UDC 517.9

BERNSTEIN–NIKOLSKIÏ TYPE INEQUALITY IN LORENTZ SPACES AND RELATED TOPICS

H. H. Bang, N. M. Cong

Dedicated to academician S. M. Nikolskii on the occasion of his 100th-birthday

In this paper we study the Bernstein–Nikolskiĭ type inequality, the inverse Bernstein theorem and some properties of functions and their spectrum in Lorentz spaces $L^{p,q}(\mathbb{R}^n)$.

1. Introduction

The study of properties of functions in the connection with their spectrum has been implemented by many authors (see, for example, [1–16] and their references). Some geometrical properties of spectrums of functions and relations with the sequence of norms of derivatives (in Orlicz spaces and N_{Φ} -spaces) were studied in [1–9]. In this paper we give some results on the Bernstein–Nikolskiĭ type inequality, the inverse Bernstein theorem and some properties of functions and their spectrum in Lorentz spaces $L^{p,q}(\mathbb{R}^n)$.

Let us recall some notations. If $f \in S'$ then the spectrum of f is defined to be the support of its Fourier transform \hat{f} (see [14, 15]). Denote $\operatorname{sp}(f) = \operatorname{supp} \hat{f}$ and |E| the Lebesgue measure of E. For an arbitrary measurable function $f : \mathbb{R}^n \to \mathbb{C}$ (or $\overline{\mathbb{R}}$), one defines (see [17–22])

$$\begin{split} \lambda_f(y) &:= \left| \{ x \in \mathbb{R}^n : |f(x)| > y \} \right|, \quad y > 0, \\ f^*(t) &:= \inf \{ y > 0 : \lambda_f(y) \leqslant t \}, \quad t > 0, \end{split} \\ \| f \|_{p,q} &:= \begin{cases} \left(\frac{q}{p} \int_0^\infty \left(t^{1/p} f^*(t) \right)^q \frac{dt}{t} \right)^{1/q}, & 0 0} t^{1/p} f^*(t), & 0$$

Then the Lorentz spaces $L^{p,q}$ (on \mathbb{R}^n) are by definition the collection of all measurable functions f such that $||f||_{p,q} < \infty$. The case $p = \infty$, $0 < q < \infty$ is not considered since $\int_0^\infty (f^*(t))^q \frac{dt}{t} < \infty$ implies f = 0 a. e. (see [17]). Furthermore, there is an alternative representation of $|| \cdot ||_{p,q}$ (see, for example, [17, 20])

$$\|f\|_{p,q} = \begin{cases} \left(q \int_{0}^{\infty} y^{q-1} \lambda_{f}^{q/p}(y) dy\right)^{1/q}, & 0 0} y \lambda_{f}^{1/p}(y), & 0$$

© 2005 Bang H. H., Cong N. M.

In this paper, for p, q fixed, we always let r such that $0 < r \leq 1, r \leq q$, and r < p. There are two useful analogues of f^* used in some below proofs: Let (see [17])

$$f^{**}(t) = f^{**}(t,r) := \sup_{|E| \ge t} \left(\frac{1}{|E|} \int_{E} |f(x)|^r dx \right)^{1/r}, \quad t > 0.$$

Then, $(f^{**})^* = f^{**}$, and

$$(f^*)^{**}(t) = \left(\frac{1}{t} \int_0^t (f^*(y))^r dy\right)^{1/r} =: f^{***}(t), \quad t > 0.$$

It is known that f^*, f^{**} and f^{***} are non-negative, non-increasing, and

$$f^* \leqslant f^{**} \leqslant f^{***}.$$

If f^* is replaced by f^{**} or f^{***} in the expression of $||f||_{p,q}$ then one gets by definition $||f||_{p,q}^{**}$ or $||f||_{p,q}^{***}$ respectively. It is well-known that $|| \cdot ||_{p,q}^{**}$ is a norm when $1 , <math>1 \leq q \leq \infty$ (set r = 1 in this case), and moreover, $L^{p,q}$ can be considered as Banach spaces if and only if p = q = 1 or $1 , <math>1 \leq q \leq \infty$ (see [17]). In particular there is at that an useful relation among $|| \cdot ||_{p,q}$, $|| \cdot ||_{p,q}^{**}$ and $|| \cdot ||_{p,q}^{***}$ (see [17])

$$||f||_{p,q} \leq ||f||_{p,q}^{**} \leq ||f||_{p,q}^{***} \leq (p/(p-r))^{1/r} ||f||_{p,q}$$

Henceforth, Ω is a compact subset of \mathbb{R}^n , and

$$\Delta_{\nu} = \left\{ \xi \in \mathbb{R}^n : |\xi_j| \leqslant \nu_j, \ j = 1, \dots, n \right\},\$$

where $\nu = (\nu_1, ..., \nu_n), \nu_j > 0, j = 1, ..., n$. Denote by

$$L^{p,q}_{\Omega} = \left\{ f \in L^{p,q} \cap S' : \, \operatorname{sp}(f) \subset \Omega \right\}.$$

When $\Omega = \Delta_{\nu}$, $L_{\Omega}^{p,q}$ is denoted again by $L_{\nu}^{p,q}$. Similarly one has S_{Ω} or S_{ν} respectively.

2. Results

First we give some results on the Bernstein–Nikolskiĭ type inequality for Lorentz spaces.

