Normal families of meromorphic functions with
sharing functions *

Dan Liu, Bingmao Deng and Degui Yang'
December 2, 2012

Abstract

Let F be a family of meromorphic functions in a domain D, let k be
a positive integer, and let h(z)(# 0, c0) be a meromorphic function in D
such that any f € F have neither common zeros nor common poles with
h(z). If, for each f € F, the multiplicity of the zeros f is at least k, and
f=0e f® =0, and f®(2) = h(z) = f(z) = h(z), then F is normal
in D. This improves the results due to Xia and Xu.
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1 Introduction and main result

Let f and g be two meromorphic functions on a domain D in C, and let a be a
complex number. If g(z) = a whenever f(z) = a, we denoteitby f = a =g = a.
f=a< g=ameans f(z) = a if and only if g(z) = a, and we say that f and
g share a.

Let D be a domain in C and F a family of meromorphic functions in D. F
is said to be normal in D, in the sense of Montel, if each sequence {f,} C F
has a subsequence { f,,,} which converges spherically locally uniformly in D, to
a meromorphic function or co (see Hayman [5], Schiff [10], Yang [16]).

In 1992, Schwick [11] found a connection between normality and shared
values, and proved the following well-known result.

Theorem A Let F be a family of meromorphic functions defined in D, and
let a1, as,as be distinct complex numbers. If for each f € F, [ = a; & [/ =
a;, i =1,2,3, then F is normal in D.
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Since then, many scholars studied the normality criteria concerning shared
values, such as X. C. Pang and L. Zalcman [8], X. C. Pang [7], C. Meng [6],
J. M. Qi, J. Ding and L. Z. Yang [9], etc, and have got several more general
normality criteria concerning shared values.

In 2001, Fang [2] improved Theorem A from sharing values to sharing func-
tions, and proved.

Theorem B Let F be a family of meromorphic functions in a domain D, and
let ¥(2)(# 0) be an analytic function in D. If for each f € F, f =0& f'(2) =
0, and f'(z) = ¥(2) = f(z) = ¥(2), then F is normal in D.

In 2006, Xu [14] proved the following result.

Theorem C Let F be a family of meromorphic functions in a domain D, and
k be a positive integer, and let 1p(z)(Z 0) be an analytic function in D such that
f € D and 1(z) has no common zeros and ¥ (z) has no simple zeros in D . If
for each f € F, all zeros of f have multiplicity at least k, f =0 < f*)(2) =0,
and fF)(2) = ¢(2) = f(2) = ¥(2), then F is normal in D.

In [14], an example was given to show that the condition any f € F and
¥ (z) have no common zeros is necessary. In fact, the condition (z) has no
simple zeros is not necessary.

In 2010, Xia and Xu [12] proved that Theorem C still holds for a meromor-
phic function ¥(z)(z 0) as following,

Theorem D Let F be a family of meromorphic functions in a domain D, let
k be a positive integer, and let ¥(z)(Z 0,00) be an meromorphic function in D
such that f € F and 1(z) have no common zeros and ¢(z) has no simple zeros
in D, and all poles of ¥(z) have multiplicity at most k. If for each f € F, all
zeros of f have multiplicity at least k, f = 0 < f®)(2) =0, and f*)(2) =
¥(z) = f(2) =¢(2), then F is normal in D.

In [12], Xia and Xu also proposed a conjecture that the restriction ”all poles
of 1(z) have multiplicity at most k” can be relaxed to that ¥(z) has no common
poles with any function f € F. We study this problem, and prove the following
result.

Theorem 1 Let F be a family of meromorphic functions in a domain D,
let k be a positive integer, and let h(z)(£ 0,00) be a meromorphic function
in D such that f and h(z) have neither common zeros nor common poles for
all f € F. If, for each f € F, all zeros of f have multiplicity at least k,
f(2) =0 fB(2) =0, and fP(2) = h(z) = f(2) = h(z), then F is normal
n D.

An example was also given in [12] to show that the restriction that h(z) has
no common poles with any function in F is indispensable.



2 Some lemmas
For the proof of Theorem 1, we require the following lemmas.

Lemma 1 ( [8,17]) Let k be a positive integer and let F be a family of mero-
morphic functions in a domain D, such that each function f € F has only
zeros of multiplicity at least k, and suppose that there exist A > 1 such that
|f®)] < A whenever f(z) =0, f € F. If F is not normal at zo € D, then for
each a,0 < a < k, there exist

a) points z; € D, z; — zo;

b) functions f; € F; and

¢) positive numbers p; — 0
such that gn(§) = p; “ fi(z; + pj§) — g(§) locally uniformly with respect to the
spherical metric, where g(§) is a non-constant meromorphic function on C, all
of whose zeros have multiplicity at least k, such that g*(¢) < ¢%(0) = kA + 1.
Moreover, g has order at most 2.

