\iota(x) \in L\left(X^{\#}, \Lambda\right)$. In addition,

$$
\begin{gathered}
\left|x^{\# \#} \mathbf{|}=\right| \iota(x) \mathbf{|}=\sup \{|\iota(x)(f) \mathbf{|}:| f \mathbf{|} \leq \mathbf{1}\} \\
=\sup \{\mathbf{|} f(x) \mathbf{|}:(\forall x \in X)|f(x) \mathbf{|} \leq \mathbf{| x | \}}=\sup \{\mid f(x) \mathbf{|}: f \in \partial(|\cdot|)\}=|x|
\end{gathered}
$$

Thus, $\iota(x) \in X^{\# \#}$ for every $x \in X$. It is evident that the operator $\iota: X \rightarrow X^{\# \#}$, defined as $\iota: x \mapsto \iota(x)$, is linear and isometric. The operator ι is referred to as the canonical embedding of X into the second B-dual. As in the case of Banach spaces, it is convenient to treat x and $x^{\# \#}:=\iota x$ as the same element and consider X as a subspace of $X^{\# \#}$. A B-normed space X is said to be B-reflexive if X and $X^{\# \#}$ coincide under the indicated embedding ι.

Theorem. A normed B-space is B-reflexive if and only if its unit ball is cyclically $\sigma_{\infty}\left(X, X^{\#}\right)$-compact.
\triangleleft The Kakutani Criterion claims that a normed space is reflexive if and only if its unit ball is weakly compact. Hence, the result follows from 2.3. \triangleright
2.5. Let X and Y be normed B-spaces. An operator $T \in \mathcal{L}_{B}(X, Y)$, is called cyclically compact (in symbols, $T \in \mathcal{K}_{B}(X, Y)$) if the image $T(C)$ of any bounded subset $C \subset X$ is relatively cyclically compact in Y. It is easy to see that $\mathcal{K}_{B}(X, Y)$ is a decomposable subspace of the Banach-Kantorovich space $\mathcal{L}_{B}(X, Y)$.

Let \mathcal{X} and \mathcal{Y} be Boolean-valued representations of X and Y. Recall that the immersion mapping $T \mapsto T^{\sim}$ of the operators is a linear isometric embedding of the lattice-normed spaces $\mathcal{L}_{B}(X, Y)$ into $\mathcal{L}^{B}(\mathcal{X}, \mathcal{Y}) \downarrow$, see [1; Theorem 5.5.9]. Assume that Y is a B-cyclic space.
(1) A bounded operator T from X into Y is cyclically compact if and only if $\llbracket T^{\sim}$ is a compact operator from \mathcal{X} into $\mathcal{Y} \rrbracket=\mathbf{1}$.
\triangleleft Observe that C is bounded in X if and only if $\llbracket C^{\sim}$ is bounded in $\mathcal{X} \rrbracket=1$. Moreover, according to [1: 3.4.14],

$$
\mathbf{V}^{(B)} \models T(C)^{\sim}=T^{\sim}\left(C^{\sim}\right)
$$

It remains to apply 2.1. \triangleright
(2) $\mathcal{K}_{B}(X, Y)$ is a bo-closed decomposable subspace in $\mathcal{L}_{B}(X, Y)$.
\triangleleft Let \mathcal{X} and $\mathcal{Y} \in \mathbf{V}^{(B)}$ be the same as above and let $\mathcal{K}^{(B)}(\mathcal{X}, \mathcal{Y})$ be the space of compact operators from \mathcal{X} into \mathcal{Y} inside $\mathbf{V}^{(B)}$. As was shown in [1; Theorem 5.9.9 the mapping $T \rightarrow T^{\sim}$ is an isometric embedding of $\mathcal{L}_{B}(X, Y)$ into $\mathcal{L}^{(B)}(\mathcal{X}, \mathcal{Y}) \downarrow$.

