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CYCLICALLY COMPACT OPERATORS
IN BANACH SPACES

A. G. Kusraev

The Boolean-valued interpretation of compactness gives rise to the new notions of cyclically

compact sets and operators which deserves an independent study. A part of the corresponding

theory is presented in this work. General form of cyclically compact operators in Kaplansky{

Hilbert module as well as a variant of Fredholm Alternative for cyclically compact operators

are also given.

1. Preliminaries

In this section we present briey some basic facts about Boolean-valued repre-
sentations which we need in the sequel.

1.1. Let B be a complete Boolean algebra and let A be a nonempty set. Recall
(see [3]) that B(A) denotes the set of all partitions of unity in B with the �xed
index set A. More precicely, assign

B(A) :=
n
� : A! B : (8�; � 2 A)

�
� 6= � ! �(�) ^ �(�) = 0

�

^
_

�2A
�(�) = 1

o
:

If A is an ordered set then we may order the set B(A) as well:

� � �$ (8�; � 2 A)
�
�(�) ^ �(�) 6= 0! � � �

� �
�; � 2 B(A)

�
:

It is easy to show that this relation is actually a partial order in B(A). If A is
directed upward (downward) then so does B(A). Let Q be the Stone space of
the algebra B. Identifying an element �(�) with a clopen subset of Q, we construct
the mapping �� : Q� ! A, Q� :=

S�
�(�) : � 2 A

	
, by letting ��(q) = � whenever

q 2 �(�). Thus, �� is a step-function that takes the value � on �(�). Moreover,
� � �! (8q 2 Q� \ Q�)

�
��(q) � ��(q)

�
.
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1.2. Let X be a normed space. Suppose that L(X) has a complete Boolean
algebra of norm one projections B which is isomorphic to B. In this event we
will identify the Boolean algebras B and B, writing B � L(X). Say that X is
a normed B-space if B � L(X) and for every partition of unity (b�)�2� in B the
two conditions hold:

(1) If b�x = 0 (� 2 �) for some x 2 X then x = 0;

(2) If b�x = b�x� (� 2 �) for x 2 X and a family (x�)�2� in X then kxk �
supfkb�x�k : � 2 �g.

Conditions (1) and (2) amount to the respective conditions (10) and (20):

(10) To each x 2 X there corresponds the greatest projection b 2 B such that
bx = 0;

(20) If x; (x�), and (b�) are the same as in (2) then kxk = supfkb�x�k : � 2 �g.
From (20) it follows in particular that


nX

k=1

bkx

 = max
k:=1;:::;n

kbkxk

for x 2 X and pairwise disjoint projections b1; : : : ; bn in B.
Given a partition of unity (b�), we refer to x 2 X satisfying the condition

(8 � 2 �) b�x = b�x� as a mixing of (x�) by (b�). If (1) holds then there is a unique
mixing x of (x�) by (b�). In these circumstances we naturally call x the mixing of
(x�) by (b�). Condition (2) maybe paraphrased as follows: The unit ball UX of X
is closed under mixing or is mix-complete.

1.3. Consider a normed B-space X and a net (x�)�2A in it. For every � 2
B(A) put x� := mix �2A(�(�)x�). If all the mixings exist then we come to a new
net (x�)�2B(A) in X. Every subnet of the net (x�)�2B(A) is called a cyclical subnet

of the original net (x�)�2A. If s : A ! X and { : A0 ! B(A) then the mapping
s �{ : A0 ! X is de�ned by s �{(�) := x� where � = {(�). A cyclical subsequence

of a sequence (xk)k2N � X is a sequence of the form (x�k)k2N where (�k)k2N is
a sequence in B(N) with �k � �k+1 for all k 2 N .