Lemma 2 ( [2]) Let f be a meromorphic function of finite order in the plane
C.Iff=0« f®) =0, f/ #1, then f is a constant.

Lemma 3 ( [3]) Let f be a meromorphic function of finite order in the plane,
k > 2 be a positive integer. If all zeros of f are of order at least k + 1, and
f®)(2) =0 f(2) =0, then f(2) is a constant.

Lemma 4 ( [14]) Let f be a transcendental meromorphic function, let R(z)(#
0) be a rational function, and let k be a positive integer. If all zeros of f have
multiplicity at least k+ 1, except for finitely many, and f*) =0 = f =0, then
f%) — R(2) has infinitely many zeros.

Lemma 5 ( [15]) Let k,l be two positive integers, and let Q(z) be a rational
function all of whose zeros are of order at least k. If Q) (2) # 2L, then Q(2)
18 a constant.

3 Proof of Theorem 1

Since normality is a local property, we only need to prove that F is normal at
every pole of h(z). Without loss of generality, we may assume that D = A =
{z :|z| < 1},h(z) = b(2)/2!, and b(0) = 1,b(z) # 0,00,z € D, where [ is a
positive integer. We only need to prove that F is normal at z = 0. Suppose
that F is not normal at z = 0. We consider two cases: [ < kand [ > k+ 1. In
fact, the case I < k can be proved as same as Theorem D, so we only need to
prove the case [ > k + 1.

Consider the family G = {g(z) = f(2)/h(z) : f € F,z € A}. Since z =0
is a pole of h(z), and f(z) and h(z) have no common poles, z = 0 is a zero of
g(z) of order at least I(> k+1). Thus all zeros of g(z) have multiplicity at least
k + 1 for the zeros of f(z) are of order at least k + 1.



We first prove that G is normal in A. Suppose that G is not normal at
zo € D. By Lemma 1, there exist a sequence of functions g,, a sequence of
points z, — 29, and a sequence of positive numbers p,, — 0, such that

gn(2n + pnQ)

— G(¢)
converges spherically uniformly on compact subsets of C, where G(¢) is a non-
constant meromorphic function on C, and G(() is of order at most two. By
Hurwitz’s theorem, all zeros of G(¢) have multiplicity at least k + 1.

Two cases are considered in the following.

Case 1 z,/p, — .

Since f,(2) = gn(2)h(2) and h(z) = b(z)/2!, by simple calculation, we have
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On the other hand,
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and

lim p%b(j)(zn + pnQ)

=0yj=12,--- 7k7
n—oo b(zn+pn<) (‘7 )

uniformly on compact subsets of C. Noting that ¢**=7)(z,, + p,.¢)/pJ, is locally
bounded on C disjoint from the poles of G(¢) since g, (zn + pnC)/pk — G().
Therefore,

(2 + pn)
h(zn + pnO

uniformly on compact subsets of C disjoint from the poles of G(().

We claim that

(1)G(¢) =04 GHM(¢) =0, and

()G (C) # 1.

Since all zeros of G(¢) are of multiplicity at least k41, G*)(¢) = 0 whenever
G(¢) = 0. Suppose that G*)((y) = 0. Clearly, G*)(¢) # 0. Otherwise, G(¢)
would be a polynomial of degree less than k, which contradicts the condition
that the multiplicity of the zeros of G(() is at least k + 1. Then by Hurwitz’s
theorem, there exist (,,, (, — (o, such that, for n sufficiently large,

— GM(()

;Lk)(zn + pnCn)

h(zn + pngn)

Thus fn(zn + pnCn) = 0 or A(z, + pnCn) = oco. If h(z, + pnln) = oo, then
Zn+ pnC, =0, and (, = —z,,/pn — 00, which contradicts the fact that ¢, — (o,

=0.

o is a finite number. So we have f,(z, + pn{,) = 0. Since f,, and fT(Lk) share 0.
It follows that

G(G) = lim Gn(Gy) = lim Ju(zn + puGn)

=0.
oo plrih(zn + pn()

This shows that G(¢) = 0 whenever G*)(¢) = 0.
Next we prove (ii). Suppose that G*)((y) = 1. We claim that G*)(¢) # 1.
Otherwise, G(¢) would be a polynomial of degree k, which is a contradiction
with the fact that the zeros of G({) have multiplicity at least k 4+ 1. Then by

Hurwitz’s theorem, there exist (,,(, — (o, such that, for n sufficiently large,
?sk)(zn + pnCn) — h(zn + pulan)

= 0.
h(zn + pnCn)

Thus fT(Lk)(zn + pnCn) = h(zn + pnCn) or h(zn + pnCy) = 0o. As the same as
the previous proof, we know that h(z, + p,Cn) # co. Thus f, (2, + pnCn) =

h(zn + puCn) for £ (2) = h(2) = fu(2) = h(2). It follows that
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which contradicts that G*)(¢y) = 1. This prove (ii).



