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The aim of this note is to outline some application of ample continuous Banach bundles to the theory of
Banach lattices.
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1. Introduction

The study of Banach lattices in terms of sections of continuous Banach bundles has been
started by Giertz [1, 2]. Later Gutman create the theory of ample (or complete) continuous
Banach bundles [3] and measurable Banach bundles admitting lifting [4]. A portion of the
Gutman’s theory was specified in the case of bundles of measurable Banach lattices by Ganiev
[5] and Kusraev [6]. The aim of this short note is to outline some additional possibilities of
applying ample Banach bundles to the theory of Banach lattices. Recall some definitions.

A bundle of Banach lattices over a set Q is a mapping X defined on Q and sending every
point q ∈ Q to a Banach lattice X (q) := (X (q), ‖ · ‖q). Each space X (q) of a bundle X is
called its stalk over q. A mapping u defined on a nonempty subset D ⊂ Q is called a section

over D, if u(q) ∈ X (q) for every q ∈ D. A section over Q is called global. If Q is endowed
with some topology we call sections over comeager subsets of Q almost global.

Let S(Q,X ) stands for the set of all global sections of X , endowed with the structure of
a vector lattice by letting u 6 v ⇐⇒ u(q) 6 v(q) (∀q ∈ Q), and (αu+βv)(q) = αu(q)+βv)(q)
(q ∈ Q), where α, β ∈ R and u, v ∈ S(Q,X ). For each section u ∈ S(Q,X ) we define its
point-wise norm by |||u||| : q 7→ ‖u(q)‖X (q) (q ∈ Q). A set of sections U ⊂ S(Q,X ) is called
stalk-wise dense in X if the set {u(q) : u ∈ U } is dense in X (q) for every q ∈ Q.

2. Continuous bundles of Banach lattices

Let Q be a topological space and X be a bundle of Banach lattices over Q. A set of global
sections C ⊂ S(Q,X ) is called a continuity structure on X , if it satisfy the conditions:

(a) C is a vector lattice, i. e. αc1 + βc2 ∈ C , |c| ∈ C for all α, β ∈ R and c1, c2 ∈ C ;
(b) the point-wise norm |||c||| : Q→ R is continuous for every c ∈ C ;
(c) C is stalk-wise dense in X .
If C is a continuity structure on X then the pair (X ,C ) is called a continuous bundle of

Banach lattices over Q. More details see in [3] and [7]. Below (X ,C ) stands for a continuous
bundle of Banach lattices over Q. We say that a section u ∈ S(D,X ) over D ⊂ Q is C -
continuous at the point q ∈ D if the function |||u− c||| is continuous at q for every c ∈ C . A
section u ∈ S(D,X ) is C -continuous if it is C -continuous at every q ∈ D.
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Lemma. Let (X ,C ) be a continuous bundle of Banach lattices over Q. The set of all

C -continuous sections over D ⊂ Q is a vector lattice.

C It is obvious that the set of all C -continuous sections is a vector space. Ensure that
if a section u is C -continuous then so is |u| : q 7→ |u(q)| (q ∈ D). It is sufficient to prove
that the function ||||u| − c||| : Q → R is continuous at an arbitrary q ∈ D, for every c ∈ C .
Put λ := ‖ |u|(q) − c(q)‖. We have to prove that, given q ∈ D and ε > 0, one can choose a
neighborhood U of q such that λ− ε < ‖ |u|(p) − c(p)‖ < λ+ ε for every p ∈ U .

Select a section v ∈ C satisfying ‖u(q) − v(q)‖ < ε/2. Observe that ‖ |u|(q) − |v|(q)‖ 6

‖u(q) − v(q)‖ < ε/2. Taking into consideration the continuity of the function ||| |v| − c||| and
the estimate ‖ |v|(q) − c(q)‖ 6 ‖ |u|(q) − c(q)‖ + ‖ |u|(q) − |v|(q)‖ < λ + ε/2 we can find a
neighborhood U1 of q with ‖ |v|(p) − c(p)‖ < ε/2 for all p ∈ U1.