Lemma 1. Let $0 < p_1 < p_2 \leq \infty$, $0 < q_1, q_2 \leq \infty$. Then for each multi-index α , there exists a positive constant c such that for all $\varphi \in S_{\Omega}$

$$\|D^{\alpha}\varphi\|_{p_2,q_2} \leqslant c \|\varphi\|_{p_1,q_1}.$$
(1)

 \triangleleft Step 1 ($p_2 = q_2 = \infty$ and $\alpha = (0, ..., 0)$). Let $\psi \in S$ such that $\hat{\psi}(x) = 1$ in some neighbourhood of Ω . Then for any $x \in \mathbb{R}^n$

$$\begin{aligned} |\varphi(x)| &= |\varphi * \psi(x)| \leqslant \int_{\mathbb{R}^n} |\varphi(x-y)\psi(y)| dy \leqslant \int_0^\infty \varphi(x-\cdot)^*(t)\psi^*(t) dt \\ &= \int_0^\infty \varphi^*(t)\psi^*(t) dt \leqslant \|\varphi\|_{\infty}^{1-r} \int_0^\infty \left(t^{1/p_1}\varphi^*(t)\right)^r t^{-r/p_1}\psi^*(t) dt \\ &\leqslant \|\varphi\|_{\infty}^{1-r} \|\varphi\|_{p_1,\infty}^r \int_0^\infty t^{-r/p_1}\psi^*(t) dt = \frac{p_1}{p_1-r} \|\psi\|_{p_1/(p_1-r),1} \|\varphi\|_{\infty}^{1-r} \|\varphi\|_{p_1,\infty}^r. \end{aligned}$$

This deduces at once

$$\|\varphi\|_{\infty} \leq \left(\frac{p_1}{p_1 - r}\|\psi\|_{p_1/(p_1 - r), 1}\right)^{1/r} \|\varphi\|_{p_1, \infty}.$$

Step 2 ($\alpha = (0, ..., 0)$). We only have to show that there is a constant c such that

$$\|\varphi\|_{p_2,q_2} \leqslant c \|\varphi\|_{p_1,\infty}, \qquad \varphi \in S_{\Omega}, \tag{2}$$

where $0 < p_1 < p_2 < \infty$, $0 < q_2 < \infty$.

Indeed, using the alternative representation of $\|\cdot\|_{p,q}$, we have

$$\begin{split} \|\varphi\|_{p_{2},q_{2}}^{q_{2}} &= q_{2} \int_{0}^{\infty} y^{q_{2}-1} \lambda_{\varphi}^{q_{2}/p_{2}}(y) dy = q_{2} \int_{0}^{\|\varphi\|_{\infty}} y^{q_{2}-1} \lambda_{\varphi}^{q_{2}/p_{2}}(y) dy \\ &= q_{2} \int_{0}^{\|\varphi\|_{\infty}} \left(y \lambda_{\varphi}^{1/p_{1}}(y) \right)^{\frac{q_{2}}{p_{2}}p_{1}} y^{q_{2}-1-\frac{q_{2}}{p_{2}}p_{1}} dy \leqslant q_{2} \|\varphi\|_{p_{1},\infty}^{q_{2}p_{1}/p_{2}} \int_{0}^{\|\varphi\|_{\infty}} y^{\frac{q_{2}(p_{2}-p_{1})}{p_{2}}-1} dy \\ &= \frac{p_{2}}{p_{2}-p_{1}} \|\varphi\|_{p_{1},\infty}^{q_{2}p_{1}/p_{2}} \|\varphi\|_{\infty}^{q_{2}(p_{2}-p_{1})/p_{2}} \leqslant C \frac{p_{2}}{p_{2}-p_{1}} \|\varphi\|_{p_{1},\infty}^{q_{2}}, \end{split}$$

where the last inequality follows from Step 1. Therefore (2) is obtained.

Step 3. We prove (1) when $p_1 = p_2 = p$, $q_1 = q_2 = q$. If $\varphi \in S_{\Omega}$ then $D^{\alpha}\varphi \in S_{\Omega}$ for every multi-index α . Denote by $\mathcal{M}\varphi$ the Hardy-Littlewood maximal function of φ , then (see [14, p. 16]) for all $x \in \mathbb{R}^n$

$$|D^{\alpha}\varphi(x)| \leq c_1 \left((\mathcal{M}|\varphi|^r)(x) \right)^{1/r},$$

where c_1 is a constant depending only on Ω . Moreover it is known that for every measurable function f (see, for example, [18, 19])

$$(\mathcal{M}f)^*(t) \sim \frac{1}{t} \int_0^t f^*(s) ds.$$

Hence,

$$(D^{\alpha}\varphi)^* \leqslant c_1 \left((\mathcal{M}|\varphi|^r)^{1/r} \right)^* = c_1 \left((\mathcal{M}|\varphi|^r)^* \right)^{1/r} \leqslant c_2 \varphi^{***},$$

and consequently,

$$\|D^{\alpha}\varphi\|_{p,q} \leqslant c_2 \|\varphi\|_{p,q}^{***} \leqslant c_3 \|\varphi\|_{p,q}.$$
(3)

Step 4. The general case follows immediately from (2), (3) and the property $\|\cdot\|_{p,\infty} \leq \|\cdot\|_{p,q}$. The proof so has been fulfilled. \triangleright

The theorem below is an extension of the Theorems 1.4.1(i) and 1.4.2 in [16].

