ЗАМЕТКИ

ON A QUESTION ON BANACH-STONE THEOREM

Z. Ercan, S. Onal

We present a very simple and elementary proof of the main theorem of [1]. This also gives an answer to a conjecture in [1].

In this paper we use the standard terminology and notations of the Riesz spaces theory (see [2]). The Banach lattice of the continuous functions from a compact Hausdorff space into a Banach lattice E is denoted by $C(K, E)$. If $E=\mathbb{R}$ then we write $C(K)$ instead of $C(K, E)$. 1 stands for the unit function in $C(K)$.

One version of the Banach-Stone theorem states that:
Theorem 1. Let X and Y be compact Hausdorff spaces. Then $C(X)$ and $C(Y)$ are Riesz isomorphic if and only if X and Y are homeomorphic.

An elementary proof of this theorem can be found in [2]. This theorem is generalized in [1] as follows.

Theorem 2. Let X and Y be compact Hausdorff spaces and E be a Banach lattice. If $\pi: C(X, E) \rightarrow C(Y)$ is a Riesz isomorphism such that $\pi(f)$ has no zeros whenever f has no zero, then X and Y are homeomorphic and E is Riesz isomorphic to \mathbb{R}.

A quite difficult and long proof of the previous theorem is given without using Theorem 1 in [2] and it is conjectured that Theorem 2 follows from Theorem 1. In this paper we give an answer to this conjecture with an elementary proof as follows.
\triangleleft Proof of Theorem 2. Clearly E is nonzero. Let $\in Y$ be fixed and $\pi_{y}: E \rightarrow \mathbb{R}$ be defined by $\pi_{y}()=\pi(1 \otimes e)(y)$, where $1 \otimes e(x)=e$. It is obvious that π_{y} is one-to-one and Riesz homomorphism. So, E is Riesz isomorphic onto a nonzero Riesz subspace of \mathbb{R}, As E is nonzero and dimension of \mathbb{R} is one, E is Riesz isomorphic to \mathbb{R}. This complete the proof and answers to the conjecture in [1].

References

1. Cao J., Reilly I., Xiong H. A lattice-valued Banach-Stone Theorem // Acta Math. Hungar.-2003.V. 98, № 1/2.-P. 103-110.
2. de Jonge E., van Rooij A. C. M. Introduction to Riesz Spaces (Mathematical Center Tracts 78).Amsterdam: Mathematisch Centrum, 1977.

Received by the editors March 5, 2005.
Zafcr Ercan
Middle East Technical University, Department of Mathematics, 06531 Ankara, Turkey E-mail: zcrcan@mctu.cdu.tr

Sülcyman Önal
Middle Bast Technical University, Department of Mathematics, 06531 Ankara, Turkey E-mail: osul@mctu.cdu.tr

[^0]
[^0]: © 2005 Ercan Z., Onal S.

