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An easy modification of the continuous functional calculus on unitary f-algebras as de-
fined in [3] makes it possible to translate the Fenchel-Moreau duality to f-algebra setting and
to produce some envelope representations results, see [8]. This machinery, often called quasi-
linearization (see [2, 9]), yields the validity of some classical inequalities in every uniformly
complete vector lattice [4, 5]. The aim of this note is to give general forms of Peetre—Persson
and Beckenbach—Dresher inequalities in uniformly complete f-algebras.

The unexplained terms of use below can be found in [1] and [6].

1°. We need a slightly improved version of continuous functional calculus on uniformly
complete f-algebras constructed in [3, Theorem 5.2].

Denote by % (Rf ) the f-algebra of continuous functions on Rf with polynomial growth;
i. e, p € BRY) if and only if p € C(RY) and there are n € N and M € R, satisfying
lp(t)] < M(14w(t)" (t € RY), where t:= (t1,...,tn), w(t):= [t1|+ ...+ |ty] and 1 is the
function identically equal to 1 on RY. Denote by %o(RY) the set of all functions in Z(RY)
vanishing at zero. Let &7 (RY) stands for the set of all ¢ € Z(RY) such that lim, | o~ p(at)
exists uniformly on bounded subsets of RY. Evidently, &/ (RY) C %,(RY). Finally, let
H (Rf ) denotes the set of all continuous positively homogeneous functions on Rf .

Lemma 1. The sets B(RY), %y(RY), and o/ (RY) are uniformly complete f-algebras
with respect to pointwise operations and ordering. Any ¢ € o/ (Rf ) admits a unique decom-
position ¢ = 1 + wps with p1 € H(RY) and @3 € By(RY), i. e.

o (RY) = #RY) ® wBo(RY).

Moreover, ¢1(t) = ¢'(0)t:= lim, 0 o lp(at) for all t € RY.
< See [3, Lemma 4.8, Section 5]. >
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2°. Consider an f-algebra E. Denote by H(FE) the the set of all nonzero R-valued lattice
homomorphisms on E and by H,,(E) the subset of H(FE) consisting of multiplicative func-
tionals. We say that w € H(F) is singular if w(zy) = 0 for all x,y € E. Let H (FE) denotes
the set of singular members of H(FE). Given a finite tuple x = (z1,...,7x) € EY, denote by
(x):= (z1,...,xn)) the f-subalgebra of FE generated by {x1,...,xn}.

DEFINITION. Let F be a uniformly complete f-algebra and xi,...,2y € E,. Take a
continuous function ¢ : RY — R. Say that the element @(z1, ..., zy) ezists or is well-defined
in E provided that there is y € F satisfying

w(y) = (p(w(xl)’ ce vw(xN)) (w € Hm(«xl’ s 7$N’y>>)v
wly) = er(w(z1), ..., w(zy)) (we Hs((z1,...,2n,9)),

(1)

cp. [3, Remark 5.3 (ii)]. This is written down as y = @(x1,...,zN).

Lemma 2. Assume that E is a uniformly complete f-algebra and z1,...,zny € Ey, and
x:= (21,...,2n). Then X(p):= @(21,...,znN) exists for every ¢ € o/ (RY), and the mapping
X1 X(p) = @(21,...,2N) is the unique multiplicative lattice homomorphism from

o/ (RY) to E such that dtj(z1,...,xn) = z; for all j:=1,...,N. Moreover, X(<(RY)) =
(z1,...,zN)).

< Take ¢ € & (RY). Inview of Lemma 1 ¢ = 1 +wps with o1 € F(RY), p2 € Bo(RY),
and w(t) = [t1| + ... + |[ty|. For x € E denote by & € Orth(E) the multiplication operator
y — a2y (x € E). According to [5, Theorem 3.3] and [8, Theorem 2.10] we can define
correctly @1(z1,...,zn) in E and @a(&1,...,2N) in Orth(E), respectively. Now, it remains to
put g(z1,...,2n):= @1(x1,...,2N) + P2(d1,...,2Nn)w(z1,...,2N) and check the soundness
of this definition. Closer examination of the proof can be carried out as in the case of
¢ € o (RY), see [3]. >

Lemma 3. Assume that ¢ € o/ (RY) is convex. Then for all x:= (21,...,zy) € EV,
y:= (y1,...,yn) € EY, and 7,p € Orth(E), with 7 + p = Ig we have §(rx + py) <
Tp(x) + pp(y), where x := (mwxy,...,mxn). The reverse inequality holds whenever ¢ is
concave.

