
Владикавказский математический журнал
январь–март, 2007, Том 9, Выпуск 1

UDC 517.984

SOME ASYMPTOTIC PROPERTIES OF A KERNEL SPECTRUM
ESTIMATE WITH DIFFERENT MULTITAPERS

Teamah A. A. M., Bakouch H. S.

Let X(t), t = 0,±1, . . . , be a zero mean real-valued stationary time series with spectrum fXX(λ),
−π 6 λ 6 π. Given the realization X(1), X(2), . . . , X(N), we construct L different multitapered

periodograms I
(mt)j

XX (λ), j = 1, 2, . . . , L, on non-overlapped and overlapped segments X (j)(t), 1 6 t < N .
Also, we give asymptotic expressions of the mean and variance of the average of these different

multitapered periodograms. We obtain an estimate of fXX(λ) via I
(mt)j

XX (λ) and different kernels W
(j)
β (α),

j = 1, 2, . . . , L; −π < α 6 π; β is a bandwidth. We find asymptotic expressions of the first and
second-order moments of this estimate. Moreover, we propose a choice of the considered bandwidth. An
asymptotic expression of the integrated relative mean squared error (IMSE) of the estimate is formulated.
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1. Introduction

Multitapering method maintains the good bias properties that tapering provides and at
the same time produces an estimate with less variability (see [7, 11, 12, 14]). Some asymptotic
statistical properties of spectral estimates were studied by several authors (see [1, 3, 4]) using
a tapered data. The authors of this paper argued in [9, 10] the asymptotic expressions of the
first and second-order moments of some spectral estimates, on non-overlapped and overlapped
segments via different tapers and different weight functions (kernels) for both continuous time
and discrete time stationary processes.

In this paper we study the problem of estimating a spectral density function (spectrum)
on non-overlapped and overlapped segments using different multitapers and different kernels
with a bandwidth parameter, for a discrete parameter stationary time series. In section 2 we
introduce an estimate of the spectral density function using different multitapers and different
kernels. Moreover, we give asymptotic expressions of the mean and variance of the average of
the constructed different multitapered periodograms. In section 3 we obtain the asymptotic
expressions of the mean and variance for the suggested estimate, assuming that direct spectral
estimates are uncorrelated. Also, we obtain an optimal choice of the bandwidth. Furthermore,
we formulate an asymptotic expression of the integrated relative mean squared error of the
estimate.
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2. The model

Suppose that X(1), X(2), . . . , X(N) is a realization of N observations from a real-valued
stationary and discrete parameter process X(t), t = 0,±1, . . . , with a zero mean. The spectral
density function of X(t) is

fXX(λ) =
1

2π

∞∑

τ=−∞

CXX(τ)e
−iλτ , −π 6 λ 6 π; i =

√
−1, (1)

where CXX(τ) is the autocovariance function of X(t) and given by

CXX(τ) =

π∫

−π

fXX(λ)e
iλτdλ, (2)

provided that
∞∑

τ=−∞
|CXX(τ)| <∞.

If the process X(t) is invertible, then the inverse spectral density function is defined by

f−1XX(λ) =
1

2π

∞∑

τ=−∞

dXX(τ)e
−iλτ , (3)

where dXX(τ) is the inverse autocovariance of X(t) (see [2]) and given by

dXX(τ) =

π∫

−π

f−1XX(λ)e
iλτ dλ,

such that
∞∑

τ=−∞
|dXX(τ)| <∞.

We construct L segments by dividing the given observations:

X(j)(t) = X[(j − 1)M + t], j = 1, 2, . . . , L; t = 1, 2, . . . ,M + q; 0 6 q < M, (4)

where X(j)(t) is the set of observations in the jth segment. If N = LM + q, 0 < q < M,
then the number of overlapped segments L = (N − q)/M and each segment contains M + q
observations. Also, if q = 0, then the number of non-overlapped segments L = N/M.

Now, we define the average of different multitapered periodograms as an estimate of
fXX(λ):

f̂
(mt)
XX (λ) =

1

L

L∑

j=1

I
(mt)j
XX (λ), (5)

where I
(mt)j
XX (λ) is the multitapered periodogram of X (j)(t) and given by

I
(mt)j
XX (λ) =

1

K

K∑

k=1

I
(d)j,k
XX (λ)

with

I
(d)j,k
XX (λ) =

[
2π

M+q∑

t=1

h2j,k(t)

]−1 ∣∣∣∣∣

M+q∑

t=1

hj,k(t)X
(j)(t)e−iλt

∣∣∣∣∣

2

.

hj,k(t) is called the data taper for the (j, k)th direct spectral estimate I
(d)j,k
XX (λ) and equals

zero outside the interval [1,M + q] and K is the number of components of multitaper in each
segment.
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Let hj,k(t) be a set of orthonormal tapers, that is

M+q∑

t=1

hj,r(t)hj,k(t) =

{
1, if r = k;

0, otherwise,

(see [12]). From the orthonormality we deduce that direct spectral estimates I
(d)j,k
XX (λ), j =

1, 2, . . . , L; k = 1, 2, . . . ,K, are uncorrelated (see [13]), and then

I
(d)j,k
XX (λ) =

1

2π

∣∣∣∣∣

M+q∑

t=1

hj,k(t)X
(j)(t)e−iλt

∣∣∣∣∣

2

.

