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1. Introduction

Nonstandard analysis has contributed to various branches of mathematics (see, for exam-
ple, [1, 5, 6]). The infinitesimal methods are rather useful in problems related with compact-
ness and ultrafilters. In the present paper we apply nonstandard methods to ordered vector
spaces. We consider some questions on the order/uniform convergence, the Archimedean
property, and the order completeness in ordered spaces. Our terminology and notations fol-
low to [2, 7, 9, 10], and [8] in what is related to ordered vector spaces and to [1, 5], and [4]
in what is related to nonstandard analysis.

Here we collect some basic preliminary facts that will be used throughout the paper. We
consider a superstructure V (S) =

⋃
n Vn(S) over a set S which includes several algebraic

systems such as real numbers, necessarily vector spaces, etc. (cf. [4, p. 164–165]). Dealing
with some superstructure in the sequel, we do not specify the basic set over which it is
constructed. This set is usually chosen to be sufficiently substantive for questions under
consideration. We denote the superstructure under consideration by M . We suppose that for
our enlargement ∗S of S, the natural embedding ∗ : V (S) ↪→ V (∗S) (or, simply, ∗ : M ↪→ ∗M)
satisfies the following principles (cf. [4, p. 165–166]).

Extension Principle. The set S is a proper subset of ∗S in the sense that ∗x = x for
every x ∈ S. Moreover, ∗S is equipped with the same family of operations and relations
as S is.

Transfer Principle. Let ψ(x1, x2, . . . , xn) be a bounded formula of the superstructureM
(i. e., a formula of the language LM [4, p. 165]), and let A1, A2, . . . , An be elements of the
superstructure M .

Then the assertion ψ(A1, A2, . . . , An) about elements of M is true if and only if the
assertion ψ(∗A1,

∗A2, . . . ,
∗An) about elements of ∗M is true.
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Let ∗M be a nonstandard enlargement of a superstructure M . An element x ∈ ∗M is
called: standard if x = ∗X for some X ∈M ; internal if x ∈ ∗X for some X ∈M ; external if x
is not internal. Note that every standard element is internal, and every element of an internal
set is internal too (cf. [1, 1.2.5]). The following technical principle is an easy consequence of
the transfer principle:

Internal Definition Principle. Let ψ(x, x1, . . . , xn) be a formula of LM , and let
A,A1, . . . , An be internal sets. Then the set {x ∈ A : ψ(x,A1, . . . , An)} is internal too.

It is well known (cf. [1, 2.1.4]) that a nonstandard enlargement ∗M of the superstruc-
ture M can be chosen so that the following principle (our last one) holds:

General Saturation Principle. For every family {Xγ}γ∈Γ of internal sets which has
standard cardinality (i. e., card(Γ) < card(M)) and has the finite intersection property, the
condition

⋂
γ∈ΓXγ 6= ∅ is valid.

In the sequel, we deal only with nonstandard enlargements satisfying the general satu-
ration principle. These nonstandard enlargements are called poly-saturated. The following
assertion (see, for example, [4, Lemma 4.0.5]) yields in poly-saturated enlargements:

Proposition 1. For every directed set (Θ,≺) ∈M , there is an (infinitely) remote element
a ∈ aΘ := {ξ ∈ ∗Θ : (∀τ ∈ Θ) τ ≺ ξ}.

An equivalent form of this proposition is that in a poly-saturated enlargement of M , any
set X of card(X) < card(M) is a subset of a hyperfinite set Y (i. e. Y is in one-to-one internal
correspondence with some ν ∈ ∗N).