< Let L be the order ideal generated by ((z1,...,yn)). Clearly, L is an f-subalgebra
of E. If my:= m|r, and pg:= p|r, then my, po Orth(L). For any w € H(L) there exists a unique
w € H,,(Orth(L)) such that w(mzx) = w(m)w(x) for all x € L and w € Orth(L), [3, Proposition
2.2 (i)]. If w is nonsingular then aw is multiplicative for some a > 0 [3, Corollary 2.5 (i)], and
thus we may assume without loss of generality that w € H,,(L). By using (1), the convexity
of ¢, and the relation W(7) + @(p) = 1 we deduce

w(@(mx + py)) = @ (@(m0)w(x) + T(po)w(y)) < @(mo)e(w(x)) +D(po)e(w(y))
= w(mo)w(P(x)) + w(po)w(P(y)) = w(rP(x) + pP(y)),

where w(x):= (w(z1),...,w(zy)). Ifwis singular then by above definition we have w(p(x)) =
w(@P1(x)), w(@(y)) = w(@1(y)), and w(P(7x + py)) = w(P1(mx + py)). At the same time
1 is sublinear, since it coincides with the directional derivative of the convex function ¢ at
zero, see Lemma 3. Thus, by replacing ¢ by (1 in the above arguments we again obtain
w(@(mx+ py)) < w(T@(x) + pP(y)). It remains to observe that every wg € H({(z1,...,zN)))
admits an extension to w € H(L) and thus H(L) separates the points of (z1,...,znN)). >

Lemma 4. If ¢ € ﬂ(Rf) is isotonic, then @ is also isotonic, i. e. X < y implies
P(x) < p(y) for all x,y € EY. (The order in EV is defined componentwise.)

< Follows immediately from the above definition (1). >
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3°. Everywhere below (G, +) is a commutative semigroup, while E is a uniformly complete
f-algebra and fi,..., fnv : G — E;. Let (M) stands for the power set of M. Assume that
some set-valued map .7 : G — Z(Orth(F), ) meets the following three conditions:

(i) 7! exists in Orth(E) for every m € .7 (u),

(ii) #(u) + Z(v) C F(u+v)— Orth(E); for all u,v € G, and

(iii) the infimum (the supremum) of {7@(7m~'f(u)) : © € F(u)} exists in E for each
u € G, where f(u):= (fi(u),..., fn(u) € EY and 77 (u):= (77  fi(w),..., 7  fn(w)).

Lemma 5. Given a function ¢ : & (RY) and a set-valued map 7 : G — 2(Orth(E))
satisfying 3 (i-iii), we have the operator g : G — E (h : G — E) well defined as

g(u):= ﬂelr%f(u) {rp(r f(u))}, (h(u) = WGS;"I()u) {rp(r f(u)} ) (2)

< By 3(i) and Lemma 2 &(7'f(u)) exists in E and by 3 (iii) g and h are well defined. >

4°. Now we are able to state and prove our main result. A function g : G — F is said
to be subadditive if g(u + v) < g(u) + g(v) for all u,v € G and superadditive if the reversed
inequality holds for all u,v € G.

Theorem. Suppose that the operators g,h : G — E are defined as in (2). Then:

(1) g is subadditive whenever f1,..., fy are subadditive and ¢ € &/(RI}I_) is Increasing
and convex;

(2) h is superadditive whenever fi,..., fn are superadditive and ¢ € o/ (RY) is increasing

and concave.

<1 We restrict ourselves to the subadditivity of g. The superadditivity of i can be proved
in a similar way. Take u,v € G and let 7 € .#(u) and p € .Z(v). By 3(ii) we can choose
o€ .Z(u+wv)with o > 7w+ p. In view of 3 (i) 7, p, and o are invertible. Taking subadditivity
of f: G — EY and some elementary properties of orthomorphisms into account we have

o H(u+v) <o f(u) +£(v) < 7o (7 E(u) + po (o ().
Putting 7:= ¢ — m — p and making use of Lemmas 3, 4 and 5 we deduce
g(u+v) < 0B(0H(u +v)) < 0B (o (1 1E(w)) + po (o7 E(v) + 7o 0)
< 7@(n i (w) + pB(p~ £ (v) + 0 TH(0) = 7B(r () + pP(p HE(v)).

By taking infimum over m € .%(u) and p € .% (v) we come to the required inequality. >

REMARK 1. Suppose that the hypotheses of 3 (i-iii) are fulfilled for some fixed u,v € G.
Then the inequality g(u + v) < g(u) + g(v) (h(u +v) = h(u) + h(v)) holds.

REMARK 2. An f-algebra F can be identified with Orth(F) if and only if £ has a unit

element. Thus, above theorem remains true if E is a uniformly complete unitary f-algebra
and the map .% : G — Z(E, ) satisfies the condition 3 (i-iii) with Orth(E) replaced by E.

5°. For a single-valued map .#(x) = {fo(x)} (x € G) with fp : G — Orth(E); we have
the following particular case of the above Theorem, see [8].

Corollary 1. Suppose that f1,..., fx are subadditive, fy: G — Orth(F)y is superaddi-
tive, and fo(u) is invertible in Orth(E) for every u € G. Then, given an increasing continuous
convex function ¢ € o/ (RY), the Peetre—Persson inequality holds:

ol 07 (o) < p(515) + (105 ) )

The reverse inequality holds in (3) whenever fy, f1,..., fn are superadditive, and ¢ is an
increasing concave function.
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REMARK 3. The above theorem in the particular case of £ = R was obtained by Persson
[12, Theorems 1 and 2|, while Corollary 2 covers the “single-valued case” by Peetre and
Persson [11]. A short history of the Beckenbach-Dresher inequality is presented in [13].
Some instances of the inequality are also addressed in [9, 10].

