ZConfig Package Reference

Abstract

Release 2.3

Zope Corporation

18 May 2005

Lafayette Technology Center

513 Prince Edward Street

Fredericksburg, VA 22401
http://www.zope.com/

This document describes the syntax and API used in configuration files for components of a Zope installation written
by Zope Corporation. This configuration mechanism is itself configured using a schema specification written in XML.

Contents

1

2

Introduction

Configuration Syntax

2.1 Extending the Configuration Schema
2.2 Textual SubstitutioninValues.

Writing Configuration Schema

3.1 SchemaElements.,
3.2 SchemaComponents.

Standard ZConfig Datatypes

Standard ZConfig Schema Components

5.1 ZConfig.components.basic
The Mapping SectionType
5.2 ZConfig.components.logger

Using Components to Extend Schema

ZConfig — Basic configuration support

7.1 BasicUsage

ZConfig.datatypes — Default data type registry

ZConfig.loader — Resource loading support

9.1 LoaderObjects.

10 ZConfig.cmdline — Command-line override support

11

12

.................... 13
.................... 13
.................... 14

16

18

.................... 20

20

21

.................... 22

23

11 ZConfig.substitution — String substitution 23
11.1 Examples. . . . o e 24

A Schema Document Type Definition 24

1 Introduction

Zope uses a common syntax and API for configuration files designed for software components written by Zope Corpo-
ration. Third-party software which is also part of a Zope installation may use a different syntax, though any software

is welcome to use the syntax used by Zope Corporation. Any software written in Python is free to Zi€etifig

software to load such configuration files in order to ensure compatibility. This software is covered by the Zope Public

License, version 2.0.

TheZConfig package has been tested with Python 2.3. Older versions of Python are not supfOdefig only
relies on the Python standard library.

Configurations which usConfig are described usingchemaA schema is a specification for the allowed structure

and content of the configuratiorZConfig schema are written using a small XML-based language. The schema
language allows the schema author to specify the names of the keys allowed at the top level and within sections, to
define the types of sections which may be used (and where), the types of each values, whether a key or section must
be specified or is optional, default values for keys, and whether a value can be given only once or repeatedly.

2 Configuration Syntax

Like the ConfigParser format, this format supports key-value pairs arranged in sections. Unlike the
ConfigParser format, sections are typed and can be organized hierarchically. Additional files may be included

if needed. Schema components not specified in the application schema can be imported from the configuration file.
Though both formats are substantially line-oriented, this format is more flexible.

The intent of supporting nested section is to allow setting up the configurations for loosely-associated components in
a container. For example, each process running on a host might get its configuration section from that host’s section
of a shared configuration file.

The top level of a configuration file consists of a series of inclusions, key-value pairs, and sections.

Comments can be added on lines by themselves. A comment Baasthe first non-space character and extends to
the end of the line:

This is a comment

An inclusion is expressed like this:

%include defaults.conf

The resource to be included can be specified by a relative or absolute URL, resolved relative to the URL of the resource
the%include directive is located in.

A key-value pair is expressed like this:

2 2 Configuration Syntax

key value

The key may include any non-white characters except for parentheses. The value contains all the characters between
the key and the end of the line, with surrounding whitespace removed.

Since comments must be on lines by themselves #hehtaracter can be part of a value:

key value # still part of the value

Sections may be either empty or non-empty. An empty section may be used to provide an alias for another section.
A non-empty section starts with a header, contains configuration data on subsequent lines, and ends with a terminator.
The header for a non-empty section has this form (square brackets denote optional parts):

<section-type [name] >

section-typeindnameall have the same syntactic constraints as key names.
The terminator looks like this:

</ section-type

The configuration data in a non-empty section consists of a sequence of one or more key-value pairs and sections. For
example:

<my-section>
key-1 value-1
key-2 value-2

<another-section>
key-3 value-3
</another-section>
</my-section>

(The indentation is used here for clarity, but is not required for syntactic correctness.)
The header for empty sections is similar to that of non-empty sections, but there is no terminator:

<section-type [name] >

2.1 Extending the Configuration Schema

As we'll see in section 3, “Writing Configuration Schema,” what can be written in a configuration is controlled by
schemas which can be built frocomponentsThese components can also be used to extend the set of implementations
of objects the application can handle. What this means when writing a configuration is that third-party implementations
of application object types can be used wherever those application types are used in the configuration, if there’s a
ZConfig component available for that implementation.