In the paper we deal with real vector spaces only. A nonempty subset K of a vector
space V is said to be a cone ifK+K ⊆ K, λK ⊆ K for all scalars λ > 0, andK∩(−K) = {0}.
A cone K is said to be generating if K −K = V . A cone K defines the order relation >K

on V by x >K y if x−y ∈ K. The pair (V,K) is called ordered vector space, or simply ordered

space. An ordered space (V,K) is denoted also by (V,>K), or by (V,>), or just by V when
there is no chance of ambiguity. We denote the cone of V by V+. By [x, y] for x, y ∈ V we
denote the order interval {z ∈ V : y > z > x}. An ordered space V is called Archimedean if
for any x ∈ V+, infn∈N(n−1x) = 0. The Archimedean property is equivalent (see, for example,
[10, Theorem I.3.1]) to the fact that [(x, y ∈ V )∧ ((∀n ∈ N)(y > nx))] ⇒ [0 > x]. An ordered
space V is called almost Archimedean [2, p. 12] if it follows from y ∈ 1

n [−x, x] for all n ∈ N

and some x, y ∈ V that y = 0. It can be shown that any Archimedean ordered space is almost
Archimedean, and that any almost Archimedean vector lattice is Archimedean, but in general
the Archimedean property is stronger then almost Archimedean one (see, for example, [9,
p. 254]). The following very useful criterion of the Archimedean property is well known for
vector lattices (see, for example, [8, Theorem 22.5]). Since we did not find an appropriate
reference for this criterion in the setting of ordered spaces, we include it with a proof.

Proposition 2. Let V be an ordered space. The following conditions are equivalent:
(a) V is Archimedean;
(b) Given any decreasing net xτ ↓> d in V , and writing L = {y ∈ V : (∀ τ ∈ {τ}) [xτ > y]},

then infτ∈{τ},
y∈L

(xτ − y) = 0.

C (a) ⇒ (b): Let xτ ↓> d and L = {y ∈ V : (∀τ ∈ {τ}) [xτ > y]}. Assume that xτ −y > z
for all τ and y ∈ L. Since xτ − y > 0, the proof will be complete if we show that 0 > z. As
xτ > y + z holds for all τ and all y ∈ L, we get y + z ∈ L for every y ∈ L. It follows by
induction that y+nz ∈ L for every y ∈ L and n ∈ N, in particular, xτ0 > d+nz (and hence,
xτ0 − d > nz) for some τ0 ∈ {τ} and all n ∈ N. Since V is Archimedean, the last condition
implies that 0 > z, what is required.
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(b) ⇒ (a): Given arbitrary x > 0, we have to show that infn∈N(n−1x) = 0. Let y be
such that n−1x > y > 0 for all n ∈ N. Then x > ny for all n ∈ N, and hence, −ny ↓> −x.
Denote L = {z ∈ V : (∀n ∈ N) [−ny − z > 0]}. Let u ∈ L, n ∈ N, then −ny − u =
(−(n+ 1)y − u) + y > y. Since u ∈ L, n ∈ N are arbitrary, and inf

n∈N,u∈L
(−ny− u) = 0 by the

hypothesis, we get 0 = inf
n∈N,u∈L

(−ny − u) > y > 0. Thus y = 0, and hence inf
n∈N

(n−1x) = 0. B

An ordered space for which every decreasing bounded from below net has an infimum is
called Dedekind complete [2, p. 10] (shortly, xτ ↓> y ⇒ xτ ↓ z). Any Dedekind complete
ordered space is Archimedean (for example, by Proposition 2). For further information on
ordered spaces we refer to [2, 8, 10].

2. Some external vector spaces associated with an ordered space

Let V = (V, V+) be an ordered space. Given κ ∈ ∗V , we denote by U(κ) the set {x ∈ V :
x > κ} of standard upper bounds of κ, and by L(κ) the set −U(−κ) = {x ∈ V : κ > x} of
standard lower bounds of κ. Consider the following external sets (cf. [4, p. 184], [3] for the
vector lattice setting):

fin(∗V ) :=
{
κ ∈ ∗V : (∃x, y ∈ V ) κ ∈ [x, y]

}
,

o-pns(∗V ) :=
{
κ ∈ ∗V : inf

V
(U(κ) − L(κ)) = 0

}
,

η(∗V ) :=
{
κ ∈ ∗V : inf

V
U(κ) = sup

V
L(κ) = 0

}
,

λ(∗V ) :=
{
κ ∈ ∗V : (∃ y ∈ V )(∀n ∈ N) nκ ∈ [−y, y]

}
.

