
Ann. Funct. Anal. 5 (2014), no. 1, 10–23
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

QUADRATIC FOURIER TRANSFORMS

L. P. CASTRO1∗ M. R. HAQUE2 M. M. MURSHED2 S. SAITOH1 AND N. M. TUAN3

Dedicated to Professor Tsuyoshi Ando in celebration of his distinguished achievements in
Matrix Analysis and Operator Theory

Communicated by C. Cuevas

Abstract. In this paper we shall examine the quadratic Fourier transform
which is introduced by the generalized quadratic function for one order pa-
rameter in the ordinary Fourier transform. This will be done by analyzing
corresponding six subcases of the quadratic Fourier transform within a repro-
ducing kernel Hilbert spaces framework.

1. Introduction

Thirty years ago, the fourth named-author derived a typical result for a simple
integral transform within a problem modeled by the heat equation by applying
the theory of reproducing kernels. Namely, it was considered the simple heat
equation

ut(x, t) = uxx(x, t)

on the domain D := R× R+ (where R+ denotes the positive half-line), with the
initial condition

uF (x, 0) = F (x) ∈ L2(R).

Using the Fourier transform, it was obtained a representation of the solution
u(x, t), in the form

uF (x, t) =
1√
4πt

∫
R

F (ξ) exp

(
−(x− ξ)2

4t

)
dξ
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(at least in the formal sense). Therefore, for any fixed t > 0, it was examined
the integral transform F 7→ uF , and characterized the image function uF (x, t) as
follows, simply and in a very natural way:

Proposition 1.1 ([19]). In the integral transform of L2(R) functions F , the
images uF (x, t) are extended analytically onto C in the form uF (z, t), and the
images are characterized by the isometric identities∫

R
|F (ξ)|2dξ =

1√
2πt

∫∫
C
|uF (z, t)|2 exp

(
−y2

2t

)
dxdy.

From this result and the corresponding derived method, it was expanded some
great theory; see the original paper and others [19, 20, 21].

After having passed about thirty years from that knowledge, and due to the
present main idea of having a much more general framework by considering global
quadratic functions in the exponent of the associated transforms, in this paper
we would like to examine the corresponding possibilities of the quadratic Fourier
transform: ∫

R
exp(−ix(aξ2 + bξ + c))F (ξ)dξ = f(x),

for some real constant parameters a, b, c.
It seems to us that the results obtained in this paper may not be derived

without using the theory of reproducing kernels. Therefore, one of the purposes
of the present work is to show the fundamental power of the theory of reproducing
kernels when applied to some general integral transforms. For the related theory
of reproducing kernels, see [18, 20, 21]. Anyway, for the reader convenience,
in what follows we will revise some general theory for linear mappings in the
framework of Hilbert spaces in which our method will be based on.

Let H be a Hilbert (possibly finite-dimensional) space. Let E be an abstract
set and h be a Hilbert H-valued function on E. Then, we shall consider the linear
transform

f(p) = 〈f ,h(p)〉H, f ∈ H, (1.1)

from H into the linear space F(E) comprising all the complex valued functions
on E. In order to investigate the linear mapping (1.1), we consider a positive
definite quadratic form function K(p, q) on E × E defined by

K(p, q) = 〈h(q),h(p)〉H on E×E. (1.2)

Then, we obtain the following:

(I) The range of the linear mapping (1.1) by H is characterized as the re-
producing kernel Hilbert space HK(E) admitting the reproducing kernel
K(p, q) whose characterization is given by the two properties:

K(·, q) ∈ HK(E)

for any q ∈ E, and

〈f(·), K(·, p)〉HK(E) = f(p)

for any f ∈ HK(E) and for any p ∈ E.
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(II) In general, we have the inequality

‖f‖HK(E) ≤ ‖f‖H.

Here, for any member f of HK(E) there exists a uniquely determined
f∗ ∈ H satisfying

f(p) = 〈f∗,h(p)〉H on E

and
‖f‖HK(E) = ‖f∗‖H.

(III) In general, we have the inversion formula in (1.1) in the form

f 7→ f∗ (1.3)

in (II) by using the reproducing kernel Hilbert space HK(E).