It follows from (1) that this embedding maps the subspace $\mathcal{K}_{B}(X, Y)$ onto the bounded part of $\mathcal{K}^{(B)}(\mathcal{X}, \mathcal{Y}) \downarrow$. Taking into consideration the $Z F C$-theorem claiming the closure of the subspace of compact operators, we have $\llbracket \mathcal{K}^{(B)}(\mathcal{X}, \mathcal{Y})$ is a closed subspace in

$$
\mathcal{L}^{(B)}(\mathcal{X}, \mathcal{Y}) \rrbracket=\mathbf{1}
$$

From this we deduce that $\mathcal{K}^{(B)}(\mathcal{X}, \mathcal{Y}) \downarrow$ is bo-closed and decomposable in $\mathcal{L}^{(B)}(\mathcal{X}, \mathcal{Y}) \downarrow$. Thus, the bounded part of $\mathcal{K}^{(B)}(\mathcal{X}, \mathcal{Y}) \downarrow$ is also bo-closed and decomposable. \triangleright
(3) Let $T \in \mathcal{L}_{B}(X, Y)$ and $S \in \mathcal{L}_{B}(Y, Z)$. If either T or S is cyclically compact then $S \circ T$ is also cyclically compact.
\triangleleft We need only to immerse the composite $S \circ T$ inside $\mathbf{V}^{(B)}$ and, taking into account (1) and $[1 ; 3.4 .14]$, apply therein the $Z F C$-theorem about compactness of the composite of a bounded operator and a compact operator. The subsequent descent leads immediately to the desired result. \triangleright
(4) A bounded operator T is cyclically compact if and only if its adjoint T^{*} is cyclically compact.
\triangleleft Apply the above procedure, immersion into a Boolean-valued model and the subsequent descent. Observe that the operator $\left(T^{*}\right)^{\sim}$ is the adjoint of T^{\sim} inside $\mathbf{V}^{(B)}$ and use the corresponding $Z F C$-theorem on compactness of the adjoint of a compact operator. \triangleright

3. Cyclically compact operators in Kaplansky-Hilbert modules

Now we consider general form of cyclically compact operators in KaplanskyHilbert modules.
3.1. Let Λ be a Stone algebra and consider a unitary Λ-module X. The mapping $\langle\cdot \mid \cdot\rangle: X \times X \rightarrow \Lambda$ is a Λ-valued inner product, if for all $x, y, z \in X$ and $a \in \Lambda$ the following are satisfied:
(1) $\langle x \mid x\rangle \geq \mathbf{0} ;\langle x \mid x\rangle=\mathbf{0} \Leftrightarrow x=\mathbf{0} ;$
(2) $\langle x \mid y\rangle=\langle y \mid x\rangle^{*}$;
(3) $\langle a x \mid y\rangle=a\langle x \mid y\rangle$;
(4) $\langle x+y \mid z\rangle=\langle x \mid z\rangle+\langle y \mid z\rangle$.

Using a Λ-valued inner product, we may introduce the norm in X by the formula
(5) $\|x\|:=\sqrt{\|\langle x \mid x\rangle\|} \quad(x \in X)$,
and the vector norm
(6) $|x|:=\sqrt{\langle x \mid x\rangle} \quad(x \in X)$.
3.2. Let X be a Λ-module with an inner product $\langle\cdot \mid \cdot\rangle: X \times X \rightarrow \Lambda$. If X is complete with respect to the mixed norm $\left\|\|\cdot\|\right.$, it is called a C^{*}-module over Λ. A Kaplansky-Hilbert module or an $A W^{*}$-module over Λ is a unitary C^{*}-module over Λ that enjoys the following two properties:
(1) let x be an arbitrary element in X, and let $\left(e_{\xi}\right)_{\xi \in \Xi}$ be a partition of unity in $\mathfrak{P}(\Lambda)$ with $e_{\xi} x=0$ for all $\xi \in \Xi$; then $x=0$;
(2) let $\left(x_{\xi}\right)_{\xi \in \Xi}$ be a norm-bounded family in X, and let $\left(e_{\xi}\right)_{\xi \in \Xi}$ be a partition of unity in $\mathfrak{P}(\Lambda)$; then there exists an element $x \in X$ such that $e_{\xi} x=e_{\xi} x_{\xi}$ for all $\xi \in \Xi$.

