# BERNSTEIN-NIKOLSKIĬ TYPE INEQUALITY IN LORENTZ SPACES AND RELATED TOPICS 

H. H. Bang, N. M. Cong

Dedicated to academician S. M. Nikolskī̆ on the occasion of his 100th-birthday

In this paper we study the Bernstein-Nikolskiĭ type inequality, the inverse Bernstein theorem and some properties of functions and their spectrum in Lorentz spaces $L^{p, q}\left(\mathbb{R}^{n}\right)$.

## 1. Introduction

The study of properties of functions in the connection with their spectrum has been implemented by many authors (see, for example, $[1-16]$ and their references). Some geometrical properties of spectrums of functions and relations with the sequence of norms of derivatives (in Orlicz spaces and $N_{\Phi}$-spaces) were studied in [1-9]. In this paper we give some results on the Bernstein-Nikolskir̆ type inequality, the inverse Bernstein theorem and some properties of functions and their spectrum in Lorentz spaces $L^{p, q}\left(\mathbb{R}^{n}\right)$.

Let us recall some notations. If $f \in S^{\prime}$ then the spectrum of $f$ is defined to be the support of its Fourier transform $\hat{f}$ (see $[14,15])$. Denote $\operatorname{sp}(f)=\operatorname{supp} \hat{f}$ and $|E|$ the Lebesgue measure of $E$. For an arbitrary measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}($ or $\overline{\mathbb{R}})$, one defines (see [17-22])

$$
\begin{gathered}
\lambda_{f}(y):=\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>y\right\}\right|, \quad y>0 \\
f^{*}(t):=\inf \left\{y>0: \lambda_{f}(y) \leqslant t\right\}, \quad t>0, \\
\|f\|_{p, q}:= \begin{cases}\left(\frac{q}{p} \int_{0}^{\infty}\left(t^{1 / p} f^{*}(t)\right)^{q} \frac{d t}{t}\right)^{1 / q}, & 0<p<\infty, 0<q<\infty \\
\sup _{t>0} t^{1 / p} f^{*}(t), & 0<p \leqslant \infty, q=\infty\end{cases}
\end{gathered}
$$

Then the Lorentz spaces $L^{p, q}$ (on $\mathbb{R}^{n}$ ) are by definition the collection of all measurable functions $f$ such that $\|f\|_{p, q}<\infty$. The case $p=\infty, 0<q<\infty$ is not considered since $\int_{0}^{\infty}\left(f^{*}(t)\right)^{q} \frac{d t}{t}<\infty$ implies $f=0$ a. e. (see [17]). Furthermore, there is an alternative representation of $\|\cdot\|_{p, q}$ (see, for example, [17, 20])

$$
\|f\|_{p, q}= \begin{cases}\left(q \int_{0}^{\infty} y^{q-1} \lambda_{f}^{q / p}(y) d y\right)^{1 / q}, & 0<p<\infty, 0<q<\infty \\ \sup _{y>0} y \lambda_{f}^{1 / p}(y), & 0<p \leqslant \infty, q=\infty\end{cases}
$$

[^0]In this paper, for $p, q$ fixed, we always let $r$ such that $0<r \leqslant 1, r \leqslant q$, and $r<p$. There are two useful analogues of $f^{*}$ used in some below proofs: Let (see [17])

$$
f^{* *}(t)=f^{* *}(t, r):=\sup _{|E| \geqslant t}\left(\frac{1}{|E|} \int_{E}|f(x)|^{r} d x\right)^{1 / r}, \quad t>0
$$

Then, $\left(f^{* *}\right)^{*}=f^{* *}$, and

$$
\left(f^{*}\right)^{* *}(t)=\left(\frac{1}{t} \int_{0}^{t}\left(f^{*}(y)\right)^{r} d y\right)^{1 / r}=: f^{* * *}(t), \quad t>0
$$

It is known that $f^{*}, f^{* *}$ and $f^{* * *}$ are non-negative, non-increasing, and

$$
f^{*} \leqslant f^{* *} \leqslant f^{* * *}
$$

If $f^{*}$ is replaced by $f^{* *}$ or $f^{* * *}$ in the expression of $\|f\|_{p, q}$ then one gets by definition $\|f\|_{p, q}^{* *}$ or $\|f\|_{p, q}^{* * *}$ respectively. It is well-known that $\|\cdot\|_{p, q}^{* *}$ is a norm when $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$ (set $r=1$ in this case), and moreover, $L^{p, q}$ can be considered as Banach spaces if and only if $p=q=1$ or $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$ (see [17]). In particular there is at that an useful relation among $\|\cdot\|_{p, q},\|\cdot\|_{p, q}^{* *}$ and $\|\cdot\|_{p, q}^{* * *}($ see $[17])$

$$
\|f\|_{p, q} \leqslant\|f\|_{p, q}^{* *} \leqslant\|f\|_{p, q}^{* * *} \leqslant(p /(p-r))^{1 / r}\|f\|_{p, q}
$$

Henceforth, $\Omega$ is a compact subset of $\mathbb{R}^{n}$, and

$$
\Delta_{\nu}=\left\{\xi \in \mathbb{R}^{n}:\left|\xi_{j}\right| \leqslant \nu_{j}, j=1, \ldots, n\right\}
$$

where $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right), \nu_{j}>0, j=1, \ldots, n$. Denote by

$$
L_{\Omega}^{p, q}=\left\{f \in L^{p, q} \cap S^{\prime}: \operatorname{sp}(f) \subset \Omega\right\}
$$

When $\Omega=\Delta_{\nu}, L_{\Omega}^{p, q}$ is denoted again by $L_{\nu}^{p, q}$. Similarly one has $S_{\Omega}$ or $S_{\nu}$ respectively.