Similarly, the estimate ‖ |v|(q) − c(q)‖ > ‖|u|(q) − c(q)‖ − ‖ |u|(q) − |v|(q)‖ > λ − ε/2
implies that ‖ |v|(p) − c(p)‖ > λ− ε/2 (p ∈ U2) for some neighborhood U2 of q. Now, for all
p ∈ U := U1 ∩ U2 we can easily deduce

λ− ε = (λ− ε/2)− ε/2 < ‖ |v|(p) − c(p)‖ − ‖ |u|(p) − |v|(p)‖ 6 ‖ |u|(p) − c(p)‖,
‖ |u|(p) − c(p)‖ 6 ‖ |v|(p) − c(p)‖+ ‖ |u|(p) − |v|(p)‖ < (λ+ ε/2) + ε/2 = λ+ ε. �

3. Banach lattices of sections

Suppose that Q is a nonempty Stonean space (≡ extremally disconnected and compact
Hausdorff space). Consider a continuous Banach bundle X over Q. If u is an almost global
section of the bundle X then the function q 7→ ‖u(q)‖q is defined and continuous on a
comeager set dom(u) ⊂ Q. Consequently, there exists a unique function u ∈ C∞(Q) such
that u (q) = ‖u(q)‖q (q ∈ dom(u)).

In the set of almost global sections M(Q,X ) we can define an equivalence relation by
letting u ∼ v if u(q) = v(q) whenever q ∈ dom(u) ∩ dom(v). Then equivalent u and v we
have u = v ; therefore, we may define ũ := u , where ũ is the coset of the almost global
section u. Denote by C∞(Q,X ) the quotient space M(Q,X )/ ∼.

In each coset ũ, there exists a unique section ū ∈ ũ such that dom(v) ⊂ dom(ū) for all
v ∈ ũ. The section ū is called extended. The space C∞(Q,X ) can be represented also as the
space of all extended almost global sections of the bundle X , see [3]. The set C∞(Q,X ) can
be naturally equipped with the structure of lattice-normed lattice. For instance, the element
ũ+ṽ is defined as the coset of the almost global section q 7→ u(q)+v(q) (q ∈ dom(u)∩dom(v)).
If E is an order ideal in C∞(Q) then we assign E(X ) := {u ∈ C∞(Q,X ) : u ∈ E}.

Recall that a Banach–Kantorovich space over a Dedekind complete vector lattice E is a
vector space X with a decomposable norm · : X → E+ which is norm complete with respect
to order convergence in E. Decomposability means that, given e1, e2 ∈ E+ and x ∈ X with
x = e1 + e2, there exist x1, x2 ∈ X such that x = x1 + x2 and xk = ek (k := 1, 2). If
a Banach–Kantorovich space is in addition a vector lattice with monotone norm then it’s
called a Banach–Kantorovich lattice. A Banach–Kantorovich lattice X can be endowed with
a scalar norm x 7→ |||·||| := ‖ · ‖E , whenever E is a Banach lattice. The following result see in
[3, 7].

Theorem 1. Let X be a continuous bundle of Banach lattices over a Stonean space Q.

Then C∞(Q,X ) is a Banach–Kantorovich lattice over C∞(Q). If E is an order ideal in C∞(Q)
then

(
E(X ), ·

)
is a Banach–Kantorovich lattice over E. If, in addition, E is Banach lattice,

then
(
E(X ), |||·|||

)
is a Banach lattice.
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C We need only to put together the ‘Banach part’, given in [3] and [7, Theorem 2.4.7],
and the above Lemma. B

Theorem 2. Every Banach–Kantorovich lattice X over an order dense ideal E ⊂ C∞(Q)
is isometrically lattice isomorphic to E(X ) for some complete continuous bundle X of Ba-

nach lattices over Q. Moreover, such a bundle X is unique to within isometrically lattice

isomorphism.

C The ‘Banach part’ follows again from [3] (see also [7, 2.4.10]). The rest is easily deduced
on using the above Lemma. B

Let Q be the Stone space of the Boolean algebra B(Ω) and τ : Ω → Q is the canonical
immersion of Ω into Q corresponding to a fixed lifting τ of L∞(Ω). Let Y be a complete
continuous bundle of Banach lattices over Q and X = Y ◦τ . If C is a continuous structure in
Y , then the set C ◦ τ is a measurability structure in X . The composite v ◦ τ is a measurable
section of X for every v ∈ C∞(Q,Y ), see [2, 1.2.7, 1.4.9, 2.5.8]. Let C(Q,X ) stands for
the set of all global continuous sections of X . The following result may be considered as a
bridge between continuous and measurable bundles of Banach lattices.