1.4. Let � be the bounded part of the universally complete K-space C#, i. e.
� is the order-dense ideal in C# generated by the order-unity 1 := 1^ 2 C#. Take a
Banach space X inside V(B). Denote (see [1])

X#1:= fx 2 X#: x 2 �g:

Then X#1 is a Banach{Kantorovich space called the bounded descent of X . Since
� is an order complete AM -space with unity, X#1 is a Banach space with mixed
norm over �. If Y is another Banach space and T : X ! Y is a bounded linear
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operator inside V(B) with T # 2 � then the bounded descent of T is the restriction
of T # to X #1. Clearly, the bounded descent of T is a bounded linear operator
from X#1 to Y#1.

1.5. A normed B-space X is B-cyclic if we may �nd in X a mixing of each
norm-bounded family by any partition of unity in B.

Theorem. A Banach space X is linearly isometric to the bounded descent of

some Banach space inside V(B) if and only if X is B-cyclic.

According to above theorem there is no loss of generality in assuming that
X is a decomposable subspace of the Banach{Kantorovich space X #, where X is
a Banach space insideV(B) and every projection b 2 B coincides with the restriction
of �(b) onto X. More precisely, we will assume that X is the bounded descent of
X , i.e., X = fx 2 X #: x 2 �g, where � is the Stone algebra S(B) identi�ed
with the bounded part of the complex algebra C#. In this event a subset C � X is
mix-complete if and only if C = C"#.

1.6. Given a sequence � : N^ ! C" and { : N^ ! N
^ , the composite � # �{#

is a cyclical subsequence of the sequence �# : N ! C if and only if [[� � { is

a subsequence of � ]] = 1. Given a sequence s : N ! C and { : N ! B(N), the
composite s" � {^ is a subsequence of the sequence �" : N^ ! C" inside V(B) if
and only if s � { is a cyclical subsequence of the sequence s.

2. Cyclically compact sets and operators

In this section we introduce cyclically compact sets and operators and consider
some of their properties.

2.1. A subset C 2 X is said to be cyclically compact if C is mix-complete (see
1.5) and every sequence in C has a cyclic subsequence that converges (in norm)
to some element of C. A subset in X is called relatively cyclically compact if it is
contained in a cyclically compact set.

A set C � X is cyclically compact (relatively cyclically compact) if and only

if C" is compact (relatively compact) in X .

C It su�ces to prove the claim about cyclical compactness. In view of [1;
Theorem 5.4.2] we may assume that X = X #. Suppose that [[C " is compact
]] = 1. Take an arbitrary sequence s : N ! C. Then [[ s" : N^ ! C" is a sequence
in C " ]] = 1. By assumption C " is compact inside V(B), so that there exist
�; x 2 V(B) with [[ � is a subsequence of s" ]] = [[x 2 C " ]] = [[ lim(�) = x ]] = 1.
Since C is mix-complete, we obtain that �# is a cyclical subsequence of s and lim
(� #) = x 2 C. Conversely, suppose that C is a cyclically compact set. Take
a sequence � : N^ ! C" in C. By assumption the sequence �# : N ! C has a cyclic
subsequence � : B(N) ! C converging to some x 2 C. It remains to observe that
[[ �" is a subsequence of the sequence � ]] = 1 and [[ lim(�") = x ]] = 1. B
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2.2. Theorem. A mix-complete set C in a Banach B-space X is relatively

cyclically compact if and only if for every " > 0 there exist a countable partition

of unity (�n) in the Boolean algebra B(X) and a sequence (�n) of �nite subsets

�n � C such that the set �n
�
mix(�n)

�
is an "-net for �n(C) for all n 2 N. The last

means that if

�n := fxn;1; : : : ; xn;l(n)g

then for every x 2 �n(C) there exists a partition of unity f�n;1; : : : ; �n;l(n)g inB(X)
with x�

l(n)X
k=1

�n�n;kxn;k

 � ":

