УДК 517.98

МАЖОРИРУЕМЫЕ ОПЕРАТОРЫ УРЫСОНА В ПРОСТРАНСТВАХ СО СМЕШАННОЙ НОРМОЙ 1

М. А. Плиев

Памяти Г. Я. Лозановского посвящается

Рассматриваются мажорируемые операторы Урысона, действующие в пространствах со смешанной нормой. Изучаются условия непрерывности и различные типы компактности для таких операторов.

Ключевые слова: мажорируемые операторы Урысона, пространства со смешанной нормой, BM-компактность, EC-компактность, почти компактность.

Введение

Изучение топологических и порядковых свойств операторов, действующих в функциональных пространствах, является традиционной задачей анализа. Линейным операторам, действующим в банаховых решетках и решеточно нормированных пространствах, посвящена обширная литература [2, 6, 7]. В книгах [1, 5, 8] изучались нелинейные операторы типа Урысона и Гаммерштейна, действующие в банаховых и локально выпуклых пространствах. В работах [9, 10] интегральные операторы Урысона рассматривались с точки зрения порядкового анализа. При изучении таких операторов, как впрочем и для линейного случая, оказывается полезной техника решеточно нормированных пространств и мажорируемых операторов. В работах [2, 3] были введены мажорируемые операторы Урысона, действующие в решеточно нормированных пространствах и был найден критерий интегрального представления мажорируемого оператора Урысона. Настоящая заметка продолжает этот круг исследований и посвящена изучению топологических свойств мажорируемых операторов Урысона, действующих в пространствах со смешанной нормой.

1. Предварительные сведения

Здесь мы приведем некоторые предварительные сведения, необходимые для дальнейшего. Стандартный источник для ссылок по теории векторных решеток и решеточно нормированных пространств — монография [2]. Теория операторов Урысона, действущих в векторных решетках, подробно изложена в [9].

^{© 2007} Плиев М. А.

 $^{^1}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект N 06-01-00622.

3-48 Плиев M. A.

1.1. Рассмотрим векторную решетку F и векторное пространство W. Говорят, что оператор $T: F \to W$ ортогонально аддитивен, если $T(f_1 + f_2) = Tf_1 + Tf_2$ для дизьюнктных f_1 и f_2 . Ортогонально аддитивный оператор T называется порядково ограниченные множества в порядково ограниченные множества. Оператор $T: E \to F$, действующий между векторными решетками E и F, называется абстрактным оператором Урысона, если он порядково ограничен и ортогонально аддитивен. Множество всех абстрактных операторов Урысона из E в F обозначается $\mathcal{U}(E,F)$. Частичный порядок в векторном пространстве $\mathcal{U}(E,F)$ вводится с помощью конуса $\mathcal{U}_+(E,F)$, определяемого следующим образом:

$$T \in \mathscr{U}_{+}(E, F) \Leftrightarrow (\forall e \in E) \ Te \geqslant 0.$$

При этом оператор $S\geqslant T$ в том и только том случае, если $S-T\in\mathscr{U}_+(E,F)$.

В случае, когда пространство F порядково полно, для $\mathscr{U}(E,F)$ можно построить порядковое исчисление типа Рисса-Канторовича, аналогично линейному случаю.

1.2. Пусть E и F — векторные решетки, причем решетка F порядково полна. Тогда $\mathscr{U}(E,F)$ — порядково полная векторная решетка и для любых двух операторов $T,S\in\mathscr{U}(E,F)$ и вектора $f\in E$ справедливы формулы [9]:

$$(T \vee S)(f) := \sup\{Tg + Sh : g + h = f; g \perp h\};$$

$$(T \wedge S)(f) := \inf\{Tg + Sh : g + h = f; g \perp h\};$$

$$T^{+}(f) := \sup\{Tg : g \leqslant f, (f - g) \perp g\};$$

$$T^{-}(f) := -\inf\{Tg : g \leqslant f, (f - g) \perp g\};$$

$$|Tf| \leqslant |T|(f).$$

- **1.3.** В [3] были введены мажорируемые операторы Урысона, действующие в решеточно нормированных пространствах. Пусть (V, E) решеточно нормированное пространство, а (W, F) пространство Банаха-Канторовича. Оператор $T: V \to W$ называется ортогонально аддитивным, если T(v+w) = Tv + Tw, когда v и w дизъюнктны. Оператор $T: V \to W$ называется мажорируемым оператором Урысона, если выполняются следующие условия:
 - 1) T ортогонально аддитивен;
 - 2) существует $S \in \mathscr{U}_{\text{sim}}(E, F)$ такой, что выполняется неравенство:

$$|Tv| \leqslant S(|v|) \quad (v \in V).$$

Символом $\mathscr{U}_{\text{sim}}(E,F)$ обозначается множество ортогонально аддитивных, положительных, возрастающих, симметричных операторов. Выражаясь точнее, $T \in \mathscr{U}_{\text{sim}}(E,F)$ в том и только том случае, когда T ортогонально аддитивен, $Te \in F_+$ для любого вектора $e \in E$, T возрастает на E_+ и кроме того T(-e) = Te для любого $e \in E_+$. Оператор S, обладающий указанными свойствами называется мажсорантой T. Множество всех мажорант обозначается через maj(T). Множество $\mathscr{U}_{\text{sim}}(E,F)$ само является подрешеткой $\mathscr{U}(E,F)$, и поэтому наследует векторный порядок из $\mathscr{U}(E,F)$. Наименьший элемент в maj(T) относительно этого естественного порядка, называется точной мажсорантой оператора T и обозначается |T|. Множество всех мажорируемых операторов Урысона из V в W обозначается через $M_U(V,W)$. Разложимость мажорантной нормы не имеет места, однако существуеет некоторый аналог разложимости [3]. Для любого $T \in M_U(V,W)$ и любых $S, P \in \mathscr{U}_{\text{sim}}(E,F)$ таких, что

$$0 \leqslant S \leqslant |T|; \quad 0 \leqslant P \leqslant |T|; \quad P \perp S; P + S = |T|;$$

