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1. Introduction

First Ergodic Theorems for actions of arbitrary countable groups were obtained by
Oseledets [26], who followed an idea of Kakutani [17]. For actions of free groups Guivarc’h [14]
considered uniform averages over spheres of increasing radii in a group and proved the related
mean ergodic theorem. Grigorchuk [12] announced the Pointwise Ergodic Theorem for Česaro
averages of the spherical averages. Nevo [24] and Nevo and Stein [25] published a proof of the
Pointwise Ergodic Theorem. In [13] Grigorchuk announced an Ergodic Theorem for Actions
of Free Semigroups. In [3] Bufetov generalized classical and recent Ergodic Theorems of
Kakutani, Oseledets, Guivarc’h, Grigorchuk, Nevo and Nevo and Stein for measure-preserving
actions of free semigroups and groups.

The first results in the field of non-commutative Ergodic Theorems were obtained by
Sinai and Anshelevich [29] and Lance [22]. Developments of the subject are reflected in the
monographs of Jajte [15] and Krengel [21].

Majorant ergodic theorem for the operators affiliated to tracial von Neumann algebras
was proved in [6].

The aim of the present paper is to generalize Bufetov’s results from [3] to the non-
commutative case to obtain non-commutative Ergodic Theorems for the actions of free finitely
generated semigroups on von Neumann algebras.

Remark1. The paper extends results presented by the authors in [7] and [8].

2. Non-commutative Operator Ergodic Theorems

Let the pair (M, τ) be a non-commutative probability space, where M is a von Neumann
algebra with a faithful, normal tracial state τ .
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Let α1, α2, . . . , αm : M → M be positive kernels or linear maps satisfying following
conditions: (αi(M+) ⊂M+; αi1 6 1; τ◦αi 6 τ).

All the {αi}’s could be extended to operators L1(M, τ) → L1(M, τ), which we will also
call {αi} without loss of generality.

Let Ωm = {ω = ω1ω2 . . . ωn . . . : ωi = 1, . . . ,m} be the space of all one-sided infinite
sequences in the symbols 1, . . . ,m.

We denote by σm the shift on Ωm, defined by the formula (σmω)i = ωi+1.
Consider the set Wm = {w = w1w2 . . . wn : wi = 1, . . . ,m} of all finite words in the

symbols 1, . . . ,m.

Denote by |w| the length of the word w. For each w ∈ Wm, let C(w) ⊂ Ωm be the
set of all sequences starting with the word w. For an arbitrary Borel measure µ on Ωm, set
µ(w) = µ(C(w)).

Measure µ on Ωm invariant with respect to shift σm we call σm-invariant measure.
For each w ∈Wm, introduce the operator

αw = αwnαwn−1 . . . αw1 . (2.1)

Let µ be a Borel σm-invariant probability measure on Ωm. Consider the words w with
|w| = l, and the sum of the corresponding operators αw with the weights µ(w),

sµl (α) =
∑

|w|=l

µ(w)αw.

Average sµl (α) over l = 0, . . . , n− 1,

cµn(α) =
1

n

n−1∑

l=0

sµl (α).

Definition 2.1. A sequence {Xn} ⊂ L1(M, τ) is said to converge to X0 ∈ L1(M, τ)
doubleside almost everywhere if for every ε > 0 and δ > 0 there exists N ∈ N and projection
E ∈M such that τ(I−E) < δ and E(Xn−X0)E ∈M and ‖E(Xn−X0)E‖∞ 6 ε for n > N .

Suppose µ is a σm-invariant Markov measure on Ωm. We will show that the averages cµn(α)ϕ
converge both doubleside almost everywhere and in L1(M, τ) for any operator ϕ ∈ L1(A, τ).

Definition 2.2. A matrix Q with non-negative entries is said to be irreducible if, for
some n > 0, all entries of the matrix Q+Q2 + . . .+Qn are positive (if Q is stochastic, then
this is equivalent to saying that in the corresponding Markov chain any state is attainable
from any other state).

Definition 2.3. A matrix P with non-negative entries is said to be strictly irreducible if
P and PP T are irreducible (here P T stands for the transpose of the matrix P ).

Definition 2.4. A Markov chain is said to be strictly irreducible if the corresponding
transition matrix is strictly irreducible.