C According to 1.5 we may assume that X := X# for some Banach space X
inside V(B). By 2.1 a set C � X is relatively cyclically compact if and only if [[C"
is relatively compact ]] = 1. By applying the Hausdor� Criterion to C" inside V(B),
we obtain that relative cyclical compactness of C" is equivalent to [[C" is totally
bounded ]] = 1 or, what amounts to the same, the following formula is valid inside
V(B):

(80 < " 2 R
^) (9n 2 N

^) (9f : n! X ) (8x 2 C") (9k 2 n)

(kx� f(k)k � "):

Writing out Boolean truth values for the quanti�ers, we see that the last claim
can be stated in the following equivalent form: for every 0 < " 2 R there exist
a countable partition of unity (bn) in B and a sequence (fn) of elements of V(B)

such that [[ fn : n
^ ! X ]] � bn and

[[ (8x 2 C") (9k 2 n^)(kx� fn(k)k � "^) ]] � bn:

Substitute fn for mix (bnfn; b
�
ngn), where gn is an element of V(B) with [[ gn : n

^ !

X ]] = 1. Then fn meets the above properties and obeys the additional requirement
[[ fn : n^ ! X ]] = 1. Denote hn := fn#. So, the above implies that for every x 2 C
holds _

f[[ kx� hn(k)k � "^ ]] : k 2 ng � bn:

Let � : B ! B(X) be the isomorphism from 1.5 and put �k := �(bk). If bn;k :=

[[ kx � hn(k)k � "^ ]] and x0 :=
Pn�1

k=0 j(bn;k)hn(k) then [[ kx0 � xk � "^ ]] = 1, or
equivalently �n(x � x0) � "1. Thus, putting �n := fhn(0); : : : ; hn(n � 1)g, we
obtain the desired sequence �n of �nite subsets of C. B

2.3. Denote by LB(X;Y ) the set of all bounded B-linear operators from X to
Y . In this event W := LB(X;Y ) is a Banach space and B � W . If Y is B-cyclic
then so is W . A projection b 2 B acts in W by the rule T 7! b � T (T 2 W ). We
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call X# := LB(X;�) the B-dual of X. For every f 2 X# de�ne a seminorm pf
on X by pf : x 7! kf(x)k1 (x 2 X). Denote by �1(X;X#) the topology in X

generated by the family of seminorms fpf : f 2 X
#g.

A mix-complete convex set C � X is cyclically �1(X;X#)-compact if and

only if C" is �(X ;X �)-compact inside V(B).

C The algebraic part of the claim is easy. Let the formula  (A; u) formalize
the sentence: u belongs to the weak closure of A. Then the formula can be written
as

(8n 2 N) (8� 2 P�n(X )) (9v 2 A) (8y 2 �) j(x j y)j � n�1;

where ! is the set of naturals, (� j �) is the inner product in X , and P�n(X ) is the
set of all �nite subsets of X. Suppose that [[ (A; u)]] = 1. Observe that

P�n(X ") = f�": � 2 P�n(X)g"

Using the Maximum Principle and the above relation, we may calculate Boolean
truth values and arrive at the following assertion: For any n 2 ! and any �nite
collections � := fy1; : : : ; ymg in X

#, there exists v 2 A# such that

[[(8y 2 �^) j(u� v j y)j � 1=n^]] = 1:

Moreover, we may choose v so that the extra condition [[kvk � juj]] = 1 holds.
Therefore,

v � u ; jh(u� v) j ylij < n�11 (k := 1; : : : ; n; l := 1; : : : ;m):

There exists a �xed partition of unity (e�)�2� � B which depends only on u and
is such that e� u 2 � for all �. From here it is seen that e�u 2 A and e�v 2 A.
Moreover,

khe�(u� v) j ylik1 < n�1 (k := 1; : : : ; n; l := 1; : : : ;m):

Repeating the above argument in the opposite direction, we come to the following
conclusion: The formula  (A; u) is true inside V(B) if and only if there exist a
partition of unity (e�)�2� in B and a family (u�)�2� such that u� belongs to the
�1-closure of A and u = mix (e�u�).