## 2. Results

First we give some results on the Bernstein-Nikolskiŭ type inequality for Lorentz spaces.
Lemma 1. Let $0<p_{1}<p_{2} \leqslant \infty, 0<q_{1}, q_{2} \leqslant \infty$. Then for each multi-index $\alpha$, there exists a positive constant $c$ such that for all $\varphi \in S_{\Omega}$

$$
\begin{equation*}
\left\|D^{\alpha} \varphi\right\|_{p_{2}, q_{2}} \leqslant c\|\varphi\|_{p_{1}, q_{1}} \tag{1}
\end{equation*}
$$

$\triangleleft$ Step $1\left(p_{2}=q_{2}=\infty\right.$ and $\left.\alpha=(0, \ldots, 0)\right)$. Let $\psi \in S$ such that $\hat{\psi}(x)=1$ in some neighbourhood of $\Omega$. Then for any $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
|\varphi(x)| & =|\varphi * \psi(x)| \leqslant \int_{\mathbb{R}^{n}}|\varphi(x-y) \psi(y)| d y \leqslant \int_{0}^{\infty} \varphi(x-\cdot)^{*}(t) \psi^{*}(t) d t \\
& =\int_{0}^{\infty} \varphi^{*}(t) \psi^{*}(t) d t \leqslant\|\varphi\|_{\infty}^{1-r} \int_{0}^{\infty}\left(t^{1 / p_{1}} \varphi^{*}(t)\right)^{r} t^{-r / p_{1}} \psi^{*}(t) d t \\
& \leqslant\|\varphi\|_{\infty}^{1-r}\|\varphi\|_{p_{1}, \infty}^{r} \int_{0}^{\infty} t^{-r / p_{1}} \psi^{*}(t) d t=\frac{p_{1}}{p_{1}-r}\|\psi\|_{p_{1} /\left(p_{1}-r\right), 1}\|\varphi\|_{\infty}^{1-r}\|\varphi\|_{p_{1}, \infty}^{r}
\end{aligned}
$$

This deduces at once

$$
\|\varphi\|_{\infty} \leqslant\left(\frac{p_{1}}{p_{1}-r}\|\psi\|_{p_{1} /\left(p_{1}-r\right), 1}\right)^{1 / r}\|\varphi\|_{p_{1}, \infty}
$$

Step $2(\alpha=(0, \ldots, 0))$. We only have to show that there is a constant $c$ such that

$$
\begin{equation*}
\|\varphi\|_{p_{2}, q_{2}} \leqslant c\|\varphi\|_{p_{1}, \infty}, \quad \varphi \in S_{\Omega} \tag{2}
\end{equation*}
$$

where $0<p_{1}<p_{2}<\infty, 0<q_{2}<\infty$.
Indeed, using the alternative representation of $\|\cdot\|_{p, q}$, we have

$$
\begin{aligned}
\|\varphi\|_{p_{2}, q_{2}}^{q_{2}} & =q_{2} \int_{0}^{\infty} y^{q_{2}-1} \lambda_{\varphi}^{q_{2} / p_{2}}(y) d y=q_{2} \int_{0}^{\|\varphi\|_{\infty}} y^{q_{2}-1} \lambda_{\varphi}^{q_{2} / p_{2}}(y) d y \\
& =q_{2} \int_{0}^{\|\varphi\|_{\infty}}\left(y \lambda_{\varphi}^{1 / p_{1}}(y)\right)^{\frac{q_{2}}{p_{2}} p_{1}} y^{q_{2}-1-\frac{q_{2}}{p_{2}} p_{1}} d y \leqslant q_{2}\|\varphi\|_{p_{1}, \infty}^{q_{2} p_{1} / p_{2}} \int_{0}^{\|\varphi\|_{\infty}} y^{\frac{q_{2}\left(p_{2}-p_{1}\right)}{p_{2}}-1} d y \\
& =\frac{p_{2}}{p_{2}-p_{1}}\|\varphi\|_{p_{1}, \infty}^{q_{2} p_{1} / p_{2}}\|\varphi\|_{\infty}^{q_{2}\left(p_{2}-p_{1}\right) / p_{2}} \leqslant C \frac{p_{2}}{p_{2}-p_{1}}\|\varphi\|_{p_{1}, \infty}^{q_{2}}
\end{aligned}
$$

where the last inequality follows from Step 1. Therefore (2) is obtained.
Step 3. We prove (1) when $p_{1}=p_{2}=p, q_{1}=q_{2}=q$. If $\varphi \in S_{\Omega}$ then $D^{\alpha} \varphi \in S_{\Omega}$ for every multi-index $\alpha$. Denote by $\mathcal{M} \varphi$ the Hardy-Littlewood maximal function of $\varphi$, then (see [14, p. 16]) for all $x \in \mathbb{R}^{n}$

$$
\left|D^{\alpha} \varphi(x)\right| \leqslant c_{1}\left(\left(\mathcal{M}|\varphi|^{r}\right)(x)\right)^{1 / r}
$$

where $c_{1}$ is a constant depending only on $\Omega$. Moreover it is known that for every measurable function $f$ (see, for example, $[18,19]$ )

$$
(\mathcal{M} f)^{*}(t) \sim \frac{1}{t} \int_{0}^{t} f^{*}(s) d s
$$

Hence,

$$
\left(D^{\alpha} \varphi\right)^{*} \leqslant c_{1}\left(\left(\mathcal{M}|\varphi|^{r}\right)^{1 / r}\right)^{*}=c_{1}\left(\left(\mathcal{M}|\varphi|^{r}\right)^{*}\right)^{1 / r} \leqslant c_{2} \varphi^{* * *}
$$

and consequently,

$$
\begin{equation*}
\left\|D^{\alpha} \varphi\right\|_{p, q} \leqslant c_{2}\|\varphi\|_{p, q}^{* * *} \leqslant c_{3}\|\varphi\|_{p, q} . \tag{3}
\end{equation*}
$$

Step 4. The general case follows immediately from (2), (3) and the property $\|\cdot\|_{p, \infty} \leqslant\|\cdot\|_{p, q}$. The proof so has been fulfilled. $\triangleright$

The theorem below is an extension of the Theorems 1.4.1(i) and 1.4.2 in [16].
Theorem 1. Let $0<p_{1}<p_{2} \leqslant \infty, 0<q_{1}, q_{2} \leqslant \infty$.
(i) If $\alpha$ is a multi-index, then there exists a constant $c$ such that for all $f \in L_{\Omega}^{p_{1}, q_{1}}$

$$
\left\|D^{\alpha} f\right\|_{p_{2}, q_{2}} \leqslant c\|f\|_{p_{1}, q_{1}}
$$

(ii) $L_{\Omega}^{p, q}$ is a quasi-Banach space for arbitrary $0<p, q \leqslant \infty$, and the following topological embeddings hold

$$
S_{\Omega} \subset L_{\Omega}^{p_{1}, q_{1}} \subset L_{\Omega}^{p_{2}, q_{2}} \subset S^{\prime}
$$