However, this inverse transformation (1.3) is, in general, not easy to handle.
Consequently, case by case, we need different arguments. When the Hilbert
space H itself is a reproducing kernel Hilbert space, we can apply the Tikhonov
regularization method in order to obtain the inversion numerically and sometimes
analytically (see [21]).

Let {vj} be a complete orthonormal basis for H. Then, for

vj(p) = 〈vj,h(p)〉H,

we have
h(p) =

∑
j

〈h(p),vj〉Hvj =
∑

j

vj(p)vj.

By setting

h(·) =
∑

j

vj(·)vj,

we define
〈f,h(p)〉HK

=
∑

j

〈f, vj〉HK
vj.

Then, we have the following proposition.

Proposition 1.2. Assume that for f ∈ HK,

〈f,h 〉HK
∈ H,

and for all p ∈ E,

〈f, 〈h(p),h(·)〉H〉HK
= 〈〈f,h 〉HK

,h(p)〉H.

Then,
‖f‖HK

≤ ‖〈f,h 〉HK
‖H.

If {h(p); p ∈ E} is complete in H, then the equality always holds.
Furthermore, if:

〈f0, 〈f,h 〉HK
〉H = 〈〈f0,h〉H, f〉HK

for f0 ∈ N(L)

(where L denotes the linear map L : H −→ F(E) associated with (1.1)), then the
following identity yields for f∗ defined as in (II) and (III)

f∗ = 〈f,h 〉HK
.
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The structure of the Hilbert space HK is, in general, very complicated and
abstract. In particular, note that the basic assumption 〈f,h〉HK

∈ H in Proposi-
tion 1.2, is not valid for many analytical problems and we need to consider some
delicate treatment for the inversion. In view of this, let us analyse again the
possibilities for the linear mapping defined by (1.1). In order to derive a general
inversion formula for (1.1) that is widely applicable in analysis, we shall assume
that both Hilbert spaces H and HK are given as

H = L2(T, dm), HK ⊂ L2(E, dµ),

on the sets T and E, respectively. Note that for dm, dµ measurable sets T,E
we assume that they are the Hilbert spaces comprising dm, dµ − L2 integrable
complex-valued functions, respectively. Therefore, we shall consider the integral
transform

f(p) =

∫
T

F (t)h(t, p) dm(t).

Here, h(t, p) is a function on T ×E, h(·, p) ∈ L2(T, dm), and F ∈ L2(T, dm). The
corresponding reproducing kernel for (1.2) is given by

K(p, q) =

∫
T

h(t, q)h(t, p) dm(t) on E × E.

The norm of the reproducing kernel Hilbert space HK is represented as L2(E, dµ).
Under these situations, we have the following result (cf. Theorem 5 of [20, Chap-
ter 2]).

Proposition 1.3. We assume that an approximating sequence {EN}∞N=1 of E
satisfies

(i) E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ · · · ,

(ii)
⋃∞

N=1 EN = E,

(iii)
∫

EN
K(p, p)dµ(p) < ∞, N = 1, 2, . . . .

Then, for f ∈ HK satisfying
∫

EN
f(p)h(t, p)dµ(p) ∈ L2(T, dm) for any N , the

sequence {∫
EN

f(p)h(t, p)dµ(p)

}∞

N=1

converges strongly (in the sense of the L2(T, dm) norm) to F ∗ satisfying

f(p) =

∫
T

F ∗(t)h(t, p) dm(t)

and

‖f‖HK(E) = ‖F ∗‖L2(T,dm).

Practically, for many cases, the assumptions in Proposition 1.3 will be satisfied
automatically, and so Proposition 1.3 may be applied in all those cases. To con-
struct the inversion formula is – in general – difficult. However, the formulation in
Proposition 1.3 may be considered as a natural one. Indeed, this may be realized
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if we recognize that it was given as the strong convergence in the Hilbert space
L2(T, dm).

In view of all this, we shall approximate the space by taking a finite number
of points and by using matrix theory. In order to realize approximately the inner
product in the space HK with some practical sense, we shall consider the natural
and general approximate realization of the space HK .

By taking a finite number of points {tj}n
j=1, we set

K(tj, tj′) := ajj′ .