Theorem 1. Let $0 < p_1 < p_2 \leq \infty$, $0 < q_1, q_2 \leq \infty$. (i) If α is a multi-index, then there exists a constant c such that for all $f \in L_{\Omega}^{p_1,q_1}$

$$||D^{\alpha}f||_{p_2,q_2} \leqslant c||f||_{p_1,q_1}.$$

(ii) $L_{\Omega}^{p,q}$ is a quasi-Banach space for arbitrary $0 < p, q \leq \infty$, and the following topological embeddings hold

$$S_{\Omega} \subset L_{\Omega}^{p_1,q_1} \subset L_{\Omega}^{p_2,q_2} \subset S'.$$

 \triangleleft (i): Without loss of generality, one can assume that $q_1 = \infty$ and $0 < p_1, p_2, q_2 < \infty$ (note that the case $p_1 = \infty$ and so, $p_1 = p_2 = q_1 = q_2 = \infty$, was proved in [16, Theorem 1.4.1]). Let $p_1 , and let <math>\varphi \in S$ such that $\varphi(0) = 1$ and $\operatorname{sp}(\varphi) \subset \{x : |x| \leq 1\}$. For each $f \in L^{p_1,\infty}_{\Omega}$ and $0 < \delta < 1$, put $f_{\delta}(x) = \varphi(\delta x) f(x)$. Then $f_{\delta} \to f$ on \mathbb{R}^n and $f_{\delta} \in S_{\Omega_1}$, where

$$\Omega_1 = \Big\{ y \in \mathbb{R}^n : \exists x \in \Omega \text{ such that } |x - y| \leq 1 \Big\}.$$

Consequently, it follows from Lemma 1 that

$$||f||_p \leq \lim_{\delta \searrow 0} ||f_\delta||_p \leq c_1 \lim_{\delta \searrow 0} ||f_\delta||_{p_1,\infty} \leq c_1 ||\varphi||_{\infty} ||f||_{p_1,\infty},$$

where c_1 is independent of δ and f. Hence $f \in L^p_{\Omega}$. Now the argument in [16, Theorem 1.4.1] implies that $D^{\alpha}f_{\delta} \longrightarrow D^{\alpha}f$ in L^{∞} (and this show that the conclusion is true if $p_2 = q_2 = \infty$). Lemma 1 therefore deduces again that

$$\|D^{\alpha}f\|_{p_2,q_2} \leq \lim_{\delta \searrow 0} \|D^{\alpha}f_{\delta}\|_{p_2,q_2} \leq c \lim_{\delta \searrow 0} \|f_{\delta}\|_{p_1,\infty} \leq c \|\varphi\|_{\infty} \|f\|_{p_1,\infty} \leq c \|\varphi\|_{\infty} \|f\|_{p_1,q_1},$$

where c depends only on p_1, p_2, q_2 and Ω .

(ii): First, we show that $L^{p,q}_{\Omega}$ is a quasi-Banach space for any $0 < p, q \leq \infty$. Let $\{f_j\}$ be any fundamental sequence in $L^{p,q}_{\Omega}$. Then there is a function $f \in L^{p,q}$ such that $f_j \to f$ in $L^{p,q}$. as $j \to \infty$.

Moreover, part (i) above with $\alpha = (0, ..., 0)$ and $p_2 = q_2 = \infty$ shows that $\{f_j\}$ is also a fundamental sequence in L^{∞} . Then it implies by standard arguments that $f_j \to f$ in L^{∞} , and consequently, $f_j \to f$ in S'. Hence $\hat{f}_j \to \hat{f}$ in S' and this yields that $\operatorname{sp}(f) \subset \Omega$. Therefore $f \in L^{p,q}_{\Omega}$ and $f_j \to f$ in $L^{p,q}$, and it follows that $L^{p,q}_{\Omega}$ is a quasi-Banach space. Part (i) deduces immediately that $L^{p_1,q_1}_{\Omega} \subset L^{p_2,q_2}_{\Omega}$. Moreover, if $0 < \theta < p < \kappa \leq \infty$, then

for any q > 0 (see [16, Theorem 1.4.2])

$$S_{\Omega} \subset L_{\Omega}^{\theta} \subset L_{\Omega}^{p,q} \subset L_{\Omega}^{\kappa} \subset S'. \triangleright$$

It is difficult to get concrete and good constants for Nikolskiĭ inequality for Lorentz spaces $L^{p,q}_{\Omega}$. Following some ideas in [13], we have a version of the Nikolskii inequality for Lorentz spaces.

Theorem 2. (i) If $0 < p_1 < 2$, then for $p_2 > p_1, q_2 > 0$,

$$||f||_{p_2,q_2} \leqslant \left(\frac{p_2}{p_2 - p_1}\right)^{1/q_2} \left(\frac{|\Omega|}{2 - p_1}\right)^{1/p_1 - 1/p_2} ||f||_{p_1,q_1}, \quad f \in L^{p_1,q_1}_{\Omega};$$

(ii) If $0 < p_1 < \infty$, then for $p_2 > p_1, q_2 > 0$,

$$\|f\|_{p_{2},q_{2}} \leqslant \left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{1/q_{2}} \left(\frac{p_{0}^{2}|\mathrm{co}(\Omega)|}{2p_{0}-p_{1}}\right)^{1/p_{1}-1/p_{2}} \|f\|_{p_{1},q_{1}}, \quad f \in L_{\Omega}^{p_{1},q_{1}}$$

where $co(\Omega)$ denotes the convex hull of Ω and p_0 is the smallest integer number such that $p_0 > p_1/2.$

 \triangleleft (i): Suppose that $0 < p_1 < 2, 0 < q_1 \leqslant \infty$ and $f \in L_{\Omega}^{p_1,q_1}$, then by Theorem 1, $f \in L^2$, so it follows from [13, Theorem 3] that

$$\begin{split} \|f\|_{\infty} &\leqslant |\Omega|^{1/2} \|f\|_{2} = |\Omega|^{1/2} \left(\int_{0}^{\|f\|_{\infty}} y\lambda_{f}(y)dy \right)^{1/2} \\ &= |\Omega|^{1/2} \left(\int_{0}^{\|f\|_{\infty}} (y\lambda_{f}^{1/p_{1}}(y))^{p_{1}}y^{1-p_{1}}dy \right)^{1/2} \leqslant |\Omega|^{1/2} \|f\|_{p_{1},\infty}^{p_{1}/2} \left(\frac{\|f\|_{\infty}^{2-p_{1}}}{2-p_{1}} \right)^{1/2}. \end{split}$$