$\triangleleft(\mathrm{i})$ : Without loss of generality, one can assume that $q_{1}=\infty$ and $0<p_{1}, p_{2}, q_{2}<\infty$ (note that the case $p_{1}=\infty$ and so, $p_{1}=p_{2}=q_{1}=q_{2}=\infty$, was proved in [16, Theorem 1.4.1]). Let $p_{1}<p<\infty$, and let $\varphi \in S$ such that $\varphi(0)=1$ and $\operatorname{sp}(\varphi) \subset\{x:|x| \leqslant 1\}$. For each $f \in L_{\Omega}^{p_{1}, \infty}$ and $0<\delta<1$, put $f_{\delta}(x)=\varphi(\delta x) f(x)$. Then $f_{\delta} \rightarrow f$ on $\mathbb{R}^{n}$ and $f_{\delta} \in S_{\Omega_{1}}$, where

$$
\Omega_{1}=\left\{y \in \mathbb{R}^{n}: \exists x \in \Omega \text { such that }|x-y| \leqslant 1\right\}
$$

Consequently, it follows from Lemma 1 that

$$
\|f\|_{p} \leqslant \underline{l_{i m}}\left\|f_{\delta}\right\|_{p} \leqslant c_{1} \frac{l_{\delta}}{\delta \searrow 0}\left\|f_{\delta}\right\|_{p_{1}, \infty} \leqslant c_{1}\|\varphi\|_{\infty}\|f\|_{p_{1}, \infty}
$$

where $c_{1}$ is independent of $\delta$ and $f$. Hence $f \in L_{\Omega}^{p}$. Now the argument in [16, Theorem 1.4.1] implies that $D^{\alpha} f_{\delta} \longrightarrow D^{\alpha} f$ in $L^{\infty}$ (and this show that the conclusion is true if $p_{2}=q_{2}=\infty$ ). Lemma 1 therefore deduces again that

$$
\left\|D^{\alpha} f\right\|_{p_{2}, q_{2}} \leqslant \underline{\lim }\left\|D^{\alpha} f_{\delta}\right\|_{p_{2}, q_{2}} \leqslant c \underline{\varliminf_{\delta \backslash 0}}\left\|f_{\delta}\right\|_{p_{1}, \infty} \leqslant c\|\varphi\|_{\infty}\|f\|_{p_{1}, \infty} \leqslant c\|\varphi\|_{\infty}\|f\|_{p_{1}, q_{1}}
$$

where $c$ depends only on $p_{1}, p_{2}, q_{2}$ and $\Omega$.
(ii): First, we show that $L_{\Omega}^{p, q}$ is a quasi-Banach space for any $0<p, q \leqslant \infty$. Let $\left\{f_{j}\right\}$ be any fundamental sequence in $L_{\Omega}^{p, q}$. Then there is a function $f \in L^{p, q}$ such that $f_{j} \rightarrow f$ in $L^{p, q}$ as $j \rightarrow \infty$.

Moreover, part (i) above with $\alpha=(0, \ldots, 0)$ and $p_{2}=q_{2}=\infty$ shows that $\left\{f_{j}\right\}$ is also a fundamental sequence in $L^{\infty}$. Then it implies by standard arguments that $f_{j} \rightarrow f$ in $L^{\infty}$, and consequently, $f_{j} \rightarrow f$ in $S^{\prime}$. Hence $\hat{f}_{j} \rightarrow \hat{f}$ in $S^{\prime}$ and this yields that $\operatorname{sp}(f) \subset \Omega$. Therefore $f \in L_{\Omega}^{p, q}$ and $f_{j} \rightarrow f$ in $L^{p, q}$, and it follows that $L_{\Omega}^{p, q}$ is a quasi-Banach space.

Part (i) deduces immediately that $L_{\Omega}^{p_{1}, q_{1}} \subset L_{\Omega}^{p_{2}, q_{2}}$. Moreover, if $0<\theta<p<\kappa \leqslant \infty$, then for any $q>0$ (see [16, Theorem 1.4.2])

$$
S_{\Omega} \subset L_{\Omega}^{\theta} \subset L_{\Omega}^{p, q} \subset L_{\Omega}^{\kappa} \subset S^{\prime} . \triangleright
$$

It is difficult to get concrete and good constants for Nikolskiŭ inequality for Lorentz spaces $L_{\Omega}^{p, q}$. Following some ideas in [13], we have a version of the Nikolskiŭ inequality for Lorentz spaces.

Theorem 2. (i) If $0<p_{1}<2$, then for $p_{2}>p_{1}, q_{2}>0$,

$$
\|f\|_{p_{2}, q_{2}} \leqslant\left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{1 / q_{2}}\left(\frac{|\Omega|}{2-p_{1}}\right)^{1 / p_{1}-1 / p_{2}}\|f\|_{p_{1}, q_{1}}, \quad f \in L_{\Omega}^{p_{1}, q_{1}}
$$

(ii) If $0<p_{1}<\infty$, then for $p_{2}>p_{1}, q_{2}>0$,

$$
\|f\|_{p_{2}, q_{2}} \leqslant\left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{1 / q_{2}}\left(\frac{p_{0}^{2}|\operatorname{co}(\Omega)|}{2 p_{0}-p_{1}}\right)^{1 / p_{1}-1 / p_{2}}\|f\|_{p_{1}, q_{1}}, \quad f \in L_{\Omega}^{p_{1}, q_{1}}
$$

where $\operatorname{co}(\Omega)$ denotes the convex hull of $\Omega$ and $p_{0}$ is the smallest integer number such that $p_{0}>p_{1} / 2$.
$\triangleleft$ (i): Suppose that $0<p_{1}<2,0<q_{1} \leqslant \infty$ and $f \in L_{\Omega}^{p_{1}, q_{1}}$, then by Theorem $1, f \in L^{2}$, so it follows from [13, Theorem 3] that

$$
\begin{aligned}
\|f\|_{\infty} \leqslant|\Omega|^{1 / 2}\|f\|_{2} & =|\Omega|^{1 / 2}\left(\int_{0}^{\|f\|_{\infty}} y \lambda_{f}(y) d y\right)^{1 / 2} \\
& =|\Omega|^{1 / 2}\left(\int_{0}^{\|f\|_{\infty}}\left(y \lambda_{f}^{1 / p_{1}}(y)\right)^{p_{1}} y^{1-p_{1}} d y\right)^{1 / 2} \leqslant|\Omega|^{1 / 2}\|f\|_{p_{1}, \infty}^{p_{1} / 2}\left(\frac{\|f\|_{\infty}^{2-p_{1}}}{2-p_{1}}\right)^{1 / 2} .
\end{aligned}
$$