Let (M, τ) be a non-commutative probability space, α1, . . . , αm : M →M positive kernels,
and α1, . . . , αm : L1(M, τ) → L1(M, τ) their corresponding extensions. Let µ be a σm-
invariant Markov measure on Ωm. Then, for any element ϕ ∈ L1(M, τ), there exists an
element ϕ ∈ L1(M, τ), such that cµn(α)ϕ→ ϕ in L1(M, τ) norm as n→∞.

Theorem 2.1. The following equality holds whenever α1, . . . , αm preserve the state τ :
τ(ϕ) = τ(ϕ). If the measure µ is strictly irreducible, then αjϕ = ϕ, for j = 1, . . . ,m. If
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ϕ ∈ Lp(M, τ), p > 1, then cµn(α)ϕ → ϕ both doubleside almost everywhere and in Lp(M, τ)
norm as well.

Remark 2. Theorem 2.1 generalizes Ergodic Theorems of Grigorchuk [13], Nevo [24],
Nevo and Stein [25], and Bufetov [3] to the non-commutative case.

Now we discuss an operator version of Theorem 2.1.
Let (M, τ) be a non-commutative probability space and α1, . . . , αm : L1(M, τ) →

L1(M, τ) be linear operators. The operators αw, sµl (α), and cµn(α) are introduced as above.
Recall the standard terminology. A linear operator on a Banach space is called a

contraction, if its norm is not greater than one.

Definition 2.5. A linear operator α : L1(M, τ)→ L1(M, τ) is said to be positive, if the
image of each non-negative element is a non-negative element.

Definition 2.6. A linear operator α : L1(M, τ) → L1(M, τ) is called an L1-L∞-con-
traction, if ‖α‖L1

6 1 and ‖α‖L∞ 6 1.

Definition 2.7. A linear operator α : L1(M, τ) → L1(M, τ) is said to be τ -preserving,
if τ(ϕ) = τ(α(ϕ)) for any ϕ ∈ L1(M, τ).

The following is a non-commutative Operator Ergodic Theorem:

Theorem 2.2. Let µ be a σm-invariant Markov measure on Ωm, let (M, τ) be a non-
commutative probability space, and let α1, . . . , αm be positive L1-L∞-contractions. Then
for each ϕ ∈ L1(M, τ), there exists ϕ ∈ L1(M, τ), such that cµn(α)ϕ → ϕ, as n → ∞
both doubleside almost everywhere and in L1(M, τ). If the measure µ is strictly irreducible,
then αiϕ = ϕ for all i = 1, . . . ,m. If the operators α1, . . . , αm preserve the state τ , then
τ(ϕ) = τ(ϕ). If p > 1, then cµn(α)ϕ→ ϕ, in Lp(M, τ) norm as well (modulo the definition of
the actions in Lp(M, τ)).

It is easy to see that Theorem 2.1 is a consequence of Theorem 2.2.
The following is a generalized version of the Mean Ergodic Theorem for operators on

Hilbert spaces.

Theorem 2.3. Let µ be a σm-invariant Markov measure on Ωm, let H = L2(M, τ), be
the Hilbert space constructed using non-commutative probability space (M, τ), and let the
linear operators α1, . . . , αm : L2(M, τ)→ L2(M, τ), be contractions. Then for each operator
h ∈ L2(M, τ), there exists an operator h ∈ L2(M, τ), such that cµn(α)h → h, in L2(M, τ) as
n→∞. If the measure µ is strictly irreducible, then αih = h for all i = 1, . . . ,m.

The following is a non-commutative version of the Ergodic Theorem for operators on
Lp(M, τ).

Theorem 2.4. Let µ be a σm-invariant Markov measure on Ωm. Let (M, τ) be a non-
commutative probability space and let p > 1. Suppose that all operators α1, . . . , αm :
Lp(M, τ) → Lp(M, τ), are positive contractions. Then for each ϕ ∈ Lp(M, τ), there exists
ϕ ∈ Lp(M, τ), such that cµn(α)ϕ → ϕ, as n → ∞ both doubleside almost everywhere and in
Lp(A, τ). If the measure µ is strictly irreducible, then αiϕ = ϕ for all i = 1, . . . ,m.

3. Convergence of Multiparametric Česaro Averages

In this section we discuss the convergence of time averages in Theorems 2.1–2.4. The main
idea here is to use the operator αµ introduced later in this section.