найдется оператор $S_T \in M_U(V,W)$ и

$$|T| = |S_T| + |T - S_T|; \quad |S_T| = S; \quad |T - S_T| = P.$$

1.4. Говорят, что сеть $(v_{\alpha})_{\alpha \in \Xi} \subset V$ латерально сходится к элементу v, если $v = \lim_{\alpha} v_{\alpha}$ и $(v_{\alpha} - v_{\beta}) \bot v_{\beta}$ для любых $\alpha, \beta \in \Xi, \beta \leqslant \alpha$. При этом пишут v = l- $\lim_{\alpha} v_{\alpha}$. Рассмотрим теперь, так называемые, латерально непрерывные операторы. Оператор $T: (V, E) \to (W, F)$ называется латерально непрерывным(латерально σ -непрерывным), если из v = l- $\lim_{\alpha} v_{\alpha}(v = l$ - $\lim_{n} v_{n})$ следует Tv = o- $\lim_{\alpha} (Tv_{\alpha}) \left(Tv = o$ - $\lim_{n} Tv_{n}\right)$. Далее в тексте под $\mathfrak{Br}(E)$ будем понимать булеву алгебру проекторов пространства E.

Далее в тексте под $\mathfrak{Br}(E)$ будем понимать булеву алгебру проекторов пространства E. На банаховы пространства X и Y, встречающиеся в тексте, накладываются следующие ограничения: X — сепарабельное банахово пространство, а для банахового пространства Y найдется счетное, всюду плотное подмножество $Z^{\sharp} \subset Z$, где $Z \subset Y^*$ — нормирующее подпространство в Y^* . Имеет место следующий критерий слабой интегральной представимости мажорируемого оператора Урысона [4].

Пусть $T:E(X)\to F(Y)$ — мажорируемый оператор Урысона. Тогда следующие условия эквивалентны:

- 1) T слабый интегральный оператор Урысона;
- 2) для любых двух ограниченных последовательностей вектор-функций $\vec{f_n}$, $\vec{g_n}$ из $|\vec{f_n} \vec{g_n}| \to 0$ по мере вытекает $|T\vec{f_n} T\vec{g_n}| \to 0$ почти всюду.

2. Непрерывные по норме мажорируемые операторы Урысона

2.1. В настоящем пункте мы установим непрерывность по норме слабого интегрального мажорируемого оператора Урысона, действующего в пространствах измеримых вектор-функций. Если пара (V,E) — решеточно нормированное пространство (РНП), где E — банахова решетка, то для произвольного элемента $x \in V$ существует так называемая смешанная норма

$$|||x||| := |||x|||_E.$$

РНП с указанным свойством будем пространством со смешанной нормой. В случае br-полноты пространство со смешанной нормой (V,E) становится банаховым пространством с нормой $\|\cdot\|$. Все встречающиеся в тексте РНП со смешанной нормой будем считать bo-полными. В дальнейшем элементы пространств со смешанной нормой будем обозначать буквами x,y,z,u. За элементами нормирующих банаховых решеток зарезервируем буквы e,f,g,h. Пусть $e\in E_+$ и $M\subset V$. Множество M называется абсолютно эквинепрерывным относительно e, если для любого $\varepsilon>0$ существует $\delta>0$, такое что $\|\pi x\|\|<\varepsilon$ для всех $x\in M$ и порядковых проекторов $\pi\in\mathfrak{Br}(E)$, таких что $\|\pi e\|<\delta$. Напомним, что элемент $e\in E_+$ банаховой решетки называется $\kappa easue ympenhe movko d$, если порядковый идеал E_e , порожденный e, плотен по норме в E. Пусть $\lambda\in\mathbb{R}_+$. Для любого $x\in V$ можно написать

$$|x| = f_1 + f_2; \ f_1 = \pi |x|;$$

где π — проектор на полосу $\{(|x|-\lambda e)^+\}^{\perp\perp}$ и $f_2=|x|-f_2$. В силу разложимости решеточной нормы найдутся такие x_1 и x_2 , что $|x_1|=f_1$ и $|x_2|=f_2$. Пусть теперь $\varphi_{\lambda}(x):=x_2$.

Лемма. Пусть E — банахова решетка c квазивнутренней точкой e, (V, E) — пространство со смешанной нормой, а последовательность $\{x_n\} \subset V$ сходится k x по норме $\| \cdot \|$. Тогда справедливы следующие утверждения:

3-50 Плиев M. A.

- (a) множество $\{x\}$ абсолютно эквинепрерывно относительно e;
- (б) множество $M \subset V$, имеющее вид

$$M = \{\varphi_{\lambda}(x) : \lambda > 0\} \cup \{\varphi_{\lambda}(x_n) : \lambda > 0, n \in \mathbb{N}\} \cup \{x, x_n, n \in \mathbb{N}\}$$

абсолютно эквинепрерывно относительно e.

