УДК 512.555+517.982

BANACH LATTICES OF CONTINUOUS SECTIONS¹

A. G. Kusraev, S. N. Tabuev

The aim of this note is to outline some application of ample continuous Banach bundles to the theory of Banach lattices.

Mathematics Subject Classification (2000): 06F25, 46A40.

Key words: Banach lattice, continuous Banach bundle, section, injective Banach lattice.

1. Introduction

The study of Banach lattices in terms of sections of continuous Banach bundles has been started by Giertz [1, 2]. Later Gutman create the theory of ample (or complete) continuous Banach bundles [3] and measurable Banach bundles admitting lifting [4]. A portion of the Gutman's theory was specified in the case of bundles of measurable Banach lattices by Ganiev [5] and Kusraev [6]. The aim of this short note is to outline some additional possibilities of applying ample Banach bundles to the theory of Banach lattices. Recall some definitions.

A bundle of Banach lattices over a set Q is a mapping \mathscr{X} defined on Q and sending every point $q \in Q$ to a Banach lattice $\mathscr{X}(q) := (\mathscr{X}(q), \|\cdot\|_q)$. Each space $\mathscr{X}(q)$ of a bundle \mathscr{X} is called its *stalk* over q. A mapping u defined on a nonempty subset $D \subset Q$ is called a *section* over D, if $u(q) \in \mathscr{X}(q)$ for every $q \in D$. A section over Q is called *global*. If Q is endowed with some topology we call sections over comeager subsets of Q almost global.

Let $S(Q, \mathscr{X})$ stands for the set of all global sections of \mathscr{X} , endowed with the structure of a vector lattice by letting $u \leq v \iff u(q) \leq v(q) \ (\forall q \in Q)$, and $(\alpha u + \beta v)(q) = \alpha u(q) + \beta v)(q)$ $(q \in Q)$, where $\alpha, \beta \in \mathbb{R}$ and $u, v \in S(Q, \mathscr{X})$. For each section $u \in S(Q, \mathscr{X})$ we define its point-wise norm by $|||u||| : q \mapsto ||u(q)||_{\mathscr{X}(q)} \ (q \in Q)$. A set of sections $\mathscr{U} \subset S(Q, \mathscr{X})$ is called stalk-wise dense in \mathscr{X} if the set $\{u(q) : u \in \mathscr{U}\}$ is dense in $\mathscr{X}(q)$ for every $q \in Q$.

2. Continuous bundles of Banach lattices

Let Q be a topological space and \mathscr{X} be a bundle of Banach lattices over Q. A set of global sections $\mathscr{C} \subset S(Q, \mathscr{X})$ is called a *continuity structure* on \mathscr{X} , if it satisfy the conditions:

- (a) \mathscr{C} is a vector lattice, i. e. $\alpha c_1 + \beta c_2 \in \mathscr{C}$, $|c| \in \mathscr{C}$ for all $\alpha, \beta \in \mathbb{R}$ and $c_1, c_2 \in \mathscr{C}$;
- (b) the point-wise norm $|||c|||: Q \to \mathbb{R}$ is continuous for every $c \in \mathscr{C}$;
- (c) \mathscr{C} is stalk-wise dense in \mathscr{X} .

If \mathscr{C} is a continuity structure on \mathscr{X} then the pair $(\mathscr{X}, \mathscr{C})$ is called a *continuous bundle of* Banach lattices over Q. More details see in [3] and [7]. Below $(\mathscr{X}, \mathscr{C})$ stands for a continuous bundle of Banach lattices over Q. We say that a section $u \in S(D, \mathscr{X})$ over $D \subset Q$ is \mathscr{C} continuous at the point $q \in D$ if the function |||u - c||| is continuous at q for every $c \in \mathscr{C}$. A section $u \in S(D, \mathscr{X})$ is \mathscr{C} -continuous if it is \mathscr{C} -continuous at every $q \in D$.

^{© 2012} Kusraev A. G., Tabuev S. N.

¹ The study was supported by The Ministry of education and science of Russian Federation, project 8210; by a grant from the Russian Foundation for Basic Research, project 12-01-00623-a.

Lemma. Let $(\mathscr{X}, \mathscr{C})$ be a continuous bundle of Banach lattices over Q. The set of all \mathscr{C} -continuous sections over $D \subset Q$ is a vector lattice.

