УДК **517.98**

ON SOME PROPERTIES OF ORTHOSYMMETRIC BILINEAR OPERATORS¹

A. G. Kusraev

This note contains some properties of positive orthosymmetric bilinear operators on vector lattices which are well known for almost f-algebra multiplication but despite of their simplicity does not seem appeared in the literature.

Mathematics Subject Classification (2000): 46A40, 47A65.

Key words: vector lattice, square of a vector lattice, bilinear operator, orthosymmetry, lattice bimorphism, f-algebra multiplication.

The aim of this note is to present some properties of orthosymmetric bilinear operators which are well known for f-algebra multiplication but despite of their simplicity does not seem appeared in the literature. All unexplained terms can be found in [1] or [13]. All vector lattices under consideration are assumed to be Archimedean.

1. A bilinear operator $b : E \times E \to G$ is called *orthosymmetric* if $x \wedge y = 0$ implies b(x, y) = 0 for all $x, y \in E$. This definition was introduced in [8]. Recall also that b is said to be *symmetric* if b(x, y) = b(y, x) for all $x, y \in E$ and *positively semidefinite* if $b(x, x) \ge 0$ for every $x \in E$. In the special case that b is the multiplication of a commutative almost f-algebra the following proposition is presented in [2, Proposition 1.13].

Proposition 1. Let *F* and *G* be vector lattices. A positive bilinear operator *b* from $E \times E$ to *G* is orthosymmetric if and only if $b(x, y) = b(x \lor y, x \land y)$ for all $x, y \in E$.

 \triangleleft Orthosymmetry implies $b(x - x \land y, y - x \land y) = 0$. Since a positive orthosymmetric bilinear operastor is symmetric (see [8]), we deduce

$$b(x,y) = b(x,x \wedge y) + b(x \wedge y,y) - b(x \wedge y,x \wedge y)$$
$$= b(x+y-x \wedge y,x \wedge y) = b(x \vee y,x \wedge y).$$

Conversely, if $x \wedge y = 0$, then $b(x, y) = b(x \vee y, 0) = 0$. \triangleright

A bilinear operator $b : E \times F \to G$ is said to be *lattice bimorphism* if the mappings $y \mapsto b(e, y)$ $(y \in F)$ and $x \mapsto b(x, f)$ $(x \in E)$ are lattice homomorphisms for all $0 \leq e \in E$ and $0 \leq f \in F$, see [11]. Evidently, every lattice bimorphism is positive. The following characterization of lattice bimorphism was given in [15].

Proposition 2. For a positive bilinear operator $b : E \times E \rightarrow G$ the following assertions are equivalent:

(1) b is a lattice bimorphism;

(2) |b(x,y)| = b(|x|, |y|) for all $x \in E$ and $y \in F$;

© 2008 Kusraev A. G.

 $^{^{1}}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект № 06-01-00622.

(3) if $0 \leq x, u \in E$ and $0 \leq y, v \in F$ satisfy $x \wedge u = 0$ and $y \wedge v = 0$, then $b(x, y) \wedge b(u, v) = 0$.

2. It was mentioned in [12] that an orthosymmetric positive bilinear operator is positively semidefinite. The converse is also true for lattice bimorphisms as was observed in [7, Proposition 1.7]. The following characterization of symmetric lattice bimorphisms is well known at least for d-algebra multiplication (see, for example, [2, Theorems 4.3, 4.4, 4.5] and [4, Proposition 3.6]).

Theorem 1. Let *E* and *F* be vector lattices and let $b : E \times E \to F$ be a lattice bimorphism. Then the following assertions are equivalent:

(1) b is symmetric;

(2) b(x,x) - b(y,y) = b(x - y, x + y) for all $x, y \in E$;

(3) $b(x,x) \wedge b(y,y) \leq b(x,y) \leq b(x,x) \vee b(y,y)$ for all $x, y \in E_+$;

(4) $b(x \wedge y, x \wedge y) = b(x, x) \wedge b(y, y)$ and $b(x \vee y, x \vee y) = b(x, x) \vee b(y, y)$ for all $x, y \in E_+$;

(5) $x \wedge y = 0$ implies b(x, y) = b(y, x) for all $x, y \in E$;

- (6) $b(x, |x|) = b(x^+, x^+) b(x^-, x^-)$ for all $x \in E$;
- (7) b is orthosymmetric;
- (8) b is positively semidefinite.
- \triangleleft (1) \Leftrightarrow (2): It is obviously true for every bilinear operator b.

