UDC 517.98

WHEN ARE THE NONSTANDARD HULLS OF NORMED LATTICES DISCRETE OR CONTINUOUS?

Dedicated to Safak Alpay on the occasion of his sixtieth birthday

V. G. Troitsky

This note is a nonstandard analysis version of the paper «When are ultrapowers of normed lattices discrete or continuous?» by W. Wnuk and B. Wiatrowski.

Mathematics Subject Classification (2000): 46S20, 46B42.

Key words: normed lattice, discrete element, nonstandard hull.

In Functional Analysis, the *ultrapower* and the *nonstandard analysis* approaches are equivalent: results obtained by one of these two methods can usually be translated into the other. In this short note, we present nonstandard analysis versions of the main results of [5], where they were originally presented in the ultrapower language. We believe that in this new form the ideas of the proofs are more transparent.

Suppose that E is a Archimedean vector lattice. Recall that an element $0 < e \in E$ is said to be **discrete** if $0 \leq x \leq e$ implies that x is a scalar multiple of e or, equivalently, the interval [0, e] doesn't contain two non-zero disjoint vectors (see [3, Theorem 26.4]). We say that E is **continuous** if it contains no discrete elements and **discrete** if every non-zero positive vector dominates a discrete element or, equivalently, E has a complete disjoint system consisting of discrete elements (see [1, p. 40]).

If E is a normed space. We will write ${}^{*}E$ for the nonstandard extension of E and \widehat{E} for the nonstandard hull of E. We refer the reader to [2, 6] for terminology and details on nonstandard hulls of normed spaces and normed lattices. We will use the following standard fact (see, e. g., [4, Remark 4]).

Lemma 1. Suppose that *E* is a normed lattice and $a, x, b \in {}^*E$ such that $a \leq b$ and $\hat{a} \leq \hat{x} \leq \hat{b}$. Then there exists $y \in {}^*E$ such that $y \approx x$ and $a \leq y \leq b$.

The following is a variant of Theorem 2.2 of [5]:

Theorem 2. Let E be a normed lattice. Then the following are equivalent.

(i) \hat{E} is continuous;

(ii) $\exists \varepsilon > 0 \ \forall x \in E_+ \ \exists a, b \in [0, x] \quad a \perp b \text{ and } \|a\| \land \|b\| \ge \varepsilon \|x\|.$

 \triangleleft (i) \Rightarrow (ii) Suppose that *E* fails (ii). Let ε be a positive infinitesimal. Then there exists a vector $x \in {}^*E_+$ such that for all $a, b \in {}^*[0, x]$ with $a \perp b$ we have $||a|| \wedge ||b|| < \varepsilon ||x||$. Without loss of generality, ||x|| = 1. Let $\hat{a}, \hat{b} \in [0, \hat{x}]$ and $\hat{a} \perp \hat{b}$. By Lemma 1, we may assume that

 $[\]textcircled{C}$ 2009 Troitsky V. G.

 $a, b \in {}^*[0, x]$. Furthermore, $\hat{a} \perp \hat{b}$ implies that $a \wedge b \approx 0$. Let $u = a - a \wedge b$ and $v = b - a \wedge b$, then $u, v \in {}^*[0, x]$ and $u \perp v$, so that $||u|| \wedge ||v|| < \varepsilon$. It follows that either ||u|| or ||v|| is infinitesimal. Say, $u \approx 0$. Then $a = u + a \wedge b$ is infinitesimal as well, so that $\hat{a} = 0$. Thus, \hat{x} is discrete in \hat{E} .

(ii) \Rightarrow (i) Suppose that (ii) holds for some (standard) $\varepsilon > 0$. Let $\hat{x} \in E_+$, show that \hat{x} is not discrete. Without loss of generality, $x \in {}^*E_+$ and ||x|| = 1. By (ii), we can find $a, b \in {}^*[0, x]$ such that $a \perp b$ and $||a|| \wedge ||b|| \ge \varepsilon$. It follows that neither a nor b is infinitesimal, so that \hat{a}, \hat{b} are two non-zero disjoint elements of $[0, \hat{x}]$. Hence, \hat{x} is not discrete. \triangleright

Recall that a normed lattice satisfies the **Fatou property** if $0 \leq x_{\alpha} \uparrow x$ implies $||x_{\alpha}|| \rightarrow ||x||$, and the σ -Fatou property if $0 \leq x_{\alpha} \uparrow x$ implies $||x_{\alpha}|| \rightarrow ||x||$, see, e. g., [1]. We will use the following simple lemma.