Therefore,

$$
\|f\|_{\infty} \leqslant\left(\frac{|\Omega|}{2-p_{1}}\right)^{1 / p_{1}}\|f\|_{p_{1}, \infty}
$$

Applying now the argument in Step 2 of the proof of Lemma 1, we can obtain a similar inequality

$$
\|f\|_{p_{2}, q_{2}} \leqslant\left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{1 / q_{2}}\|f\|_{p_{1}, \infty}^{\frac{p_{1}}{p_{2}}}\|f\|_{\infty}^{\frac{1-p_{1}}{p_{2}}}
$$

Hence,

$$
\|f\|_{p_{2}, q_{2}} \leqslant\left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{1 / q_{2}}\left(\frac{|\Omega|}{2-p_{1}}\right)^{1 / p_{1}-1 / p_{2}}\|f\|_{p_{1}, q_{1}}
$$

(ii): Since $0<p_{1} / p_{0}<2$, we get immediately

$$
\begin{aligned}
& \|f\|_{p_{2}, q_{2}}=\left\|f^{p_{0}}\right\|_{p_{2} / p_{0}, q_{2} / p_{0}}^{1 / p_{0}} \leqslant\left(\frac{p_{2} / p_{0}}{p_{2} / p_{0}-p_{1} / p_{0}}\right)^{\frac{1}{q_{2}}}\left(\frac{\left|\operatorname{co}\left(\operatorname{sp}\left(f^{p_{0}}\right)\right)\right|}{2-p_{1} / p_{0}}\right)^{\frac{1}{p_{1}}-\frac{1}{p_{2}}}\left\|f^{p_{0}}\right\|_{p_{1} / p_{0}, q_{1} / p_{0}} \\
& \leqslant\left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{\frac{1}{q_{2}}}\left(\frac{p_{0}|\operatorname{co}(\operatorname{sp}(f))|}{2-p_{1} / p_{0}}\right)^{\frac{1}{p_{1}}-\frac{1}{p_{2}}}\|f\|_{p_{1}, q_{1}} \leqslant\left(\frac{p_{2}}{p_{2}-p_{1}}\right)^{\frac{1}{q_{2}}}\left(\frac{p_{0}^{2}|\operatorname{co}(\Omega)|}{2 p_{0}-p_{1}}\right)^{\frac{1}{p_{1}}-\frac{1}{p_{2}}}\|f\|_{p_{1}, q_{1}}
\end{aligned}
$$

The theorem is proved. $\triangleright$
Lemma 2. Let $1<p \leqslant \infty, 0<q \leqslant \infty$. If $f \in L^{p, q}$, then $f \in S^{\prime}$ and for any $g \in L^{1}$

$$
\|f * g\|_{p, q} \leqslant c\|f\|_{p, q}\|g\|_{1}
$$

where $c$ is a constant depending only on $p, q$.
$\triangleleft$ Firstly, we show that $f \in S^{\prime}$. Let $E \subset \mathbb{R}^{n}$ such that $0<|E|<\infty$. Then the Hölder inequality implies

$$
\int_{E}|f(x)| d x \leqslant \int_{0}^{|E|} f^{*}(t) d t=\int_{0}^{|E|}\left(t^{1 / p} f^{*}(t)\right) t^{-1 / p} d t \leqslant\|f\|_{p, \infty} \int_{0}^{|E|} t^{-1 / p} d t=c(E)\|f\|_{p, \infty}
$$

This deduces easily that $f \in S^{\prime}$.
Now, we prove the last conclusion. For an arbitrary $t>0$, we define

$$
f^{(*)}(t)=\frac{1}{t} \int_{0}^{t} f^{*}(y) d y
$$

Then for any $E \subset \mathbb{R}^{n}$ such that $t \leqslant|E|<\infty$ we have by Jensen's inequality

$$
\left(\frac{1}{|E|} \int_{E}|f * g(x)|^{r} d x\right)^{\frac{1}{r}} \leqslant \frac{1}{|E|} \int_{E}|f * g(x)| d x \leqslant \int_{\mathbb{R}^{n}}|g(y)|\left(\frac{1}{|E|} \int_{E}|f(x-y)| d x\right) d y \leqslant f^{(*)}(t)\|g\|_{1}
$$

Hence,

$$
\|f * g\|_{p, q} \leqslant\|f * g\|_{p, q}^{* *} \leqslant\left\|f^{(*)}\right\|_{p, q}\|g\|_{1}
$$

It now yields from [22, Lemma 3.2] the existence of a constant $c$ such that (in the case $p>1$ )

$$
\left\|f^{(*)}\right\|_{p, q} \leqslant c\|f\|_{p, q}, \quad f \in L^{p, q}
$$

The lemma therefore is proved completely. $\triangleright$
Theorem 3. Let $f \in L^{p, q}(1<p<\infty, 0<q \leqslant \infty)$ such that $f \not \equiv 0$. Then $\operatorname{sp}(f)$ contains only points of condensation.
$\triangleleft$ Let $\xi_{0} \in \operatorname{sp}(f)$ be an arbitrary point, and let $V$ be any neighbourhood of $\xi_{0}$. Choose $\hat{\varphi}(\xi) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\hat{\varphi}(\xi)=1$ in $V$. Then by Lemma $2, F^{-1}(\hat{\varphi} \hat{f})=\varphi * f \in L^{p, q}$. Hence we can assume that $\operatorname{sp}(f)$ is bounded, moreover we merely have to show that $\operatorname{sp}(f)$ is uncountable.

It deduces from Theorem 1 that there is a positive integer $m$ such that $f \in L^{m}\left(\mathbb{R}^{n}\right)$. Hence $\left(f^{m}\right)^{n} \in C_{0}\left(\mathbb{R}^{n}\right)$. Since $f \not \equiv 0$, there exists a non-void ball $B$ such that

$$
B \subset \operatorname{sp}\left(f^{m}\right)=\operatorname{supp}(\hat{f} * \cdots * \hat{f})(m \text { terms }) \subset \operatorname{sp}(f)+\cdots+\operatorname{sp}(f)
$$

Therefore it follows at once that $\operatorname{sp}(f)$ is uncountable. $\triangleright$
It is noticeable that Theorem 3 is a corollary of the following theorem which can be proved by the same method used in [4, Theorem 1].