If the matrix A :=‖ ajj′ ‖ is positive definite, then the corresponding norm in
HA comprising the vectors t = (t1, t2, · · · , tn)T is determined by

‖t‖2
HA

= t∗Ãt,

where

Ã = A−1 = ‖ãjj′‖
(see [20, p.250]). Following this idea we developed recently many concrete appli-
cations in [5, 8, 11, 9].

Thinking on the dedicatory of the present paper, we feel pertinent to refer at
this point some of the admirable work of Professor Tsuyoshi Ando on positive
semi-definiteness of operator-matrices within a very general framework subjected
to the consideration of strict contractions on a Hilbert space; see [1].

Moreover, in [9], as the Aveiro discretization method, a new discretization
principle was introduced with many concrete examples and further, with typical
and historical real inversion formulas for the Laplace transform. The above-
mentioned method gives some ultimate discretization method, ultimate sampling
theory and ultimate realizations of reproducing kernel Hilbert spaces.

Here, as the analytical problems, we shall give analytical characterizations of
the associated images and inversion formulas based on [20].

Without loss of generality, we assume that a > 0 and c = 0. We shall look
for good representations of the associated reproducing kernels to the integral
transform. Using the great reference [13] and MATLABr, we found the following
formulas:

Kε,ξ2(z, ū) =

∫
R
exp(−iz(aξ2 + bξ))exp(−iu(aξ2 + bξ))ξ2 exp(−εξ2)dξ

=
1

4
exp

(
(z − ū)2(−b2)

4{a(z − ū)i + ε}

)
×

√
π

{a(z − ū)i + ε} 5
2

[−b2(z − ū)2 + 2{a(z − ū)i + ε}], (1.4)

and

Kε(z, ū) =

∫
R

exp(−iz(aξ2 + bξ))exp(−iu(aξ2 + bξ)) exp(−εξ2)dξ

= exp

(
(−b2)(z − ū)2

4{a(z − ū)i + ε}

) √
π

a(z − ū)i + ε
. (1.5)
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Both identities are valid on the lower half-plane:

La,ε =
{

y <
ε

2a

}
, z = x + iy.

In particular, we obtain the explicit and useful formulas:

K0,ξ2(z, ū) =
1

4
exp

(
(z − ū)(−b2)

4ai

) √
π

{a(z − ū)i} 5
2

[−b2(z − ū)2 + 2{a(z − ū)i}],

K0(z, ū) = exp

(
(−b2)(z − ū)

4ia

)
×

√
π

ia(z − ū)
.

2. Bergman-Selberg spaces

In order to see the image spaces of the integral transforms in various situations,
we recall the related reproducing kernel Hilbert spaces.

For q > 1
2
,

Kq(z, ū) =
Γ(2q)

(z + ū)2q

is the Bergman-Selberg reproducing kernel. On the half-plane

R2
+ = {z : <z := Rez = x > 0},

let HKq denote the RKHS consisting of all analytic functions f on R2
+ with finite

norms

‖f‖2
HKq

=
1

π Γ(2q − 1)

∫ ∫
R2

+

|f(z)|2[2<z]2q−2dxdy.

For q = 1
2
, K1/2(z, ū) is the Szegö reproducing kernel. Let HK 1

2

denote the RKHS

consisting of all analytic functions f on R2
+ with finite norms

‖f‖2
HK 1

2

=
1

2π
sup
x>0

∫ ∞

−∞
|f(x + iy)|2dy.

Then, a member f of HK 1
2

has nontangential boundary values on the imaginary

axis belonging to L2, and

‖f‖2
HK 1

2

=
1

2π

∫ ∞

−∞
|f(iy)|2dy.

We now recall the representations of the norms in Bergman-Selberg spaces on
strips and the complex half-plane.

For the Bergman-Selberg spaces HKq(Sr) (q > 0) on the strip

Sr = {z : |=z| := |Imz| = |y| < r},
we have the following result.