Theorem 3. Let (Ω,Σ, µ) be a measurable space with the direct sum property. The map-

ping v 7→ (v ◦ τ)∼ is isometric lattice isomorphism of Banach–Kantorovich lattices C∞(Q,Y )
and L0(Ω,X ), associated with the isomorphism (e 7→ (e ◦ τ)∼) : C∞(Q) → L0(Ω). The

image of C(Q,Y ) under this isomorphism is L∞(Ω,X ).

C The ‘Banach part’ can be found in [4] (see also [2, 2.5.9]). The remaining is obvious. B

Remark 1. The theory of ample continuous bundles of Banach lattices is parallel to that
of liftable Banach bundles presented in [6]. In particular, the results from [6, Theorems 2.9,
2.10, 3.3] have their counterparts for ample continuous bundles of Banach lattices.

4. Representation of injective Banach lattices

A real Banach lattice X is said to be injective if, for every Banach lattice Y , every closed
vector sublattice Y0 ⊂ Y , and every positive linear operator T0 : Y0 → X there exists a
positive linear extension T : Y → X with ‖T0‖ = ‖T‖. This concept was introduced by
Lotz [8]. Important contributions are due to Cartwright [9] and Haydon [10]. A new source
of insight into the structure of injectives is a Boolean-valued approach, see [11, 12].

A band projection π in a Banach lattice X is said to be an M -projection if ‖x‖ =
max{‖πx‖, ‖π⊥x‖} for all x ∈ X, where π⊥ := IX − π. The collection of all M -projections
forms a subalgebra M(X) of the Boolean algebra of all band projections P(X) in X. The
closed f -subalgebra in the center Z (X) generated by M(X) is denoted by Zm(X).

A positive operator T : X → F is said to have the Levi property if T (X)⊥⊥ = F and
supxα exists in X for every increasing net (xα) ⊂ X+, provided that the net (Txα) is
order bounded in F . A Maharam operator is an order continuous order intervals preserving
(≡ T ([0, x]) = [0, Tx] for all x ∈ X+) operator. An operator T : X → Y is called lattice
B-isometry, if it is a lattice isometry and b ◦ T = T ◦ b for all b ∈ B.

Theorem 4. If Φ is a strictly positive Maharam operator with the Levi property taking

values in a Dedekind complete AM -space Λ with unit and |||x||| = ‖Φ(|x|)‖∞ (x ∈ L1(Φ)), then

(L1(Φ), |||·|||) is an injective Banach lattice with M(L1(Φ)) = P(Λ). Conversely, any injective

Banach lattice X is lattice B-isometric to (L1(Φ), |||·|||) for some strictly positive Maharam

operator Φ with the Levi property taking values in a Dedekind complete AM -space Λ with

unit, where B = M(L1(Φ)) = P(Λ).
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C See [12]; details can be found in [11]. B

Theorem 5. Every injective Banach lattice X with Λ = Zm(X) = C(Q) and B := P(Λ)
is lattice B-isometric to Λ(X ) for some complete continuous bundle X of Banach lattices

over Q such that all stalks X (q) (q ∈ Q) are AL-spaces. Moreover, such a bundle X is

unique to within isometrically lattice isomorphism.

C The proof consists of a combination of the representation Theorems 2 and 4. B

Remark 2. This result was proved essentially by Gierz [1, 2] and Haydon [10]. The above
approach enables us to settle also the uniqueness problem.
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БАНАХОВЫ РЕШЕТКИ НЕПРЕРЫВНЫХ СЕЧЕНИЙ

Кусраев А. Г., Табуев С. Н.

Заметка представляет собой набросок некоторых приложений просторных банаховых расслоений
к теории банаховых решеток.

Ключевые слова: банахова решетка, непрерывное банахово расслоение, сечение, инъективная
банахова решетка.