Theorem 4. Let $f \in L^{p, q}(1<p<\infty, 0<q \leqslant \infty)$, $f \not \equiv 0$ and $\xi_{0} \in \operatorname{sp}(f)$ be an arbitrary point. Then the restriction of $f$ on any neighbourhood of $\xi_{0}$ cannot concentrate on any finite number of hyperplanes.

It is trivial that $\lambda_{f}(y)<\infty$ for all $y>0, f \in L^{p, q}$ if $p<\infty$. Then by the argument used in [7, Theorem 3] and Theorem 1, a property of such functions can be formulated as follows.

Theorem 5. If $f \in L^{p, q} \cap S^{\prime}(0<p<\infty, 0<q \leqslant \infty)$ such that $\operatorname{sp}(f)$ is bounded, then

$$
\lim _{|x| \rightarrow \infty} f(x)=0
$$

REMARK 1. In contrast with hyperplanes, $\hat{f}$ may concentrate on surfaces (see [4, Remark 2]). In addition, Theorems 3-5 are not true when $p=\infty$, i. e., $p=q=\infty$ (see $[4,7])$.

To obtain more properties of functions with bounded spectrum, we prove an auxiliary result which is interesting in itself.

Theorem 6. If $f \in L^{p, q}(0<p, q<\infty)$, then

$$
\begin{equation*}
\lim _{a \rightarrow \mathbf{1}}\|f(a . x)-f(x)\|_{p, q}=0 \tag{4}
\end{equation*}
$$

where $\mathbf{1}=(1, \ldots, 1)$ and $a . x=\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$ for all $a, x \in \mathbb{R}^{n}$.
$\triangleleft$ It is known in [17] that the set $A$ of all measurable simple functions with bounded support is dense in $L^{p, q}$ if $0<q<\infty$. Therefore, it suffices to show (4) for each $f \in A$. Hence, let $f \in A$ and assume on the contrary that there exist $\left\{a^{k}\right\} \subset \mathbb{R}^{n}, a^{k} \rightarrow \mathbf{1}$, and $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|f_{k}-f\right\|_{p, q}>\varepsilon, \quad k \geqslant 1 \tag{5}
\end{equation*}
$$

where $f_{k}(x)=f\left(a^{k} \cdot x\right)$. Since $f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$, then for each $K_{\ell}=[-\ell, \ell]^{n}$, one obtains

$$
\int_{K_{\ell}}\left|f_{k}(x)-f(x)\right| d x \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

So there is a subsequence of $\left\{a^{k}\right\}$, which is still denoted by $\left\{a^{k}\right\}$, such that $f_{k} \rightarrow f$ a. e. on $K_{\ell}$. Therefore, there exists a subsequence, denoted again by $\left\{a^{k}\right\}$, such that $f_{k} \rightarrow f$ a. e. on $\mathbb{R}^{n}$. Consequently,

$$
\underline{\lim }_{k \rightarrow \infty} f_{k}^{*}(t) \geqslant f^{*}(t), \quad t>0
$$

Furthermore, it is easy to verify that

$$
\left\|f_{k}\right\|_{p, q}=\left(a_{1}^{k} \cdots a_{n}^{k}\right)^{-1}\|f\|_{p, q}
$$

The Fatou lemma then yields for arbitrary $0<u<v<\infty$

$$
\begin{array}{r}
\varlimsup_{k \rightarrow \infty} \int_{0}^{u} t^{q / p-1} f_{k}^{* q}(t) d t=\varlimsup_{k \rightarrow \infty}\left(\int_{0}^{\infty} t^{q / p-1} f_{k}^{* q}(t) d t-\int_{u}^{\infty} t^{q / p-1} f_{k}^{* q}(t) d t\right) \\
\leqslant \frac{p}{q} \varlimsup_{k \rightarrow \infty}\left\|f_{k}\right\|_{p, q}^{q}-\varliminf_{k \rightarrow \infty} \int_{u}^{\infty} t^{q / p-1} f_{k}^{* p}(t) d t \leqslant \frac{p}{q}\|f\|_{p, q}^{q}-\int_{u}^{\infty} t^{q / p-1} f^{* q}(t) d t=\int_{0}^{u} t^{q / p-1} f^{* q}(t) d t
\end{array}
$$

and similarly,

$$
\varlimsup_{k \rightarrow \infty} \int_{v}^{\infty} t^{q / p-1} f_{k}^{* q}(t) d t \leqslant \int_{v}^{\infty} t^{q / p-1} f^{* q}(t) d t
$$

Hence, if $u<v / 2$ are chosen such that for $c=\max \left(2^{q-1}, 1\right)$

$$
\begin{equation*}
\int_{0}^{u} t^{q / p-1} f^{* q}(t) d t<\delta, \quad \int_{v / 2}^{\infty} t^{q / p-1} f^{* q}(t) d t<\delta \tag{6}
\end{equation*}
$$

where $\delta=p \varepsilon^{q} /\left(3.2^{q / p} . q . c\right)$, then there is a positive constant $N_{1}$ such that for all $k>N_{1}$

$$
\begin{equation*}
\int_{0}^{u} t^{q / p-1} f_{k}^{* q}(t) d t<\delta, \quad \int_{v / 2}^{\infty} t^{q / p-1} f_{k}^{* q}(t) d t<\delta \tag{7}
\end{equation*}
$$

Therefore, it follows from (6), (7), and the inequality $(f+g)^{*}(t) \leqslant f^{*}(t / 2)+g^{*}(t / 2)$, that for all $k>N_{1}$

$$
\begin{align*}
\int_{0}^{u} t^{q / p-1}\left(f_{k}-f\right)^{* q}(t) d t & \leqslant c\left(\int_{0}^{u} t^{q / p-1} f_{k}^{* q}(t / 2) d t+\int_{0}^{u} t^{q / p-1} f^{* q}(t / 2) d t\right) \\
& \leqslant 2^{q / p-1} c\left(\int_{0}^{u} t^{q / p-1} f_{k}^{* q}(t) d t+\int_{0}^{u} t^{q / p-1} f^{* q}(t) d t\right)<2^{q / p} c \delta \tag{8}
\end{align*}
$$