The element of (2) is the bo-sum of the family $\left(e_{\xi} x_{\xi}\right)_{\xi \in \Xi}$. According to the Cauchy-Bunyakovskiï-Schwarz inequality $\langle x \mid y\rangle \leq|x||y|$ the inner product is bocontinuous in each variable. In particular,

If X is a C^{*}-module than the pair $(X,\| \| \cdot \|)$ is a B-cyclic Banach space if and only if $(X,|\cdot|)$ is a Banach-Kantorovich space over $\Lambda:=\mathcal{S}(B)$, see [1; Theorem 6.2.7].
3.4. Theorem. The bounded descent of an arbitrary Hilbert space in $\mathbf{V}^{(B)}$ is a Kaplansky-Hilbert module over the Stone algebra $\mathcal{S}(B)$. Conversely, if X is a Kaplansky-Hilbert module over $\mathcal{S}(B)$, then there is a Hilbert space \mathcal{X} in $\mathbf{V}^{(B)}$ whose bounded descent is unitarily equivalent with X. This space is unique to within unitary equivalence inside $\mathbf{V}^{(B)}$.
\triangleleft The proof can be found in [1; Theorem 6.2.8] \triangleright
3.5. Theorem. Let T in $\mathcal{K}_{B}(X, Y)$ be a cyclically compact operator from a Kaplansky-Hilbert module X to a Kaplansky-Hilbert module Y. There are orthonormal families $\left(e_{k}\right)_{k \in \mathbb{N}}$ in $X,\left(f_{k}\right)_{k \in \mathbb{N}}$ in Y, and a family $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ in Λ such that the following hold:
(1) $\mu_{k+1} \leq \mu_{k}(k \in \mathbb{N})$ and $o-\lim _{k \rightarrow \infty} \mu_{k}=0$;
(2) there exists a projection π_{∞} in Λ such that $\pi_{\infty} \mu_{k}$ is a weak order-unity in $\pi_{\infty} \Lambda$ for all $k \in \mathbb{N}$;
(3) there exists a partition $\left(\pi_{k}\right)_{k=0}^{\infty}$ of the projection π_{∞}^{\perp} such that $\pi_{0} \mu_{1}=0$, $\pi_{k} \leq\left[\mu_{k}\right]$, and $\pi_{k} \mu_{k+1}=0, k \in \mathbb{N}$;
(4) the representation is valid

$$
T=\pi_{\infty} b o-\sum_{k=1}^{\infty} \mu_{k} e_{k}^{\#} \otimes f_{k}+b o-\sum_{n=1}^{\infty} \pi_{n} \sum_{k=1}^{n} \mu_{k} e_{k}^{\#} \otimes f_{k}
$$

\triangleleft By virtue of 3.4 we may assume that X and Y coincide with the bounded descents of Hilbert spaces \mathcal{X} and \mathcal{Y}, respectively. The operator $\mathcal{T}:=T \uparrow: \mathcal{X} \rightarrow \mathcal{Y}$ is compact and we may apply inside $\mathbf{V}^{(B)}$ the $Z F C$-theorem on the general form of a compact operator in Hilbert space. Working inside $\mathbf{V}^{(B)}$ we may choose orthonormal sequences $\left(e_{k}\right)_{k \in \mathbb{N}}$ in $\mathcal{X},\left(f_{k}\right)_{k \in \mathbb{N}}$ in \mathcal{Y}, and a decreasing numeric sequence $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ in $\mathcal{R}_{+} \backslash 0$ such that $\lim \mu_{k}=0$ and the presentation holds:

$$
\mathcal{T}=\sum_{k=1}^{\infty} \mu_{k} e_{k}^{*} \otimes f_{k}
$$

Moreover, either $(\forall k \in \mathbb{N}) \mu_{k}>0$ or $(\exists k \in \mathbb{N}) \mu_{k}=0$. Since $\llbracket \mu_{1} \leq\|\mathcal{T}\| \rrbracket=\mathbf{1}$ we have $\mu_{1} \leq|T| \in \Lambda$, whence $\left(\mu_{k}\right) \subset \Lambda$. Let $\pi_{\infty}:=\llbracket \mathcal{T}$ be an infinite-rank compact operator from a Hilbert space \mathcal{X} to a Hilbert space $\mathcal{Y} \rrbracket=1$. If $\mu_{k}^{\prime}:=\pi_{\infty} \mu_{k}$ then $\llbracket \mu_{k}^{\prime}>0 \rrbracket=\llbracket \mu_{k}^{\prime} \geq \mu_{k+1}^{\prime} \rrbracket=\llbracket \lim \mu_{k}^{\prime}=0 \rrbracket=\pi_{\infty}$, so that μ_{k}^{\prime} is a weak order-unity in $\pi_{\infty} \Lambda, \mu_{k}^{\prime} \geq \mu_{k+1}^{\prime}$, and o-lim $\mu_{k}^{\prime}=0$. From the above-indicated presentation for \mathcal{T} we deduce

$$
\pi_{\infty} T=b o-\sum_{k=1}^{\infty} \mu_{k}^{\prime} e_{k}^{\#} \otimes f_{k}
$$

Consider the fragment $\pi_{\infty}^{\perp} T$. From the definition of π_{∞} it follows that $\pi_{\infty}^{\perp}=\llbracket \mathcal{T}$ is a finite-rank operator $\rrbracket=\mathbf{1}$. The operator \mathcal{T} has finite rank if and only if $\mu_{n}=0$ for some $n \in \mathbb{N}$. Thus,

$$
\pi_{\infty}^{\perp}=\llbracket\left(\exists n \in \mathbb{N}^{\wedge}\right) \mu_{n}=0 \rrbracket=\bigvee_{n=1}^{\infty} \llbracket \mu_{n}=0 \rrbracket .
$$

Put $\rho_{n}:=\llbracket \mu_{n}=0 \rrbracket, \pi_{0}:=\rho_{1}, \pi_{n}:=\rho_{n+1} \Leftrightarrow \rho_{n},(n \in \mathbb{N})$. Since $\pi_{n}=\llbracket \mu_{n+1}=$ $0 \& \mu_{n} \neq 0 \rrbracket$, we have construct a countable partition $\left(\pi_{n}\right)_{n=0}^{\infty}$ of the projection π_{∞}^{\perp} with $\pi_{n} \mu_{n+1}=0$. Therefore, $\pi_{n} T=\sum_{k=1}^{n} \pi_{n} \mu_{k} e_{k}^{\#} \otimes f_{k}$ for all $n \in \mathbb{N}$. It remains to observe that $T=\pi_{\infty} T+b o-\sum_{n=0}^{\infty} \pi_{n} T$. \triangleright

4. Fredholm B-alternative

A variant of the Fredholm Alternative holds for cyclically compact operators. We will call it the Fredholm B-Alternative.
4.1. Let X be a Banach space with the dual X^{*}. Take a bounded operator $T: X \rightarrow X$ and consider the equation of the first kind

$$
T x=y \quad(x, y \in X)
$$

and the conjugate equation

$$
T^{*} y^{*}=x^{*} \quad\left(x^{*}, y^{*} \in X^{*}\right)
$$

The corresponding homogeneous equations are defined as $T x=0$ and $T^{*} y^{*}=0$. Let $\varphi_{0}(T), \varphi_{1}(n, T), \varphi_{2}(n, T)$, and $\varphi_{3}(n, T)$ be set-theoretic formulas formalizing the following statements.
$\varphi_{0}(T)$: The homogeneous equation $T x=0$ has a sole solution, zero. The homogeneous conjugate equation $T^{*} y^{*}=0$ has a sole solution, zero. The equation $T x=y$ is solvable and has a unique solution given an arbitrary right side. The conjugate equation $T^{*} y^{*}=x^{*}$ is solvable and has a unique solution given an arbitrary right side.
$\varphi_{1}(n, T)$: The homogeneous equation $T x=0$ has n linearly independent solutions x_{1}, \ldots, x_{n}. The homogeneous conjugate equation $T^{*} y^{*}=0$ has n linearly independent solutions $y_{1}^{*}, \ldots, y_{n}^{*}$.
$\varphi_{2}(n, T)$: The equation $T x=y$ is solvable if and only if $y_{1}^{*}(y)=\cdots=y_{n}^{*}(y)=$ 0 . The conjugate equation $T^{*} y^{*}=x^{*}$ is solvable if and only if $x^{*}\left(x_{1}\right)=\cdots=$ $x^{*}\left(x_{n}\right)=0$.
$\varphi_{3}(n, T)$: The general solution x of the equation $T x=y$ is the sum of a particular solution x_{0} and the general solution of the homogeneous equation; i.e., it has the form