Therefore,

$$\|f\|_{\infty} \leqslant \left(\frac{|\Omega|}{2-p_1}\right)^{1/p_1} \|f\|_{p_1,\infty}.$$

Applying now the argument in Step 2 of the proof of Lemma 1, we can obtain a similar inequality

$$\|f\|_{p_2,q_2} \leqslant \left(\frac{p_2}{p_2 - p_1}\right)^{1/q_2} \|f\|_{p_1,\infty}^{\frac{p_1}{p_2}} \|f\|_{\infty}^{\frac{1-p_1}{p_2}}.$$

Hence,

$$||f||_{p_2,q_2} \leqslant \left(\frac{p_2}{p_2 - p_1}\right)^{1/q_2} \left(\frac{|\Omega|}{2 - p_1}\right)^{1/p_1 - 1/p_2} ||f||_{p_1,q_1}$$

(ii): Since $0 < p_1/p_0 < 2$, we get immediately

$$\|f\|_{p_{2},q_{2}} = \|f^{p_{0}}\|_{p_{2}/p_{0},q_{2}/p_{0}}^{1/p_{0}} \leqslant \left(\frac{p_{2}/p_{0}}{p_{2}/p_{0}-p_{1}/p_{0}}\right)^{\frac{1}{q_{2}}} \left(\frac{|\mathrm{co}(\mathrm{sp}(f^{p_{0}}))|}{2-p_{1}/p_{0}}\right)^{\frac{1}{p_{1}}-\frac{1}{p_{2}}} \|f^{p_{0}}\|_{p_{1}/p_{0},q_{1}/p_{0}}$$
$$\leqslant \left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{\frac{1}{q_{2}}} \left(\frac{p_{0}|\mathrm{co}(\mathrm{sp}(f))|}{2-p_{1}/p_{0}}\right)^{\frac{1}{p_{1}}-\frac{1}{p_{2}}} \|f\|_{p_{1},q_{1}} \leqslant \left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{\frac{1}{q_{2}}} \left(\frac{p_{0}^{2}|\mathrm{co}(\Omega)|}{2p_{0}-p_{1}}\right)^{\frac{1}{p_{1}}-\frac{1}{p_{2}}} \|f\|_{p_{1},q_{1}}$$

The theorem is proved. \triangleright

Lemma 2. Let $1 . If <math>f \in L^{p,q}$, then $f \in S'$ and for any $g \in L^1$ $\|f * g\|_{p,q} \leq c \|f\|_{p,q} \|g\|_1,$

where c is a constant depending only on p, q.

 \lhd Firstly, we show that $f\in S'.$ Let $E\subset \mathbb{R}^n$ such that $0<|E|<\infty.$ Then the Hölder inequality implies

$$\int_{E} |f(x)| dx \leqslant \int_{0}^{|E|} f^{*}(t) dt = \int_{0}^{|E|} \left(t^{1/p} f^{*}(t) \right) t^{-1/p} dt \leqslant \|f\|_{p,\infty} \int_{0}^{|E|} t^{-1/p} dt = c(E) \|f\|_{p,\infty}.$$

This deduces easily that $f \in S'$.

Now, we prove the last conclusion. For an arbitrary t > 0, we define

$$f^{(*)}(t) = \frac{1}{t} \int_{0}^{t} f^{*}(y) dy.$$

Then for any $E \subset \mathbb{R}^n$ such that $t \leq |E| < \infty$ we have by Jensen's inequality

$$\left(\frac{1}{|E|} \int_{E} |f \ast g(x)|^{r} dx\right)^{\frac{1}{r}} \leq \frac{1}{|E|} \int_{E} |f \ast g(x)| dx \leq \int_{\mathbb{R}^{n}} |g(y)| \left(\frac{1}{|E|} \int_{E} |f(x-y)| dx\right) dy \leq f^{(\ast)}(t) \|g\|_{1}.$$

Hence,

$$||f * g||_{p,q} \leq ||f * g||_{p,q}^{**} \leq ||f^{(*)}||_{p,q} ||g||_1$$

It now yields from [22, Lemma 3.2] the existence of a constant c such that (in the case p > 1)

$$||f^{(*)}||_{p,q} \leq c ||f||_{p,q}, \qquad f \in L^{p,q},$$

The lemma therefore is proved completely. \triangleright

Theorem 3. Let $f \in L^{p,q}$ $(1 such that <math>f \neq 0$. Then sp(f) contains only points of condensation.

 \triangleleft Let $\xi_0 \in \operatorname{sp}(f)$ be an arbitrary point, and let V be any neighbourhood of ξ_0 . Choose $\hat{\varphi}(\xi) \in C_0^{\infty}(\mathbb{R}^n)$ such that $\hat{\varphi}(\xi) = 1$ in V. Then by Lemma 2, $F^{-1}(\hat{\varphi}\hat{f}) = \varphi * f \in L^{p,q}$. Hence we can assume that $\operatorname{sp}(f)$ is bounded, moreover we merely have to show that $\operatorname{sp}(f)$ is uncountable.

It deduces from Theorem 1 that there is a positive integer m such that $f \in L^m(\mathbb{R}^n)$. Hence $(f^m) \in C_0(\mathbb{R}^n)$. Since $f \neq 0$, there exists a non-void ball B such that

$$B \subset \operatorname{sp}(f^m) = \operatorname{supp}(\tilde{f} * \cdots * \tilde{f}) \ (m \text{ terms}) \subset \operatorname{sp}(f) + \cdots + \operatorname{sp}(f).$$

Therefore it follows at once that sp(f) is uncountable. \triangleright

It is noticeable that Theorem 3 is a corollary of the following theorem which can be proved by the same method used in [4, Theorem 1].