Proposition 2.1. Let q > 1
2
. For f ∈ HKq(Sr) we have the identity

‖f‖2
HKq(Sr)

=
1

Γ(2q − 1) πq

∫ ∫
Sr

|f(z)|2KSr(z, z̄)1−qdxdy,

where KSr(z, z̄) is the usual Bergman kernel on Sr.
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Proposition 2.2. For the right half-plane R2
+ and q > 1

2
we have the identity

‖f‖2
H

Kq(R2
+)

=
1

Γ(2q − 1)π

∫ ∫
R2

+

|f(z)|2(2x)2q−2dxdy

=
∞∑

n=0

1

n!Γ(n + 2q + 1)

∫ ∞

0

|∂n
x (xf ′(x))|2x2n+2q−1dx. (2.1)

Conversely, any C∞-function f defined on the positive real line with convergent
summation can be extended analytically onto the right half-plane R2

+. The analytic
extension, denoted by f also, satisfying

lim
x∈R+

x→∞

f(x) = 0

belongs to HKq(R2
+) and the identity (2.1) is valid for this f .

For any q > 0, let Kq(z, ū) denote the usual Bergman kernel. In Proposi-
tions 2.1 and 2.2, the Bergman-Selberg space HKq can be defined as the RKHS
admitting the reproducing kernel

Kq(z, ū) = Γ(2q)πqKq(z, ū)q.

For q > 1
2

the Bergman-Selberg space admits the norms as in Proposition 2.1 and

Proposition 2.2. For q = 1
2

we have the classical Szegö space. For 0 < q < 1
2

we do not have the representations of the norms in the Bergman-Selberg spaces.
We can, however, use the isometric mapping between HK1/2

and HKq for some
special cases to express the norms in HKq .

3. Some Properties of Reproducing Kernel Hilbert Spaces

We shall further recall the needed fundamental properties of the reproducing
kernel Hilbert spaces. Let us define, for a general abstract reproducing kernel
K(p, q) on the set E × E,

Ks(p, q) = s(p)s(q)K(p, q)

for p, q ∈ E. Then, we have

Proposition 3.1.

HKs = {F ∈ F(E) : F = f · s for some f ∈ HK}.

Furthermore, we have

〈f · s, g · s〉HKs
= 〈f, g〉HK

for all f, g ∈ HK.

Proposition 3.2. Let K0, K : E × E −→ C be positive definite quadratic form
functions. Then, the following statements are equivalent:

(i) The Hilbert space HK0 is a subset of HK.
(ii) There exists γ > 0 such that K0 � γ2K.
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If each one of those items holds, then the following embedding is continuous:

HK0 ↪→ HK ,

where the embedding norm M is given by

M = inf
{
γ : K0 � γ2K

}
.

Here, the notation K0 � γ2K means that γ2K −K0 is positive semi-definite.

4. Quadratic Fourier Transform Analysis

In view of our proposed analysis, we will consider, step-by-step, the following
cases:

• First case: ∫
R

exp(−ix(aξ2))F (ξ)ξ2dξ = f(x).

• Second case: ∫
R

exp(−ix(aξ2 + bξ))F (ξ)dξ = f(x).

• Third case: ∫ ∞

−∞
exp

(
−ix(aξ2)

)
|ξ|2n+1e−εξ2

F (ξ)dξ.

• Fourth case: ∫ ∞

0

exp
(
−ix(aξ2)

)
ξe−εξ2

F (ξ)dξ.

• Fifth case: with the weight exp(−εξ2).
• Sixth case: the Fourier transform∫ ∞

−∞
exp (−iz(bξ)) e−εξ2

F (ξ)dξ.

It is worth saying that for any integral transform, in general, an inversion
formula is very important (see [2, 3, 6, 7, 10, 12, 14, 15, 16, 17, 22, 23]). In the
following subsections, we deal with the isometrical identities and the inversion
formulas.

4.1. First case. In this case (b = 0), thanks to (1.4) the associated reproducing
kernel is given by

K0,ξ2(z, ū) =
1

2

√
π

a3/2{(z − ū)i} 3
2

. (4.1)

It is worth saying that
1

(z − ū)i
(4.2)

is the Szegö kernel on the lower half-plane, and the Bergman-Selberg spaces
are conformally invariant. By comparing Propositions 2.1 and 2.2, we see that
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the reproducing kernel Hilbert space admitting the reproducing kernel (4.1) is
composed of analytic functions on the lower half-plane L with finite norms:

‖f‖2
HK(L) =

2a3/2

π2

∫ ∫
L

|f(z)|2(−2y)−1/2dxdy.

In Propositions 2.1 and 2.2, q = 3
4
. Hence, from the general theory of integral

transforms, we directly derive the following result.