$$
x=x_{0}+\sum_{k=1}^{n} \lambda_{k} x_{k} \quad\left(\lambda_{k} \in \mathbb{C}\right)
$$

The general solution y^{*} of the conjugate equation $T^{*} y^{*}=x^{*}$ is the sum of a particular solution y_{0}^{*} and the general solution of the homogeneous equation; i.e., it has the form

$$
y^{*}=y_{0}^{*}+\sum_{k=1}^{n} \mu_{k} y_{k}^{*} \quad\left(\mu_{k} \in \mathbb{C}\right)
$$

Using this notation, the Fredholm Alternative can be written as follows (see [4]):

$$
\varphi_{0}(T) \vee(\exists n \in \mathbb{N}) \varphi_{1}(n, T) \& \varphi_{2}(n, T) \& \varphi_{3}(n, T)
$$

Thus, the conventional Fredholm Alternative distinguishes the cases $n=0$ and $n \neq 0$. (If $n=0$ then the formula

$$
\varphi_{1}(n, T) \& \varphi_{2}(n, T) \& \varphi_{3}(n, T)
$$

is equivalent to $\varphi_{0}(T)$.)
4.2. Consider now a B-cyclic Banach space X and a bounded B-linear operator T in X. In this case X and $X^{\#}$ are modules over the Stone algebra $\Lambda:=\mathcal{S}(B)$ and
T is Λ-linear ($=$ module homomorphism). A subset $\mathcal{E} \subset X$ is said to be locally linearly independent if whenever $e_{1}, \ldots, e_{n} \in \mathcal{E}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$, and $\pi \in B$ with $\pi\left(\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n}\right)=0$ we have $\pi \lambda_{k} e_{k}=0$ for all $k:=1, \ldots, n$. We say that the Fredholm B-Alternative is valid for an operator T if there exists a countable partition of unity $\left(b_{n}\right)$ in B such that the following conditions are fulfilled:
(1) The homogeneous equation $b_{0} \circ T x=0$ has a sole solution, zero. The homogeneous conjugate equation $b_{0} \circ T^{\#} y^{\#}=0$ has a sole solution, zero. The equation $b_{0} \circ T x=b_{0} y$ is solvable and has a unique solution given an arbitrary $y \in X$. The conjugate equation $b_{0} \circ T^{\#} y^{\#}=b_{0} x^{\#}$ is solvable and has a unique solution given an arbitrary $x^{\#} \in X^{\#}$.
(2) For every $n \in \mathbb{N}$ the homogeneous equation $b_{n} \circ T x=0$ has n locally linearly independent solutions $x_{1, n}, \ldots, x_{n, n}$ and the homogeneous conjugate equation $b_{n} \circ$ $T^{\#} y^{\#}=0$ has n locally linearly independent solutions $y_{1, n}^{\#}, \ldots, y_{n, n}^{\#}$ (hence have nonzero solutions).
(3) The equation $T x=y$ is solvable if and only if $b_{n} \circ y_{k, n}^{\#}(y)=0(n \in \mathbb{N}, k \leq$ n). The conjugate equation $T^{\#} y^{\#}=x^{\#}$ is solvable if and only if $b_{n} \circ x^{\#}\left(x_{k, n}\right)=0$ $(n \in \mathbb{N}, k \leq n)$.
(4) The general solution x of the equation $T x=y$ has the form

$$
x=b o-\sum_{n=1}^{\infty} b_{n}\left(x_{n}+\sum_{k=1}^{n} \lambda_{k, n} x_{k, n}\right),
$$

where x_{n} is a particular solution of the equation $b_{n} \circ T x=b_{n} y$ and $\left(\lambda_{k, n}\right)_{n \in \mathbb{N}, k \leq n}$ are arbitrary elements in Λ.

