УДК 517.98

ONE GENERAL METHOD IN OPERATOR THEORY

S. S. Kutateladze

An order bounded operator with target a Dedekind complete vector lattice is determined up to an orthomorphism from the kernels of its strata. Some applications to 2 -disjoint operators are briefly discussed.

A linear functional on a vector space is determined up to a scalar from its zero hyperplane. In contrast, a linear operator is recovered from its kernel up to a simple multiplier on a rather special occasion. Fortunately, Boolean valued analysis [1] prompts us that some operator analog of the functional case is valid for each operator with target a Kantorovich space, a Dedekind complete vector lattice. The present expository talk addresses some opportunities that are opened up along the lines of this rather promising approach.

Let X be a Riesz space, and let Y be a Kantorovich (or Dedekind complete Riesz) space Y with base a complete Boolean algebra B. Without loss of generality, we may assume that Y is a nonzero space embedded as an order dense ideal in the universally complete Kantorovich space $\mathcal{R} \downarrow$ which is the descent of the reals \mathcal{R} inside the separated Boolean valued universe $\mathbb{V}^{(B)}$ over B (cp. [1, Theorem 5.2.4]).

We further let X^{\wedge} stand for the standard name of X in $\mathbb{V}^{(B)}$. Clearly, X^{\wedge} is a Riesz space over \mathbb{R}^{\wedge} inside $\mathbb{V}^{(B)}$. Denote by $l:=T \uparrow$ the ascent of T to $\mathbb{V}^{(B)}$. Clearly, l acts from X^{\wedge} to the ascent $Y \uparrow$ of Y in the sense of the Boolean valued universe $\mathbb{V}^{(B)}$. Therefore,

$$
l\left(x^{\wedge}\right)=T x
$$

inside $\mathbb{V}^{(B)}$ for all $x \in X$, which means in terms of truth values that

$$
\llbracket l: X^{\wedge} \rightarrow \mathcal{R} \rrbracket=\mathbb{1}, \quad(\forall x \in X) \llbracket l\left(x^{\wedge}\right)=T x \rrbracket=\mathbb{1} .
$$

Since l is defined up to a scalar from $\operatorname{ker}(l)$, we infer the following analog of the Sard theorem.

Theorem 1. Let S and T be linear operators from X to Y. Then $\operatorname{ker}(b S) \supset \operatorname{ker}(b T)$ for all $b \in B$ if and only if there is an orthomorphism α on Y such that $S=\alpha T$.

We see that a linear operator T is in sense determined up to an orthomorphism from the family of the kernels of the strata $b T$ of T. This remark opens a possibility of studying some properties of T in terms of the kernels of the strata of T.

Clearly, T is a Riesz homomorphism if and only if so is its ascent $l=T \uparrow$. Since the ascent of the sum is the sum of the ascents of the summands, we reduce the proof of Theorem 2 to the case of the functionals.

[^0]From now on we will consider an order bounded operator $T: X \rightarrow Y$. Straightforward calculations of truth values show that $T_{+} \uparrow=l_{+}$and $T_{-} \uparrow=l_{-}$inside $\mathbb{V}^{(B)}$. Moreover, $\llbracket \operatorname{ker}(l)$ is a Riesz subspace of $X^{\wedge} \rrbracket=\mathbb{1}$ whenever so are $\operatorname{ker}(b T)$ for all $b \in B$. Indeed, given $x, y \in X$, put

$$
b:=\llbracket T x=0^{\wedge} \rrbracket \wedge \llbracket T y=0^{\wedge} \rrbracket .
$$

This means that $x, y \in \operatorname{ker}(b T)$. Hence, we see by condition that $b T(x \vee y)=0$. In other words,

$$
\llbracket T x=0^{\wedge} \rrbracket \wedge \llbracket T y=0^{\wedge} \rrbracket \leqslant \llbracket T(x \vee y)=0^{\wedge} \rrbracket .
$$

Whence

$$
\begin{gathered}
\llbracket \operatorname{ker}(l) \text { is a Riesz subspace of } X^{\wedge} \rrbracket \\
=\llbracket\left(\forall x, y \in X^{\wedge}\right)\left(l(x)=0^{\wedge} \wedge l(y)=0^{\wedge} \rightarrow l(x \vee y)=0^{\wedge}\right) \rrbracket \\
=\bigwedge_{x, y \in X} \llbracket l\left(x^{\wedge}\right)=0^{\wedge} \wedge l\left(y^{\wedge}\right)=0^{\wedge} \rightarrow l\left((x \vee y)^{\wedge}\right)=0^{\wedge} \rrbracket=\mathbb{1} .
\end{gathered}
$$