Here, by infV / supV we denote the infimum/supremum calculated in V . It is easy to see that
above defined sets are external vector spaces over R satisfying η(∗V ) ⊆ o-pns(∗V ) ⊆ fin(∗V ),
V ⊆ o-pns(∗V ), and λ(∗V ) ⊆ fin(∗V ). In general, V ∩ λ(∗V ) may contain nonzero elements
(take R2 with lexicographical ordering), and V +η(∗V ) may be proper subspace of o-pns(∗V )
(cf. [4, Theorem 4.4.2]). Moreover, the sets above are external ordered spaces with respect
to the ordering inherited from ∗V . Clearly a subset A ⊆ V is order bounded iff ∗A ⊆ fin(∗V )
iff (∃ ν ∈ ∗N \ N) 1

ν
∗A ⊂ λ(∗V ) iff (∃ ν ∈ ∗N) 1

ν
∗A ⊂ fin(∗V ). For the order convergence

(the (o)-convergence, sf. [10, p. 14]) of monotone nets in V , there is the following simple
nonstandard condition (cf. [4, 4.3.2], [3] in the case of vector lattice V ). Since its proof is
slightly different, we include it below.

Proposition 3. Let (xα)α∈Ξ be monotone net in an ordered space V . Then the following

conditions are equivalent:

(a) (xα)α order converges to 0;

(b) xβ ∈ η(∗V ) for all remote elements β ∈ aΞ;

(c) xβ ∈ η(∗V ) for some remote element β ∈ aΞ.

C We consider only the case of decreasing net, xα ↓. For (a) ⇒ (b), assume xα ↓ 0. Then,
xα > xβ > 0 for every β ∈ aΞ, α ∈ Ξ. Hence, infV U(xβ) = 0. But clearly, supV L(xβ) > 0.
Consequently, supV L(xβ) = 0, and xβ ∈ η(∗V ). The implication (b) ⇒ (c) is obvious. For
(c) ⇒ (a), take some β ∈ aΞ, xβ ∈ η(∗V ) (by Proposition 1). In particular, infV U(xβ) = 0.
Since xα > xβ for every α ∈ Ξ, one gets xα ↓> 0 . Let y ∈ V be such that xα > y > 0 for all
α ∈ Ξ. Then, by the transfer principle, xα > y > 0 for all α ∈ ∗Ξ, in particular, xβ > y. It is
possible only if y = 0. So, xα ↓ 0. B
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It can be seen easily that implications (a) ⇒ (b) ⇒ (c) are true for an arbitrary net
(xα)α∈Ξ. The implication (c) ⇒ (a) may be false without monotonicity condition (see, for
example, [4, p. 185]). For the uniform convergence (i. e. (r)-convergence [8, 10]) of monotone
sequences, the following proposition (cf. [4, 4.3.3.]) is true. Its proof is quite similar, so we
omit it (a remark similar to that one after Proposition 3 holds too).

Proposition 4. Let (xn)n be monotone sequence in an ordered space V . Then the

following conditions are equivalent:

(a) (xn)n (r)-converges to 0;

(b) xν ∈ λ(∗V ) for all ν ∈ ∗N \ N;

(c) xν ∈ λ(∗V ) for some ν ∈ ∗N \ N.

We continue with the following auxiliary assertion (cf. [3, Lemma 4.3.4.]).

Lemma 1. Let V be an ordered space, u ∈ V , and ν ∈ ∗N \ N. Then either u = 0 or

νu 6∈ o-pns(∗V ).

C Let u 6= 0. Take x ∈ U(νu) and y ∈ L(νu). Then x > νu > y. By the transfer
principle, there exists n ∈ N such that x > nu > y. By the convexity of order intervals,
x > mu > y for all m ∈ ∗N satisfying n 6 m 6 ν (indeed, mu = αnu + (1 − α)νu, for
0 6 α = ν−m

ν−n 6 1). In particular, x > (n+ 1)u > y. Thus, nu− y ∈ [0, x− y] ⊆ [y− x, x− y]
and (n+1)u−y ∈ [0, x−y] ⊆ [y−x, x−y]. Therefore nu−y ∈ [y−x, x−y] & y− (n+1)u ∈
[y − x, x− y]. By the convexity of order intervals again, we get

