УДК 517.98

ON SOME PROPERTIES OF ORTHOSYMMETRIC BILINEAR OPERATORS ${ }^{1}$

A. G. Kusraev

This note contains some properties of positive orthosymmetric bilinear operators on vector lattices which are well known for almost f-algebra multiplication but despite of their simplicity does not seem appeared in the literature.

Mathematics Subject Classification (2000): 46A40, 47A65.
Key words: vector lattice, square of a vector lattice, bilinear operator, orthosymmetry, lattice bimorphism, f-algebra multiplication.

The aim of this note is to present some properties of orthosymmetric bilinear operators which are well known for f-algebra multiplication but despite of their simplicity does not seem appeared in the literature. All unexplained terms can be found in [1] or [13]. All vector lattices under consideration are assumed to be Archimedean.

1. A bilinear operator $b: E \times E \rightarrow G$ is called orthosymmetric if $x \wedge y=0$ implies $b(x, y)=0$ for all $x, y \in E$. This definition was introduced in [8]. Recall also that b is said to be symmetric if $b(x, y)=b(y, x)$ for all $x, y \in E$ and positively semidefinite if $b(x, x) \geqslant 0$ for every $x \in E$. In the special case that b is the multiplication of a commutative almost f-algebra the following proposition is presented in [2, Proposition 1.13].

Proposition 1. Let F and G be vector lattices. A positive bilinear operator b from $E \times E$ to G is orthosymmetric if and only if $b(x, y)=b(x \vee y, x \wedge y)$ for all $x, y \in E$.
\triangleleft Orthosymmetry implies $b(x-x \wedge y, y-x \wedge y)=0$. Since a positive orthosymmetric bilinear operastor is symmetric (see [8]), we deduce

$$
\begin{aligned}
& b(x, y)=b(x, x \wedge y)+b(x \wedge y, y)-b(x \wedge y, x \wedge y) \\
& =b(x+y-x \wedge y, x \wedge y)=b(x \vee y, x \wedge y) .
\end{aligned}
$$

Conversely, if $x \wedge y=0$, then $b(x, y)=b(x \vee y, 0)=0$. \triangleright
A bilinear operator $b: E \times F \rightarrow G$ is said to be lattice bimorphism if the mappings $y \mapsto b(e, y)(y \in F)$ and $x \mapsto b(x, f)(x \in E)$ are lattice homomorphisms for all $0 \leqslant e \in E$ and $0 \leqslant f \in F$, see [11]. Evidently, every lattice bimorphism is positive. The following characterization of lattice bimorphism was given in [15].

Proposition 2. For a positive bilinear operator $b: E \times E \rightarrow G$ the following assertions are equivalent:
(1) b is a lattice bimorphism;
(2) $|b(x, y)|=b(|x|,|y|)$ for all $x \in E$ and $y \in F$;

[^0](3) if $0 \leqslant x, u \in E$ and $0 \leqslant y, v \in F$ satisfy $x \wedge u=0$ and $y \wedge v=0$, then $b(x, y) \wedge b(u, v)=0$.
2. It was mentioned in [12] that an orthosymmetric positive bilinear operator is positively semidefinite. The converse is also true for lattice bimorphisms as was observed in [7, Proposition 1.7]. The following characterization of symmetric lattice bimorphisms is well known at least for d-algebra multiplication (see, for example, [2, Theorems 4.3, 4.4, 4.5] and [4, Proposition 3.6]).

Theorem 1. Let E and F be vector lattices and let $b: E \times E \rightarrow F$ be a lattice bimorphism. Then the following assertions are equivalent:
(1) b is symmetric;
(2) $b(x, x)-b(y, y)=b(x-y, x+y)$ for all $x, y \in E$;
(3) $b(x, x) \wedge b(y, y) \leqslant b(x, y) \leqslant b(x, x) \vee b(y, y)$ for all $x, y \in E_{+}$;
(4) $b(x \wedge y, x \wedge y)=b(x, x) \wedge b(y, y)$ and $b(x \vee y, x \vee y)=b(x, x) \vee b(y, y)$ for all $x, y \in E_{+}$;
(5) $x \wedge y=0$ implies $b(x, y)=b(y, x)$ for all $x, y \in E$;
(6) $b(x,|x|)=b\left(x^{+}, x^{+}\right)-b\left(x^{-}, x^{-}\right)$for all $x \in E$;
(7) b is orthosymmetric;
(8) b is positively semidefinite.
$\triangleleft(1) \Leftrightarrow(2)$: It is obviously true for every bilinear operator b.
$(2) \Rightarrow(3)$: For any $x, y \in E_{+}$we deduce making use of (2):