The general solution $y^{\#}$ of the conjugate equation $T^{\#} y^{\#}=x^{\#}$ has the form

$$
y^{\#}=b o-\sum_{n=1}^{\infty} b_{n}\left(y_{n}^{\#}+\sum_{k=1}^{n} \lambda_{k, n} y_{k, n}^{\#}\right),
$$

where $y_{n}^{\#}$ is a particular solution of the equation $b_{n} \circ T^{\#} y^{\#}=b_{n} x^{\#}$, and $\lambda_{k, n}$ are arbitrary elements Λ for $n \in \mathbb{N}$ and $k \leq n$.
4.3. Theorem. If S is a cyclically compact operator in a B-cyclic space X then the Fredholm B-Alternative is valid for the operator $T:=I_{X} \Leftrightarrow S$.
\triangleleft Again we assume, without loss of generality, that X is the bounded part of the descent of a Banach space $\mathcal{X} \in \mathbf{V}^{(B)}$ and T is the restriction onto X of the descent of a bounded linear operator $\mathcal{T} \in \mathbf{V}^{(B)}$. Moreover, $\llbracket \mathcal{T}=I_{\mathcal{X}} \Leftrightarrow \mathcal{S} \rrbracket=\mathbf{1}$ and $\llbracket \mathcal{S}$ is a compact operator in $\mathcal{X} \rrbracket=\mathbf{1}$. We may assume that also $X=\mathcal{X}^{*} \downarrow^{\infty}$ and $T=\mathcal{T}^{*} \downarrow^{\infty}$, see $[1 ; 5.5 .10]$. The Fredholm Alternative 4.1 is fulfilled for \mathcal{T} inside
$\mathbf{V}^{(B)}$ by virtue of the Transfer Principle. In other words, the following relations hold:

$$
\begin{aligned}
\mathbf{1} & =\llbracket \varphi_{0}(\mathcal{T}) \vee\left(\exists n \in \mathbb{N}^{\wedge}\right) \varphi_{1}(n, \mathcal{T}) \& \varphi_{2}(n, \mathcal{T}) \& \varphi_{3}(n, \mathcal{T}) \rrbracket \\
& =\llbracket \varphi_{0}(\mathcal{T}) \rrbracket \vee \bigvee_{n \in \mathbb{N}} \llbracket \varphi_{1}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket \wedge \llbracket \varphi_{2}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket \wedge \llbracket \varphi_{3}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket .
\end{aligned}
$$

Denote $b_{0}:=\llbracket \varphi_{0}(\mathcal{T}) \rrbracket$ and $b_{n}:=\llbracket \varphi_{1}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket \wedge \llbracket \varphi_{2}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket \wedge \llbracket \varphi_{3}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket$. Since the formulas $\varphi_{0}(\mathcal{T})$ and $\left.\varphi_{1}(n, \mathcal{T}) \& \varphi_{2}(n, \mathcal{T}) \& \varphi_{3}(n, \mathcal{T})\right)$ for different n are inconsistent, the sequence $\left(b_{n}\right)_{n=0}^{\infty}$ is a partition of unity in B. We will now prove that $4.2(1-4)$ are valid.
(1): The claim $4.2(1)$ is equivalent to the identities $\operatorname{ker}(T)=\{0\}$ and $\operatorname{im}(T)=$ X that are ensured by the following easy relations:

$$
\mathbf{V}^{(B)} \models \operatorname{ker}(T) \uparrow=\operatorname{ker}(\mathcal{T})=\{0\}, \quad \mathbf{V}^{(B)} \models \operatorname{im}(T) \uparrow=\operatorname{im}(\mathcal{T})=\mathcal{X}
$$