Now, assume that A is �1-closed and the formula  (A; u) is true inside V(B).
Then u� is contained in A by assumption and [[u� 2 A]] = 1. Hence e� � [[u 2 A]]
for all �, i.e., [[u 2 A]] = 1. Therefore,

V(B) j= (8u 2 L(X )) (A; u)! u 2 A:
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Conversely, assume A to be weakly closed. If u belongs to the �1-closure of A,
then u is contained in the weak closure of A. B

2.4. Consider X##:= (X#)#:= LB(X
#;�), the second B-dual of X. Given

x 2 X and f 2 X#, put x## := �(x) where �(x) : f 7! f(x). Undoubtedly,
�(x) 2 L(X#;�). In addition,

x## = �(x) = supf �(x)(f) : f � 1g

= supf f(x) : (8x 2 X) f(x) � x g = supf f(x) : f 2 @( � )g= x :

Thus, �(x) 2 X## for every x 2 X. It is evident that the operator � : X ! X##,
de�ned as � : x 7! �(x), is linear and isometric. The operator � is referred to as the
canonical embedding of X into the second B-dual. As in the case of Banach spaces,
it is convenient to treat x and x## := �x as the same element and consider X as
a subspace of X##. A B-normed space X is said to be B-reexive if X and X##

coincide under the indicated embedding �.

Theorem. A normed B-space is B-reexive if and only if its unit ball is cycli-

cally �1(X;X
#)-compact.

C The Kakutani Criterion claims that a normed space is reexive if and only
if its unit ball is weakly compact. Hence, the result follows from 2.3. B

2.5. Let X and Y be normed B-spaces. An operator T 2 LB(X;Y ), is called
cyclically compact (in symbols, T 2 KB(X;Y )) if the image T (C) of any bounded
subset C � X is relatively cyclically compact in Y . It is easy to see that KB(X;Y )
is a decomposable subspace of the Banach{Kantorovich space LB(X;Y ).

Let X and Y be Boolean-valued representations of X and Y . Recall that the
immersion mapping T 7! T� of the operators is a linear isometric embedding of the
lattice-normed spaces LB(X;Y ) into L

B(X ;Y)#, see [1; Theorem 5.5.9]. Assume
that Y is a B-cyclic space.

(1) A bounded operator T from X into Y is cyclically compact if and only if

[[T� is a compact operator from X into Y ]] = 1.

C Observe that C is bounded in X if and only if [[C� is bounded in X ]] = 1.
Moreover, according to [1: 3.4.14],

V(B) j= T (C)� = T�(C�):

It remains to apply 2.1. B

(2) KB(X;Y ) is a bo-closed decomposable subspace in LB(X;Y ).
C Let X and Y 2 V(B) be the same as above and let K(B)(X ;Y) be the space of

compact operators from X into Y inside V(B). As was shown in [1; Theorem 5.9.9
the mapping T ! T� is an isometric embedding of LB(X;Y ) into L

(B)(X ;Y)#.
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It follows from (1) that this embedding maps the subspace KB(X;Y ) onto the
bounded part of K(B)(X ;Y)#. Taking into consideration the ZFC-theorem claiming
the closure of the subspace of compact operators, we have [[K(B)(X ;Y) is a closed
subspace in

L(B)(X ;Y) ]] = 1:

From this we deduce that K(B)(X ;Y) # is bo-closed and decomposable in
L(B)(X ;Y)#. Thus, the bounded part of K(B)(X ;Y)# is also bo-closed and de-
composable. B

(3) Let T 2 LB(X;Y ) and S 2 LB(Y; Z). If either T or S is cyclically compact

then S � T is also cyclically compact.

C We need only to immerse the composite S � T inside V(B) and, taking into
account (1) and [1; 3.4.14], apply therein the ZFC-theorem about compactness
of the composite of a bounded operator and a compact operator. The subsequent
descent leads immediately to the desired result. B

(4) A bounded operator T is cyclically compact if and only if its adjoint T � is

cyclically compact.