Let L be a Real or Complex linear space, let α1, . . . , αm : L → L, be linear operators,
and let µ be a σm-invariant Markov measure on Ωm with initial distribution (p1, . . . , pm) and
transition probability matrix P = (pij). We always assume in what follows that pi > 0 for
any i = 1, . . . ,m.
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Consider the weighted sum of operators αw over all words of length l with given last
symbol,

sµ,il (α) =
∑

{w:|w|=l,wl=i}

µ(w)αw. (3.1)

For the sake of convenience, we set αw with |w| = 0 equal to an identical operator on M .
Now we average sµ,il (α) over l = 1, . . . , n− 1,

cµ,in (α) =
1

n

n−1∑

l=0

sµ,il (α).

The following lemma describes relation between sµ,il (α) and sµ,jl+1(α).

Lemma 3.1. For any positive integer l and any j ∈ {1, . . . ,m}, we have

sµ,jl+1(α) =

m∑

l=1

pijαjs
µ,i
l (α).

C The proof of the lemma follows directly from definition (3.1) of sµ,il (α) and αw. B

We can rewrite expression from the above lemma as follows:

sµ,jl+1(α)

pj
=

m∑

i=1

pipij
pj

αj

(
sµ,il (α)

pi

)
.

Now we consider the space Lm, i. e., them-th Cartesian power of L. We introduce operators
αµ : Lm → Lm defined by the formula

αµ(v1, . . . , vm) = (ṽ1, . . . , ṽm), (3.2)

where

ṽj =
m∑

i=1

pipij
pj

αjvi.

Lemma 3.2. For any v ∈ L and n ∈ N or (n > 1), we have

αnµ(v, . . . , v) =

(
sµ,1n (α)v

p1
, . . . ,

sµ,mn (α)v

pm

)
.

C Follows by induction from the formulae 3.2 above. B

Corollary 3.3. For any v ∈ L and n ∈ N,

1

n

n−1∑

l=0

αlµ(v, . . . , v) =

(
cµ,1n (α)v

p1
, . . . ,

cµ,mn (α)v

pm

)
.

C Follows from the previous lemma. B

Applying the classical non-commutative Individual Ergodic Theorem of Goldstein [5],
Theorem 1.1 to the operator αµ and using Corollary 3.3, we obtain statements on the
convergence of the averages cmn (α).
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Lemma 3.4. Let µ be a σm-invariant Markov measure on Ωm, let H = L2(M, τ)
be the Hilbert space constructed using non-commutative probability space (M, τ), and let
linear operators α1, . . . , αm : L2(M, τ) → L2(M, τ) be contractions. Then for any operator

h ∈ L2(M, τ) and i ∈ {1, . . . ,m}, the sequence
(

1
pi

)
cµ,in (α)h → hi in H as n → ∞, where

hi ∈ L2(M, τ), and αµ(h1, . . . , hm) = (h1, . . . , hm).

C If α1, . . . , αm are contractions on L2(M, τ), then αµ is a contraction on (L2(A, τ))
m.

Corollary 1 and the Mean Ergodic Theorem for αµ complete the proof. B

The relation cµn(α) = cµ,1n (α) + . . .+ cµ,mn (α) yields the following assertion.

Corollary 3.5. Under the assumptions of previous Lemma, for any h ∈ L2(M, τ), the
sequence cµn(α)h converges in L2(M, τ) norm as n→∞.

Corollary 3.5 proves the convergence of time averages in Theorem 2.3.
Similarly, the following results are valid.

Theorem 3.6. Let µ be a σm-invariant Markov measure on Ωm. Let (M, τ) be a non-
commutative probability space and let p > 1. Suppose that all operators α1, . . . , αm :
Lp(M, τ) → Lp(M, τ) are contractions. Then, for any v ∈ Lp(M, τ) and i ∈ {1, . . . ,m},
the sequence

(
1
pi

)
cµ,in (α)v → vi in Lp(M, τ) as n → ∞, where the operator vi ∈ Lp(M, τ),

and αµ(v1, . . . , vm) = (v1, . . . , vm).

C If α1, . . . , αm are contractions on Lp(M, τ), then αµ is a contraction on (Lp(M, τ))m.
The result follows from Corollary 3.3 and Lorch’s Ergodic Theorem applied to the contraction
αµ (see [3] or [21, p. 73, Theorem 1.2]). B

Corollary 3.7. Under assumptions of the previous Theorem, for any v ∈ Lp(M, τ), the
sequence cµn(α)v converges in Lp(M, τ) as n→∞.

Now let (M, τ) be a non-commutative probability space as above, and α1, . . . , αm :
L1(M, τ)→ L1(M, τ), be linear operators.