 \lhd Пусть $x \in V$ и $\varepsilon > 0$. Так как e квазивнутренная точка в E, то порядковый идеал E_e плотен в E и существует такой элемент $f \in E_e$, что $||x| - f|| < \frac{\varepsilon}{2}$. Используем изоморфизм булевых алгебр $\mathfrak{Br}(E)$ и $\mathfrak{Br}(V, E)$. Тогда

$$\|\pi|x| - \pi f\| < \frac{\varepsilon}{2}$$

для любого порядкового проектора π . Так как $f \in E_e$, то $|f| < \lambda e$ для некоторого $\lambda \in \mathbb{R}_+$. Тогда $\|\pi f\| < \lambda \|\pi e\|$. Возьмем $\delta = \frac{\varepsilon}{2\lambda}$. Тогда если $\|\pi e\| < \delta$, то $\|\pi x\| < \varepsilon$, так как справедливы формулы:

$$\||\pi x|| \le \|\pi |x| - \pi f\| + \|\pi f\| \le$$
$$\le \|\pi |x| - \pi f\| + \lambda \|\pi e\| < \varepsilon.$$

Докажем утверждение б). Для данного $\varepsilon > 0$ в силу сходимости последовательности (x_n) к x найдется такой номер $n_0 \in \mathbb{N}$, такой что $||x - x_n|| < \frac{\varepsilon}{2}$, когда $n > n_0$. По доказанному выше существует $\delta_1 > 0$, такой что $||\pi x|| < \frac{\varepsilon}{2}$, когда $||\pi e|| < \delta_1$. С другой стороны существует $\delta_2 > 0$, такой что $||\pi x_n|| < \varepsilon$, для $n \in \{1, \ldots, n_0 - 1\}$, когда $||\pi e|| < \varepsilon$. Возьмем в качестве δ число $\min\{\delta_1, \delta_2\}$. Тогда будет справедлива оценка

$$\||\pi x_n|\| \le \||\pi x_n - \pi x\|| + \||\pi x\|| < \varepsilon; \ \forall n \ge n_0.$$

Для элементов последовательности (x_n) с номерами, принадлежащими множеству $\{1,\ldots,n_0-1\}$ неравенство очевидно. Далее, так как $|\varphi_{\lambda}(x)| \leq |x|$ для любого $\lambda \in \mathbb{R}_+$ и $x \in V$, то $|||\varphi_{\lambda}(x)||| < \varepsilon$, когда $||\pi e|| < \delta$ и $|||\varphi_{\lambda}(x_n)||| < \varepsilon$ для всех $n \in \mathbb{N}$. \triangleright

2.2. Существование квазивнутренней точки в нормирующей решетке облегчает изучение латерально непрерывных мажорируемых операторов Урысона.

Лемма. Пусть E и F — банховы решетки, причем E — K_{σ} -пространство c квазивнутренней точкой e, (V, E) и (W, F) — пространства со смешаннми нормами, $x \in V$. Если $T \in M_U(V, W)$ — латерально непрерывный оператор, то для любого $\varepsilon > 0$ существует $\delta > 0$, такое что $||T\pi x||| < \varepsilon$, для любых $\pi \in \mathfrak{Br}(V)$, таких, что $||\pi e|| < \delta$.

⊲ Проведем доказательство от противного. Тогда существует $y \in V$, $\varepsilon > 0$ и последовательность порядковых проекторов $(\pi_n)_{n=1}^{\infty}$, такая что, $\lim_{n\to\infty} \|\pi_n e\| = 0$ но $\lim_{n\to\infty} \|T\pi_n y\| > \varepsilon$, для любого $n \in \mathbb{N}$. Переходя если надо к подпоследовательности будем считать, что $\sum_{n=1}^{\infty} \|\pi_n e\| < \infty$. Воспользуемся теперь σ -полнотой нормирущей решетки E. Для каждого $k \in \mathbb{N}$ существует порядковый проектор $\rho_k = \sup_{n \geqslant k} \pi_n$. Ясно, что последовательность проекторов $(\rho_k)_{k=1}^{\infty}$ невозрастающая и для каждого $k \in \mathbb{N}$ справедлива формула

$$|||T\rho_k y||| \geqslant |||T\pi_k y||| > \varepsilon.$$

Далее имеем

$$\|\rho_k e\| \le \left\| \sum_{n=k}^{\infty} \pi_n e \right\| \le \sum_{n=k}^{\infty} \|\pi_n e\|.$$

Отметим, что $\sum_{n=k}^{\infty} \|\pi_n e\| \to 0$ когда $k \to \infty$. Пусть теперь $\rho = \inf_{k \in \mathbb{N}} \rho_k$. Ясно, что $\|\rho_k e\| \geqslant \|\rho e\|$ для любого $k \in \mathbb{N}$. Таким образом $\rho e = 0$. Так как e квазивнутренная точка в E, то $\rho = 0$. Таким образом $(\rho_k)_{k=1}^{\infty}$ сходится к нулю в булевой алгебре проекторов $\mathfrak{Br}(V)$ и следовательно $(\rho_k y)_{k=1}^{\infty}$ латерально сходится к 0 в пространстве (V, E). Так как оператор T латерально непрерывен, то последовательность $(|T\rho_k y|)_{k=1}^{\infty}$ порядково сходится к нулю в пространстве F. Используя порядковую непрерывность нормы F, получаем, что $\lim_{k\to\infty} \|T\rho_k y\| = 0$. Пришли к противоречию. \triangleright

2.3. В этом пункте путем небольшой модификации мы усилим лемму 2.2.