$$
\begin{aligned}
& b(x, x) \wedge b(y, y)-b(x, y) \leqslant b(x, x) \wedge b(y, y)-b(x \wedge y, x \wedge y) \\
&=[b(x, x)-b(x \wedge y, x \wedge y)] \wedge[b(y, y)-b(x \wedge y, x \wedge y)] \\
&=b(x-x \wedge y, x+x \wedge y) \wedge b(y-x \wedge y, y+x \wedge y) \\
& \leqslant b(x-x \wedge y, x+y) \wedge b(y-x \wedge y, x+y) \\
& \quad=b((x-x \wedge y) \wedge(y-x \wedge y), x+y)=0
\end{aligned}
$$

The second inequality is deduced likewise.
$(3) \Rightarrow(4)$: Using the first inequality in (3) we can write the following chain of equalities:

$$
\begin{aligned}
b(x, x) \wedge b(y, y)=[b(x, x) \wedge b(x, y)] \wedge & {[b(y, x) \wedge b(y, y)] } \\
& =b(x, x \wedge y) \wedge b(y, x \wedge y)=b(x \wedge y, x \wedge y)
\end{aligned}
$$

The second equality is deduced likewise.
$(4) \Rightarrow(5)$: Take $x, y \in E$ with $x \wedge y=0$. By the first equality of (3) $b(x, x)$ and $b(y, y)$ are disjoint. Using the second equality we have $b(x, x)+b(y, y)=b(x \vee y, x \vee y)=b(x+y, x+y)=$ $b(x, x)+b(x, y)+b(y, x)+b(y, y)$, so that $b(x, y)=b(y, x)=0$.
$(5) \Rightarrow(6)$: It is sufficient to observe that $b(x,|x|)-b\left(x^{+}, x^{+}\right)+b\left(x^{-}, x^{-}\right)=b\left(x^{+}, x^{-}\right)-$ $b\left(x^{-}, x^{+}\right)$.
$(6) \Rightarrow(7)$: If b obey (6), then $b\left(x^{+}, x^{-}\right)$and $b\left(x^{-}, x^{+}\right)$coincide, see (5) \Rightarrow (6). At the same time these elements are disjoint, since $b\left(x^{+}, x^{-}\right) \leqslant b\left(x^{+},|x|\right), b\left(x^{-}, x^{+}\right) \leqslant b\left(x^{-},|x|\right)$ and $b\left(x^{+},|x|\right) \wedge b\left(x^{-},|x|\right)=0$. Thus, $b\left(x^{+}, x^{-}\right)=b\left(x^{-}, x^{+}\right)=0$, from which (7) follows
$(7) \Rightarrow(1)$: Follows from [8, Corollary 2].
$(7) \Rightarrow(8)$: If b is ortosymmetric, then $b(x, x)=b\left(x^{+}, x^{+}\right)-b\left(x^{+}, x^{-}\right)-b\left(x^{-}, x^{+}\right)+$ $b\left(x^{-}, x^{-}\right)=b\left(x^{+}, x^{+}\right)+b\left(x^{-}, x^{-}\right) \geqslant 0$, see [12].
$(8) \Leftrightarrow(7)$: Let b be a positively semidefinite lattice bimorphism. Take $x, y \in E$ and put $\alpha:=b(x, x), \beta:=b(y, y), \gamma:=b(x, y)+b(y, x)$. Then $\alpha+\beta-\gamma=b(x-y, x-y) \geqslant 0$. If $x \wedge y=0$, then $b(x, y) \geqslant b(x, y) \wedge b(y, y)=b(x \wedge y, y)=0$ and, since $b(x, \cdot)$ and $b(\cdot, x)$ are lattice homomorphisms, we have $\alpha \wedge b(x, y)=b(x, x \wedge y)=0$ and $\alpha \wedge b(y, x)=b(x \wedge y, x)=0$.