The configuration file can use &import directive to load a named component:

2.1 Extending the Configuration Schema 3

%import Products.Ape

The text to the right of thé&simport keyword must be the name of a Python package;A@enfig component
provided by that package will be loaded and incorporated into the schema being used to load the configuration file.
After the import, section types defined in the component may be used in the configuration.

More detail is needed for this to really make sense.

A schema may define section types which alstract these cannot be used directly in a configuration, but multiple
concrete section types can be defined wiicplementhe abstract types. Wherever the application allows an abstract
type to be used, any concrete type which implements that abstract type can be used in an actual configuration.

The %import directive allows loading schema components which provide alternate concrete section types which
implement the abstract types defined by the application. This allows third-party implementations of abstract types to
be used in place of or in addition to implementations provided with the application.

Consider an example application application which supports logging in the same way Zope 2 does. There are some
parameters which configure the general behavior of the logging mechanism, and an arbitrary ndothkandlers

may be specified to control how the log messages are handled. Several log handlers are provided by the application.
Here is an example logging configuration:

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log

</logfile>

</eventlog>

A third-party component may provide a log handler to send high-priority alerts the system administrator’s text pager
or SMS-capable phone. All that's needed is to install the implementation so it can be imported by Python, and modify
the configuration:

%import my.pager.loghandler

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log
</logfile>

<pager>
number 1-800-555-1234
message Something broke!
</pager>
</eventlog>

2.2 Textual Substitution in Values

ZConfig provides a limited way to re-use portions of a value using simple string substitution. To use this facility,
define named bits of replacement text using%uefine directive, and reference these texts from values.

4 2 Configuration Syntax

The syntax fo®odefine is:

%define name [value]

The value ohamemust be a sequence of letters, digits, and underscores, and may not start with a digit; the namespace
for these names is separate from the other namespaces us@®witfig , and is case-insensitive.\&lueis omitted,

it will be the empty string. If given, there must be whitespace betweeneandvalue valuewill not include any
whitespace on either side, just like values from key-value pairs.

Names must be defined before they are used, and may not be re-defined. All resources being parsed as part of a
configuration share a single namespace for defined names. This means that resources which may be included more
than once should not define any names.

References to defined names from configuration values use the syntax described fwiifig.substitution
module. Configuration values which include$ as part of the actual value will need to us# to get a single$’ in
the result.

The values of defined names are processed in the same way as configuration values, and may contain references to
named definitions.

For example, the value fdwey will evaluate tovalue :

%define name value
key $name

3 Writing Configuration Schema

ZConfig schema are written as XML documents.

Data types are searched in a special namespace defined by the data type registry. The default registry has slightly
magical semantics: If the value can be matched to a standard data type when interprdiadiadey, the standard

data type will be used. If that fails, the value must beodted-name containing at least one dot, and a conversion
function will be sought using theearch() method of the data type registry used to load the schema.

3.1 Schema Elements

For each element, the content model is shown, followed by a description of how the element is used, and then a list of
the available attributes. For each attribute, the type of the value is given as either the nan@oofig datatype or
an XML attribute value type. Familiarity with XML's Document Type Definition language is helpful.