C Apply the above procedure, immersion into a Boolean-valued model and the
subsequent descent. Observe that the operator (T �)� is the adjoint of T� inside
V(B) and use the corresponding ZFC-theorem on compactness of the adjoint of a
compact operator. B

3. Cyclically compact operators in Kaplansky{Hilbert modules

Now we consider general form of cyclically compact operators in Kaplansky{
Hilbert modules.

3.1. Let � be a Stone algebra and consider a unitary �-module X. The
mapping h� j �i : X � X ! � is a �-valued inner product, if for all x; y; z 2 X and
a 2 � the following are satis�ed:

(1) hx jxi � 0; hx jxi = 0, x = 0;

(2) hx j yi = hy jxi�;

(3) hax j yi = ahx j yi;

(4) hx+ y j zi = hx j zi+ hy j zi.

Using a �-valued inner product, we may introduce the norm in X by the
formula

(5) jjjxjjj :=
p
khxjxik (x 2 X);
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and the vector norm

(6) x :=
p
hxjxi (x 2 X).

3.2. Let X be a �-module with an inner product h� j �i : X � X ! �. If X
is complete with respect to the mixed norm jjj�jjj, it is called a C�-module over �.
A Kaplansky{Hilbert module or an AW �-module over � is a unitary C�-module
over � that enjoys the following two properties:

(1) let x be an arbitrary element in X, and let (e�)�2� be a partition of unity
in P(�) with e�x = 0 for all � 2 �; then x = 0;

(2) let (x�)�2� be a norm-bounded family in X, and let (e�)�2� be a partition
of unity in P(�); then there exists an element x 2 X such that e�x = e�x� for all
� 2 �.

The element of (2) is the bo-sum of the family (e�x�)�2�. According to the
Cauchy{Bunyakovski��{Schwarz inequality hx j yi � x y the inner product is bo-
continuous in each variable. In particular,

If X is a C�-module than the pair (X; jjj�jjj) is a B-cyclic Banach space if and
only if (X; � ) is a Banach{Kantorovich space over � := S(B), see [1; Theorem
6.2.7].

3.4. Theorem. The bounded descent of an arbitrary Hilbert space in V(B)

is a Kaplansky{Hilbert module over the Stone algebra S(B). Conversely, if X is

a Kaplansky{Hilbert module over S(B); then there is a Hilbert space X in V(B)

whose bounded descent is unitarily equivalent with X. This space is unique to

within unitary equivalence inside V(B).

C The proof can be found in [1; Theorem 6.2.8] B

3.5. Theorem. Let T in KB(X;Y ) be a cyclically compact operator from

a Kaplansky{Hilbert module X to a Kaplansky{Hilbert module Y . There are

orthonormal families (ek)k2N in X, (fk)k2N in Y , and a family (�k)k2N in � such

that the following hold:

(1) �k+1 � �k (k 2 N) and o-limk!1 �k = 0;

(2) there exists a projection �1 in � such that �1�k is a weak order-unity in

�1� for all k 2 N ;

(3) there exists a partition (�k)
1
k=0 of the projection �

?
1 such that �0�1 = 0,

�k � [�k], and �k�k+1 = 0, k 2 N ;

(4) the representation is valid

T = �1bo-

1X
k=1

�ke
#

k 
 fk + bo-

1X
n=1

�n

nX
k=1

�ke
#

k 
 fk:
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C By virtue of 3.4 we may assume that X and Y coincide with the bounded
descents of Hilbert spaces X and Y, respectively. The operator T := T ": X ! Y

is compact and we may apply inside V(B) the ZFC-theorem on the general form
of a compact operator in Hilbert space. Working inside V(B) we may choose or-
thonormal sequences (ek)k2N in X , (fk)k2N in Y, and a decreasing numeric sequence
(�k)k2N in R+ n 0 such that lim�k = 0 and the presentation holds:

T =
1X
k=1

�ke
�
k 
 fk:

Moreover, either (8k 2 N)�k > 0 or (9k 2 N)�k = 0. Since [[�1 � kT k ]] = 1 we
have �1 � T 2 �, whence (�k) � �. Let �1 := [[ T be an in�nite-rank compact
operator from a Hilbert space X to a Hilbert space Y ]] = 1. If �0k := �1�k then
[[�0k > 0 ]] = [[�0k � �0k+1 ]] = [[ lim�0k = 0 ]] = �1, so that �0k is a weak order-unity
in �1�, �

0
k � �0k+1, and o-lim�0k = 0. From the above-indicated presentation for

T we deduce

�1T = bo-
1X
k=1

�0ke
#

k 
 fk:

Consider the fragment �?1T . From the de�nition of �1 it follows that �?1 = [[ T
is a �nite-rank operator ]] = 1. The operator T has �nite rank if and only if �n = 0
for some n 2 N . Thus,

�?1 = [[ (9n 2 N
^)�n = 0 ]] =

1_
n=1

[[�n = 0 ]]:

Put �n := [[�n = 0 ]], �0 := �1, �n := �n+1 � �n, (n 2 N). Since �n = [[�n+1 =
0&�n 6= 0 ]], we have construct a countable partition (�n)

1
n=0 of the projection �

?
1

with �n�n+1 = 0. Therefore, �nT =
Pn

k=1 �n�ke
#

k 
 fk for all n 2 N . It remains
to observe that T = �1T + bo-

P1
n=0 �nT . B

4. Fredholm B-alternative

A variant of the Fredholm Alternative holds for cyclically compact operators.
We will call it the Fredholm B-Alternative.

4.1. Let X be a Banach space with the dual X�. Take a bounded operator
T : X ! X and consider the equation of the �rst kind

Tx = y (x; y 2 X)
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and the conjugate equation

T �y� = x� (x�; y� 2 X�):

The corresponding homogeneous equations are de�ned as Tx = 0 and T �y� = 0.
Let '0(T ), '1(n; T ), '2(n; T ), and '3(n; T ) be set-theoretic formulas formalizing
the following statements.

'0(T ): The homogeneous equation Tx = 0 has a sole solution, zero. The ho-
mogeneous conjugate equation T �y� = 0 has a sole solution, zero. The equation
Tx = y is solvable and has a unique solution given an arbitrary right side. The con-
jugate equation T �y� = x� is solvable and has a unique solution given an arbitrary
right side.

'1(n; T ): The homogeneous equation Tx = 0 has n linearly independent so-
lutions x1; : : : ; xn. The homogeneous conjugate equation T �y� = 0 has n linearly
independent solutions y�1 ; : : : ; y

�
n.

'2(n; T ): The equation Tx = y is solvable if and only if y�1(y) = � � � = y�n(y) =
0. The conjugate equation T �y� = x� is solvable if and only if x�(x1) = � � � =
x�(xn) = 0.

'3(n; T ): The general solution x of the equation Tx = y is the sum of a partic-
ular solution x0 and the general solution of the homogeneous equation; i.e., it has
the form

x = x0 +
nX

k=1

�kxk (�k 2 C ):

The general solution y� of the conjugate equation T �y� = x� is the sum of a partic-
ular solution y�0 and the general solution of the homogeneous equation; i.e., it has
the form

y� = y�0 +
nX

k=1

�ky
�
k (�k 2 C ):

Using this notation, the Fredholm Alternative can be written as follows (see
[4]):

'0(T ) _ (9n 2 N)'1(n; T )&'2(n; T )&'3(n; T ):

Thus, the conventional Fredholm Alternative distinguishes the cases n = 0 and
n 6= 0. (If n = 0 then the formula

'1(n; T )&'2(n; T )&'3(n; T )

is equivalent to '0(T ).)