 $(2) \Rightarrow (3)$: For any $x, y \in E_+$ we deduce making use of (2):

$$b(x,x) \wedge b(y,y) - b(x,y) \leq b(x,x) \wedge b(y,y) - b(x \wedge y, x \wedge y)$$

=[b(x,x) - b(x \wedge y, x \wedge y)] \lapha [b(y,y) - b(x \wedge y, x \wedge y)]
=b(x - x \wedge y, x + x \wedge y) \wedge b(y - x \wedge y, y + x \wedge y)
$$\leq b(x - x \wedge y, x + y) \wedge b(y - x \wedge y, x + y)$$

=b((x - x \wedge y) \lapha(y - x \lapha y), x + y) = 0.

The second inequality is deduced likewise.

 $(3) \Rightarrow (4)$: Using the first inequality in (3) we can write the following chain of equalities:

$$\begin{split} b(x,x) \wedge b(y,y) &= [b(x,x) \wedge b(x,y)] \wedge [b(y,x) \wedge b(y,y)] \\ &= b(x,x \wedge y) \wedge b(y,x \wedge y) = b(x \wedge y,x \wedge y) \end{split}$$

The second equality is deduced likewise.

 $(4) \Rightarrow (5)$: Take $x, y \in E$ with $x \wedge y = 0$. By the first equality of (3) b(x, x) and b(y, y) are disjoint. Using the second equality we have $b(x, x) + b(y, y) = b(x \vee y, x \vee y) = b(x+y, x+y) = b(x, x) + b(x, y) + b(y, x) + b(y, y)$, so that b(x, y) = b(y, x) = 0.

(5) \Rightarrow (6): It is sufficient to observe that $b(x, |x|) - b(x^+, x^+) + b(x^-, x^-) = b(x^+, x^-) - b(x^-, x^+)$.

(6) \Rightarrow (7): If b obey (6), then $b(x^+, x^-)$ and $b(x^-, x^+)$ coincide, see (5) \Rightarrow (6). At the same time these elements are disjoint, since $b(x^+, x^-) \leq b(x^+, |x|), b(x^-, x^+) \leq b(x^-, |x|)$ and $b(x^+, |x|) \wedge b(x^-, |x|) = 0$. Thus, $b(x^+, x^-) = b(x^-, x^+) = 0$, from which (7) follows

 $(7) \Rightarrow (1)$: Follows from [8, Corollary 2].

(7) \Rightarrow (8): If b is ortosymmetric, then $b(x,x) = b(x^+,x^+) - b(x^+,x^-) - b(x^-,x^+) + b(x^-,x^-) = b(x^+,x^+) + b(x^-,x^-) \ge 0$, see [12].

(8) \Leftrightarrow (7): Let *b* be a positively semidefinite lattice bimorphism. Take $x, y \in E$ and put $\alpha := b(x, x), \beta := b(y, y), \gamma := b(x, y) + b(y, x)$. Then $\alpha + \beta - \gamma = b(x - y, x - y) \ge 0$. If $x \land y = 0$, then $b(x, y) \ge b(x, y) \land b(y, y) = b(x \land y, y) = 0$ and, since $b(x, \cdot)$ and $b(\cdot, x)$ are lattice homomorphisms, we have $\alpha \land b(x, y) = b(x, x \land y) = 0$ and $\alpha \land b(y, x) = b(x \land y, x) = 0$.