However, it follows by Lemma 2 and Lemma 3 that G({) is a constant, a
contradiction.

Case 2 z,/p, — «, where « is a finite complex number.

We have

9n(PnC) _ gnlzn + pul(C = 2n/pn)] =Gn(C— Zl) - G —a)=G(0)

ok Pk Pn
spherically uniformly on compact subsets of C. Since f(z) and h(z) have neither
common zeros nor common poles, and the zeros of f(z) have multiplicity at least
k+1, then ¢ = 01is a zero of G(¢) with multiplicity /(> k+1), or I+m(m > k+1).
So all zeros of G(¢) have multiplicity at least k + 1.

Set
e — fn(PnC)
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uniformly on every compact subset of C/{0}, thus

Ho(¢) = 1/¢-G(¢) = H(C)

uniformly on compact subsets of C/{0}. Since z = 0 is the zero of G(¢) with
multiplicity at least [, and the multiplicity of the other zeros of G (¢) is at least
k + 1, the zeros of H(¢) have multiplicity at least k& + 1, and H(0) # co.

We claim that

(ii)H(¢) = 0 & H®(¢) =0, and

() HO(¢) £ 1/¢.

Since all zeros of H(() are of multiplicity at least k-+1, H*)(¢) = 0 whenever
H(¢) = 0. Suppose that H®)(¢y) = 0. Clearly, H*)(¢) # 0. Otherwise H(()
would be a polynomial of degree less than k, which contradicts the fact that the
multiplicity of the zeros of H(() is at least k 4+ 1. Then by Hurwitz’s theorem
there exist (,, (, — (o, such that, for n sufficiently large,

Hﬁbk)(gn) = fr(zk) (pnCn)piz =0,

so we have fflk)(pngn) = 0. Thus f,(pnC,) = 0 since f,, and f,(lk) share 0. It
follows that

H(Go) = lim Hy(Cn) = lim === =0.

n—oo pn

This shows that H(¢) = 0 whenever H*)(¢) = 0. This completes the proof of
(ii).



Next we prove (iv). Suppose H®) () = 1/¢5. Obviously, H*)(¢) #
1/¢% ¢o # 0 for H(0) # oo. Then H(() is holomorphic at ¢y and noting that

P (pn€) — h(pnC)] — H®(C) — 1/¢

uniformly on compact subset of C/{0} disjoint from the poles of H((), then by
Hurwitz’s theorem there exist (,,(, — (o, such that, for n sufficiently large,

S (pna) = P(pnCa)- Thus fu(pnCn) = B(pnGa) for f¥)(2) = h(z) = f(2) =
h(z). Tt follows that

. _ v fn(pnGa)b(pnGn)
H(G) = lim Hy(¢n) = lim. Rl

which contradicts that H®*)(¢y) = 1/¢}. This proves (iv).

It follows from Lemma 4 that H(() is a rational function. Noting that
H(0) # oo, by Lemma 5, H(¢) is a constant. Since H(¢) = 0 & H®(¢) =0,
H = 0. For H(¢) = 1/¢" - G(¢), thus we have G(¢) = G(¢ — a) = 0, which is a
contradiction. We thus prove G is normal on A.

It remains to prove that F is normal at 0. Since G is normal on A, then the
family G is equicontinuous on A with respect to the spherical distance. On the
other hand, ¢(0) = 0 for each g € G, so there exists 6 > 0 such that |g(z)| < 1 for
all g € G and each z € As = {2z : |z| < 6}. It follow that f(z) is holomorphic on
Ag for all f € F. Since F is normal on A, but it is not normal at z = 0, there
exists a sequence { f,} C F which converges locally uniformly on Af, but not on
As. By the maximum modulus principle, we have f,, — oo on A, and hence so
does {gn} C G, where g, = f/h. But |g,(2)| <1 for z € As, a contradiction.
Thus F is normal in D. Thus this completes the proof of Theorem 1.
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