Лемма. Пусть (V, E) и (W, F) — те же, что и в 2.2, e — квазивнутренная точка в E и $T \in M_U(V, W)$ — латерально σ -непрерывный оператор. Если множество M абсолютно эквинепрерывно относительно e, тогда для любого $\varepsilon > 0$ существует $\delta > 0$, такое что

$$\forall \pi \in \mathfrak{Br}(V) \quad \|\pi e\| < \delta \Rightarrow \sup_{x \in M} \|T\pi x\| < \varepsilon.$$

 \lhd Проведем доказательство от противного. Тогда существует $\varepsilon' > 0$ и последовательность элементов $(x_n)_{n=1}^{\infty} \subset M$, а также последовательность порядковых проекторов $(\pi_n)_{n=1}^{\infty}$, такие что $\sum_{n=1}^{\infty} \|\pi_n e\| < \infty$ и $\|T\pi_n x_n\| > \varepsilon'$. Как и в 2.2 пусть $\rho_k = \sup_{n \geqslant k} \pi_n$. Тогда мы имеем, что $\|T\rho_k x_k\| > \varepsilon'$ для любого $k \in \mathbb{N}$ и $\lim_{n \to \infty} \|\rho_k e\| = 0$. С другой стороны, применяя лемму 2.2 к каждому x_k , можем написать $\lim_{\|\pi_n e\| \to 0} \|T\pi_n x_k\| = 0$. Тогда для любого $k \in \mathbb{N}$ мы можем найти n(k), n(k) > k, такой, что

$$||T(\rho_{n(k)} - \rho_k)x_k|| > \varepsilon'.$$

Возьмем $k_1=1$ и $k_i=n_{k_i-1}$ и $\theta_i=\rho_{k_i}-\rho_{k_{i+1}}$. Так как $(\rho_{k_i})_{i=1}^\infty$ убывающая последовательность проекторов, то проекторы θ_i попарно взаимно дизъюнктны. Кроме того $\theta_i\leqslant\rho_i$ для любого $i\in\mathbb{N}$ и $\lim_{i\to\infty}\|\theta_ie\|=0$. Пусть $y_i=x_{k_i}$, Тогда $\|T\theta_iy_i\|>\varepsilon'$ для любого $i\in\mathbb{N}$. Так как множество $\{y_i\}_{i=1}^\infty$ абсолютно эквинепрерывно относительно e, то $\lim_{i\to\infty}\|\theta_iy_i\|=0$. Переходя, если надо к подпоследовательности, получаем, что $\sum_{i=1}^\infty\|\theta_iy_i\|<\infty$. Пусть $v=\sum_{i=1}^\infty\theta_iy_i$. Так как проекторы θ_i попарно дизъюнктны, то суммы $\sum_{i=1}^n\theta_iy_i$ латерально сходятся к v. Учитывая это, получаем, что суммы $\sum_{i=1}^nT\theta_iy_i$ латерально сходятся к t0. Так как норма в t0 порядково непрерывна, то можем написать

$$|||Tv||| = \lim_{n \to \infty} \left| \left| \sum_{i=1}^{n} T\theta_i y_i \right| \right|.$$

Получили противоречие. ⊳

2.4. В настоящем пункте мы установим главный результат настоящего параграфа — непрерывность по норме слабого интегрального оператора Урысона. Предварительно докажем вспомогательную лемму.

Лемма. Пусть (V, E) (W, F) — пространства со смешанными нормами, где E, F-банаховы решетки и E кроме того K_{σ} -пространство, e — квазивнутренная точка в $E, x \in V, r, \delta \in \mathbb{R}_+$. Пусть π — порядковый проектор на полосу, порожденную $(|x| - \frac{r}{\delta}e)^+$. Тогда имеют место следующие утверждения:

- 1) $\pi |x| \geqslant \pi(\frac{r}{\delta}e);$
- 2) $(I-\pi)|\varphi_{\frac{r}{\delta}}(x)| = (I-\pi)|x|;$

3-52 Плиев M. A.

- 3) Если кроме того ||x||| < r, то $||\pi e|| < \delta$.
- ⊲ Первое утверждение очевидно. Второе утверждение следует из того, что

$$|\varphi_{\frac{r}{\delta}}(x)| \perp \{(|x| - r/\delta e)^+\}^{\perp \perp}$$

и простого наблюдения, что проекторы $I-\pi$ и π — дизъюнктны. Пусть теперь

$$\|\pi(r/\delta e)\| \le \|\pi|x\|\| \le \|\|x\|\| = \|\|x\|\|.$$

Отсюда следует, что $\|\pi e\| < \delta$ когда $\|x\| < r$. \triangleright

Теорема. Пусть (V, E) и (W, F) — пространства со смешанными нормами, где E, F — банаховы решетки, E кроме того K_{σ} -пространство, e — квазивнутренная точка в E, норма в F порядково непрерывна. Пусть $T \in M_U(V, W)$ — σ -латерально непрерывный оператор. Если T равномерно непрерывен по норме на каждом порядково ограниченном множестве, то он непрерывен по норме на всем пространстве V.

 $\lhd \Pi$ усть $(x_n)_{n=1}^{\infty}$ последовательность в V, сходящаяся по норме к x и предположим, что |||x||| < r, $|||x_n||| < r$ для любого $n \in \mathbb{N}$ и некоторого $r \in \mathbb{R}_+$. Требуется установить, что последовательность $(Tx_n)_{n=1}^{\infty}$ сходится по норме к Tx. Рассмотрим множество

$$M = \{ \varphi_{\lambda}(x_n) : n \in \mathbb{N}, \lambda \in \mathbb{R}_+ \} \cup \{ \varphi_{\lambda}(x) : \lambda \in \mathbb{R}_+ \} \cup \{ x, (x_n) : n \in \mathbb{N} \}.$$