Thus, $\alpha \perp \gamma$ and analogously $\beta \perp \gamma$. Therefore, $(\alpha + \beta) \perp \gamma$, and taking into account the inequality $\alpha + \beta - \gamma \ge 0$ we derive $\gamma = 0$, i.e. b(x, y) = b(y, x) = 0. \triangleright

3. Let *E* be a vector lattice. A pair (E^{\odot}, \odot) is said to be a *square* of *E* if the following two conditions are fulfilled:

(1) E^{\odot} is a vector lattice and \odot is a symmetric lattice bimorphism from $E \times E$ to E^{\odot} ,

(2) if b is a symmetric lattice bimorphism from $E \times E$ to some vector lattice F, then there exists a unique lattice homomorphism $\Phi_b : E^{\odot} \to F$ with $b = \Phi_b \odot$.

For an arbitrary vector lattice E there exists the square (E^{\odot}, \odot) which is essentially unique, i. e. if some pair (E^{\odot}, \odot) obeys (1) and (2) above, then there exists a lattice isomorphism ifrom E^{\odot} onto E^{\odot} such that $i \odot = \odot$ (and, of course, $i^{-1} \odot = \odot$), see [10]. Moreover (see [10] and [7, Theorem 3.1]), for every positive bilinear orthoregular operator $b: E \times E \to G$ there exists a unique linear regular operator $\Phi_b: E^{\odot} \to G$ such that

$$b(x,y) = \Phi_b(x \odot y) \quad (x,y \in E).$$

The symmetric lattice bimorphism $\odot : E \times E \to E^{\circ}$ is called the *canonical bimorphism* of the square. The operator Φ_b is called the *linearization* of *b* via square. If *E* is a sublattice of a semiprime *f*-algebra *A*, then the canonical bimorphism \odot can be expressed in terms of the algebra multiplication, see [7, Proposition 2.5].

Proposition 3. Let A be a semiprime f-algebra with a multiplication \bullet and E be a sublattice of A. Then there exists a sublattice $F \subset A$ and an isomorphism ι from E^{\odot} onto F such that $\iota(x \odot y) = x \bullet y$ for all $x, y \in E$. In other words, the pair (F, \bullet) is a square of E.

4. A vector lattice E is called *square-mean closed* if the set $\{(\cos \theta)x + (\sin \theta)y : 0 \le \theta < 2\pi\}$ has a supremum $\mathfrak{s}(x, y)$ in E for all $x, y \in E$. A vector lattice E is called *geometric-mean closed* if the set $\{(t/2)x + (1/2t)y : 0 < t < +\infty\}$ has an infimum $\mathfrak{g}(x, y)$ in E for all $x, y \in E_+$. The following result see in [5, Theorems 3.1 and 3.4].

Proposition 4. If A is a square-mean closed Archimedean f-algebra, then

$$\mathfrak{s}(x,y)^2 = x^2 + y^2 \quad (x,y \in A).$$

If A is a geometric-mean closed Archimedean f-algebra, then

$$\mathfrak{g}(x,y)^2 = xy \quad (x,y \in A_+).$$

Every relatively uniformly complete vector lattice is square-mean closed and geometricmean closed [5, Theorems 3.3]. However, neither a square-mean closed nor a geometric-mean closed Archimedean vector lattice need not be uniformly complete. But a geometric-mean closed Archimedean f-algebra is square-mean closed [5, Theorem 3.6]. The following result is a generalization of Proposition 4.

Theorem 2. Let *E* and *F* be vector lattices and $b: E \times E \to F$ a positive orthosymmetric bilinear operator. If *E* is square-mean closed, then

$$\begin{split} \mathfrak{s}(x,y) \odot \mathfrak{s}(x,y) &= x \odot x + y \odot y, \\ b(\mathfrak{s}(x,y),\mathfrak{s}(x,y)) &= b(x,x) + b(y,y) \end{split}$$

for all $x, y \in E$. If E is geometric-mean closed, then for all $x, y \in E_+$ we have

$$\mathfrak{g}(x,y) \odot \mathfrak{g}(x,y) = x \odot y,$$

$$b(\mathfrak{g}(x,y), \mathfrak{g}(x,y)) = b(x,y).$$

 \triangleleft In each of two cases under consideration the second equality follows from the first one by applying Φ_b , the linearization via square of b. Let A denotes the universal completion of E endowed with a semiprime f-algebra multiplication. Then by Proposition 3 there is a lattice isomorphism ι of E^{\odot} onto a sublattice $F \subset A$. At the same time, according to Proposition 4, the following equalities are true in A:

$$\mathfrak{s}(x,y) \bullet \mathfrak{s}(x,y) = x \bullet x + y \bullet y \quad (x,y \in E),$$
$$\mathfrak{g}(x,y) \bullet \mathfrak{g}(x,y) = x \bullet y \quad (x,y \in E_+).$$