Theorem 4.1. For the integral transform F −→ f defined by∫
R

exp(−iz(aξ2))F (ξ)ξ2dξ = f(z)

in which the functions F satisfy∫
R
|F (ξ)|2ξ2dξ < ∞, (4.3)

the isometric identity yields∫
R
|F (ξ)|2ξ2dξ =

2a3/2

π2

∫ ∫
L

|f(z)|2(−2y)−
1
2 dxdy. (4.4)

Furthermore, the complex inversion formula holds true:

F(ξ) = l. i. m
n→∞

2a3/2

π2

∫ ∫
Ln

f(z) exp({iz(aξ2)})(−2y)
−1
2 dxdy.

Here, {Ln} is a compact exhaustion of the lower half-plane L and the notation
l. i. m is considered in the sense of the norm of the space satisfying (4.3).

Proposition 2.2 shows that, in Theorem 4.1, the complex integral (4.4) is repre-
sentable on the half-line of {iy} (0 > y > −∞) in terms of infinite order Sobolev
spaces and on the half-line, we can obtain the inversion formula as in the real
inversion formula of the Laplace transform; see [20].

4.2. Second case. Here, we shall use the identity (1.5). Recall that (4.2) is the
Szegö kernel on the lower half-plane. By Proposition 3.1, the images f of the
integral transform ∫

R
exp(−iz(aξ2 + bξ))F (ξ)dξ = f(z)

for functions F satisfying ∫
R
|F (ξ)|2dξ < ∞,

are representable in the form

f(z) = f1(z)

√
π

a
exp

(
ib2z

4a

)
,

where f1(z) belongs to the reproducing kernel Hilbert space admitting the kernel√
1

i(z − u)
. (4.5)
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However, the structure of this reproducing kernel Hilbert space is involved. We
recall two interesting properties:

(1) f1(z)2 belongs to the Szegö space on the half-plane, in general, and we
obtain the norm inequality in the form

‖f 2
1‖ ≤ M‖f1‖2,

where M is determined precisely and ‖f1‖ is the norm in the reproducing
kernel Hilbert space admitting the kernel (4.5) (see [20], Appendix 2).
Meanwhile, ‖f 2

1‖ is the norm in the Szegö space. By using this norm,
we can obtain the isometric identity in the integral transform. This fact
means that for the integral transform we can obtain the norm inequality
in terms of the Szegö norm for the square of the image of the integral
transform.

(2) In general, for the Bergman-Selberg spaces, when we consider its deriva-
tive f ′ for a member, we have the isometric identity in such a way: in the
notation in Proposition 2.2,

‖f ′‖2
HKq+1

(R2
+) = ‖f‖2

HKq (R2
+)

(cf. [4]; [20], Appendix 2). Therefore, by taking the derivative, we shall
consider the image identification of the integral transform. By considering
Proposition 3.1 and Proposition 2.2 (for the case of the lower half-plane
version, and q = 3

4
), we have the norm realization of f as follows:

‖f‖2 =
a

1
2

π2

∫ ∫
L

∣∣∣∣{f(z) exp

(
−ib2z

4a

)}′∣∣∣∣2 (−2y)−
1
2 dxdy.

We thus obtain the following theorem.

Theorem 4.2. For the integral transform∫
R

exp(−iz(aξ2 + bξ))F (ξ)dξ = f(z)

in which F satisfies ∫
R
|F (ξ)|2dξ < ∞,

we have the isometric identity∫
R
|F (ξ)|2dξ =

a
1
2

π2

∫ ∫
L

∣∣∣∣{f(z) exp

(
−ib2z

4a

)}′∣∣∣∣2 (−2y)−
1
2 dxdy.

In Theorem 4.2, the isometric identity is already involved, and so any analytical
inversion formula seems to be very complicated. For the general approach for the
inversions, see [20, p. 24–27].
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4.3. Third case. We find a specially interesting identity∫ ∞

−∞
e−i(z−u)(aξ2)|ξ|2n+1e−εξ2

dξ =
n!

[a(z − u)i + ε]n+1
.

Put ε = 0, then we have∫ ∞

−∞
e−i(z−u)(aξ2)|ξ|2n+1dξ =

n!

[a(z − u)i]n+1
.