In fact, the direct spectral estimate I
(d)j,k
XX (λ) has the asymptotic properties (see [8, 13])

E
[
I
(d)j,k
XX (λ)

]
≈ fXX(λ), Var

[
I
(d)j,k
XX (λ)

]
≈ f2XX(λ). (6)

Equations (5), (6) and the uncorrelation of direct spectral estimate I
(d)j,k
XX (λ) imply

E
[
f̂
(mt)
XX (λ)

]
≈ fXX(λ) and Var

[
f̂
(mt)
XX (λ)

]
≈ f2XX(λ)/KL. Obviously, Var

[
f̂
(mt)
XX (λ)

]

becomes less variability as at least K or L increases. The case when L = 1 was investigated
in [13].

Smoothing the multitapered periodograms I
(mt)j
XX (λ), j = 1, 2, . . . , L, in equation (5) by

the different kernels (weight functions) W (j)
β (α), −π < α 6 π, and taking their average, we

get

f̂
(mt)sp
XX (λ) =

1

βL

L∑

j=1

π∫

−π

W (j)

(
λ− µ
β

)
I
(mt)j
XX (µ) dµ, (7)

which is a smoothed estimate (kernel estimate) of fXX(λ) with W
(j)
β (α) = 1

βW
(j)(αβ ), such

that
∫ π
−πW

(j)(α)dα = 1;W (j)(−α) =W (j)(α). β is called the bandwidth. Also, we can deduce
that

f̂
(mt)sp
XX (λ) =

1

L

L∑

j=1

f̂
(mt)j
XX (λ), (8)

where

f̂
(mt)j
XX (λ) =

1

β

π∫

−π

W (j)

(
λ− µ
β

)
I
(mt)j
XX (µ) dµ

is the jth smoothed multitapered periodogram of X (j)(t).

3. Statistical properties of f̂
(mt)sp
XX (λ)

In this section we obtain the asymptotic expressions of expectation, variance and
integrated relative mean squared error of the smoothed (kernel) spectrum estimate f̂ (mt)spXX (λ):

3.1. Expected value. Taking expectation of equation (7), we get

E
[
f̂
(mt)sp
XX (λ)

]
≈ 1

βL

L∑

j=1

π∫

−π

W (j)

(
λ− µ
β

)
fXX(µ) dµ. (9)



Some asymptotic properties of a Kernel spectrum estimate with different multitapers 1–59

Making use of the transformation µ = λ + βα, with small β; λ ∈ (−π, π], then equation (9)
becomes

E
[
f̂
(mt)sp
XX (λ)

]
≈ 1

L

L∑

j=1

∞∫

−∞

W (j)(α)f
XX

(λ+ βα) dα, (10)

from a Taylor expansion for fXX(λ+ βα) about λ, equation (10) has the form:

E
[
f̂
(mt)sp
XX (λ)

]
=

1

L

L∑

j=1

∞∫

−∞

W (j)(α)

[
f
XX

(λ) + βαf ′
XX

(λ) +
β2α2

2
f ′′
XX

(λ) +O(β2)

]
dα =

= f
XX

(λ) +
β2

2L
f ′′
XX

(λ)
L∑

j=1

∞∫

−∞

α2W (j)(α) dα+O(β2), (11)

where f ′′
XX

(λ) is the second derivative of the spectrum f
XX

(λ). Therefore

Bias
[
f̂
(mt)sp
XX (λ)

]
≈ β2

2L
f ′′
XX

(λ)
L∑

j=1

∞∫

−∞

α2W (j)(α) dα. (12)

It is clear that the bias of f̂ (mt)spXX (λ) is of the order β2L−1.

3.2. Variance. Since the tapered periodogram ordinates I
(d)j,k
XX (µ`), 1 6 ` < (M + q)/2,

are asymptotically independent (see [6, 8]), then equation (8) can be put in the form:

f̂
(mt)j
XX (λ) =

1

βK

∑

`

K∑

k=1

µ`∫

µ`−1

W (j)

(
λ− µ
β

)
I
(d)j,k
XX (µ) dµ ≈

≈ 2π

βK(M + q)

∑

`

K∑

k=1

W (j)

(
λ− µ`
β

)
I
(d)j,k
XX (µ`).