Thus, $\alpha \perp \gamma$ and analogously $\beta \perp \gamma$. Therefore, $(\alpha+\beta) \perp \gamma$, and taking into account the inequality $\alpha+\beta-\gamma \geqslant 0$ we derive $\gamma=0$, i.e. $b(x, y)=b(y, x)=0 . \triangleright$
3. Let E be a vector lattice. A pair $\left(E^{\odot}, \odot\right)$ is said to be a square of E if the following two conditions are fulfilled:
(1) E^{\odot} is a vector lattice and \odot is a symmetric lattice bimorphism from $E \times E$ to E^{\odot},
(2) if b is a symmetric lattice bimorphism from $E \times E$ to some vector lattice F, then there exists a unique lattice homomorphism $\Phi_{b}: E^{\odot} \rightarrow F$ with $b=\Phi_{b} \odot$.

For an arbitrary vector lattice E there exists the square $\left(E^{\odot}, \odot\right)$ which is essentially unique, i. e. if some pair $\left(E^{\odot}, \bigcirc\right)$ obeys (1) and (2) above, then there exists a lattice isomorphism i from E^{\odot} onto E^{\odot} such that $i \odot=\odot$ (and, of course, $i^{-1} \odot=\odot$), see [10]. Moreover (see [10] and [7, Theorem 3.1]), for every positive bilinear orthoregular operator $b: E \times E \rightarrow G$ there exists a unique linear regular operator $\Phi_{b}: E^{\odot} \rightarrow G$ such that

$$
b(x, y)=\Phi_{b}(x \odot y) \quad(x, y \in E)
$$

The symmetric lattice bimorphism $\odot: E \times E \rightarrow E^{\odot}$ is called the canonical bimorphism of the square. The operator Φ_{b} is called the linearization of b via square. If E is a sublattice of a semiprime f-algebra A, then the canonical bimorphism \odot can be expressed in terms of the algebra multiplication, see [7, Proposition 2.5].

Proposition 3. Let A be a semiprime f-algebra with a multiplication • and E be a sublattice of A. Then there exists a sublattice $F \subset A$ and an isomorphism ι from E^{\odot} onto F such that $\iota(x \odot y)=x \bullet y$ for all $x, y \in E$. In other words, the pair (F, \bullet) is a square of E.
4. A vector lattice E is called square-mean closed if the set $\{(\cos \theta) x+(\sin \theta) y: 0 \leqslant \theta<$ $2 \pi\}$ has a supremum $\mathfrak{s}(x, y)$ in E for all $x, y \in E$. A vector lattice E is called geometric-mean closed if the set $\{(t / 2) x+(1 / 2 t) y: 0<t<+\infty\}$ has an infimum $\mathfrak{g}(x, y)$ in E for all $x, y \in E_{+}$. The following result see in [5, Theorems 3.1 and 3.4].

Proposition 4. If A is a square-mean closed Archimedean f-algebra, then

$$
\mathfrak{s}(x, y)^{2}=x^{2}+y^{2} \quad(x, y \in A)
$$

If A is a geometric-mean closed Archimedean f-algebra, then

$$
\mathfrak{g}(x, y)^{2}=x y \quad\left(x, y \in A_{+}\right)
$$

Every relatively uniformly complete vector lattice is square-mean closed and geometricmean closed [5, Theorems 3.3]. However, neither a square-mean closed nor a geometric-mean closed Archimedean vector lattice need not be uniformly complete. But a geometric-mean closed Archimedean f-algebra is square-mean closed [5, Theorem 3.6]. The following result is a generalization of Proposition 4.

Theorem 2. Let E and F be vector lattices and $b: E \times E \rightarrow F$ a positive orthosymmetric bilinear operator. If E is square-mean closed, then

$$
\begin{aligned}
\mathfrak{s}(x, y) \odot \mathfrak{s}(x, y) & =x \odot x+y \odot y \\
b(\mathfrak{s}(x, y), \mathfrak{s}(x, y)) & =b(x, x)+b(y, y)
\end{aligned}
$$

for all $x, y \in E$. If E is geometric-mean closed, then for all $x, y \in E_{+}$we have

$$
\begin{aligned}
\mathfrak{g}(x, y) \odot \mathfrak{g}(x, y) & =x \odot y \\
b(\mathfrak{g}(x, y), \mathfrak{g}(x, y)) & =b(x, y)
\end{aligned}
$$