The following elements are used to describe a schema:

<schema>
description?, metadefault?, example?, import*, (sectiontype |
abstracttype)*, (section | key | multisection | multikey)*

</ schema>
Document element for AConfig schema.

extends (space-separated-url-references
A list of URLs of base schemas from which this section type will inherit key, section, and section type
declarations. If omitted, this schema is defined using only the keys, sections, and section types contained
within theschema element.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this section. If the valwoises-namethat

begins with a period, the value pfefix will be pre-pended, if set. If any base schemas are listed in the
extends attribute, the default value for this attribute comes from the base schemas. If the base schemas
all use the samdatatype , then that data type will be the default value for the extending schema. If
there are no base schemas, the default valoeliswhich means that theConfig section object will be

used unconverted. If the base schemas have diffelaiatype definitions, you must explicitly define
thedatatype in the extending schema.

handler (basic-key)

keytype (basic-keyor dotted-namé
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful adetitdier andipaddr-
or-hostnametypes. If the value is aotted-namethat begins with a period, the value pffefix will
be pre-pended, if set. If any base schemas are listed iexttemds attribute, the default value for this
attribute comes from the base schemas. If the base schemas all use thegame |, then that key type
will be the default value for the extending schema. If there are no base schemas, the defaultbadiee is
key. If the base schemas have differ&aytype definitions, you must explicitly define theeytype in
the extending schema.

prefix (dotted-namé
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts with thechema element if it hasn’t been overridden by an inner element with a
prefix attribute.

<description >
PCDATA

</ description >
Descriptive text explaining the purpose the container ofdéscription element. Most other elements can
contain adescription element as their first child. At most omiescription element may appear in a
given context.

format (NMTOKEN)
Optional attribute that can be added to indicate what conventions are used to mark up the contained text.
This is intended to serve as a hint for documentation extraction tools. Suggested values are:
Value | Content Format
plain text/plain; blank lines separate paragraphs
rest reStructuredText
Stx Classic Structured Text

<example >
PCDATA
</ example >
An example value. This serves only as documentation.

<metadefault >
PCDATA

</ metadefault >
A description of the default value, for human readers. This may include information about how a computed
value is determined when the schema does not specify a default value.

<abstracttype >
description?
</ abstracttype >
Define an abstract section type.

name (basic-key)
The name of the abstract section type; required.

<sectiontype >
description?, (section | key | multisection | multikey)*

6 3 Writing Configuration Schema

</ sectiontype >
Define a concrete section type.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this section. If the valuéaged-name
that begins with a period, the value pfefix ~ will be pre-pended, if set. Iflatatype is omitted and
extends is used, thelatatype from the section type identified by tlextends attribute is used.

extends (basic-key)
The name of a concrete section type from which this section type acquires all key and section declara-
tions. This type doemot automatically implement any abstract section type implemented by the named
section type. If omitted, this section is defined with only the keys and sections contained within the
sectiontype element. The new section type is calledexivedsection type, and the type named by
this attribute is called thkasetype. Values for thelatatype andkeytype attributes are acquired from
the base type if not specified.

implements (basic-key)
The name of an abstract section type which this concrete section type implements. If omitted, this section
type does not implement any abstract type, and can only be used if it is specified directly in a schema or
other section type.

keytype (basic-key)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful adetitdier andipaddr-
or-hostnametypes. If the value is a@otted-namethat begins with a period, the value pffefix will
be pre-pended, if set. The default valudasic-key If keytype is omitted andextends is used, the
keytype from the section type identified by tlextends attribute is used.

name (basic-key)
The name of the section type; required.

prefix (dotted-name
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts in theectiontype element. If omitted, the prefix specified by a containing
context is used if specified.

<import >
EMPTY
</ import >
Import a schema component. Exactly one of the attribpéekage andsrc must be specified.

file (file name without directory information)
Name of the component file within a package; if not specifiegmnponent.xml’ is used. This may only be
given whenpackage is used. (Thecomponent.xm!’ file is always used when importing vigimport
from a configuration file.)

package (dotted-suffix)
Name of a Python package that contains the schema component being imported. The component will be
loaded from the file identified by thide attribute, or tomponent.xml’ if file is not specified. If the
package name given starts with a dot’); the name used will be the current prefix and the value of this
attribute concatenated.

src (url-reference)
URL to a separate schema which can provide useful types. The referenced resource must contain a schema,
not a schema component. Section types defined or imported by the referenced schema are added to the
schema containing thenport ; top-level keys and sections are ignored.