Используя лемму 2.3, мы можем заключить, что множество M абсолютно эквинепрерывно относительно e. Тогда для произвольного $\varepsilon>0$ мы можем найти такое $\delta>0$, что $||T\pi y|||<\frac{\varepsilon}{3}$ для любого $y\in M$ и любого порядкового проектора π , такого что $||\pi e||<\delta$. Определим теперь элемент $\varphi(x):=\varphi_{\frac{r}{\delta}}(x)$. Пусть π_n — порядковые проекторы на полосы $\{(|x_n|-\frac{r}{\delta}e)^+\}^{\perp \perp}$ и π проектор на полосу $\{(|x|-\frac{r}{\delta}e)^+\}^{\perp \perp}$. Из леммы 2.4 следует, что $||\pi_n e||<\delta$ и $||\pi e||<\delta$. Тогда $||T\pi_n x_n|||<\frac{\varepsilon}{3}$ и $||T\pi_n \varphi_\lambda(x_n)||<\frac{\varepsilon}{3}$, $||T\pi \varphi_\lambda(x)||<\frac{\varepsilon}{3}$ для любого $\lambda\in\mathbb{R}_+$. Легко видеть, что $\varphi(x_n)$ сходится по норме к $\varphi(x)$ в пространстве V. Кроме того $|\varphi(x)|\leqslant\frac{r}{\delta}e$ и $|\varphi(x_n)|\leqslant\frac{r}{\delta}e$ для любого $\lambda\in\mathbb{R}_+$. Используя равномерную непрывность оператора T на порядково ограниченных множествах мы можем указать такой номер $n_0\in\mathbb{N}$, что для всех $n\geqslant n_0$ справедливо неравенство $||T\varphi(x)-T\varphi(x_n)||<\frac{\varepsilon}{3}$. Далее мы можем написать

$$|||Tx_{n} - Tx||| = |||T(I - \pi_{n})x_{n} + T\pi_{n}x_{n} - T(I - \pi)x - T\pi x|||$$

$$= |||T\varphi(x_{n}) - T\varphi(x) + T\pi_{n}x_{n} - T\pi x|||$$

$$\leq |||T\varphi(x_{n}) - T\varphi(x)||| + |||T\pi_{n}x_{n}||| + |||T\pi x||| < \varepsilon. \triangleright$$

2.5. Опираясь на доказанную выше теорему, можно установить непрерывность по норме слабого интегрального оператора Урысона, действующего в пространствах измеримых вектор-функций.

Лемма. Пусть E, F — банаховы идеальные подпространства пространств измеримых функций $L_0(\nu)$ и $L_0(\mu)$, норма в F порядково непрерывна, X, Y — банаховы пространства и E(X), F(Y) — соответствующие пространства измеримых вектор-функций. Пусть $T: E(X) \to F(Y)$ — мажорируемый слабый интегральный оператор Урысона. Тогда T равномерно непрерывен на порядково ограниченных множествах в E(X).

 \lhd Пусть $(x_n)_{n=1}^{\infty}$ и $(y_n)_{n=1}^{\infty}$ — порядково ограниченные последовательности в E(X) и предположим, что

$$|||x_n - x||| = |||x_n - y_n||| \to 0.$$

Тогда используя свойства нормы в E, получаем что $|x_n - x| \to 0(\nu)$. Так как T — слабый интегральный оператор Урысона, то $|Tx_n - Ty_n| \to 0$ почти всюду в F. Следовательно $||Tx_n - Ty_n|| \to 0$ ввиду порядковой непрерывности нормы в F. \triangleright

Так как слабый интегральный оператор Урысона латерально непрерывен, то справедливо следущее утверждение.

Следствие. Пусть E, F — банаховы идеальные подпространства пространств измеримых функций $L_0(\nu)$ и $L_0(\mu)$, норма в F порядково непрерывна, X, Y — банаховы пространства и E(X), F(Y) — соответствующие пространства измеримых векторфункций. Пусть T: $E(X) \to F(Y)$ — мажорируемый слабый интегральный оператор Урысона. Тогда T непрерывен по норме.

Замечание. Если в 2.1–2.4 рассмотреть частный случай, когда пространства со смешанными нормами совпадают с нормирующими решетками, то мы получим результаты Ж. Мазона и С. де Леона, установленные в работе [10]. Похожими задачами, в контексте операторов, действующих в квазинормированных пространствах, занимался В. Г. Фетисов [5].

3. Компактность операторов Урысона

3.1. В этой главе мы установим достаточные условия для разных типов компактности мажорируемых операторов Урысона, действующих в пространствах со смешанной нормой. Пусть (V,E) и (W,F) — пространства со смешанными нормами, а $T:(V,E) \to (W,F)$ — мажорируемый оператор Урысона. Оператор называется компактным, если для каждого ограниченного по норме множества $M \subset V$ его образ T(M) предкомпактен в W. Компактный и непрерывный оператор называется вполне непрерывным.

Оператор T называется BM-компактным, если для любого $x \in V$ оператор отображает множеств $M_x := \{y : y \in V, |y| \leqslant |x|\}$ в предкомпактное множество в W. В случае, когда пространства со смешанными нормами (V, E) и (W, F) имеют вид (E, E) и (F, F) BM-компактность совпадает с AM-компактностью введенной в [10]. Если же $E = F = \mathbb{R}$, то BM-компактность — обычная компактность оператора в нормированных пространствах. Пусть $x \in V$. Напомним, что $y \in V$ называется осколком x, если $|x - y| \bot |y|$. Множество осколков x обозначается \mathfrak{B}_x . Отметим, что булевы алгебры осколков x и |x| изоморфны. Оператор T называется C-компактным, если для любого $x \in X$ $T(\mathfrak{B}_x)$ предкомпактное множество в W.

