
Vladikavkaz Mathematical Journal
2009, Vol. 11, No 2, pp. 43–45

UDC 517.98

WHEN ARE THE NONSTANDARD HULLS
OF NORMED LATTICES DISCRETE OR CONTINUOUS?

Dedicated to Safak Alpay on the
occasion of his sixtieth birthday

V. G. Troitsky

This note is a nonstandard analysis version of the paper «When are ultrapowers of normed lattices discrete
or continuous?» by W. Wnuk and B. Wiatrowski.

Mathematics Subject Classification (2000): 46S20, 46B42.

Key words: normed lattice, discrete element, nonstandard hull.

In Functional Analysis, the ultrapower and the nonstandard analysis approaches are
equivalent: results obtained by one of these two methods can usually be translated into the
other. In this short note, we present nonstandard analysis versions of the main results of [5],
where they were originally presented in the ultrapower language. We believe that in this new
form the ideas of the proofs are more transparent.

Suppose that E is a Archimedean vector lattice. Recall that an element 0 < e ∈ E is said
to be discrete if 0 6 x 6 e implies that x is a scalar multiple of e or, equivalently, the interval
[0, e] doesn’t contain two non-zero disjoint vectors (see [3, Theorem 26.4]). We say that E is
continuous if it contains no discrete elements and discrete if every non-zero positive vector
dominates a discrete element or, equivalently, E has a complete disjoint system consisting of
discrete elements (see [1, p. 40]).

If E is a normed space. We will write ∗E for the nonstandard extension of E and Ê for the
nonstandard hull of E. We refer the reader to [2, 6] for terminology and details on nonstandard
hulls of normed spaces and normed lattices. We will use the following standard fact (see, e. g.,
[4, Remark 4]).

Lemma 1. Suppose that E is a normed lattice and a, x, b ∈ ∗E such that a 6 b and
â 6 x̂ 6 b̂. Then there exists y ∈ ∗E such that y ≈ x and a 6 y 6 b.

The following is a variant of Theorem 2.2 of [5]:

Theorem 2. Let E be a normed lattice. Then the following are equivalent.
(i) Ê is continuous;
(ii) ∃ε > 0 ∀x ∈ E+ ∃a, b ∈ [0, x] a ⊥ b and ‖a‖ ∧ ‖b‖ > ε‖x‖.

C (i)⇒ (ii) Suppose that E fails (ii). Let ε be a positive infinitesimal. Then there exists a
vector x ∈ ∗E+ such that for all a, b ∈ ∗[0, x] with a ⊥ b we have ‖a‖ ∧ ‖b‖ < ε‖x‖. Without
loss of generality, ‖x‖ = 1. Let â, b̂ ∈ [0, x̂] and â ⊥ b̂. By Lemma 1, we may assume that
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a, b ∈ ∗[0, x]. Furthermore, â ⊥ b̂ implies that a∧b ≈ 0. Let u = a−a∧b and v = b−a∧b, then
u, v ∈ ∗[0, x] and u ⊥ v, so that ‖u‖∧‖v‖ < ε. It follows that either ‖u‖ or ‖v‖ is infinitesimal.
Say, u ≈ 0. Then a = u+ a∧ b is infinitesimal as well, so that â = 0. Thus, x̂ is discrete in Ê.

(ii) ⇒ (i) Suppose that (ii) holds for some (standard) ε > 0. Let x̂ ∈ Ê+, show that x̂ is
not discrete. Without loss of generality, x ∈ ∗E+ and ‖x‖ = 1. By (ii), we can find a, b ∈ ∗[0, x]
such that a ⊥ b and ‖a‖ ∧ ‖b‖ > ε. It follows that neither a nor b is infinitesimal, so that â, b̂
are two non-zero disjoint elements of [0, x̂]. Hence, x̂ is not discrete. B

Recall that a normed lattice satisfies the Fatou property if 0 6 xα ↑ x implies ‖xα‖ →
‖x‖, and the σ-Fatou property if 0 6 xn ↑ x implies ‖xn‖ → ‖x‖, see, e. g., [1]. We will use
the following simple lemma.

Lemma 3. Suppose that E is a normed lattice with the Fatou property and S ⊆ E+
such that x = supS exists. Then for every ε > 0 there is a finite subset γ of S such that
‖ sup γ‖ > (1 − ε)‖x‖. The same is true for countable families if E satisfies the σ-Fatou
property.