\triangleleft In each of two cases under consideration the second equality follows from the first one by applying Φ_{b}, the linearization via square of b. Let A denotes the universal completion of E endowed with a semiprime f-algebra multiplication. Then by Proposition 3 there is a lattice isomorphism ι of E^{\odot} onto a sublattice $F \subset A$. At the same time, according to Proposition 4, the following equalities are true in A :

$$
\begin{gathered}
\mathfrak{s}(x, y) \bullet \mathfrak{s}(x, y)=x \bullet x+y \bullet y \quad(x, y \in E) \\
\mathfrak{g}(x, y) \bullet \mathfrak{g}(x, y)=x \bullet y \quad\left(x, y \in E_{+}\right)
\end{gathered}
$$

Now, the first equalities are immediate by applying ι^{-1}, since $\mathfrak{s}(x, y) \in E$ and $\mathfrak{g}(x, y) \in E$ under the stated hypotheses and $\iota^{-1}(x \bullet y)=x \odot y . \triangleright$
5. In conclusion we present some corollaries to Theorem 2.

Corollary 1. Let E and F be vector lattices with E square-mean closed and $b: E \times E \rightarrow F$ be a positive orthosymmetric bilinear operator. Then $E_{+}^{(b)}:=\{b(x, x): x \in E\}$ is a convex pointed cone and $E^{(b)}:=b(E \times E)$ is a vector subspace of F ordered by a positive cone $E_{+}^{(b)}$ such that $E^{(b)}=E_{+}^{(b)}-E_{+}^{(b)}$. If, in addition, b is a lattice bimorphism, then $E^{(b)}$ is a vector sublattice of F.
\triangleleft The first part of Theorem 2 implies that $E_{+}^{(b)} \subset F_{+}$is a pointed cone. The equalities $b(x, y)=(1 / 4)[b(x+y, x+y)-b(x-y, x-y)])$ and $b(x, x)-b(y, y)=b(x+y, x-y)$ show that $E^{(b)}=E_{+}^{(b)}-E_{+}^{(b)}$. Thus, $\left(E^{(b)}, E_{+}^{(b)}\right)$ is an ordered vector space. If b is a lattice bimorphism, then $E_{+}^{(b)}$ is a sublattice of F_{+}in virtue of Theorem 1 (2). \triangleright

For an almost f-algebra multiplication this result was obtained in [4, Prposition 3.3, Corollary 3.7]. The first statement of the following corollary was proved in [9, Lemma 8] in case of uniformly complete E.

Corollary 2. Let E be a square-mean closed vector lattice. The the assertions hold:
(1) $E^{\odot}=\{x \odot y: x, y \in E\}$ and $E_{+}^{\odot}=\{x \odot x: x \in E\}$;
(2) If $F=h(E)$, then $F^{\odot}=h^{\odot}\left(E^{\odot}\right)$ for any vector lattice F and lattice homomorphism $h: E \rightarrow F$;
(3) If J is a uniformly closed order ideal of E, then $J^{\triangleright}:=\{x \odot y:|x| \wedge|y| \in J\}$ is a uniformly closed order ideal of E^{\odot} and the map $x \odot y+J^{\circ} \mapsto(x+J) \odot(y+J)$ implements a lattice isomorphism of E^{\odot} / J° onto $(E / J)^{\odot}$.
$\triangleleft(1)$ Put $b:=\odot$ in Corollary 1 and observe that $E^{\odot}=E^{(b)}$, since E^{\odot} coincides with the sublattice generated by $b(E \times E)=\{x \odot y: x, y \in E\}$.
(2) If $h: F \rightarrow E$ is a lattice homomorphism then by [7, Proposition 2.4] there exists a lattice homomorphism $h^{\odot}: F^{\odot} \rightarrow E^{\odot}$ such that $h^{\odot}(x \odot y)=h(x) \odot h(y)(x, y \in F)$. Assume that $T(E)=F$. Then making use of by (1) we deduce

$$
E^{\odot}=\{h(x) \odot h(y): x, y \in F\}=\left\{h^{\odot}(x \odot y): x, y \in F\right) \subset h^{\odot}\left(F^{\odot}\right) \subset E^{\odot} .
$$