Оператор T называется *почти компактным*, если для любого $\varepsilon>0$ и порядково ограниченного множества $D\subset V$ существует $x\in V$, такой что

$$T(D) \subset T(M_x) + \varepsilon B_W$$
,

где $B_W := \{z: z \in W; \ \|\|z\|\| \leqslant 1\}$ — единичный шар пространства W.

В контексте теории банаховых решеток, операторы с вышеуказанными свойствами изучались в работе [10]. Для операторов, действующих в решеточно нормированных пространствах можно ввести свойство, близкое к C-компактности. Пусть $\mathfrak{E}_x := \{y : |y| = |z|; z \in \mathfrak{B}_x\}$. Оператор T называется EC-компактным, если для любого $x \in X$ образ $T(\mathfrak{E}_x)$ предкомпактное множество в W.

Простейшие примеры показывают, что в пространствах со смешанной нормой множества ЕС-компактных и C-компактных операторов не совпадают. В случае операторов, действующих в банаховых решетках, картина выглядит проще.

3-54 Плиев M. A.

Лемма. Пусть E и F банаховы решетки. Тогда оператор $T \in \mathscr{U}(E,F)$ будет EC-компактным тогда и только тогда, когда он C-компактен.

 \lhd Пусть $T \in \mathscr{U}(E,F)$ и оператор C-компактен. Так как $T(\mathfrak{E}_f) = T(\mathfrak{B}_f) \cup T(\mathfrak{B}_{-f})$, то $T(\mathfrak{E}_f)$ также предкомпактное множество. Обратная импликация очевидна. \triangleright

Теорема. Пусть (V, E) и (W, F) — пространства со смешанными нормами, E, F — банаховы решетки и E — K_{σ} -пространство. Пусть $T \in M_U(V, W)$ и T — EC-компактный оператор. Если T равномерно непрерывен на порядково ограниченных множествах в V, то тогда он BM-компактен.

 \lhd Пусть x произвольный элемент V. Требуется установить, что множество $T(M_x)$ предкомпактно в W. Возьмем произвольное $\varepsilon > 0$. Тогда по предположению найдется такое $\delta > 0$, что справедливо неравенство $||Ty_1 - Ty_2|| < \varepsilon/2$ для $y_1, y_2 \in M_x$ таких, что $||y_1 - y_2|| < \delta$.

Зафиксируем $n \in \mathbb{N}$, такое что $\frac{1}{2^n} < \frac{\delta}{2\|x\|}$. Так как оператор C-компактнен, то для данного $\varepsilon/2^n > 0$ найдется конечное множество $D_j, j \in \{1, \dots, n-1\}$ осколков элемента $j/2^n x$, такое, что для каждого осколка z элемента $\frac{j}{2^n} x$ существует $u_j \in D_j$, удовлетворяющий неравенству

$$|||Tz - Tu_j||| < \frac{\varepsilon}{2^n}.$$

Пусть $D:=\{\sum_{j=1}^{2^{n-1}}Tu_j:u_j\in D_j\}$. Возьмем произвольный элемент $y\in M_x$. Применяя спектральную теорему Фрейденталя к |y|, можем найти такой элемент $h\in E_+$, что $h=\sum_{j=1}^{2^{n-1}}\frac{j}{2^n}g_i$, где g_i — осколки элемента |x| и $|y|-h<\frac{1}{2^{n-1}}|x|$. Через v_i обозначим такие осколки x, что $|v_i|=g_i$. Отметим, кроме того, что элемент h можно подобрать удовлетворяющим условию $|y|-h\geqslant 0$. Используя разложимость решеточной нормы, найдем такой элемент $y^*\in V$, такой что $|y^*|=h$. Тогда

$$|||y - y^*|| = |||y - y^*||| = |||y| - h|| \le \left\| \frac{1}{2^{n-1}} |x| \right\| < \delta$$

Таким образом, в силу равномерной непрерывности оператора имеем $||Ty - Ty^*|| < \frac{\varepsilon}{2}$. С другой стороны, так как $\frac{j}{2^n}g_i$ — осколки элемента $\frac{j}{2^n}|x|$, то существуют $u_j \in D_j$

$$\left\| \left| T(\frac{j}{2^n}v_i) - Tu_j \right| \right\| < \frac{\varepsilon}{2^n}$$

Далее можем написать

$$\left\| \left\| \sum_{j=1}^{2^{n-1}} Tu_j - Ty^* \right\| = \left\| \sum_{j=1}^{2^{n-1}} Tu_j - \sum_{j=1}^{2^{n-1}} T(\frac{j}{2^n}v_i) \right\| < \frac{\varepsilon}{2}.$$

Таким образом $\|\sum_{j=1}^{2^{n-1}} Tu_j - Ty\|\| < \varepsilon$. Это означает, что D является ε -сетью и множество $T(M_x)$ предкомпактно. \triangleright

3.2. В настоящем пункте докажем следующий результат.

Теорема. Пусть (V, E), (W, F), (H, G) — пространства со смешанными нормами, где E, F, G — банаховы решетки. Предположим, что $T \in M_U(V, W)$ почти компактный оператор и $S \in M_U(W, H)$ — BM-компактен и равномерно непрерывен. Тогда оператор $R := ST : V \to H$ компактен.