Similarly, one obtains for all $k>N_{1}$

$$
\begin{align*}
\int_{v}^{\infty} t^{q / p-1}\left(f_{k}-f\right)^{* q}(t) d t & \leqslant c\left(\int_{v}^{\infty} t^{q / p-1} f_{k}^{* q}(t / 2) d t+\int_{v}^{\infty} t^{q / p-1} f^{* q}(t / 2) d t\right) \\
& =2^{q / p-1} c\left(\int_{v / 2}^{\infty} t^{q / p-1} f_{k}^{* q}(t) d t+\int_{v / 2}^{\infty} t^{q / p-1} f^{* q}(t) d t\right)<2^{q / p} c \delta \tag{9}
\end{align*}
$$

Next, since $a^{k} \rightarrow \mathbf{1}$ and supp $f$ is bounded, there is a ball $B$ including supp $f$ such that $\operatorname{supp} f_{k} \subset B$, for all $k \geqslant 1$. Thus taking account of $f_{k} \rightarrow f$ a. e. on $\mathbb{R}^{n}$, it deduces that $f_{k} \rightarrow f$ in measure. Then the definition of the non-increasing rearrangement of a measurable function yields for every $t>0$ that

$$
\left(f_{k}-f\right)^{*}(t) \longrightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

Applying the dominated convergence theorem, one arrives at

$$
\int_{u}^{v} t^{q / p-1}\left(f_{k}-f\right)^{* q}(t) d t \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

Consequently, there exists a number $N_{2}>N_{1}$ such that for all $k>N_{2}$

$$
\begin{equation*}
\int_{u}^{v} t^{q / p-1}\left(f_{k}-f\right)^{* q}(t) d t<\frac{p}{3 q} \varepsilon^{q} \tag{10}
\end{equation*}
$$

Combining (8), (9) and (10), it is evident that for all $k>N_{2}$

$$
\frac{p}{q}\left\|f_{k}-f\right\|_{p, q}^{q}=\int_{0}^{\infty} t^{q / p-1}\left(f_{k}-f\right)^{* q}(t) d t<2^{q / p+1} c \delta+\frac{p}{q} \varepsilon^{q} / 3=\frac{p}{q} \varepsilon^{q}
$$

This contradicts (5). $\triangleright$
REmARK 2. It is well-known that $L^{p, q}$ can be considered as Banach spaces if and only if $p=q=1$ or $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$. Using Theorem 1 and the method of [14], one can obtain the Bernstein inequality for $L^{p, q}$ spaces in these cases: If $f \in L_{\nu}^{p, q}$, then there is a constant $1 \leqslant c \leqslant e^{1 / p}$ such that

$$
\begin{equation*}
\left\|D^{\alpha} f\right\|_{p, q} \leqslant c \nu^{\alpha}\|f\|_{p, q} \tag{11}
\end{equation*}
$$

holds for any multi-index $\alpha$. Moreover this inequality still holds when $p=1$. Indeed, it yields at once from the dominated convergence theorem when $p=1,1 \leqslant q<\infty$ that $\|f\|_{p, q} \rightarrow\|f\|_{1, q}$ as $p \searrow 1$, and the claim follows. Therefore we have only to show that this convergence is also true when $q=\infty$ and imply directly the desired. Suppose that $\|f\|_{p, \infty} \nrightarrow\|f\|_{1, \infty}$ as $p \searrow 1$. Then there is $\epsilon>0$ and $\left\{p_{n}\right\}, p_{n} \searrow 1$, such that:

Case 1. $\|f\|_{p_{n}, \infty}<\|f\|_{1, \infty}-\epsilon, n \geqslant 1$. Thus there exists $0<u<\|f\|_{\infty}$ such that

$$
\sup _{0<y<\|f\|_{\infty}} y \lambda_{f}^{1 / p_{n}}(y)<u \lambda_{f}(u)-\epsilon / 2
$$

and hence, $u \lambda_{f}^{1 / p_{n}}(u)<u \lambda_{f}(u)-\epsilon / 2$. Let $n \rightarrow \infty$, we get a contradiction.
Case 2. $\|f\|_{p_{n}, \infty}>\|f\|_{1, \infty}+\epsilon, n \geqslant 1$. Then there is a sequence $\left\{y_{n}\right\}, 0<y_{n}<\|f\|_{\infty}$ such that

$$
y_{n} \lambda_{f}^{1 / p_{n}}\left(y_{n}\right)>y_{n} \lambda_{f}\left(y_{n}\right)+\epsilon / 2
$$

It is easy to see from Theorem 5 and the continuity of $f$ that $\lambda_{f}$ is continuous. Therefore let $v$ be any accumulative point of $\left\{y_{n}\right\}$ and let $n \rightarrow \infty$ in the last inequality, we also have a contradiction and then the claim is proved.

Furthermore, using the argument in [7, Theorem 6], one can get a stronger result.

Theorem 7. If $\nu_{j}>0, j=1, \ldots, n$ and $1 \leqslant p, q<\infty$, then for all $f \in L_{\nu}^{p, q}$

$$
\lim _{|\alpha| \rightarrow \infty} \nu^{-\alpha}\left\|D^{\alpha} f\right\|_{p, q}=0
$$

Remark 3. Applying the Bernstein inequality we have $\nu^{-\alpha}\left\|D^{\alpha} f\right\|_{p, q} \leqslant \nu^{-\beta}\left\|D^{\beta} f\right\|_{p, q}$ if $\alpha \geqslant \beta$ for such above $p, q$. Moreover, Theorems 6, 7 fail if $p=q=\infty$. But we still don't know what happens if $p<\infty, q=\infty$.

Let us recall some notations about the directional derivatives. Suppose that $a=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ is an arbitrary real unit vector. Then

$$
D_{a} f(x)=f_{a}^{\prime}(x):=\sum_{j=1}^{n} a_{j} \frac{\partial f}{\partial x_{j}}(x)
$$

is the derivative of $f$ at the point $x$ in the direction $a$, and

$$
D_{a}^{m} f(x)=D_{a} f_{a}^{(m-1)}=\sum_{|\alpha|=m} a^{\alpha} D^{\alpha} f(x)
$$

is the derivative of order $m$ of $f$ at $x$ in the direction $a(m=1,2, \ldots)$.
Denote $h_{a}(f)=\sup _{\xi \in \operatorname{sp}(f)}|a \xi|$. By an argument similar to the proof of [8, Theorem 2], one can obtain the corresponding results for directional derivatives cases in certain Lorentz spaces.