6°. We need two more auxiliary facts. First of them is a generalized Minkowski inequality.

Lemma 6. Let E and F' be uniformly complete vector lattices, f : E4 — F an increasing
sublinear operator. If either and 0 < oo < 1 or a < 0, then for all x1,...,xzny € E we have

f((i!wz‘\o‘)l/a) < (éf(!%\)“)l/a- (4)

i=1
The reverse inequality holds if f : By — F' is superlinear and o > 1.

< The function ¢q(t) = (6§ + ... + t?\,)l/a (t € RY) is superlinear if 0 < a < 1 and
sublinear if @ > 1. In case a < 0 we define ¢, (t) = 0 whenever ¢; - ... -ty = 0 and then ¢,
is superlinear on int(RY). In all cases ¢, € H(RY) and (4) follows from the generalized
Jensen inequality in vector lattices, see [4, Theorem 5.2] and [7, Theorem 4.2]. >

Let A and B be uniformly complete unitary f-algebras, while £ C A is a vector sublattice.
For every x € A} and 0 < p € R the p-power z? is well defined in A, see [3, Theorem 4.12].
If € A, is invertible and p < 0, then we can also define 2P := (z~!)7P. It can be easily seen
that w(2P) = w(x)P for any w € H,,(Ap) with an f-subalgebra Ay C containing z. Assume
that R : E — B is a positive operator. Given x € A with 2P € E, we define R,(z):= R(l’p)%.
This definition is sound provided that z is invertible in A and R(xP) is invertible in B.

Lemma 7. If p > 1 and z1,...,xNy € Ay are such that xﬁ’,...,x?\, € Fand (r1+ ...+
xN)P € E, then the inequality holds:

Ry(x1+...+2n) < Rp(xz)+ ...+ Ry(xn). (5)

The reversed inequality is true whenever p < 1, p # 0. (In case p < 0 the positive elements x;
and R(z) are assumed to be invertible in A.)

L
< Denote u;:= ¥, a:=1/p, and observe that (u‘f +...+ u‘j‘v) @ = ¢qo(u1,...,un) where
da(u,...,uy) is understood in the sense of homogeneous functional calculus. In particular,

1
(14 ... +an)P = (uf+ ...+ u})" € E for every p # 0. We need consider three cases. If
p = 0 then by applying Lemma 6 to the right-hand side of the equality

«

Ry(z1+...+2zNn) = R((uf‘ +—|—u?‘v)é) = (R(¢a(u1,...,un)))"

with u$* € E replaced by z; and making use of R,(x;) = R(u;)® (i:=1,...,N), we arrive
immediately at the desired inequality (5). The same arguments involving the reversed version
of (4) leads to the reversed inequality in (5) whenever 0 < p < 1. Finally, in the case p < 0,
1

again by Lemma 6, we have R((uf + ...+ u?‘v)é) < (R(w1)® + ...+ R(un)®) and rising
both sides of this inequality to the ath power we get the reversed inequality (5). >

7°. Now, we can deduce a generalization of one more Beckenbach—Dresher type inequality
due to Peetre and Persson [11].

Corollary 2. Let S : E — F and T : E — Orth(F) be positive operators. Take
x1,...,xN € Ay such that z% o (Zﬁ\;lxi)a,(zx\;lxi)ﬁ €EFE (i:=1,...,N). Ifp > 1,

1%
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<1<, f#0, and T(acl’g) are invertible in Orth(F') whenever 3 < 0, then
(S(xe))""

(S((Zﬁ\;xi)a))p/a _ N Z
(T((=X, xi)ﬂ))(”’”/ﬁ <2 (T(2) 77 (6)

=1

A Put G = E, f(z):= f(z) = SV, fo(z):= T(@?)/P, N = 1, and ¢(t) = t? in
Corollary 1. By Lemma 7 f is subadditive, fq is superadditive, and fy(x;) is invertible in
Orth(F'). Moreover, ¢ € o7/(R) is convex and increasing whenever p > 1. Now, the desired
inequality is deduced by induction. >

REMARK 4. If 0 < p < 1 then the concave function ¢(t) = t? is not in </ (Ry) and we
cannot guarantee the reversed inequality in (6). Nevertheless, in the case that F' is a unitary
f-algebra one can take p € ZB(RY) in Peetre-Persson’s inequality (3) and thus the reversed
inequality is true in (6) whenever 0 < p <1, o, 8 < 1, and «, 5 # 0.
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HEPABEHCTBO TUITIA BEKKEHBAXA — JIPEITEPA
B PABHOMEPHO ITOJIHBIX f-AJI'EBPAX

A. T. Kycpaes

VcranosiieHo obuiee HepaseHcTBo Tuna Bekkenbaxa — Jlperiepa B paBHOMEPHO MOJIHBIX f-ajarebpax.

KimroueBsle ciioBa: f-ajrebpa, BEKTOPHAsI PEIIETKA, PEIIETOYHBI TOMOMOPMU3M, MOJIOKUTEJLHBIN OIle-
parop.