Now, the first equalities are immediate by applying ι^{-1} , since $\mathfrak{s}(x,y) \in E$ and $\mathfrak{g}(x,y) \in E$ under the stated hypotheses and $\iota^{-1}(x \bullet y) = x \odot y$. \triangleright

5. In conclusion we present some corollaries to Theorem 2.

Corollary 1. Let *E* and *F* be vector lattices with *E* square-mean closed and *b* : $E \times E \rightarrow F$ be a positive orthosymmetric bilinear operator. Then $E_{+}^{(b)} := \{b(x,x) : x \in E\}$ is a convex pointed cone and $E^{(b)} := b(E \times E)$ is a vector subspace of F ordered by a positive cone $E^{(b)}_+$ such that $E^{(b)} = E^{(b)}_+ - E^{(b)}_+$. If, in addition, b is a lattice bimorphism, then $E^{(b)}$ is a vector sublattice of F.

⊲ The first part of Theorem 2 implies that $E_{+}^{(b)} ⊂ F_{+}$ is a pointed cone. The equalities b(x,y) = (1/4)[b(x+y,x+y)-b(x-y,x-y)] and b(x,x)-b(y,y) = b(x+y,x-y) show that $E_{+}^{(b)} = E_{+}^{(b)} - E_{+}^{(b)}$. Thus, $(E_{+}^{(b)}, E_{+}^{(b)})$ is an ordered vector space. If b is a lattice bimorphism, then $E_{+}^{(b)}$ is a sublattice of F_{+} in virtue of Theorem 1 (2). \triangleright

For an almost f-algebra multiplication this result was obtained in [4, Prosition 3.3, Corollary 3.7]. The first statement of the following corollary was proved in [9, Lemma 8] in case of uniformly complete E.

Corollary 2. Let E be a square-mean closed vector lattice. The the assertions hold:

(1) $E^{\odot} = \{x \odot y : x, y \in E\}$ and $E^{\odot}_{+} = \{x \odot x : x \in E\}$; (2) If F = h(E), then $F^{\odot} = h^{\odot}(E^{\odot})$ for any vector lattice F and lattice homomorphism $h: E \to F;$

(3) If J is a uniformly closed order ideal of E, then $J^{\diamond} := \{x \odot y : |x| \land |y| \in J\}$ is a uniformly closed order ideal of E^{\odot} and the map $x \odot y + J^{\diamond} \mapsto (x+J) \odot (y+J)$ implements a lattice isomorphism of E^{\odot}/J^{\diamond} onto $(E/J)^{\odot}$.

 \triangleleft (1) Put $b := \odot$ in Corollary 1 and observe that $E^{\circ} = E^{(b)}$, since E° coincides with the sublattice generated by $b(E \times E) = \{x \odot y : x, y \in E\}.$

(2) If $h: F \to E$ is a lattice homomorphism then by [7, Proposition 2.4] there exists a lattice homomorphism $h^{\odot}: F^{\odot} \to E^{\odot}$ such that $h^{\odot}(x \odot y) = h(x) \odot h(y)$ $(x, y \in F)$. Assume that T(E) = F. Then making use of by (1) we deduce

$$E^{\odot} = \{h(x) \odot h(y): \, x, y \in F\} = \{h^{\odot}(x \odot y): \, x, y \in F) \subset h^{\odot}(F^{\odot}) \subset E^{\odot}.$$