Using equations (6) and (8), we get

Var
[
f̂
(mt)sp
XX (λ)

]
≈ 4π2

β2L2K(M + q)2

L∑

j=1

∑

`

[
W (j)

(
λ− µ`
β

)]2
f2XX(µ`) ≈

≈ 2π

β2L2K(M + q)

L∑

j=1

π∫

−π

[
W (j)

(
λ− µ
β

)]2
f2XX(µ) dµ.

Putting µ = λ+ βα,

Var
[
f̂
(mt)sp
XX (λ)

]
=

2π

βK(M + q)L2

L∑

j=1

∞∫

−∞

[
W (j)(α)

]2
f2XX(λ+ βα) dα ≈

≈ 2π

βK(M + q)L2
f2XX(λ)

L∑

j=1

∞∫

−∞

[
W (j)(α)

]2
dα,

(13)

which is of the order
[
βKL2(M + q)

]−1
.
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From equations (12) and (13) the mean squared error (MSE)of f̂ (mt)spXX (λ) is

MSE
[
f̂
(mt)sp
XX (λ)

]
=
(
Bias

[
f̂
(mt)sp
XX (λ)

])2
+Var

[
f̂
(mt)sp
XX (λ)

]
.

The MSE of an estimate can be small only if both bias term and variance term are small.
We show that the two terms are of the orders β2L−1 and [βKL2(M + q)]−1. Then it follows

that the variance and the squared bias terms of f̂ (mt)spXX (λ) are balanced for [βKL2(M+q)]−1 ≈

β4L−2. This implies an optimal choice of bandwidth equals to β ≈ [K(M + q)]−1/5. Hence,
β → 0 as M →∞. Using equations (12), (13) and the optimal choice of β, we get

Bias
[
f̂
(mt)sp
XX (λ)

]
, Var

[
f̂
(mt)sp
XX (λ)

]
→ 0, M →∞, (14)

that is f̂ (mt)spXX (λ) is a consistent estimate of fXX(λ) as M → ∞. Also, Var
[
f̂
(mt)sp
XX (λ)

]

becomes less variability as at least K or L increases.

3.3. Integrated relative mean squared error. We take IMSE as a measure for the
goodness of fit of a spectral estimate. IMSE of f̂ (mt)spXX (λ) is defined by (see [5]):

IMSE
[
f̂
(mt)sp
XX (λ)

]
=

π∫

−π

E

[
f̂
(mt)sp
XX (λ)− fXX(λ)

fXX(λ)

]2
dλ =

=

π∫

−π



E
[
f̂
(mt)sp
XX (λ)

]

fXX(λ)
− 1



2

dλ+

π∫

−π

Var

[
f̂
(mt)sp
XX (λ)

fXX(λ)

]
dλ.

(15)

Hence,

IMSE
[
f̂
(mt)sp
XX (λ)

]
= 2π +

π∫

−π

[
f−1XX(λ)

]2 (
E
[
f̂
(mt)sp
XX (λ)

])2
dλ−

− 2

π∫

−π

f−1XX(λ)E
[
f̂
(mt)sp
XX (λ)

]
dλ+

π∫

−π

[
f−1XX(λ)

]2
Var

[
f̂
(mt)sp
XX (λ)

]
dλ.

From equations (3), (11) and (13), then formula (15) has the form:

IMSE
[
f̂
(mt)sp
XX (λ)

]
≈ 2π + (2π)−2

∞∑

τ=−∞

∞∑

r=−∞

dXX(τ) dXX(r)×

×
π∫

−π


fXX(λ) +

β2

2L
f ′′XX(λ)

L∑

j=1

∞∫

−∞

α2W (j)(α)dα



2

e−iλ(τ+r)dλ−

− π−1
∞∑

τ=−∞

dXX(τ)

π∫

−π


fXX(λ) +

β2

2L
f ′′XX(λ)

L∑

j=1

∞∫

−∞

α2W (j)(α)dα


 e−iλτdλ+

+
(2π)−1

βKL2(M + q)

∞∑

τ=−∞

∞∑

r=−∞

dXX(τ)dXX(r)

∞∫

−∞

π∫

−π

f2XX(λ)
L∑

j=1

[
W (j)(α)

]2
e−iλ(τ+r) dλ dα.

(16)
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If we consider the optimal choice of β, β ≈ [K(M + q)]−1/5, then equation (16) can be
put in the form:

IMSE
[
f̂
(mt)sp
XX (λ)

]
≈ 2π + (2π)−2

∞∑

τ=−∞

∞∑

r=−∞

dXX(τ)dXX(r)




π∫

−π

f2XX(λ)e
−iλ(τ+r)dλ


−

− π−1
∞∑

τ=−∞

dXX(τ)




π∫

−π

fXX(λ)e
−iλτdλ


 ≈ 2π − π−1

∞∑

τ=−∞

dXX(τ)CXX(−τ)+

+ (2π)−2
∞∑

τ=−∞

∞∑

r=−∞

dXX(τ)dXX(r)




π∫

−π

f2XX(λ)e
−iλ(τ+r)dλ


, M →∞. (17)
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