If n = 0, then we obtain the simple identity∫ ∞

−∞
e−i(z−u)(aξ2)|ξ|e−εξ2

dξ =
1

[a(z − u)i + ε]
.

Put ε = 0, then we have∫ ∞

−∞
e−i(z−u)(aξ2)|ξ|dξ =

1

[a(z − u)i]
.

By using those identities, we obtain the previously considered corresponding
results.

4.4. Fourth case. We find a specially interesting identity∫ ∞

0

exp
(
−i(z − u)(aξ2)

)
ξe−εξ2

dξ =
1

2{a(z − u)i + ε}
.

Since
1

2{a(z − u)i + ε}
is the Szegö kernel on the half-plane Lε,a = {y < ε

2a
} we immediately obtain the

following theorem.

Theorem 4.3. In the integral transform∫ ∞

0

exp
(
−iz(aξ2)

)
ξe−εξ2

F (ξ)dξ = f(z)

in which F fulfills the condition∫ ∞

0

|F (ξ)|2ξe−εξ2

dξ < ∞,

we have the isometric identity∫ ∞

0

|F (ξ)|2ξe−εξ2

dξ =
a

π

∫ ∞

−∞

∣∣∣f (
x +

ε

2a
i
)∣∣∣2 dx.

Moreover, the inversion formula is given by

F (ξ) = l. i. m
n→∞

a

π

∫
In

f
(
x +

ε

2a
i
)

exp
(
(ix +

ε

2a
)aξ2

)
dx,

where {In} is a compact exhaustion of the line
(
x + ε

2a
i
)

composing of finite in-
tervals.
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4.5. Fifth case. The realizations of the reproducing kernel Hilbert spaces ad-
mitting the kernels (1.4) and (1.5) are complicated. The kernel (1.4) is composed
of the product and sum of the concretely known reproducing kernels whose struc-
tures are known. Therefore, the reproducing kernel Hilbert space admitting the
kernel (1.4) is given by the methods of the restriction of some tensor product and
sum of reproducing kernels, and so its structure is very complicated (see [20]).
The kernel (1.5) is a much more complicated one as it contains the exponential
of a known reproducing kernel (cf. [20], Appendix 2). In order to derive general
properties by Proposition 3.2, having considered both cases, we have monotonic-
ity in ε for ε1 > ε2:

Kε1,ξ2(z, u) � Kε2,ξ2(z, u), Kε1(z, u) � Kε2(z, u).

For ε = 0 the corresponding reproducing kernel Hilbert spaces are concretely
realized. Due to Proposition 3.2 we have the inclusion relations as functions and
norm inequalities. This means that in the general integral transforms with the
weight e−εξ2

, we obtain the norm inequalities.

4.6. Sixth case. Following the identity (1.5), we shall examine the Fourier trans-
form for a = 0. The reproducing kernel is as follows:√

π

ε
exp

(
−b2z2

4ε

)
· exp

(
−b2u2

4ε

)
· exp

(
b2zu

2ε

)
. (4.6)

Note that

exp

(
b2zu

2ε

)
is the reproducing kernel comprising of entire functions with finite norm squares:

A

π

∫∫
C

|f(z)|2 exp
(
−A|z|2

)
dxdy for A =

b2

2ε

(cf. [20, p. 61]). Hence, the reproducing kernel Hilbert space admitting kernel
(4.6) can be realized concretely. Namely, we can obtain the following theorem.

Theorem 4.4. In the Fourier transform

f(z) =

∫ ∞

−∞
exp (−iz(bξ)) F (ξ)e−εξ2

dξ

in which the function F satisfies∫ ∞

−∞
|F (ξ)|2e−εξ2

dξ < ∞,

f is an entire function. Moreover, the isometric identity holds

b2

2π3/2ε1/2

∫∫
C
|f(z)|2 exp

(
−b2

ε
y2

)
dxdy =

∫ ∞

−∞
|F (ξ)|2e−εξ2

dξ.

Further, the complex inversion formula is given by

F (ξ) = l. i. m
n→∞

∫∫
Kn

f(z) exp(i z b ξ) exp

(
−b2

ε
y2

)
dxdy

where Kn is a compact exhaustion of the whole complex plane.
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From the identity (1.4), we see that when the weight ξ2e−εξ2
, the Fourier trans-

form structure is very complicated.
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