⊲ It is obvious that the set of all \mathscr{C} -continuous sections is a vector space. Ensure that if a section u is \mathscr{C} -continuous then so is $|u| : q \mapsto |u(q)|$ $(q \in D)$. It is sufficient to prove that the function $||||u| - c||| : Q \to \mathbb{R}$ is continuous at an arbitrary $q \in D$, for every $c \in \mathscr{C}$. Put $\lambda := |||u|(q) - c(q)||$. We have to prove that, given $q \in D$ and $\epsilon > 0$, one can choose a neighborhood U of q such that $\lambda - \epsilon < |||u|(p) - c(p)|| < \lambda + \epsilon$ for every $p \in U$.

Select a section $v \in \mathscr{C}$ satisfying $||u(q) - v(q)|| < \epsilon/2$. Observe that $||u|(q) - |v|(q)|| \leq ||u(q) - v(q)|| < \epsilon/2$. Taking into consideration the continuity of the function ||||v| - c||| and the estimate $||v|(q) - c(q)|| \leq ||u|(q) - c(q)|| + ||u|(q) - |v|(q)|| < \lambda + \epsilon/2$ we can find a neighborhood U_1 of q with $||v|(p) - c(p)|| < \epsilon/2$ for all $p \in U_1$.

Similarly, the estimate $|||v|(q) - c(q)|| \ge ||u|(q) - c(q)|| - ||u|(q) - |v|(q)|| \ge \lambda - \epsilon/2$ implies that $|||v|(p) - c(p)|| \ge \lambda - \epsilon/2$ ($p \in U_2$) for some neighborhood U_2 of q. Now, for all $p \in U := U_1 \cap U_2$ we can easily deduce

$$\lambda - \epsilon = (\lambda - \epsilon/2) - \epsilon/2 < || |v|(p) - c(p)|| - || |u|(p) - |v|(p)|| \le || |u|(p) - c(p)||,$$

$$|| |u|(p) - c(p)|| \le || |v|(p) - c(p)|| + || |u|(p) - |v|(p)|| < (\lambda + \epsilon/2) + \epsilon/2 = \lambda + \epsilon. \triangleright$$

3. Banach lattices of sections

Suppose that Q is a nonempty Stonean space (\equiv extremally disconnected and compact Hausdorff space). Consider a continuous Banach bundle \mathscr{X} over Q. If u is an almost global section of the bundle \mathscr{X} then the function $q \mapsto ||u(q)||_q$ is defined and continuous on a comeager set dom $(u) \subset Q$. Consequently, there exists a unique function $|u| \in C_{\infty}(Q)$ such that $|u|(q) = ||u(q)||_q$ $(q \in \text{dom}(u))$.

In the set of almost global sections $\mathfrak{M}(Q, \mathscr{X})$ we can define an equivalence relation by letting $u \sim v$ if u(q) = v(q) whenever $q \in \operatorname{dom}(u) \cap \operatorname{dom}(v)$. Then equivalent u and v we have |u| = |v|; therefore, we may define $|\tilde{u}| := |u|$, where \tilde{u} is the coset of the almost global section u. Denote by $C_{\infty}(Q, \mathscr{X})$ the quotient space $\mathfrak{M}(Q, \mathscr{X})/\sim$.

In each coset \tilde{u} , there exists a unique section $\bar{u} \in \tilde{u}$ such that $\operatorname{dom}(v) \subset \operatorname{dom}(\bar{u})$ for all $v \in \tilde{u}$. The section \bar{u} is called extended. The space $C_{\infty}(Q, \mathscr{X})$ can be represented also as the space of all extended almost global sections of the bundle \mathscr{X} , see [3]. The set $C_{\infty}(Q, \mathscr{X})$ can be naturally equipped with the structure of lattice-normed lattice. For instance, the element $\tilde{u} + \tilde{v}$ is defined as the coset of the almost global section $q \mapsto u(q) + v(q)$ ($q \in \operatorname{dom}(u) \cap \operatorname{dom}(v)$). If E is an order ideal in $C_{\infty}(Q)$ then we assign $E(\mathscr{X}) := \{u \in C_{\infty}(Q, \mathscr{X}) : |u| \in E\}$.

Recall that a Banach-Kantorovich space over a Dedekind complete vector lattice E is a vector space X with a decomposable norm $|\cdot|: X \to E_+$ which is norm complete with respect to order convergence in E. Decomposability means that, given $e_1, e_2 \in E_+$ and $x \in X$ with $|x| = e_1 + e_2$, there exist $x_1, x_2 \in X$ such that $x = x_1 + x_2$ and $|x_k| = e_k$ (k := 1, 2). If a Banach-Kantorovich space is in addition a vector lattice with monotone norm then it's called a Banach-Kantorovich lattice. A Banach-Kantorovich lattice X can be endowed with a scalar norm $x \mapsto ||\cdot|| := ||\cdot||_E$, whenever E is a Banach lattice. The following result see in [3, 7].