(3): If $\phi: E \to E/J$ is a quotient homomorphism, then ϕ^{\odot} is a surjective map from E^{\odot} to $(E/J)^{\circ}$ by (2). According to (1) any $u \in E^{\circ}$ have the representation $u = x \odot y$ for some $x, y \in E$ and $0 = \phi^{\odot}(u) = \phi(x) \odot \phi(y)$ implies $\phi(x) \perp \phi(y)$ by [7, Theorem 2.1 (3)]. But the latter is equivalent to $|x| \wedge |y| \in J$, since ϕ is a lattice homomorphism. Thus, $J^{\diamond} = \ker(\phi^{\odot})$ and the proof is complete. \triangleright

Corollary 3. Let E and F be vector lattices with E square-mean closed and let b: $E \times E \rightarrow F$ be an order bounded orthosymmetric bilinear operator. Then for any finite collections $x_1, y_1, \ldots, x_N, y_N \in E$ there exist $u, v \in E$ such that $\sum_{k=1}^N b(x_k, y_k) = b(u, v)$.

 \triangleleft According to Corollary 1 (1) there exist $u, v \in E$ such that $u \odot v = \sum_{k=1}^{N} x_k \odot y_k$. Now, if $b = \Phi_b \odot$ for a linear operator Φ_b from E^{\odot} to F, then

$$b(u,v) = \Phi_b(u \odot v) = \Phi_b\left(\sum_{k=1}^N x_k \odot y_k\right) = \sum_{k=1}^N b(x_k, y_k)$$

which is the desired representation. \triangleright

References

- 1. Aliprantis C. D., Burkinshaw O. Positive Operators.-London etc.: Acad. press inc., 1985.-367 p.
- Bernau S. J., Huijsmans C. B. Almost f-algebras and d-algebras // Math. Proc. London Phil. Soc.— 1990.—Vol.107.—P. 287–308.
- Boulabiar K. Products in almost f-algebras // Comment. Math Univ. Carolinae.—1997.—Vol. 38.— P. 749–761.
- Boulabiar K. A relationship between two almost f-algebra multiplications // Algebra Univers.—2000.— Vol. 43.—P. 347–367.
- Boulabiar K., Buskes G., Triki A. Results in f-algebras // Positivity (Eds. K. Boulabiar, G. Buskes, A. Triki).—Basel a. o.: Birkhäuser, 2007.—P. 73–96.
- Bu Q., Buskes G., Kusraev A. G. Bilinear maps on product of vector lattices: A survey // Positivity (Eds. K. Boulabiar, G. Buskes, A. Triki).—Basel a. o.: Birkhäuser, 2007.—P. 97–126.
- Buskes G., Kusraev A. G. Representation and extension of orthoregular bilinear operators // Vladikavkaz Math. J.—2007.—Vol. 9, iss. 1.—P. 16–29.
- Buskes G., van Rooij A. Almost f-algebras: commutativity and the Cauchy–Schwarz inequality // Positivity.—2000.—Vol. 4, № 3.—P. 227–231.
- Buskes G., van Rooij A. Almost f-algebras: structure and Dedekind completion // Positivity.—2000.— Vol. 4, № 3.—P. 233–243.
- Buskes G., van Rooij A. Squares of Riesz spaces // Rocky Mountain J. Math.-2001.-Vol. 31, № 1.-P. 45-56.
- Fremlin D. H. Tensor product of Archimedean vector lattices // Amer. J. Math.—1972.—Vol. 94.— P. 777–798.
- van Gaans O. W. The Riesz part of a positive bilinear form // Circumspice.—Nijmegen: Katholieke Universiteit Nijmegen, 2001.—P. 19–30.
- 13. Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.
- Kusraev A. G. On the structure of orthosymmetric bilinear operators in vector lattices // Dokl. RAS.-2006.—Vol. 408, № 1.—P. 25–27.
- Schaefer H. H. Aspects of Banach lattices // Studies in Functional Analysis. MMA Studies in Math.-1980.—Vol. 21.—P. 158–221.—(Math. Assoc. America, 1980).

Received June 5, 2008.

ANATOLY G. KUSRAEV Institute of Applied Mathematics and Informatics Vladikavkaz Science Center of the RAS Vladikavkaz, 362040, RUSSIA E-mail: kusraev@smath.ru