Lemma 3. Suppose that E is a normed lattice with the Fatou property and $S \subseteq E_+$ such that $x = \sup S$ exists. Then for every $\varepsilon > 0$ there is a finite subset γ of S such that $\|\sup \gamma\| \ge (1 - \varepsilon) \|x\|$. The same is true for countable families if E satisfies the σ -Fatou property.

 \triangleleft Let Λ be the collection of all finite subsets of S, ordered by inclusion. Clearly, $\sup_{\alpha \in \Lambda} \sup \alpha = x$. Let $x_{\alpha} = \sup \alpha$, then $(x_{\alpha})_{\alpha \in \Lambda}$ is an increasing net and $0 \leq x_{\alpha} \uparrow x$. It follows from the Fatou property that $||x_{\alpha}|| \to ||x||$, so that there exists $\gamma \in \Lambda$ with $||x_{\gamma}|| \ge (1-\varepsilon)||x||$.

Now suppose that E satisfies σ -Fatou property and $x = \bigvee_{i=1}^{\infty} x_i$. Let $z_k = \bigvee_{i=1}^{k} x_i$, then $x_k \leq z_k \leq x$, so that $x = \bigvee_{k=1}^{\infty} z_k$. Now σ -Fatou property guarantees that $||z_k|| \to ||x||$, so that $(1 - \varepsilon)||x|| \leq ||z_m|| = ||x_1 \lor \cdots \lor x_m||$ for some m. \triangleright

The following is a variant of Theorem 3.1 of [5].

Theorem 4. Let *E* be a discrete normed lattice, and \mathscr{D} the set of all discrete elements of norm one in *E*. If *E* satisfies the Fatou property (or the σ -Fatou property if \mathscr{D} is countable) then the discrete elements of \widehat{E} are exactly the positive scalar multiples of the elements of $\{\widehat{e} \mid e \in \mathscr{D}\}$.

 \triangleleft It suffices to show that given $x \in {}^{*}E$ with ||x|| = 1, then \hat{x} is discrete in \hat{E} if and only if $\hat{x} = \hat{e}$ for some $e \in {}^{*}\mathcal{D}$. Suppose that $\hat{x} = \hat{e}$ for some $e \in {}^{*}\mathcal{D}$. Take any $a \in {}^{*}E$ such that $0 \leq \hat{a} \leq \hat{x}$. By Lemma 1, we may assume that $0 \leq a \leq e$. It follows that a is a scalar multiple of e, hence \hat{a} is a scalar multiple of \hat{x} .

Conversely, suppose that \hat{x} is discrete in \widehat{E} . Note that the set D is a complete disjoint system in E. By [1, Theorem 1.75], we have $x = \sup\{P_e x \mid e \in *\mathscr{D}\}$. For every $e \in *\mathscr{D}$, the vector $P_e x$ is a scalar multiple of e, and $0 \leq P_e x \leq x$, hence $0 \leq \widehat{P_e x} \leq \hat{x}$. Therefore, if $P_e x$ is not infinitesimal for some $e \in *\mathscr{D}$ then \hat{x} is a scalar multiple of $\widehat{P_e x}$, hence of \hat{e} .