Theorem 4. Let $f \in L^{p,q}$ $(1 , <math>f \neq 0$ and $\xi_0 \in \operatorname{sp}(f)$ be an arbitrary point. Then the restriction of \hat{f} on any neighbourhood of ξ_0 cannot concentrate on any finite number of hyperplanes.

It is trivial that $\lambda_f(y) < \infty$ for all y > 0, $f \in L^{p,q}$ if $p < \infty$. Then by the argument used in [7, Theorem 3] and Theorem 1, a property of such functions can be formulated as follows.

Theorem 5. If $f \in L^{p,q} \cap S'$ (0 such that <math>sp(f) is bounded, then

$$\lim_{|x| \to \infty} f(x) = 0.$$

REMARK 1. In contrast with hyperplanes, \hat{f} may concentrate on surfaces (see [4, Remark 2]). In addition, Theorems 3–5 are not true when $p = \infty$, i. e., $p = q = \infty$ (see [4, 7]).

To obtain more properties of functions with bounded spectrum, we prove an auxiliary result which is interesting in itself.

Theorem 6. If $f \in L^{p,q}$ $(0 < p, q < \infty)$, then

$$\lim_{a \to 1} \|f(a.x) - f(x)\|_{p,q} = 0, \tag{4}$$

where $\mathbf{1} = (1, \ldots, 1)$ and $a.x = (a_1x_1, \ldots, a_nx_n)$ for all $a, x \in \mathbb{R}^n$.

 \triangleleft It is known in [17] that the set A of all measurable simple functions with bounded support is dense in $L^{p,q}$ if $0 < q < \infty$. Therefore, it suffices to show (4) for each $f \in A$. Hence, let $f \in A$ and assume on the contrary that there exist $\{a^k\} \subset \mathbb{R}^n$, $a^k \to \mathbf{1}$, and $\varepsilon > 0$ such that

$$\|f_k - f\|_{p,q} > \varepsilon, \quad k \ge 1,\tag{5}$$

where $f_k(x) = f(a^k x)$. Since $f \in L^1_{loc}(\mathbb{R}^n)$, then for each $K_\ell = [-\ell, \ell]^n$, one obtains

$$\int_{K_{\ell}} |f_k(x) - f(x)| dx \to 0, \quad \text{as } k \to \infty.$$

So there is a subsequence of $\{a^k\}$, which is still denoted by $\{a^k\}$, such that $f_k \to f$ a. e. on K_{ℓ} . Therefore, there exists a subsequence, denoted again by $\{a^k\}$, such that $f_k \to f$ a. e. on \mathbb{R}^n . Consequently,

$$\lim_{k\to\infty} f_k^*(t) \geqslant f^*(t), \quad t>0.$$

Furthermore, it is easy to verify that

$$||f_k||_{p,q} = (a_1^k \cdots a_n^k)^{-1} ||f||_{p,q}.$$

The Fatou lemma then yields for arbitrary $0 < u < v < \infty$

$$\begin{split} & \overline{\lim_{k \to \infty}} \int_{0}^{u} t^{q/p-1} f_{k}^{*q}(t) dt = \overline{\lim_{k \to \infty}} \left(\int_{0}^{\infty} t^{q/p-1} f_{k}^{*q}(t) dt - \int_{u}^{\infty} t^{q/p-1} f_{k}^{*q}(t) dt \right) \\ & \leq \frac{p}{q} \overline{\lim_{k \to \infty}} \| f_{k} \|_{p,q}^{q} - \underline{\lim_{k \to \infty}} \int_{u}^{\infty} t^{q/p-1} f_{k}^{*p}(t) dt \leq \frac{p}{q} \| f \|_{p,q}^{q} - \int_{u}^{\infty} t^{q/p-1} f^{*q}(t) dt = \int_{0}^{u} t^{q/p-1} f^{*q}(t) dt \end{split}$$

and similarly,

$$\lim_{k \to \infty} \int_{v}^{\infty} t^{q/p-1} f_k^{*q}(t) dt \leqslant \int_{v}^{\infty} t^{q/p-1} f^{*q}(t) dt.$$

Hence, if u < v/2 are chosen such that for $c = \max(2^{q-1}, 1)$

$$\int_{0}^{u} t^{q/p-1} f^{*q}(t) dt < \delta, \qquad \int_{v/2}^{\infty} t^{q/p-1} f^{*q}(t) dt < \delta, \tag{6}$$

where $\delta = p\varepsilon^q/(3.2^{q/p}.q.c)$, then there is a positive constant N_1 such that for all $k > N_1$

$$\int_{0}^{u} t^{q/p-1} f_{k}^{*q}(t) dt < \delta, \qquad \int_{v/2}^{\infty} t^{q/p-1} f_{k}^{*q}(t) dt < \delta.$$
(7)

Therefore, it follows from (6), (7), and the inequality $(f+g)^*(t) \leq f^*(t/2) + g^*(t/2)$, that for all $k > N_1$

$$\int_{0}^{u} t^{q/p-1} (f_{k} - f)^{*q}(t) dt \leq c \left(\int_{0}^{u} t^{q/p-1} f_{k}^{*q}(t/2) dt + \int_{0}^{u} t^{q/p-1} f^{*q}(t/2) dt \right) \\
\leq 2^{q/p-1} c \left(\int_{0}^{u} t^{q/p-1} f_{k}^{*q}(t) dt + \int_{0}^{u} t^{q/p-1} f^{*q}(t) dt \right) < 2^{q/p} c \delta.$$
(8)

Similarly, one obtains for all $k > N_1$

$$\int_{v}^{\infty} t^{q/p-1} (f_k - f)^{*q}(t) dt \leq c \left(\int_{v}^{\infty} t^{q/p-1} f_k^{*q}(t/2) dt + \int_{v}^{\infty} t^{q/p-1} f^{*q}(t/2) dt \right)$$

$$= 2^{q/p-1} c \left(\int_{v/2}^{\infty} t^{q/p-1} f_k^{*q}(t) dt + \int_{v/2}^{\infty} t^{q/p-1} f^{*q}(t) dt \right) < 2^{q/p} c \delta.$$
(9)

Next, since $a^k \to \mathbf{1}$ and $\operatorname{supp} f$ is bounded, there is a ball B including $\operatorname{supp} f$ such that $\operatorname{supp} f_k \subset B$, for all $k \ge 1$. Thus taking account of $f_k \to f$ a. e. on \mathbb{R}^n , it deduces that $f_k \to f$ in measure. Then the definition of the non-increasing rearrangement of a measurable function yields for every t > 0 that

$$(f_k - f)^*(t) \longrightarrow 0$$
, as $k \to \infty$.