4.2. Consider now a B-cyclic Banach space X and a bounded B-linear operator
T in X. In this case X and X# are modules over the Stone algebra �:= S(B) and
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T is �-linear (= module homomorphism). A subset E � X is said to be locally

linearly independent if whenever e1; : : : ; en 2 E , �1; : : : ; �n 2 C , and � 2 B with
�(�1e1 + � � � + �nen) = 0 we have ��kek = 0 for all k := 1; : : : ; n. We say that
the Fredholm B-Alternative is valid for an operator T if there exists a countable
partition of unity (bn) in B such that the following conditions are ful�lled:

(1) The homogeneous equation b0 � Tx = 0 has a sole solution, zero. The
homogeneous conjugate equation b0 � T

#y# = 0 has a sole solution, zero. The
equation b0 � Tx = b0y is solvable and has a unique solution given an arbitrary
y 2 X. The conjugate equation b0 � T

#y# = b0x
# is solvable and has a unique

solution given an arbitrary x# 2 X#.

(2) For every n 2 N the homogeneous equation bn�Tx = 0 has n locally linearly
independent solutions x1;n; : : : ; xn;n and the homogeneous conjugate equation bn �
T#y# = 0 has n locally linearly independent solutions y#1;n; : : : ; y

#

n;n (hence have
nonzero solutions).

(3) The equation Tx = y is solvable if and only if bn � y
#

k;n(y) = 0 (n 2 N ; k �

n). The conjugate equation T#y# = x# is solvable if and only if bn � x
#(xk;n) = 0

(n 2 N ; k � n).

(4) The general solution x of the equation Tx = y has the form

x = bo-
1X
n=1

bn

�
xn +

nX
k=1

�k;nxk;n

�
;

where xn is a particular solution of the equation bn � Tx = bny and (�k;n)n2N;k�n
are arbitrary elements in �.

The general solution y# of the conjugate equation T#y# = x# has the form

y# = bo-
1X
n=1

bn

�
y#n +

nX
k=1

�k;ny
#

k;n

�
;

where y#n is a particular solution of the equation bn � T
#y# = bnx

#, and �k;n are
arbitrary elements � for n 2 N and k � n.

4.3. Theorem. If S is a cyclically compact operator in a B-cyclic space X

then the Fredholm B-Alternative is valid for the operator T := IX � S.

C Again we assume, without loss of generality, that X is the bounded part of
the descent of a Banach space X 2 V(B) and T is the restriction onto X of the
descent of a bounded linear operator T 2 V(B). Moreover, [[ T = IX � S]] = 1 and
[[S is a compact operator in X ]] = 1. We may assume that also X = X �#1 and
T = T �#1, see [1; 5.5.10]. The Fredholm Alternative 4.1 is ful�lled for T inside
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V(B) by virtue of the Transfer Principle. In other words, the following relations
hold:

1 = [['0(T ) _ (9n 2 N
^)'1(n; T )&'2(n; T )&'3(n; T ) ]]

= [['0(T )]] _
_
n2N

[['1(n
^; T ) ]] ^ [['2(n

^; T ) ]] ^ [['3(n
^; T ) ]]:

Denote b0 := [['0(T )]] and bn := [['1(n
^; T ) ]]^[['2(n

^; T ) ]]^[['3(n
^; T ) ]]. Since the

formulas '0(T ) and '1(n; T ) & '2(n; T ) & '3(n; T )) for di�erent n are inconsistent,
the sequence (bn)

1
n=0 is a partition of unity in B. We will now prove that 4.2 (1{4)

are valid.
(1): The claim 4.2 (1) is equivalent to the identities ker(T ) = f0g and im(T ) =

X that are ensured by the following easy relations:

V(B) j= ker(T )"= ker(T ) = f0g; V(B) j= im(T )"= im(T ) = X :

(2): The part of the assertion '1(n
^; T ) concerning the solution of the equation