(2): The part of the assertion $\varphi_{1}\left(n^{\wedge}, \mathcal{T}\right)$ concerning the solution of the equation $T x=0$ is formalized as

$$
(\exists x)\left(\left(x:\{1, \ldots, n\}^{\wedge} \rightarrow \mathcal{X}\right) \&\left(\forall k \in\{1, \ldots, n\}^{\wedge}\right)(\mathcal{T} x(k)=0)\right.
$$

$\&$ the set $x\left(\{1, \ldots, n\}^{\wedge}\right)$ is linearly independent $\left.)\right)$.
Moreover, there is no loss of generality in assuming that $\|x(k)\| \leq 1, k \in\{1, \ldots, n\}^{\wedge}$. Using the Maximum Principle and the properties of the modified descent we may find a mapping \mathbf{x} from $\{1, \ldots, n\}$ to X such that the image of the mapping $b_{n} \mathbf{x}$: $k \mapsto b_{n} \mathbf{x}(k)$ is a locally linearly independent set in X and $\llbracket \mathcal{T} \mathbf{x}(k)=0 \rrbracket \geq b_{n}$ for each $k \in\{1, \ldots, n\}$. Put $x_{k, n}:=b_{n} \mathbf{x}(k)$. Further,

$$
\llbracket T x_{k, n}=0 \rrbracket=\llbracket \mathcal{T} \mathbf{x}(k)=0 \rrbracket \wedge \llbracket \mathbf{x}(k)=x_{k, n} \rrbracket \geq b_{n}
$$

so that $b_{n} T x_{k, n}=0$. The conjugate homogeneous equation is handled in the same fashion.
(3): Necessity of the stated conditions can be easily checked; prove sufficiency. We confine exposition to the equation $T x=y$, since the conjugate equation is considered along similar lines. Suppose that $y_{k, n}^{\#}(y)=0$ for $k, n \in \mathbb{N}$ and $k \leq n$. Then

$$
b_{n} \leq \llbracket y_{k, n}^{\#}(y)=0 \rrbracket=\llbracket y_{k, n}^{\#} \uparrow(y)=0 \rrbracket \quad(k \in\{1, \ldots, n\}) .
$$

At the same time, in view of (2), $\llbracket\left\{y_{k, n}^{\#}: k=1, \ldots, n\right\} \uparrow$ is a maximal linearly independent set of solutions of the equation $\mathcal{T}^{*} y^{*}=0 \rrbracket=\mathbf{1}$. All this implies that \llbracket the equation $\mathcal{T} x=y$ is solvable $\rrbracket \geq b_{n}$, whence the equation $b_{n} \circ T x=b_{n} y$ has at
least one solution x_{n}. It is then easy to check that $\bar{x}:=\sum_{n=1}^{\infty} b_{n} x_{n}$ is a solution of the equation $T x=y$.
(4): If x is a solution of the equation $T x=y$ then $\llbracket \mathcal{T} x=y \rrbracket=\mathbf{1}$. Taking into account the inequality $\llbracket \varphi_{3}\left(n^{\wedge}, \mathcal{T}\right) \rrbracket \geq b_{n}$, we arrive at

$$
b_{n} \leq \llbracket(\exists \lambda)\left(\lambda:\{1, \ldots, n\}^{\wedge} \rightarrow \mathcal{R} \& x=x^{*}+\sum_{k=1}^{n^{\wedge}} \lambda(k) u(k)\right) \rrbracket,
$$

where u is the ascent of the mapping $k \mapsto x_{k, n}(k=1, \ldots, n)$. The Maximum Principle guarantees the existence of a mapping ℓ_{n} from $\{1, \ldots, n\}$ to Λ such that

$$
\llbracket x=\bar{x}+\sum_{k=1}^{n^{\wedge}} \ell_{n} \uparrow(k) u(k) \rrbracket=\mathbf{1} .
$$