Applying the dominated convergence theorem, one arrives at

$$\int_{u}^{v} t^{q/p-1} (f_k - f)^{*q}(t) dt \to 0, \quad \text{as } k \to \infty.$$

Consequently, there exists a number $N_2 > N_1$ such that for all $k > N_2$

$$\int_{u}^{v} t^{q/p-1} (f_k - f)^{*q}(t) dt < \frac{p}{3q} \varepsilon^q.$$

$$\tag{10}$$

Combining (8), (9) and (10), it is evident that for all $k > N_2$

$$\frac{p}{q} \|f_k - f\|_{p,q}^q = \int_0^\infty t^{q/p-1} (f_k - f)^{*q}(t) dt < 2^{q/p+1} c\delta + \frac{p}{q} \varepsilon^q / 3 = \frac{p}{q} \varepsilon^q.$$

This contradicts (5). \triangleright

REMARK 2. It is well-known that $L^{p,q}$ can be considered as Banach spaces if and only if p = q = 1 or $1 , <math>1 \leq q \leq \infty$. Using Theorem 1 and the method of [14], one can obtain the Bernstein inequality for $L^{p,q}$ spaces in these cases: If $f \in L^{p,q}_{\nu}$, then there is a constant $1 \leq c \leq e^{1/p}$ such that

$$\|D^{\alpha}f\|_{p,q} \leqslant c \ \nu^{\alpha} \|f\|_{p,q} \tag{11}$$

holds for any multi-index α . Moreover this inequality still holds when p = 1. Indeed, it yields at once from the dominated convergence theorem when $p = 1, 1 \leq q < \infty$ that $||f||_{p,q} \rightarrow ||f||_{1,q}$ as $p \searrow 1$, and the claim follows. Therefore we have only to show that this convergence is also true when $q = \infty$ and imply directly the desired. Suppose that $||f||_{p,\infty} \not\rightarrow ||f||_{1,\infty}$ as $p \searrow 1$. Then there is $\epsilon > 0$ and $\{p_n\}, p_n \searrow 1$, such that:

Case 1. $||f||_{p_n,\infty} < ||f||_{1,\infty} - \epsilon$, $n \ge 1$. Thus there exists $0 < u < ||f||_{\infty}$ such that

$$\sup_{0 < y < \|f\|_{\infty}} y \lambda_f^{1/p_n}(y) < u \lambda_f(u) - \epsilon/2,$$

and hence, $u\lambda_f^{1/p_n}(u) < u\lambda_f(u) - \epsilon/2$. Let $n \to \infty$, we get a contradiction.

Case 2. $\|f\|_{p_n,\infty} > \|f\|_{1,\infty} + \epsilon$, $n \ge 1$. Then there is a sequence $\{y_n\}, 0 < y_n < \|f\|_{\infty}$ such that

$$y_n \lambda_f^{1/p_n}(y_n) > y_n \lambda_f(y_n) + \epsilon/2.$$

It is easy to see from Theorem 5 and the continuity of f that λ_f is continuous. Therefore let v be any accumulative point of $\{y_n\}$ and let $n \to \infty$ in the last inequality, we also have a contradiction and then the claim is proved.

Furthermore, using the argument in [7, Theorem 6], one can get a stronger result.

Theorem 7. If $\nu_j > 0$, $j = 1, \ldots, n$ and $1 \leq p, q < \infty$, then for all $f \in L^{p,q}_{\nu}$

$$\lim_{|\alpha|\to\infty}\nu^{-\alpha}\|D^{\alpha}f\|_{p,q}=0.$$

REMARK 3. Applying the Bernstein inequality we have $\nu^{-\alpha} \|D^{\alpha}f\|_{p,q} \leq \nu^{-\beta} \|D^{\beta}f\|_{p,q}$ if $\alpha \geq \beta$ for such above p, q. Moreover, Theorems 6, 7 fail if $p = q = \infty$. But we still don't know what happens if $p < \infty$, $q = \infty$.

Let us recall some notations about the directional derivatives. Suppose that $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ is an arbitrary real unit vector. Then

$$D_a f(x) = f'_a(x) := \sum_{j=1}^n a_j \frac{\partial f}{\partial x_j}(x)$$

is the derivative of f at the point x in the direction a, and

$$D_a^m f(x) = D_a f_a^{(m-1)} = \sum_{|\alpha|=m} a^{\alpha} D^{\alpha} f(x)$$

is the derivative of order m of f at x in the direction $a \ (m = 1, 2, ...)$.

Denote $h_a(f) = \sup_{\xi \in \operatorname{sp}(f)} |a\xi|$. By an argument similar to the proof of [8, Theorem 2], one can

obtain the corresponding results for directional derivatives cases in certain Lorentz spaces.