C Let Λ be the collection of all finite subsets of S, ordered by inclusion. Clearly,
supα∈Λ supα = x. Let xα = supα, then (xα)α∈Λ is an increasing net and 0 6 xα ↑ x. It follows
from the Fatou property that ‖xα‖ → ‖x‖, so that there exists γ ∈ Λ with ‖xγ‖ > (1− ε)‖x‖.

Now suppose that E satisfies σ-Fatou property and x =
∨∞
i=1 xi. Let zk =

∨k
i=1 xi, then

xk 6 zk 6 x, so that x =
∨∞
k=1 zk. Now σ-Fatou property guarantees that ‖zk‖ → ‖x‖, so

that (1− ε)‖x‖ 6 ‖zm‖ = ‖x1 ∨ · · · ∨ xm‖ for some m. B

The following is a variant of Theorem 3.1 of [5].

Theorem 4. Let E be a discrete normed lattice, and D the set of all discrete elements of
norm one in E. If E satisfies the Fatou property (or the σ-Fatou property if D is countable)
then the discrete elements of Ê are exactly the positive scalar multiples of the elements of
{ê | e ∈ ∗D}.

C It suffices to show that given x ∈ ∗E with ‖x‖ = 1, then x̂ is discrete in Ê if and only
if x̂ = ê for some e ∈ ∗

D . Suppose that x̂ = ê for some e ∈ ∗
D . Take any a ∈ ∗E such that

0 6 â 6 x̂. By Lemma 1, we may assume that 0 6 a 6 e. It follows that a is a scalar multiple
of e, hence â is a scalar multiple of x̂.

Conversely, suppose that x̂ is discrete in Ê. Note that the set D is a complete disjoint
system in E. By [1, Theorem 1.75], we have x = sup{Pex | e ∈

∗
D}. For every e ∈ ∗

D , the
vector Pex is a scalar multiple of e, and 0 6 Pex 6 x, hence 0 6 P̂ex 6 x̂. Therefore, if Pex
is not infinitesimal for some e ∈ ∗

D then x̂ is a scalar multiple of P̂ex, hence of ê.
Suppose now that Pex is infinitesimal for every e ∈ ∗

D . It follows from x = sup{Pex |
e ∈ ∗

D} and Lemma 3 that there exist n ∈ ∗N and e1, . . . , en ∈
∗
D such that ‖z‖ > 3

4 ,
where z = ‖Pe1x ∨ · · · ∨ Penx‖. Choose k 6 n in ∗N so that

∥∥Pe1x ∨ · · · ∨ Pek−1
x
∥∥ < 1

4 , while
‖Pe1x ∨ · · · ∨ Pek

x‖ > 1
4 . Put u = Pe1x ∨ · · · ∨ Pek

x = Pe1x+ · · ·+ Pek
x. Then

1
4 6 ‖u‖ 6

∥∥Pe1x ∨ · · · ∨ Pek−1
x
∥∥+ ‖Pek

x‖ . 1
4 ,

hence ‖u‖ ≈ 1
4 . Put v = z − u, then u ⊥ v, 0 6 u, v 6 z, and ‖u‖, ‖v‖ > 1

4 . Therefore, û and
v̂ are non-zero and disjoint elements of [0, x̂]; a contradiction. B

Corollary 5. Suppose that E is an AM-space with a strong unit, and H is a discrete
regular sublattice of E. Then Ĥ is discrete.

C Let D be a complete disjoint system of discrete elements of norm one in H. Suppose
that x̂ ∈ Ĥ+. We will show that x̂ majorizes a discrete vector. Without loss of generality,
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x ∈ ∗H+ with ‖x‖ = 1. Then x = sup{Pex | e ∈
∗
D} by [1, Theorem 1.75]. Since E is

an AM-space, we can apply Lemma 3 with ε ≈ 0 and find n ∈ ∗N and e1, . . . , en ∈
∗
D

such that ‖Pe1x ∨ · · · ∨ Penx‖ > (1 − ε)‖x‖ ≈ 1. Again, since E is an AM-space, we have
‖Pe1x ∨ · · · ∨ Penx‖ = ‖Pe1x‖ ∨ · · · ∨ ‖Penx‖, so that ‖Pek

x‖ ≈ 1 for some k 6 n. Then P̂ek
x

is non-zero. It is discrete by Theorem 4 because Pek
x is a multiple of ek. Finally, notice that

P̂ek
x 6 x̂. B
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