Putting $\lambda_{k, n}:=b_{n} \ell_{n}(k)$, we obtain

$$
b_{n} x=b_{n} x_{n}+\sum_{k=1}^{n} \lambda_{k, n} b_{n} x_{k, n}
$$

whence the desired representation follows. The general form of the solution of the conjugate equation is established by similar arguments. \triangleright

5. Concluding remarks

5.1. The bounded descent of 1.4 appeared in the research by G. Takeuti into von Neumann algebras and C^{*}-algebras within Boolean-valued models [5, 6] and in the research by M. Ozawa into Boolean-valued interpretation of the theory of Hilbert spaces [7]. Theorem 3.4 on Boolean-valued representation of KaplanskyHilbert modules was proved by M. Ozawa [7].
5.2. Cyclically compact sets and operators in lattice-normed spaces were introduced in [8] and [3], respectively. Diffrernt aspects of cyclical compactness see in [9-12]. A standard proof of Theorem 2.4 can be extracted from [3] wherein more general approach is developed for the case of lattice normed space. Certain variants of Theorems 3.5 and 4.3 for operators in Banach-Kantorovich spaces can be also found in [3].
5.3. The famous result by P. G. Dodds and D. H. Fremlin [13] asserts that if a positive operator acting from a Banach lattice whose dual has order continuous norm to a Banach lattice with order continuous norm is dominated by a compact operator then the initial operator is also compact, see [14] for proof and related results. As regards cyclical compactness, we observe the conjecture of [15] that if a dominated operator T between spaces with mixed norm is cyclically compact and $|T| \leq S$ with S compact then T is also compact on assuming some conditions on the norm lattices like in the Dodds-Fremlin Theorem. This problem remains open.

References

1. Kusraev A. G. and Kutateladze S. S. Boolean Valued Analysis.—Dordrecht: Kluwer Academic Publishers, 1999.
2. Bell J. L. Boolean-Valued Models and Independence Proofs in Set Theory.New York etc.: Clarendon Press, 1985.
3. Kusraev A. G. Vector Duality and Its Applications [in Russian].-Novosibirsk: Nauka, 1985.
4. Kutateladze S. S. Fundamentals of Functional Analysis.-Dordrecht: Kluwer Academic Publishers, 1998.
5. Takeuti G. Von Neumann algebras and Boolean valued analysis // J. Math. Soc. Japan.-1983.-V. 35, No. 1, P. 1-21.
6. Takeuti G. C^{*}-algebras and Boolean valued analysis // Japan. J. Math. (N.S.).-1983.-V. 9, No. 2.-P. 207-246.
7. Ozawa M. Boolean valued interpretation of Hilbert space theory // J. Math. Soc. Japan.-1983.-V. 35, No. 4. P. 609-627.
8. Kusraev A. G. Boolean valued analysis of duality between universally complete modules // Dokl. Akad. Nauk SSSR.-1982.-V. 267, No. 5.-P. 1049-1052.
9. Kusraev A. G. and Kutateladze S. S. Nonstandard methods for Kantorovich spaces // Siberian Adv. Math.-1992.-V. 2, No. 2.-P. 114-152.
10. Kutateladze S. S. Cyclic monads and their applications.-Sib. Mat. Zh.-1986.-V. 27, No. 1.-P. 100-110.
11. Kutateladze S. S. Monads of ultrafilters and extensional filters // Sib. Mat. Zh.-1989.-V. 30, No. 1.-P. 129-133.
12. Gutman A. E., Emel'yanov E. Yn., Kusraev A. G. and Kutateladze S. S. Nonstandard Analysis and Vector Lattices.-Novosibirsk: Sobolev Institute Press, 1999.
13. Dodds P. G. and Fremlin D. H. Compact operators in Banach lattices // Israel J. Math.—1979.—V. 34.-P. 287-320.
14. Aliprantis C.D. and Burkinshaw O. Positive Operators.-New York: Academic Press, 1985.
15. Kusraev A. G. Linear operators in lattice-normed spaces // in: Studies on Geometry in the Large and Mathematical Analysis.-Novosibirsk, 1987.-V. 9P. 84-123.