Theorem 8. If $1 \leqslant p, q \leqslant \infty$, then there is a constant $1 \leqslant c \leqslant e^{1 / p}$ such that for all $f \in L^{p, q} \cap S^{\prime}$ satisfying $h_{a}(f)<\infty$

$$
\begin{equation*}
\left\|D_{a} f\right\|_{p, q} \leqslant c h_{a}(f)\|f\|_{p, q} . \tag{12}
\end{equation*}
$$

Theorem 9. If $f \in L^{p, q} \cap S^{\prime}(1 \leqslant p, q<\infty)$ is such that $h_{a}(f)<\infty$, then

$$
\lim _{m \rightarrow+\infty}\left(h_{a}(f)\right)^{-m}\left\|D_{a}^{m} f\right\|_{p, q}=0
$$

It is clearly that one can let $c=1$ in (11) and (12) if $\|\cdot\|_{p, q}$ is a norm, and let $c=e^{1 / p}$ in general case.

Finally, we will show that the Bernstein inequality wholly characterizes the spaces $L_{\nu}^{p, q}$ in the case they are normable.

Theorem 10. Suppose that $p=q=1$ or $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$ and $f \in S^{\prime}$. Then in order that $f \in L_{\nu}^{p, q}$ it is necessary and sufficient that there exists a constant $c=c(f)$ such that

$$
\begin{equation*}
\left\|D^{\alpha} f\right\|_{p, q} \leqslant c \nu^{\alpha}, \quad \alpha \in \mathbb{Z}_{+}^{n} . \tag{13}
\end{equation*}
$$

$\triangleleft$ Only sufficiency hod to be verified. Assume that (13) holds.
Case $1(1<p<\infty, 1 \leqslant q \leqslant \infty)$. If $g \in L^{p, q}\left(\mathbb{R}^{n}\right)$, then $g \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ by the first part of the proof of Lemma 2. It hence deduces from (13) that $D^{\alpha} f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ for all $\alpha \geqslant 0$. Consequently, we can assume that $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ by virtue of Sobolev embedding theorem.

Next let $\omega \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\|\omega\|_{1}=1$, and define for each $\varepsilon>0$

$$
f_{\varepsilon}(x)=f * \omega_{\varepsilon}(x),
$$

where $\omega_{\varepsilon}(x)=\varepsilon^{-n} \omega(x / \varepsilon)$. Then $f_{\varepsilon}(x) \rightarrow f(x)$ as $\varepsilon \downarrow 0$, for every $x \in \mathbb{R}^{n}$. Moreover, by the argument at the first step of Lemma 1 (recall that $r=1$ in this case), one has for each multi-index $\alpha$

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n}}\left|D^{\alpha} f_{\varepsilon}(x)\right| \leqslant b_{\varepsilon}\left\|D^{\alpha} f_{\varepsilon}\right\|_{p, \infty} \leqslant b_{\varepsilon}\left\|D^{\alpha} f_{\varepsilon}\right\|_{p, q} \leqslant B_{\varepsilon} \nu^{\alpha} \tag{14}
\end{equation*}
$$

where $B_{\varepsilon}>0$ is a constant depending only on $\varepsilon$. Thus the Taylor series

$$
\sum_{|\alpha|=0}^{\infty} \frac{1}{\alpha!} D^{\alpha} f_{\varepsilon}(0) \cdot z^{\alpha}
$$

converges for any point $z \in \mathbb{C}^{n}$ and represents $f_{\varepsilon}(x)$ in $\mathbb{R}^{n}$. Hence taking account of (14), we obtain

$$
\left|f_{\varepsilon}(z)\right| \leqslant B_{\varepsilon} \exp \left(\sum_{j=1}^{n} \nu_{j}\left|z_{j}\right|\right), \quad z \in \mathbb{C}^{n}
$$

i. e., $f_{\varepsilon}(z)$ is an entire function of exponential type $\nu$. It therefore follows from the Paley-Wiener-Schwartz theorem that

$$
\begin{equation*}
\operatorname{sp}\left(f_{\varepsilon}\right)=\operatorname{supp} \hat{f}_{\varepsilon} \subset \Delta_{\nu} \tag{15}
\end{equation*}
$$

Therefore, Theorem 1 and Lemma 2 yield that for each $\varepsilon>0$

$$
\left\|f_{\varepsilon}\right\|_{p+1} \leqslant c_{1}\left\|f_{\varepsilon}\right\|_{p, \infty} \leqslant c_{2}\left\|\omega_{\varepsilon}\right\|_{1}\|f\|_{p, \infty}=c_{2}\|f\|_{p, \infty}
$$

The Banach-Alaoglu theorem hence implies that there are a sequence $\left\{\varepsilon_{n}\right\}$ and an $\tilde{f} \in$ $L^{p+1}\left(\mathbb{R}^{n}\right)$ such that $f_{\varepsilon_{n}} \rightarrow \widetilde{f}$ weakly in $L^{p+1}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \downarrow 0$. Then by standard arguments, one has $f=\widetilde{f}$ a. e., that is, $f_{\varepsilon_{n}} \rightarrow f$ weakly in $L^{p+1}\left(\mathbb{R}^{n}\right)$. Because $S \subset L^{(p+1) / p}\left(\mathbb{R}^{n}\right)$, the dual space of $L^{p+1}\left(\mathbb{R}^{n}\right)$, it follows immediately that $f_{\varepsilon_{n}} \rightarrow f$ in $S^{\prime}$. Consequently, $\hat{f}_{\varepsilon_{n}} \rightarrow \hat{f}$ in $S^{\prime}$ and this deduces at once from (15) that $\operatorname{sp}(f) \subset \Delta_{\nu}$.