Theorem 1. Let \mathscr{X} be a continuous bundle of Banach lattices over a Stonean space Q. Then $C_{\infty}(Q, \mathscr{X})$ is a Banach–Kantorovich lattice over $C_{\infty}(Q)$. If E is an order ideal in $C_{\infty}(Q)$ then $(E(\mathscr{X}), |\cdot|)$ is a Banach–Kantorovich lattice over E. If, in addition, E is Banach lattice, then $(E(\mathscr{X}), ||\cdot||)$ is a Banach–lattice. \triangleleft We need only to put together the 'Banach part', given in [3] and [7, Theorem 2.4.7], and the above Lemma. \triangleright

Theorem 2. Every Banach–Kantorovich lattice X over an order dense ideal $E \subset C_{\infty}(Q)$ is isometrically lattice isomorphic to $E(\mathscr{X})$ for some complete continuous bundle \mathscr{X} of Banach lattices over Q. Moreover, such a bundle \mathscr{X} is unique to within isometrically lattice isomorphism.

 \triangleleft The 'Banach part' follows again from [3] (see also [7, 2.4.10]). The rest is easily deduced on using the above Lemma. \triangleright

Let Q be the Stone space of the Boolean algebra $B(\Omega)$ and $\tau : \Omega \to Q$ is the canonical immersion of Ω into Q corresponding to a fixed lifting τ of $L^{\infty}(\Omega)$. Let \mathscr{Y} be a complete continuous bundle of Banach lattices over Q and $\mathscr{X} = \mathscr{Y} \circ \tau$. If \mathscr{C} is a continuous structure in \mathscr{Y} , then the set $\mathscr{C} \circ \tau$ is a measurability structure in \mathscr{X} . The composite $v \circ \tau$ is a measurable section of \mathscr{X} for every $v \in C_{\infty}(Q, \mathscr{Y})$, see [2, 1.2.7, 1.4.9, 2.5.8]. Let $C(Q, \mathscr{X})$ stands for the set of all global continuous sections of \mathscr{X} . The following result may be considered as a bridge between continuous and measurable bundles of Banach lattices.

Theorem 3. Let (Ω, Σ, μ) be a measurable space with the direct sum property. The mapping $v \mapsto (v \circ \tau)^{\sim}$ is isometric lattice isomorphism of Banach–Kantorovich lattices $C_{\infty}(Q, \mathscr{Y})$ and $L^{0}(\Omega, \mathscr{X})$, associated with the isomorphism $(e \mapsto (e \circ \tau)^{\sim}) : C_{\infty}(Q) \to L^{0}(\Omega)$. The image of $C(Q, \mathscr{Y})$ under this isomorphism is $L^{\infty}(\Omega, \mathscr{X})$.

 \triangleleft The 'Banach part' can be found in [4] (see also [2, 2.5.9]). The remaining is obvious. \triangleright

REMARK 1. The theory of ample continuous bundles of Banach lattices is parallel to that of liftable Banach bundles presented in [6]. In particular, the results from [6, Theorems 2.9, 2.10, 3.3] have their counterparts for ample continuous bundles of Banach lattices.

4. Representation of injective Banach lattices

A real Banach lattice X is said to be *injective* if, for every Banach lattice Y, every closed vector sublattice $Y_0 \subset Y$, and every positive linear operator $T_0 : Y_0 \to X$ there exists a positive linear extension $T : Y \to X$ with $||T_0|| = ||T||$. This concept was introduced by Lotz [8]. Important contributions are due to Cartwright [9] and Haydon [10]. A new source of insight into the structure of injectives is a Boolean-valued approach, see [11, 12].

A band projection π in a Banach lattice X is said to be an *M*-projection if $||x|| = \max\{||\pi x||, ||\pi^{\perp} x||\}$ for all $x \in X$, where $\pi^{\perp} := I_X - \pi$. The collection of all *M*-projections forms a subalgebra $\mathbb{M}(X)$ of the Boolean algebra of all band projections $\mathbb{P}(X)$ in X. The closed f-subalgebra in the center $\mathscr{Z}(X)$ generated by $\mathbb{M}(X)$ is denoted by $\mathscr{Z}_m(X)$.

A positive operator $T: X \to F$ is said to have the *Levi property* if $T(X)^{\perp \perp} = F$ and sup x_{α} exists in X for every increasing net $(x_{\alpha}) \subset X_{+}$, provided that the net (Tx_{α}) is order bounded in F. A *Maharam operator* is an order continuous order intervals preserving $(\equiv T([0, x]) = [0, Tx]$ for all $x \in X_{+}$) operator. An operator $T: X \to Y$ is called lattice \mathbb{B} -isometry, if it is a lattice isometry and $b \circ T = T \circ b$ for all $b \in \mathbb{B}$.