Now we specialize the construction of αµ from condition of Corollary 3.2 to the case of
L1(M, τ).

Let µ be a σm-invariant Markov measure on Ωm with initial distribution p = (p1, . . . , pm),
and transition probability matrix P = (pij), and let αµ : (L1(M, τ))m → (L1(M, τ))m, be the
operator defined as before.

The space (L1(M, τ))m, can be identified with the space L1(M ×{1, . . . ,m}, τ ×p), where
τ × p is the product of the state τ on the algebra A and the probability distribution p =
(p1, . . . , pm) on {1, . . . ,m}. Now the operator αµ becomes an operator on the space L1(M ×
{1, . . . ,m}, τ × p). It is clear that, if α1, . . . , αm are positive, then so is αµ; if α1, . . . , αm are
L1(A, τ)-contractions, then so is αµ; if α1, . . . , αm are L∞(M, τ)-contractions then so is αµ;
if α1, . . . , αm preserve the state τ , then αµ preserves the measure τ × p.

Lemma 3.8. Let (M, τ) be a non-commutative probability space and let α1, . . . , αm
be positive L1-L∞-contractions. Then, for any operator ϕ ∈ L1(M, τ), and i = 1, . . . ,m,
sequence cµ,in (α)ϕ converges as n → ∞ both doubleside almost everywhere and in L1(M, τ).

If ϕi = lim
n→∞

(
1
pi

)
cµ,in (α)ϕ, then αµ(ϕ1, . . . , ϕm) = (ϕ1, . . . , ϕm).

To prove the lemma, we use the following standard fact [5]:

Theorem 3.9. If α is a positive L1-L∞-contraction on the non-commutative probability
space (M, τ), then, for any ϕ ∈ L1(M, τ), there exists an operator ϕ ∈ L1(M, τ) such that
1
n(ϕ+αϕ+ . . .+αn−1ϕ)→ ϕ as n→∞ both doubleside almost everywhere and in L1(M, τ).
The operator ϕ satisfies the relation αϕ = ϕ.



Non-commutative ergodic type theorems 1–43

C (of lemma 3.8) Applying Theorem 3.9 to the operator αµ, and using Corollary 3.7, we
obtain statement of the Lemma. B

The Lemma 3.8 proves the convergence of time averages in Theorem 2.2.
The doubleside almost everywhere convergence in the Theorem above also holds for spaces

of infinite measure; therefore, we have the following Lemma.

Lemma 3.10. Let (M, τ) be a von Neumann algebra with faithful normal semifinite trace
τ and let α1, . . . , αm be positive L1-L∞-contractions. Then for any operator ϕ ∈ L1(M, τ),
and i = 1, . . . ,m, the sequence cµ,in (α)ϕ converges doubleside almost everywhere as n→∞.

Now consider contractions on Lp(M, τ), for p > 1.

Lemma 3.11. Let (M, τ) be a non-commutative probability space, let p > 1, and let
α1, . . . , αm be positive Lp(M, τ)-contractions. For any operator ϕ ∈ Lp(M, τ), and i =

1, . . . ,m, the sequence ( 1
pi
)cµ,in (α)ϕ, converges as n→∞ both doubleside almost everywhere

and in Lp(M, τ) to an operator ϕi ∈ Lp(M, τ). We have αµ(ϕ1, . . . , ϕm) = (ϕ1, . . . , ϕm).

C If α1, . . . , αm are contractions, then so is αµ. Applying Theorem 2.2 from [33] (see also
[3] or [21, p. 73]) to the operator αµ and using Corollary 3.7, we obtain the result. B

Corollary 3.12. Under the assumptions of the previous Lemma, for any operator ϕ ∈
Lp(M, τ), the sequence cµn(α)ϕ converges both doubleside almost everywhere and in Lp(M, τ)
norm.

Corollary 3.12 completes the proof of the convergence of time averages in Theorem 2.4.

4. Invariance of the Limit

In this section we establish the invariance of the limit in Theorems 2.1–2.4 and complete
the proof of these theorems.

The following theorem allows to conclude invariance of the limit in Theorem 2.2 from the
Lemma 3.8 and as consequence invariance of the limit in the Theorem 4.1.