−1

2
u = −1

2
((n+ 1) − n)u =

1

2
(y − (n+ 1)u) +

1

2
(nu− y) ∈ [y − x, x− y]. (1)

It follows from (1), that

±1

2
u ∈ [y − x, x− y]. (2)

Suppose now that νu ∈ o-pns(∗V ), that is infV (U(νu) − L(νu)) = 0. Since x ∈ U(νu)
and y ∈ L(νu) in (2) were chosen arbitrary, we obtain 0 > ± 1

2u, that is u = 0, which is a
contradiction to our initial assumption. Hence, νu 6∈ o-pns(∗V ), what is required. B

Clearly, it may be happened for some u 6= 0 in a non-Archimedean space V that νu ∈
fin(∗V ) for all ν ∈ ∗N. The following theorem (cf. [3, Theorem 3.4.5] in the vector lattice
setting) characterizes the almost Archimedean property in terms of external ordered spaces
associated with our space.

Theorem 1. Let V be an ordered space. Then the following conditions are equivalent:

(1) V is almost Archimedean;

(2) λ(∗V ) ∩ V = {0};
(3) λ(∗V ) ⊆ η(∗V );

(4) λ(∗V ) ⊆ o-pns(∗V ).

C (1) ⇒ (2): It follows directly from the definition of λ(∗V ).

(2) ⇒ (3): Suppose that κ ∈ λ(∗V ) \ η(∗V ). Then nκ ∈ [−y, y] holds for some y ∈ V and
all n ∈ N. Hence, for every n ∈ N, − 1

ny ∈ L(κ), and 1
ny ∈ U(κ). Since κ 6∈ η(∗V ), there

exists an element 0 6= z ∈ V such that U(κ) > z > L(κ). In particular, z ∈ λ(∗V ), which
contradicts (2).

(3) ⇒ (4): It follows from η(∗V ) ⊆ o-pns(∗V ).

(4) ⇒ (1): Take u, v ∈ V such that u > nv > −u for all n ∈ N. Let ν ∈ ∗N \ N. By
the transfer principle, u > mνv > −u for all m ∈ N, and hence, νv ∈ λ(∗V ). Then, by
hypothesis, νv ∈ o-pns(∗V ). Lemma 1 implies that v = 0. So, V is almost Archimedean. B
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Our second theorem gives a nonstandard condition for an Archimedean ordered space to
be Dedekind complete. Remark that for Archimedean vector lattices this condition is also
necessary [4, Theorem 4.4.2] for the Dedekind completeness.

Theorem 2. Let V be an Archimedean ordered space satisfying o-pns(∗V ) = V +η(∗V ),
then V is Dedekind complete.

C It suffices to show that every decreasing bounded from below net in V is order conver-
gent. Let (xα)α ↓> d ∈ V . By Proposition 2,

inf
α∈{α},

z∈L

(xα − z) = 0, (3)

where L = {y ∈ V : (∀α ∈ {α}) [xα > y]}. Fix a remote element β ∈ a{α}. Since {u ∈
V : xα ↓> u} = L(xβ) and {xα : α ∈ {α}} ⊆ U(xβ), it follows from (3) that infV (U(xβ) −
L(xβ)) = 0, or, in other words, xβ ∈ o-pns(∗V ) = V + η(∗V ). Let x ∈ V be such that
xβ − x ∈ η(∗V ). Thus, by Proposition 3, the decreasing net (xα − x)α is order convergent
to 0, that is x = infα∈{α} xα. Hence, V is Dedekind complete. B
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БЕСКОНЕЧНО МАЛЫЕ В УПОРЯДОЧЕННЫХ ВЕКТОРНЫХ ПРОСТРАНСТВАХ

Емельянов Э. Ю.

Предложен инфинитезимальный подход к упорядоченным пространствам. Архимедовость и поряд-
ковая полнота в упорядоченных пространствах исследованы с позиции нестандартного анализа.

Ключевые слова: упорядоченное векторное пространство, нестандартный анализ.