Theorem 8. If $1 \leq p, q \leq \infty$, then there is a constant $1 \leq c \leq e^{1/p}$ such that for all $f \in L^{p,q} \cap S'$ satisfying $h_a(f) < \infty$

$$||D_a f||_{p,q} \leqslant c \, h_a(f) ||f||_{p,q}. \tag{12}$$

Theorem 9. If $f \in L^{p,q} \cap S'$ $(1 \leq p, q < \infty)$ is such that $h_a(f) < \infty$, then

$$\lim_{m \to +\infty} \left(h_a(f) \right)^{-m} \| D_a^m f \|_{p,q} = 0.$$

It is clearly that one can let c = 1 in (11) and (12) if $\|\cdot\|_{p,q}$ is a norm, and let $c = e^{1/p}$ in general case.

Finally, we will show that the Bernstein inequality wholly characterizes the spaces $L_{\nu}^{p,q}$ in the case they are normable.

Theorem 10. Suppose that p = q = 1 or $1 and <math>f \in S'$. Then in order that $f \in L^{p,q}_{\nu}$ it is necessary and sufficient that there exists a constant c = c(f) such that

$$\|D^{\alpha}f\|_{p,q} \leqslant c \nu^{\alpha}, \quad \alpha \in \mathbb{Z}_{+}^{n}.$$
⁽¹³⁾

 \triangleleft Only sufficiency hod to be verified. Assume that (13) holds.

Case 1 $(1 . If <math>g \in L^{p,q}(\mathbb{R}^n)$, then $g \in L^1_{loc}(\mathbb{R}^n)$ by the first part of the proof of Lemma 2. It hence deduces from (13) that $D^{\alpha}f \in L^1_{loc}(\mathbb{R}^n)$ for all $\alpha \geq 0$. Consequently, we can assume that $f \in C^{\infty}(\mathbb{R}^n)$ by virtue of Sobolev embedding theorem.

Next let $\omega \in C_0^{\infty}(\mathbb{R}^n)$ such that $\|\omega\|_1 = 1$, and define for each $\varepsilon > 0$

$$f_{\varepsilon}(x) = f * \omega_{\varepsilon}(x),$$

where $\omega_{\varepsilon}(x) = \varepsilon^{-n}\omega(x/\varepsilon)$. Then $f_{\varepsilon}(x) \to f(x)$ as $\varepsilon \downarrow 0$, for every $x \in \mathbb{R}^n$. Moreover, by the argument at the first step of Lemma 1 (recall that r = 1 in this case), one has for each multi-index α

$$\sup_{x \in \mathbb{R}^n} |D^{\alpha} f_{\varepsilon}(x)| \leq b_{\varepsilon} \|D^{\alpha} f_{\varepsilon}\|_{p,\infty} \leq b_{\varepsilon} \|D^{\alpha} f_{\varepsilon}\|_{p,q} \leq B_{\varepsilon} \nu^{\alpha},$$
(14)

where $B_{\varepsilon} > 0$ is a constant depending only on ε . Thus the Taylor series

$$\sum_{|\alpha|=0}^{\infty} \frac{1}{\alpha!} D^{\alpha} f_{\varepsilon}(0). z^{\alpha}$$

converges for any point $z \in \mathbb{C}^n$ and represents $f_{\varepsilon}(x)$ in \mathbb{R}^n . Hence taking account of (14), we obtain

$$|f_{\varepsilon}(z)| \leqslant B_{\varepsilon} \exp\left(\sum_{j=1}^{n} \nu_j |z_j|\right), \quad z \in \mathbb{C}^n,$$

i. e., $f_{\varepsilon}(z)$ is an entire function of exponential type ν . It therefore follows from the Paley–Wiener–Schwartz theorem that

$$\operatorname{sp}(f_{\varepsilon}) = \operatorname{supp} \hat{f}_{\varepsilon} \subset \Delta_{\nu}.$$
(15)

Therefore, Theorem 1 and Lemma 2 yield that for each $\varepsilon > 0$

$$\|f_{\varepsilon}\|_{p+1} \leqslant c_1 \ \|f_{\varepsilon}\|_{p,\infty} \leqslant c_2 \ \|\omega_{\varepsilon}\|_1 \|f\|_{p,\infty} = c_2 \ \|f\|_{p,\infty}.$$

The Banach–Alaoglu theorem hence implies that there are a sequence $\{\varepsilon_n\}$ and an $\tilde{f} \in L^{p+1}(\mathbb{R}^n)$ such that $f_{\varepsilon_n} \to \tilde{f}$ weakly in $L^{p+1}(\mathbb{R}^n)$ as $\varepsilon \downarrow 0$. Then by standard arguments, one has $f = \tilde{f}$ a. e., that is, $f_{\varepsilon_n} \to f$ weakly in $L^{p+1}(\mathbb{R}^n)$. Because $S \subset L^{(p+1)/p}(\mathbb{R}^n)$, the dual space of $L^{p+1}(\mathbb{R}^n)$, it follows immediately that $f_{\varepsilon_n} \to f$ in S'. Consequently, $\hat{f}_{\varepsilon_n} \to \hat{f}$ in S' and this deduces at once from (15) that $\operatorname{sp}(f) \subset \Delta_{\nu}$.

Case 2 (p = q = 1). This case can be proved by above manner.