Tx = 0 is formalized as

(9x)
�
(x : f1; : : : ; ng^ ! X )& (8k 2 f1; : : : ; ng^) (T x(k) = 0)

& the set x(f1; : : : ; ng^) is linearly independent)
�
:

Moreover, there is no loss of generality in assuming that kx(k)k � 1, k 2 f1; : : : ; ng^.
Using the Maximum Principle and the properties of the modi�ed descent we may
�nd a mapping x from f1; : : : ; ng to X such that the image of the mapping bnx :
k 7! bnx(k) is a locally linearly independent set in X and [[T x(k) = 0 ]] � bn for
each k 2 f1; : : : ; ng. Put xk;n := bnx(k). Further,

[[Txk;n = 0 ]] = [[ T x(k) = 0 ]] ^ [[x(k) = xk;n ]] � bn;

so that bnTxk;n = 0. The conjugate homogeneous equation is handled in the same
fashion.

(3): Necessity of the stated conditions can be easily checked; prove su�ciency.
We con�ne exposition to the equation Tx = y, since the conjugate equation is
considered along similar lines. Suppose that y#k;n(y) = 0 for k; n 2 N and k � n.
Then

bn � [[ y#k;n(y) = 0 ]] = [[ y#k;n" (y) = 0 ]] (k 2 f1; : : : ; ng):

At the same time, in view of (2), [[ fy#k;n : k = 1; : : : ; ng" is a maximal linearly
independent set of solutions of the equation T �y� = 0 ]] = 1. All this implies that
[[ the equation T x = y is solvable ]] � bn, whence the equation bn � Tx = bny has at
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least one solution xn. It is then easy to check that �x :=
P1

n=1 bnxn is a solution of
the equation Tx = y.

(4): If x is a solution of the equation Tx = y then [[ T x = y ]] = 1. Taking into
account the inequality [['3(n

^; T ) ]] � bn, we arrive at

bn � [[(9�)
�
� : f1; : : : ; ng^ ! R&x = x� +

n^X
k=1

�(k)u(k))]];

where u is the ascent of the mapping k 7! xk;n (k = 1; : : : ; n). The Maximum
Principle guarantees the existence of a mapping `n from f1; : : : ; ng to � such that

[[x = �x+
n^X
k=1

`n" (k)u(k)]] = 1:

Putting �k;n := bn`n(k), we obtain

bnx = bnxn +
nX

k=1

�k;nbnxk;n;

whence the desired representation follows. The general form of the solution of the
conjugate equation is established by similar arguments. B

5. Concluding remarks

5.1. The bounded descent of 1.4 appeared in the research by G. Takeuti into
von Neumann algebras and C�-algebras within Boolean-valued models [5, 6] and
in the research by M. Ozawa into Boolean-valued interpretation of the theory of
Hilbert spaces [7]. Theorem 3.4 on Boolean-valued representation of Kaplansky{
Hilbert modules was proved by M. Ozawa [7].

5.2. Cyclically compact sets and operators in lattice-normed spaces were in-
troduced in [8] and [3], respectively. Di�rernt aspects of cyclical compactness see
in [9{12]. A standard proof of Theorem 2.4 can be extracted from [3] wherein more
general approach is developed for the case of lattice normed space. Certain variants
of Theorems 3.5 and 4.3 for operators in Banach{Kantorovich spaces can be also
found in [3].

5.3. The famous result by P. G. Dodds and D. H. Fremlin [13] asserts that if
a positive operator acting from a Banach lattice whose dual has order continuous
norm to a Banach lattice with order continuous norm is dominated by a compact
operator then the initial operator is also compact, see [14] for proof and related
results. As regards cyclical compactness, we observe the conjecture of [15] that if
a dominated operator T between spaces with mixed norm is cyclically compact and
T � S with S compact then T is also compact on assuming some conditions on
the norm lattices like in the Dodds{Fremlin Theorem. This problem remains open.
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