(3): If $\phi: E \rightarrow E / J$ is a quotient homomorphism, then ϕ° is a surjective map from E^{\odot} to $(E / J)^{\odot}$ by (2). According to (1) any $u \in E^{\odot}$ have the representation $u=x \odot y$ for some $x, y \in E$ and $0=\phi^{\odot}(u)=\phi(x) \odot \phi(y)$ implies $\phi(x) \perp \phi(y)$ by [7, Theorem 2.1 (3)]. But the latter is equivalent to $|x| \wedge|y| \in J$, since ϕ is a lattice homomorphism. Thus, $J^{\diamond}=\operatorname{ker}\left(\phi^{\odot}\right)$ and the proof is complete. \triangleright

Corollary 3. Let E and F be vector lattices with E square-mean closed and let b : $E \times E \rightarrow F$ be an order bounded orthosymmetric bilinear operator. Then for any finite collections $x_{1}, y_{1}, \ldots, x_{N}, y_{N} \in E$ there exist $u, v \in E$ such that $\sum_{k=1}^{N} b\left(x_{k}, y_{k}\right)=b(u, v)$.
\triangleleft According to Corollary 1 (1) there exist $u, v \in E$ such that $u \odot v=\sum_{k=1}^{N} x_{k} \odot y_{k}$. Now, if $b=\Phi_{b} \odot$ for a linear operator Φ_{b} from E^{\odot} to F, then

$$
b(u, v)=\Phi_{b}(u \odot v)=\Phi_{b}\left(\sum_{k=1}^{N} x_{k} \odot y_{k}\right)=\sum_{k=1}^{N} b\left(x_{k}, y_{k}\right)
$$

which is the desired representation.

References

1. Aliprantis C. D., Burkinshaw O. Positive Operators.-London etc.: Acad. press inc., 1985.-367 p.
2. Bernau S. J., Huijsmans C. B. Almost f-algebras and d-algebras // Math. Proc. London Phil. Soc.-1990.-Vol.107.-P. 287-308.
3. Boulabiar K. Products in almost f-algebras // Comment. Math Univ. Carolinae.-1997.-Vol. 38.P. 749-761.
4. Boulabiar K. A relationship between two almost f-algebra multiplications // Algebra Univers.-2000.Vol. 43.-P. 347-367.
5. Boulabiar K., Buskes G., Triki A. Results in f-algebras // Positivity (Eds. K. Boulabiar, G. Buskes, A. Triki).-Basel a. o.: Birkhäuser, 2007.-P. 73-96.
6. Bu Q., Buskes G., Kusraev A. G. Bilinear maps on product of vector lattices: A survey // Positivity (Eds. K. Boulabiar, G. Buskes, A. Triki).-Basel a. o.: Birkhäuser, 2007.-P. 97-126.
7. Buskes G., Kusraev A. G. Representation and extension of orthoregular bilinear operators // Vladikavkaz Math. J.-2007.-Vol. 9, iss. 1.-P. 16-29.
8. Buskes G., van Rooij A. Almost f-algebras: commutativity and the Cauchy-Schwarz inequality // Positivity.-2000.-Vol. 4, № 3.-P. 227-231.
9. Buskes G., van Rooij A. Almost f-algebras: structure and Dedekind completion // Positivity.-2000.Vol. 4, № 3.-P. 233-243.
10. Buskes G., van Rooij A. Squares of Riesz spaces // Rocky Mountain J. Math.-2001.-Vol. 31, № 1.P. 45-56.
11. Fremlin D. H. Tensor product of Archimedean vector lattices // Amer. J. Math.-1972.-Vol. 94.P. 777-798.
12. van Gaans O. W. The Riesz part of a positive bilinear form // Circumspice.-Nijmegen: Katholieke Universiteit Nijmegen, 2001.-P. 19-30.
13. Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.
14. Kusraev A. G. On the structure of orthosymmetric bilinear operators in vector lattices // Dokl. RAS.-2006.-Vol. 408, № 1.-P. 25-27.
15. Schaefer H. H. Aspects of Banach lattices // Studies in Functional Analysis. MMA Studies in Math.-1980.-Vol. 21.-P. 158-221.-(Math. Assoc. America, 1980).

Received June 5, 2008.
Anatoly G. Kusraev
Institute of Applied Mathematics and Informatics
Vladikavkaz Science Center of the RAS
Vladikavkaz, 362040, RUSSIA
E-mail: kusraev@smath.ru

[^0]: (c) 2008 Kusraev A. G.
 ${ }^{1}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, проект № 06-01-00622.