Case 3 $(p = q = \infty)$. Let φ and f_{δ} , $0 < \delta < 1$, as in the proof of Theorem 1. Then it yields from the Leibniz formula, the Bernstein inequality for L^{∞} and (13) that for all $\alpha \in \mathbb{Z}_{+}^{n}$

$$|D^{\alpha}f_{\delta}(x)| \leq \sum_{\gamma+\beta=\alpha} \left| D^{\gamma}(\varphi(\delta x)) \right| \left| D^{\beta}f(x) \right| \leq c \sum_{\gamma+\beta=\alpha} \delta^{|\gamma|} \nu^{\beta} = c(\nu+\delta)^{\alpha},$$

where $\boldsymbol{\delta} = (\delta, ..., \delta)$. Thus, as in Case 1, $f_{\delta}(z)$ is an entire function of exponential type $\nu + \boldsymbol{\delta}$ for each $0 < \delta < 1$, and therefore, $\operatorname{sp}(f_{\delta}) \subset \Delta_{\nu+\boldsymbol{\delta}}$. Moreover, it is clear that $f_{\delta} \to f$ in S' as $\delta \downarrow 0$. This implies obviously that $\operatorname{sp}(f) \subset \Delta_{\nu+\boldsymbol{\theta}}$ for any $0 < \theta < 1$ and then $\operatorname{sp}(f) \subset \Delta_{\nu}$. \triangleright

Theorem 11. If p = q = 1 or $1 , then a function <math>f \in S'$ belongs to $L_{\nu}^{p,q}$ if and only if

$$\overline{\lim}_{|\alpha| \to \infty} \left(\nu^{-\alpha} \| D^{\alpha} f \|_{p,q} \right)^{1/|\alpha|} \leqslant 1.$$
(16)

 \triangleleft It is sufficient to prove «only if» part. Given any $\varepsilon > 0$, there is a positive constant $C_{\varepsilon} > 0$ such that for all $\alpha \ge 0$

$$||D^{\alpha}f||_{p,q} \leqslant C_{\varepsilon}(1+\varepsilon)^{|\alpha|}\nu^{\alpha}.$$

It hence deduces from Theorem 10 that $\operatorname{sp}(f) = \operatorname{supp} Ff \subset \Delta_{(1+\varepsilon)\nu}$. Therefore $\operatorname{sp}(f) \subset \bigcap_{\varepsilon > 0} \Delta_{(1+\varepsilon)\nu} = \Delta_{\nu}$. \rhd

REMARK 4. It is noticeable that the root $1/|\alpha|$ in (16) cannot be replaced by any $1/|\alpha| t(\alpha)$, where $0 < t(\alpha)$, $\lim_{|\alpha| \to \infty} t(\alpha) = +\infty$.

References

- Bang H. H. A property of infinitely differentiable functions // Proc. Amer. Math. Soc.—1990.—V. 108.— P. 71–78.
- 2. Bang H. H. On the Bernstein–Nikolsky inequality II // Tokyo J. Math.—1995.—V. 19.—P. 123–151.
- Bang H. H. Functions with bounded spectrum // Trans. Amer. Math. Soc.—1995.—V. 347.—P. 1067– 1080.
- 4. Bang H. H. Spectrum of functions in Orlicz spaces // J. Math. Sci. Univ. Tokyo.—1997.—V. 4.—P. 341–349.
- Bang H. H. The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra (Russian) // Izv. Russ. Akad. Nauk Ser. Mat.—1997.—V. 61.—P. 163–198; translation in Izv. Math.—V. 61.—P. 399–434.
- Bang H. H. Investigation of the properties of functions in the space N_Φ depending on the geometry of their spectrum (Russian) // Dolk. Akad. Nauk.—2000.—V. 374.—P. 590–593.
- 7. Bang H. H. On inequalities of Bohr and Bernstein // J. Inequal. Appl.-2002.-V. 7.-P. 349-366.
- Bang H. H. and Morimoto M. On the Bernstein–Nikolsky inequality // Tokyo J. Math.—1991.—V. 14.— P. 231–238.
- 9. Bang H. H. The sequence of Luxemburg norms of derivatives // Tokyo J. Math.—1994.—V. 17.—P. 141–147.
- Betancor J. J., Betancor J. D., Méndez J. M. R. Paley–Wiener type theorems for Chébli–Trimèche transforms // Publ. Math. Debrecen.—2002.—V. 60.—P. 347–358.
- 11. Hörmander L. A new generalization of an inequality of Bohr // Math. Scand.-1954.-V. 2.-P. 33-45.
- Hörmander L. The Analysis of Linear Partial Differential Operators I.—Berlin etc.: Springer-Verlag, 1983.
- 13. Nessel R. J., Wilmes G. Nilkolskii-type inequalities for trigonometric polynomials and entire functions of exponential type // J. Austral. Math. Soc. Ser. A.—1978.—V. 25.—P. 7–18.
- 14. Nikolskiĭ S. M. Approximation of Functions of Several Variables and Imbedding Theorems.—Moskow: Nauka, 1977. [Russian]
- 15. Schwartz L. Théorie des Distributions II.-Paris: Hermann, 1951.
- 16. Triebel H. Theory of Function Spaces.—Basel etc.: Birkhäuser, 1983.
- 17. Hunt R. A. On L(p,q) spaces // L'Ens. Math.-1964.-V. 12.-P. 249-275.
- 18. Bennett C., Sharpley R. Interpolation of Operators.—New York etc.: Academic press, 1988.
- Carro M. J., Soria J. The Hardy–Littlewood maximal function and weighted Lorentz spaces // J. London Math. Soc.—1997.—V. 55.—P. 146–158.
- 20. Creekmore J. Type and cotype in Lorentz L_{pq} spaces // Indag. Math.—1981.—V. 43.—P. 145–152.
- 21. Lorentz G. G. Some new functional spaces // Ann. Math.-1950.-V. 51.-P. 37-55.
- 22. Yap L. Y. H. Some remarks on convolution operators and L(p,q) spaces // Duke Math. J.—1969.— V. 36.—P. 647–658.

Received by the editors January 13, 2005.

HA HUY BANG, Doktor Fiz.-Mat. Nauk, Professor Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam E-mail: hhbang@math.ac.vn

NGUYEN MINH CONG, Ph. D.

Hanoi University of Education, Department of Mathematics, Cau Giay, Hanoi, Vietnam E-mail: minhcong@cardvn.net