Case $2(p=q=1)$. This case can be proved by above manner.
Case $3(p=q=\infty)$. Let $\varphi$ and $f_{\delta}, 0<\delta<1$, as in the proof of Theorem 1. Then it yields from the Leibniz formula, the Bernstein inequality for $L^{\infty}$ and (13) that for all $\alpha \in \mathbb{Z}_{+}^{n}$

$$
\left|D^{\alpha} f_{\delta}(x)\right| \leqslant \sum_{\gamma+\beta=\alpha}\left|D^{\gamma}(\varphi(\delta x))\right|\left|D^{\beta} f(x)\right| \leqslant c \sum_{\gamma+\beta=\alpha} \delta^{|\gamma|} \nu^{\beta}=c(\nu+\boldsymbol{\delta})^{\alpha}
$$

where $\boldsymbol{\delta}=(\delta, \ldots, \delta)$. Thus, as in Case $1, f_{\delta}(z)$ is an entire function of exponential type $\nu+\boldsymbol{\delta}$ for each $0<\delta<1$, and therefore, $\operatorname{sp}\left(f_{\delta}\right) \subset \Delta_{\nu+\delta}$. Moreover, it is clear that $f_{\delta} \rightarrow f$ in $S^{\prime}$ as $\delta \downarrow 0$. This implies obviously that $\operatorname{sp}(f) \subset \Delta_{\nu+\boldsymbol{\theta}}$ for any $0<\theta<1$ and then $\operatorname{sp}(f) \subset \Delta_{\nu}$. $\triangleright$

Theorem 11. If $p=q=1$ or $1<p \leqslant \infty, 1 \leqslant q \leqslant \infty$, then a function $f \in S^{\prime}$ belongs to $L_{\nu}^{p, q}$ if and only if

$$
\begin{equation*}
\varlimsup_{|\alpha| \rightarrow \infty}\left(\nu^{-\alpha}\left\|D^{\alpha} f\right\|_{p, q}\right)^{1 /|\alpha|} \leqslant 1 \tag{16}
\end{equation*}
$$

$\triangleleft$ It is sufficient to prove «only if» part. Given any $\varepsilon>0$, there is a positive constant $C_{\varepsilon}>0$ such that for all $\alpha \geqslant 0$

$$
\left\|D^{\alpha} f\right\|_{p, q} \leqslant C_{\varepsilon}(1+\varepsilon)^{|\alpha|} \nu^{\alpha}
$$

It hence deduces from Theorem 10 that $\operatorname{sp}(f)=\operatorname{supp} F f \subset \Delta_{(1+\varepsilon) \nu}$. Therefore $\operatorname{sp}(f) \subset$ $\bigcap_{\varepsilon>0} \Delta_{(1+\varepsilon) \nu}=\Delta_{\nu} . \triangleright$

REmARK 4. It is noticeable that the root $1 /|\alpha|$ in (16) cannot be replaced by any $1 /|\alpha| t(\alpha)$, where $0<t(\alpha), \lim _{|\alpha| \rightarrow \infty} t(\alpha)=+\infty$.

## References

1. Bang H. H. A property of infinitely differentiable functions // Proc. Amer. Math. Soc.-1990.-V. 108.P. 71-78.
2. Bang H. H. On the Bernstein-Nikolsky inequality II // Tokyo J. Math.-1995.-V. 19.-P. 123-151.
3. Bang H. H. Functions with bounded spectrum // Trans. Amer. Math. Soc.-1995.-V. 347.-P. 10671080.
4. Bang H. H. Spectrum of functions in Orlicz spaces // J. Math. Sci. Univ. Tokyo.-1997.-V. 4.-P. 341349.
5. Bang H. H. The study of the properties of functions belonging to an Orlicz space depending on the geometry of their spectra (Russian) // Izv. Russ. Akad. Nauk Ser. Mat.-1997.-V. 61.-P. 163-198; translation in Izv. Math.-V. 61.-P. 399-434.
6. Bang H. H. Investigation of the properties of functions in the space $N_{\Phi}$ depending on the geometry of their spectrum (Russian) // Dolk. Akad. Nauk.-2000.-V. 374.-P. 590-593.
7. Bang H. H. On inequalities of Bohr and Bernstein // J. Inequal. Appl.-2002.-V. 7.-P. 349-366.
8. Bang H. H. and Morimoto M. On the Bernstein-Nikolsky inequality // Tokyo J. Math.-1991.-V. 14.P. 231-238.
9. Bang H. H. The sequence of Luxemburg norms of derivatives // Tokyo J. Math.-1994.-V. 17.-P. 141147.
10. Betancor J. J., Betancor J. D., Méndez J. M. R. Paley-Wiener type theorems for Chébli-Trimèche transforms // Publ. Math. Debrecen.-2002.-V. 60.-P. 347-358.
11. Hörmander L. A new generalization of an inequality of Bohr // Math. Scand.-1954.-V. 2.-P. 33-45.
12. Hörmander L. The Analysis of Linear Partial Differential Operators I.-Berlin etc.: Springer-Verlag, 1983.
13. Nessel R. J., Wilmes G. Nilkolskii-type inequalities for trigonometric polynomials and entire functions of exponential type // J. Austral. Math. Soc. Ser. A.-1978.-V. 25.-P. 7-18.
14. Nikolskiı̆ S. M. Approximation of Functions of Several Variables and Imbedding Theorems.-Moskow: Nauka, 1977. [Russian]
15. Schwartz L. Théorie des Distributions II.-Paris: Hermann, 1951.
16. Triebel H. Theory of Function Spaces.-Basel etc.: Birkhäuser, 1983.
17. Hunt R. A. On $L(p, q)$ spaces // L'Ens. Math.-1964.-V. 12.-P. 249-275.
18. Bennett C., Sharpley R. Interpolation of Operators.-New York etc.: Academic press, 1988.
19. Carro M. J., Soria J. The Hardy-Littlewood maximal function and weighted Lorentz spaces // J. London Math. Soc.-1997.-V. 55.-P. 146-158.
20. Creekmore J. Type and cotype in Lorentz $L_{p q}$ spaces // Indag. Math.—1981.—V. 43.-P. 145-152.
21. Lorentz G. G. Some new functional spaces // Ann. Math.-1950.-V. 51.-P. 37-55.
22. Yap L. Y. H. Some remarks on convolution operators and $L(p, q)$ spaces // Duke Math. J.-1969.V. 36.-P. 647-658.

Received by the editors January 13, 2005.
Ha Huy Bang, Doktor Fiz.-Mat. Nauk, Professor Institute of Mathematics, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam E-mail: hhbang@math.ac.vn

Nguyen Minh Cong, Ph. D.
Hanoi University of Education, Department of Mathematics, Cau Giay, Hanoi, Vietnam
E-mail: minhcong@cardvn.net


[^0]:    © 2005 Bang H. H., Cong N. M.