 \lhd Так как S равномерно непрерывен, то $||Sy_1 - Sy_2|| < \frac{\varepsilon}{2}$ когда $||y_1 - y_2|| < \delta$. Так как T почти компактен, то существует $x^* \in V$, такой что

$$T(D) \subset T(M_{x^*}) + \delta B_W$$
,

где D — ограниченное по норме множество в V.Так как T мажорируемый оператор, то найдется $y_0 \in W$, такое что $T(M_{x^*}) \subset M_{y_0}$. Воспользовавшись BM-компактностью оператора S можем найти такое конечное множество z_1, \ldots, z_n элементов H, что справедлива формула

$$S(M_{y_0}) \subset \bigcup_{i=1}^n \left(z_i + \frac{\varepsilon}{2}B_H\right).$$

В качестве ε -сети для множества R(D) можем взять набор z_1,\ldots,z_n . Действительно, пусть $y\in M_{y_0},\,v\in\delta B_W$. Тогда справедливы формулы

$$|||S(y+v)-z_i||| \le |||S(y+v)-Sy+Sy-z_i||| \le |||S(y+v)-Sy||| + |||Sy-z_i||| \le \varepsilon$$

Далее можем написать

$$R(D) = (ST)(D) \subset \bigcup_{i=1}^{n} \left(z_i + \frac{\varepsilon}{2}B_H\right).$$

Следовательно R — компактный оператор. \triangleright

3.3. Накладывая некоторые ограничения на пространство на котором определен оператор, можно получить дополнительную характеризацию почти компактных операторов.

Теорема. Пусть (V, E), (W, F) — пространства со смешанными нормами, где E, F — банаховы решетки и E это K_{σ} -пространство. Пусть $T \in M_U(V, W)$. Если для любого $r \in \mathbb{R}_+$ существует $e \in E_+$, $e \neq 0$, такое что, для любого $\varepsilon > 0$ существует $\delta > 0$ и

$$(\forall x \in V) \quad (\forall \pi \in \mathfrak{Br}(V)) \quad (\|\|x\|\| \leqslant r; \|\pi e\| < \delta \Rightarrow \|\|T\pi x\|\| < \varepsilon)$$

то оператор T почти компактен.

 \lhd Требуется установить, что если $D = \{x : x \in V, |||x||| \le r\}$ и $\varepsilon > 0$, то существует такой элемент $x_0 \in V$, что $T(D) \subset T(M_{x_0}) + B_W$. Для заданных $r \in \mathbb{R}_+$ и $\varepsilon > 0$ по предположению существует $e \in E_+$, $e \ne 0$ и $\delta > 0$, такие что

$$\sup_{\|x\| \leqslant r} \|T\pi x\| < \frac{\varepsilon}{2}$$

для каждого порядкового проектора π , где $\|\pi e\|<\delta$. Для каждого $x\in V$ через π_x обозначим проектор на полосу $\{(|x|-\frac{r}{\delta}e)^+\}^{\perp\perp}$. В силу разложимости решеточной нормы найдутся такие x_1 и x_2 , что

$$x = x_1 + x_2; \quad |x_1| = \pi_x |x|; \quad |x_2| = |x| - |x_1|.$$

Пусть $\varphi(x) := x_2$. Используя лемму 2.4 можем написать

$$(I - \pi_x)\varphi(x) = (I - \pi_x)x; \quad |||x||| \leqslant r \Rightarrow ||\pi_x e|| < \delta.$$

Если $||x|| \le r$, тогда $||\varphi(x)|| \le r$, так как $|\varphi(x)| \le |x| \wedge \frac{r}{\delta}e$. Кроме того $||\pi_x e|| < \delta$. Далее справедливы оценки

$$|||T\pi_x x||| < \frac{\varepsilon}{2}; \quad |||T\pi_x \varphi(x)||| < \frac{\varepsilon}{2}.$$

3-56 Плиев M. A.

 $|||Tx-T\varphi(x)||| = |||T\pi_x x + T(I-\pi_x)x - T(I-\pi_x)\varphi(x) - T\pi_x \varphi(x)||| \leqslant |||T\pi_x||| + |||T\pi_x \varphi(x)||| < \varepsilon.$ Следовательно найдется $u \in V$, такой что

$$T(D) \subset T(M_u) + \varepsilon B_W. \triangleright$$

- **3.4. Теорема.** Пусть E, F банаховы идеальные подпространства пространств измеримых функций $L_0(A_1, \Sigma_1, \nu)$ и $L_0(A_2, \Sigma_2, \mu)$, норма в E порядково непрерывна, X, Y банаховы пространства и E(X), F(Y) соответствующие пространства измеримых вектор-функций. Пусть $T \in M_U(V, W)$ непрерывный оператор. Тогда следующие условия эквивалентны:
- (1) Для любого $r\in\mathbb{R}_+$ существует $e\in E_+,\ e\neq 0,$ такое что, для любого $\varepsilon>0$ существует $\delta>0$ и

$$(\forall x \in V) \quad (\forall \pi \in \mathfrak{Br}(V)) \quad (\|\|x\|\| \leqslant r; \ \|\pi e\| < \delta \Rightarrow \|\|T\pi x\|\| < \varepsilon) \,.$$