Theorem 4.1. Let (M, τ) be a non-commutative probability space and let α1, . . . , αm be
positive L1-L∞-contractions on L1(M, τ). Let µ be a strictly σm-invariant Markov measure
on Ωm. Suppose that the operators ϕ1, . . . , ϕm ∈ L1(M, τ), satisfy the condition

αµ(ϕ1, . . . , ϕm) = (ϕ1, . . . , ϕm). (4.1)

Then ϕ1 = . . . = ϕm = ϕ and αiϕ = ϕ for all i = 1, . . . ,m.
In order to prove Theorem 4.1 we first establish a similar result for contractions on the

Hilbert space H = L2(M, τ).

Theorem 4.2. Let (M, τ) be a non-commutative probability space, and let the linear
operators α1, . . . , αm : L2(M, τ)→ L2(M, τ), be contractions. Let µ be a σm-invariant Markov
measure on Ωm, and let h1, . . . , hm ∈ L2(M, τ), be such that αµ(h1, . . . , hm) = (h1, . . . , hm). If
measure µ is strictly irreducible, then h1 = . . . = hm = h, and αih = h, for each i = 1, . . . ,m.

The main idea of the proof is just this: if v1, v2, and v3 are operators from L2(M, τ)

such that ‖v1‖ = ‖v2‖ = ‖v3‖, and v1 = (v2+v3)
2 , then v1 = v2 = v3. Y. Guivarc’h used this

observation in [14] to prove the invariance of the limit function in his ergodic theorem.

C Let (p1, . . . , pm) be initial distribution of the measure µ, and let P = (pij) be the

transition probability matrix of µ. For any i, j ∈ {1, . . . ,m} and n ∈ N, denote by p
(n)
ij the

n-step transition probability from i to j (in other words, p(n)ij = (Pn)ij).

We partition proof of the theorem 4.2 into series of steps.
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Proposition 4.3. Let (M, τ) be a non-commutative probability space, and let linear
operators α1, . . . , αm : L2(M, τ) → L2(M, τ) be contractions. Let µ be a σm-invariant
Markov measure on Ωm, such that the corresponding Markov chain is irreducible. Suppose
that operators h1, . . . , hm ∈ L2(M, τ) satisfy the relation

αµ(h1, . . . , hm) = (h1, . . . , hm). (4.2)

Then there is an r ∈ R, such that ‖h1‖ = . . . = ‖hm‖ = r and, if pij > 0, then ‖αjhi‖ = r.

C Assume that ‖h1‖ > ‖hi‖, for any i = 1, . . . ,m. Since equality 4.11 implies

h1 =

m∑

i=1

(
pipi1
p1

)
α1hi,

and invariancy of initial vector (p1, . . . , pm) with respect to transition matrix P T implies

1 =
m∑
i=1

pipi1
p1

. It follows from the triangle inequality that ‖h1‖ = ‖α1hi‖ = ‖hi‖, if pi1 > 0.

Similarly, ‖h1‖ = ‖hi‖, for any i such that p
(2)
i1 > 0, and so on. The Markov chain

corresponding to the measure µ is irreducible; hence, ‖h1‖ = . . . = ‖hm‖, and ‖hj‖ = ‖αjhi‖
if pij > 0. B

Proposition 4.4. Suppose that h1, . . . , hn, h ∈ L2(M, τ) satisfy the condition ‖h1‖ =
‖h2‖ = . . . = ‖hn‖ = ‖h‖. Let h = c1h1 + . . . + cnhn for some c1 > 0, . . . , cn > 0 such that
c1 + . . .+ cn = 1. Then h1 = h2 = . . . = hn = h.

C This immediately follows from equality condition for the Cauchy–Bunyakowsky–
Schwartz inequality in the Hilbert space. B

Proposition 4.5. Let (M, τ) be a non-commutative probability space, α : L2(M, τ) →
L2(M, τ), be a contraction, and let operators h1, h2 ∈ L2(M, τ), satisfy the relations ‖h1‖ =
‖h2‖ = ‖αh1‖ = ‖αh2‖. Then αh1 = αh2, implies h1 = h2.

C Indeed, if h1 6= h2, then
∥∥∥ (h1+h2)

2

∥∥∥ < ‖h1‖ by Proposition 4.4. Since
∥∥∥α( (h1+h2)

2 )
∥∥∥ = ‖h1‖

and α is a contraction, we arrive at a contradiction. B

In what follows, (PP T )ij stands for the (i, j)-entry of the matrix PP T .