Theorem 4. If Φ is a strictly positive Maharam operator with the Levi property taking values in a Dedekind complete AM-space Λ with unit and $|||x||| = ||\Phi(|x|)||_{\infty}$ $(x \in L^1(\Phi))$, then $(L^1(\Phi), ||| \cdot |||)$ is an injective Banach lattice with $\mathbb{M}(L^1(\Phi)) = \mathbb{P}(\Lambda)$. Conversely, any injective Banach lattice X is lattice \mathbb{B} -isometric to $(L^1(\Phi), ||| \cdot |||)$ for some strictly positive Maharam operator Φ with the Levi property taking values in a Dedekind complete AM-space Λ with unit, where $\mathbb{B} = \mathbb{M}(L^1(\Phi)) = \mathbb{P}(\Lambda)$.

 \triangleleft See [12]; details can be found in [11]. \triangleright

Theorem 5. Every injective Banach lattice X with $\Lambda = \mathscr{Z}_m(X) = C(Q)$ and $\mathbb{B} := \mathbb{P}(\Lambda)$ is lattice \mathbb{B} -isometric to $\Lambda(\mathscr{X})$ for some complete continuous bundle \mathscr{X} of Banach lattices over Q such that all stalks $\mathscr{X}(q)$ ($q \in Q$) are AL-spaces. Moreover, such a bundle \mathscr{X} is unique to within isometrically lattice isomorphism.

 \triangleleft The proof consists of a combination of the representation Theorems 2 and 4. \triangleright

REMARK 2. This result was proved essentially by Gierz [1, 2] and Haydon [10]. The above approach enables us to settle also the uniqueness problem.

References

- 1. Gierz G. Darstellung von Banachverbänden durch Schnitte in Bündeln // Mitt. Math. Sem. Univ. Giessen.—1977.—Vol. 125.
- 2. Gierz G. Bundles of Topological Vector Spaces and Their Duality.—Berlin etc.: Springer-Verlag, 1982.
- Gutman A. E. Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles // Siberian Adv. Math.—1993.—Vol. 3, № 3.—P. 1–55.
- Gutman A. E. Banach bundles in the theory of lattice-normed spaces. II. Measurable Banach bundles // Siberian Adv. Math.—1993.—Vol. 3, № 4.—P. 8–40.
- Ganiev I. G. Measurable bundles of lattices and their applications // Studies on functional analysis and its applications.—Moscow: Nauka, 2006.—P. 9–49.
- 6. Kusraev A. G. Measurable bundles of Banach lattices // Positivity.-2010.-Vol. 14.-P. 785-799.
- 7. Kusraev A. G. Dominated Operators.-Dordrecht: Kluwer, 2000.-446 p.
- Lotz H. P. Extensions and liftings of positive linear mappings on Banach lattices // Trans. Amer. Math. Soc.—1975.—Vol. 211.—P. 85–100.
- 9. Cartwright D. I. Extension of positive operators between Banach lattices // Memoirs Amer. Math. Soc.—1975.—Vol. 164.—P. 1–48.
- 10. Haydon R. Injective Banach lattices // Math. Z.-1977.-Vol. 156.-P. 19-47.
- 11. Kusraev A. G. Boolean Valued Analysis Approach to Injective Banach Lattices.—Vladikavkaz: Southern Math. Inst. VSC RAS, 2011.—28 p.—(Preprint № 1).
- Kusraev A. G. Boolean-valued analysis and injective Banach lattices // Doklady Ross. Akad. Nauk.— 2012.—Vol. 444, № 2.—P. 143–145; Engl. transl.: Doklady Mathematics.—2012.—Vol. 85, № 3.—P. 341– 343.

Received Desember 9, 2012.

ANATOLY G. KUSRAEV Southern Mathematical Institute Vladikavkaz Science Center of the RAS, *Director* Russia, 362027, Vladikavkaz, Markus street, 22 E-mail: kusraev@smath.ru

SOSLAN N. TABUEV Southern Mathematical Institute Vladikavkaz Science Center of the RAS, *Researcher* Russia, 362027, Vladikavkaz, Markus street, 22 E-mail: soslan@tabuev.com

БАНАХОВЫ РЕШЕТКИ НЕПРЕРЫВНЫХ СЕЧЕНИЙ

Кусраев А. Г., Табуев С. Н.

Заметка представляет собой набросок некоторых приложений просторных банаховых расслоений к теории банаховых решеток.

Ключевые слова: банахова решетка, непрерывное банахово расслоение, сечение, инъективная банахова решетка.