(2) Для любого $r \in \mathbb{R}_+$ и для любой последовательности $(x_n)_{n=1}^{\infty}$ в E(X), $||x_n|| \le r$; $n \in \mathbb{N}$, справедлива импликация

$$|x_n - x| \to 0(\nu) \Rightarrow ||Tx_n - Tx|| \to 0.$$

 $\lhd (1)\Rightarrow (2)$. Пусть $x\in V,\ r\in \mathbb{R}_+$, каждый член последовательности $(x_n)_{n=1}^\infty\subset E(X)$ удовлетворяет $|||x_n|||\leqslant r$ и $|x_n-x|\to 0(\nu)$. Тогда для данного $\varepsilon>0$ по предположению существует $e\in E_+,\ e\neq 0$ и $\delta>0$, такие что $\sup_{||x||\leqslant r}|||T\pi x|||<\frac{\varepsilon}{3}$ для каждого порядкового проектора, удовлетворяющего неравенству $||\pi e||<\delta$. Пусть π и π_n проекторы на полосы $\{(|x|-\frac{a}{\delta}e)^+\}^{\perp\perp}$ и $\{(|x_n|-\frac{a}{\delta}e)^+\}^{\perp\perp}$ соответственно. Так как $|x_n-x|\to 0(\nu)$, то $|\varphi(x)-\varphi(x)|\to 0(\nu)$. Кроме того $|\varphi(x_n)|\leqslant \frac{r}{\delta}e$. Следовательно $|\varphi(x)-\varphi(x)|\to 0(\nu)$ в E(X). Отсюда получаем, что $||\varphi(x_n)-\varphi(x)||\to 0$, когда $n\to\infty$. В силу непрерывности оператора T, найдется такой номер $n_0\in\mathbb{N}$, такой что $||T\varphi(x_n)-T\varphi(x)||<\frac{\varepsilon}{3}$ для всех $n_0\geqslant n$. Используя те же аргументы, что и при доказательстве теоремы теоремы 3.3, приходим к неравенству

$$|||Tx_n - Tx||| < \varepsilon; \ \forall n \geqslant n_0.$$

Установим импликацию (2) \Rightarrow (1). Предположим, что утверждение (1) неверно. Тогда для любых $r \in \mathbb{R}_+$ и $e \in E_+$, $e \neq 0$ существуют $\varepsilon > 0$ и $x_0 \in V$, такие что

$$|||T\pi x_0||| \geqslant \varepsilon; |||x_0||| \leqslant r; \forall \pi \in \mathfrak{Br}(V); ||\pi e|| < \delta;$$

В частности это должно выполняться, когда e — слабая порядковая единица в E, которая существует в данном пространстве согласно [6]. Мы можем найти такую последовательность (x_n) $_{n=1}^{\infty}$ $\subset V$, где $||x_n|| \leqslant r$ для всех $n \in \mathbb{N}$ и последовательность проекторов (π_n) $_{n=1}^{\infty}$, удовлетворяющую условию $\lim_{n\to\infty} ||\pi_n e|| = 0$ в то время как $||T\pi_n x_n|| \geqslant \varepsilon$ для всех $n \in \mathbb{N}$. Существует посдедовательность (Ω_n) $_{n=1}^{\infty}$ измеримых подмножеств A_1 , таких что $\pi_n f = f \chi_{\Omega_n}$ для любых $f \in E_+$. Тогда $||e \chi_{\Omega_n}|| \to 0$, $n \to \infty$ и $e \chi_{\Omega_n} \to 0(\nu)$, $n \to \infty$. Отсюда получаем, что $||\pi_n x_n|| \to 0(\nu)$, $n \to \infty$. Теперь по предположению

$$\lim_{n\to\infty} |||T\pi_n x_n||| = 0.$$

Пришли к противоречию. ⊳

Замечание. Вопросы, рассмотренные в настоящей главе, привлекали внимание многих математиков. Так в частном случае, когда пространства со смешанными нормами

совпадают с нормирующими решетками, результаты 3.1–3.4 совпадают с теоремами, установленными в работе [10]. Вопросам компактности нелинейных интегральных операторов, действующих в различных пространствах скалярных функций, уделено много внимания в [1]. Более современное изложение можно найти в [8].

Литература

- 1. *Красносельский М. А.*, Забрейко П. П. и др. Интегральные операторы в пространствах суммируемых функций.—М.: Наука, 1966.—500 с.
- 2. $\mathit{Кусраев}$ А. Г. Мажорируемые операторы.—М.: Наука, 2003.—619 с.
- 3. *Кусраев А. Г., Плиев М. А.* Ортогонально аддитивные операторы в решеточно нормированных пространствах // Владикавк. мат. журн.-1999.-Т. 1, вып. 3.-С. 33-43.
- 4. *Кусраев А.* Γ , *Плиев М. А.* Слабое интегральное представление мажорируемых ортогонально аддитивных операторов // Владикавк. мат. журн.—1999.—Т. 1, вып. 4.—С. 22–39.
- 5. Фетисов В. Г., Филиппенко В. И., Козоброд В. Н. Операторы и уравнения в линейных топологических пространствах.—Владикавказ: Изд-во ВНЦ РАН, 2006.
- 6. Abramovich Y. A., Aliprantis C. D. An Invitation to Operator Theory. Graduate Studies in Mathematics V. 50. AMS, 2002.
- 7. Aliprantis C. D., Burkinshaw O. Positive Operators.—New York: Acad. Press, 1985.—xvi+367 p.
- 8. Appell J. M., Kalitvin A. S., Zabrejko P. P. Partial Integral Operators And Integro-Differential Equations.—New York: Marcel Dekker Inc, 2000.—560 p.
- 9. *Mazon J. M.*, *Segura de Leon S*. Order bounded ortogonally additive operators // Rev. Roumane Math. Pures Appl.—1990.—V. 35, N = 4.—P. 329–353.
- 10. Mazon J. M., Segura de Leon S. Uryson operators // Rev. Roumane Math. Pures Appl.—1990.—V. 35, N 5.—P. 431–449.

Статья поступила 7 мая 2005 г.

Плиев Марат Амурханович, к.ф.-м. н. Институт прикладной математики и информатики ВНЦ РАН и РСО-А Владикавказ, 362027, РОССИЯ E-mail: plimarat@yandex.ru