Proposition 4.6. Let (M, τ) be a non-commutative probability space, and let linear
operators α1, . . . , αm : L2(M, τ)→ L2(M, τ), be contractions. Let µ be a σm-invariant Markov
measure on Ωm, and let h1, . . . , hm ∈ L2(M, τ), be such that αµ(h1, . . . , hm) = (h1, . . . , hm).
Let transition matrix P of µ be irreducible. Then (PP T )ij > 0 implies hi = hj .

C By Proposition 4.3, if P is irreducible, then ‖h1‖ = . . . = ‖hm‖. Note that (PP T )ij > 0

if and only, if there is a k for which pik > 0, and pjk > 0. Since hk =
m∑
l=1

(
plplk
pk

)
αkhl, it

follows from Proposition 4.4 and 2.4 that hk = αkhi = αkhj , and ‖hk‖ = ‖hi‖ = ‖hj‖, by
Proposition 4.3. By Proposition 4.5 this yields hi = hj , which completes the proof. B

Combination of statements of the propositions 4.3–4.6 finishes the proof of the
theorem 4.2. B

Let us return to the proof of Theorem 4.1.
Suppose that there exist ϕi and ϕj ∈ L1(M, τ) with i, j ∈ {1, . . . ,m} and ‖ϕi − ϕj‖L1 >

ε > 0, and satisfying equality 4.2. Since L2(M, τ) is dense in the L1(M, τ) in L1(M, τ) norm,
we can find hj ∈ L2(M, τ) satisfying ‖hj − ϕj‖L1 < ε/3, for each j ∈ {1, . . . ,m}. Let

(h1, . . . , hm) = lim
N→∞

1

N

N−1∑

n=0

αnµ(h1, . . . , hm). (4.3)
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The limit in equation 4.3 exists in L1 and L2 norm. Hence, hl ∈ L2(M, τ). Since αµ is
contraction in L1(M, τ), then ‖hl − ϕl‖L1 6 ε/3. In addition, the following equality holds
αµ(h1, . . . , hm) = (h1, . . . , hm). Hence, from Theorem 4.2 the following equality holds: h1 =
h2 = . . . = hm. The latter equality implies that ε 6 ‖ϕi−ϕj‖L1 6 ‖ϕi−hi‖L1 +‖hj−ϕj‖L1 6

2ε/3. We came to contradiction with the suggestion that ε 6 ‖ϕi − ϕj‖L1 . Theorem 4.1 is
established.

Theorem 4.7. Let (M, τ) be a non-commutative probability space, let p > 1 and let
α1, . . . , αm : Lp(M, τ)→ Lp(M, τ), be contractions. Let µ be a σm-invariant Markov measure
on Ωm, and let operators ϕ1, . . . , ϕm ∈ Lp(M, τ), be such that αµ(ϕ1, . . . , ϕm) = (ϕ1, . . . , ϕm).
If the measure µ is strictly irreducible, then ϕ1 = . . . = ϕm = ϕ, and αiϕ = ϕ, for any
i = 1, . . . ,m.

C The proof of the latter Theorem reproduces that of Theorem 4.2 above. The key
observation is that Proposition 4.4 holds for the space Lp(M, τ) since Lp(M, τ) is a strictly
convex space (see for example [27]). B

Theorems 4.7 and 4.1 imply Theorem 2.4.

5. Ergodic type theorem for the action of finitely
generated locally free semigroups

Definition 5.1. A locally free semigroup (see [31] and references there) L FS m+1 with
m generators is defined as a semigroup determined by generators satisfying the following
relations: L FSm+1 = {g1, . . . , gm : gigj = gjgi; i, j ∈ {1, . . . ,m}, |i− j| > 1}.

Semigroup L FSm+1 is associated with a topological Markov chain with states
{1, . . . ,m} and transition matrix

m = (mi,j), mi,j =

{
1, if |i− j| 6 1 or i 6 j;

0, otherwise.

The set of admissible words in the chain corresponds to the Wm, the set of admissible one-
sided sequences corresponds to Ωm and left shift σm corresponds to shift on Ωm. Each word
ω1 . . . ωn corresponds to gω = gω1 . . . gωn .

The correspondence ω 7→ gω defines a bijection between Wm and L FSm+1, and from
(4.1) it follows that system (Ωm, σm) mixes topologically, hence ergodic measure has a positive
measure on cylinders corresponding to the words Wm.

Now we assume that semigroup L FS m+1 acts as a semigroup with generators gi mapped
to the kernels αi acting on a tracial von Neumann Algebra (M, τ). Applying Theorem 2.1, we
obtain an ergodic theorem for the action of L FS m+1.
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