Suppose now that $P_e x$ is infinitesimal for every $e \in \mathscr{D}$. It follows from $x = \sup\{P_e x \mid e \in \mathscr{D}\}$ and Lemma 3 that there exist $n \in \mathbb{N}$ and $e_1, \ldots, e_n \in \mathscr{D}$ such that $||z|| \ge \frac{3}{4}$, where $z = ||P_{e_1} x \lor \cdots \lor P_{e_n} x||$. Choose $k \le n$ in \mathbb{N} so that $||P_{e_1} x \lor \cdots \lor P_{e_{k-1}} x|| < \frac{1}{4}$, while $||P_{e_1} x \lor \cdots \lor P_{e_k} x|| \ge \frac{1}{4}$. Put $u = P_{e_1} x \lor \cdots \lor P_{e_k} x = P_{e_1} x + \cdots + P_{e_k} x$. Then

$$\frac{1}{4} \leqslant \|u\| \leqslant \left\| P_{e_1} x \lor \cdots \lor P_{e_{k-1}} x \right\| + \|P_{e_k} x\| \lesssim \frac{1}{4},$$

hence $||u|| \approx \frac{1}{4}$. Put v = z - u, then $u \perp v$, $0 \leq u, v \leq z$, and $||u||, ||v|| \geq \frac{1}{4}$. Therefore, \hat{u} and \hat{v} are non-zero and disjoint elements of $[0, \hat{x}]$; a contradiction. \triangleright

Corollary 5. Suppose that E is an AM-space with a strong unit, and H is a discrete regular sublattice of E. Then \hat{H} is discrete.

 \triangleleft Let \mathscr{D} be a complete disjoint system of discrete elements of norm one in H. Suppose that $\hat{x} \in \hat{H}_+$. We will show that \hat{x} majorizes a discrete vector. Without loss of generality,

 $x \in {}^{*}H_{+}$ with ||x|| = 1. Then $x = \sup\{P_{e}x \mid e \in {}^{*}\mathscr{D}\}$ by [1, Theorem 1.75]. Since E is an AM-space, we can apply Lemma 3 with $\varepsilon \approx 0$ and find $n \in {}^{*}\mathbb{N}$ and $e_{1}, \ldots, e_{n} \in {}^{*}\mathscr{D}$ such that $||P_{e_{1}}x \vee \cdots \vee P_{e_{n}}x|| \ge (1 - \varepsilon)||x|| \approx 1$. Again, since E is an AM-space, we have $||P_{e_{1}}x \vee \cdots \vee P_{e_{n}}x|| = ||P_{e_{1}}x|| \vee \cdots \vee ||P_{e_{n}}x||$, so that $||P_{e_{k}}x|| \approx 1$ for some $k \le n$. Then $\widehat{P_{e_{k}}x}$ is non-zero. It is discrete by Theorem 4 because $P_{e_{k}}x$ is a multiple of e_{k} . Finally, notice that $\widehat{P_{e_{k}}x} \le \hat{x}$. \triangleright

References

- 1. Aliprantis C. D., Burkinshaw O. Locally solid Riesz spaces with applications to economics (Math. Surveys and Monographs, Vol. 105). 2 ed.—Providence (R.I.): Amer. Math. Soc., 2003.—344 p.
- Emel'yanov È. Yu. Infinitesimals in vector lattices // Nonstandard analysis and vector lattices (Math. Appl., Vol. 525).—Dordrecht: Kluwer, 2000.—P. 161–230.
- Luxemburg W. A. J., Zaanen A. C. Riesz spaces.—Amsterdam-London: North-Holland Publishing Co, 1971.—Vol. 1.
- Troitsky V. G. Measures on non-compactness of operators on Banach lattices // Positivity.—2004.— Vol. 8, № 2.—P. 165–178.
- 5. Wnuk W., Wiatrowski B. When are ultrapowers of normed lattices discrete or continuous? // Positivity IV—theory and applications—Dresden: Tech. Univ. Dresden, 2006.—P. 173–182.
- Wolff M. P. H. An introduction to nonstandard functional analysis // Nonstandard analysis (Edinburgh, 1996).—Dordrecht: Kluwer Acad. Publ., 1997.—P. 121–151.

Received May 19, 2009.

TROITSKY VLADIMIR G. Department of Mathematical and Statistical Sciences, University of Alberta, Associate Professor Edmonton, AB, T6G 2G1. Canada E-mail: vtroitsky@math.ualberta.ca