Recall that a subspace H of a Riesz space X is a G-space or Grothendieck subspace (cp. $[2,3]$) provided that H enjoys the following property:

$$
(\forall x, y \in H)(x \vee y \vee 0+x \wedge y \wedge 0 \in H) .
$$

By analogous calculations of truth values we infer that

$$
\begin{gathered}
\llbracket \operatorname{ker}(l) \text { is a Grothendieck subspace of } X^{\wedge} \rrbracket \\
=\llbracket\left(\forall x, y \in X^{\wedge}\right)\left(l(x)=0^{\wedge} \wedge l(y)=0^{\wedge} \rightarrow l(x \vee y \vee 0+x \wedge y \wedge 0)=0^{\wedge}\right) \rrbracket \\
=\bigwedge_{x, y \in X} \llbracket l\left(x^{\wedge}\right)=0^{\wedge} \wedge l\left(y^{\wedge}\right)=0^{\wedge} \rightarrow l\left((x \vee y \vee 0+x \wedge y \wedge 0)^{\wedge}\right)=0^{\wedge} \rrbracket .
\end{gathered}
$$

Assuming that the kernel of each stratum $b T$ is a Grothendieck subspace, take $x, y \in X$ and put

$$
b:=\llbracket T x=0^{\wedge} \rrbracket \wedge \llbracket T y=0^{\wedge} \rrbracket .
$$

This means that $x, y \in \operatorname{ker}(b T)$. By hypothesis $b T(x \vee y \vee 0+x \wedge y \wedge 0)=0$. In other words,

$$
\llbracket T x=0^{\wedge} \rrbracket \wedge \llbracket T y=0^{\wedge} \rrbracket \leqslant \llbracket T(x \vee y \vee 0+x \wedge y \wedge 0)=0^{\wedge} \rrbracket .
$$

It follows now that

$$
\llbracket \operatorname{ker}(l) \text { is a Grothendieck subspace of } X^{\wedge} \rrbracket=\mathbb{1} \text {. }
$$

By way of example, we may now assert that the following theorems appear as the descents of their scalar analogs.

Theorem 2. An order bounded operator T from X to Y may be presented as the difference of some Riesz homomorphisms and only if the kernel of each stratum $b T$ of T is a Riesz subspace of X for all $b \in B$.

Theorem 3. The modulus of an order bounded operator $T: X \rightarrow Y$ is the sum of some pair of Riesz homomorphisms if and only if the kernel of each stratum $b T$ of T with $b \in B$ is a Grothendieck subspace of the ambient Riesz space X.

To prove the relevant scalar claims, we use one of the formulas of subdifferential calculus:
Theorem 4 (of decomposition). Assume that H_{1}, \ldots, H_{N} are cones in a Riesz space X. Assume further that f and g are positive functionals on X. The inequality

$$
f\left(h_{1} \vee \cdots \vee h_{N}\right) \geqslant g\left(h_{1} \vee \cdots \vee h_{N}\right)
$$

holds for all $h_{k} \in H_{k}(k:=1, \ldots, N)$ if and only if to each decomposition of g into a sum of N positive terms $g=g_{1}+\cdots+g_{N}$ there is a decomposition of f into a sum of N positive terms $f=f_{1}+\cdots+f_{N}$ such that

$$
f_{k}\left(h_{k}\right) \geqslant g_{k}\left(h_{k}\right) \quad\left(h_{k} \in H_{k} ; k:=1, \ldots, N\right) .
$$

Remark 1. The complete proofs of Theorems 2 and 3 are given in [4,5]. Theorem 4 appeared in this form in [6].

Remark 2. Note that the sums of Riesz homomorphisms were first described by S. J. Bernau, C. B. Huijsmans, and B. de Pagter in terms of n-disjoint operators in [7]. A survey of some conceptually close results on n-disjoint operators is given in [8, §5.6].

References

1. Kusraev A. G., Kutateladze S. S. Boolean Valued Analysis.-Dordrecht: Kluwer Academic Publishers, 1999.-322 p.
2. Grothendieck A. Une caractérisation vectorielle-métrique des espaces $L^{1} / /$ Canad. J. Math.-1955.V. 4.-P. 552-561.
3. Lindenstrauss J., Wulbert D. E. On the classification of the Banach spaces whose duals are L_{1}-spaces // J. Funct. Anal.-1969.-V. 4, № 3.-P. 32-349.
4. Kutateladze S. S. On differences of Riesz homomorphisms // Sibirsk. Mat. Zh.-2005.-V. 46, № 2.P. 390-393.
5. Kutateladze S. S. On Grothendieck subspaces // Sibirsk. Mat. Zh.-2005.-V. 46, № 3.-P. 620-624.
6. Kutateladze S. S. Choquet boundaries in K-spaces // Russ. Math. Surveys.—1975.—V. 30, № 4.-P. 115155.
7. Bernau S. J., Huijsmans C. B., de Pagter B. Sums of lattice homomorphisms // Proc. Amer. Math. Soc.-1992.-V. 115, № 1.-P. 151-156.
8. Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer Academic Publishers.-2000.-446 p.

[^0]: © 2005 Kutateladze S. S.