<key >
description?, example?, metadefault?, default*

</ key >
A key element is used to describe a key-value pair which may occur at most once in the section type or top-level
schema in which it is listed.

3.1 Schema Elements 7

attribute (identifier)
The name of the Python attribute which this key should be the value ofSettionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this key. If the valuedstad-namethat
begins with a period, the value pfefix will be pre-pended, if set.

default (string)
If the key-value pair is optional and this attribute is specified, the value of this attribute will be converted
using the appropriate data type converter and returned to the application as the configured value. This
attribute may not be specified if thequired attribute isyes .

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instancé,.aif the value is *’, any name
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this caseatirébute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the valas jshe
default attribute may not be specified and an error will be reported if the configuration instance does
not specify a value for the key. If the valuens (the default) and the configuration instance does not
specify a value, the value reported to the application will be that specified tgefhelt attribute, if
given, orNone.

<multikey >

description?, example?, metadefault?, default*

</ multikey >

A multikey elementis used to describe a key-value pair which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value ofSettionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key nhame to underscores.

datatype (basic-keyor dotted-name
The data type converter which will be applied to the value of this key. If the valuedstad-namethat
begins with a period, the value pfefix will be pre-pended, if set.

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance,.dif the value is +’, any hame
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this caseatirébute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the vafes jisno
default elements may be specified and an error will be reported if the configuration instance does
not specify at least one value for the key. If the valuaas(the default) and the configuration instance
does not specify a value, the value reported to the application will be a list containing one element for
eachdefault element specified as a child of thaultikey . Each value will be individually converted
according to the@latatype attribute.

<default >

PCDATA

3 Writing Configuration Schema

</ default >
Eachdefault element specifies a single default value famaltikey . This element can be repeated to
produce a list of individual default values. The text contained in the element will be passed to the datatype
conversion for thenultikey

key (key type of the containing sectiontype)
Key to associate with the default value. This is only used for default&efyaor multikey with aname
of +; in that case this attribute is required. It is an error to us&k#éye attribute with adefault element
for amultikey with a name other than.

Warning: The datatype of this attribute is that of the section tgpatainingthe actual keys, noj
necessarily that of the section type which defines the key. If a derived section overrides the key type
of the base section type, the actual key type used is that of the derived section.
This can lead to confusing errors in schemas, thoug@ @enfig package checks for this when ttje
schema is loaded. This situation is particularly likely when a derived section type uses a ke type
which collapses multiple default keys which were not collapsed by the base section type.
Consider this example schema:

<schema>
<sectiontype name="base" keytype="identifier">
<key name="+" attribute="mapping">
<default key="foo">some value</default>
<default key="FOO">some value</default>
</key>
</sectiontype>

<sectiontype name="derived" keytype="basic-key"
extends="base"/>

<section type="derived" name="*" attribute="section"/>
</schema>

When this schema is loaded, a set of defaults fordiréved section type is computed. Sinbasic-
key is case-insensitive (everything is converted to lower cag®),"and ‘Foo’ are both converted tg
‘foo ’, which clashes sinckey only allows one value for each key.

<section >
description?

</ section >
A section element is used to describe a section which may occur at most once in the section type or top-level
schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this section should be the value ect@nValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the section name to underscores,
in which case th@ame attribute may not b& or +.

handler (basic-key)

name (basic-key)
The name of the section, as it must be given in a configuration instanae,+. If the value is* or
this attribute is omitted, any name not already specified as a key may be used. If the Valaes
the attribute attribute must be specified. If the valuerisany name is allowed, or the name may be
omitted. If the value is-, any name is allowed, but some name must be provided.

required (yes|no)
Specifies whether the configuration instance is required to provide the section. If the wedse & error
will be reported if the configuration instance does not include the section. If the vatoe(the default)

3.1 Schema Elements 9

and the configuration instance does not include the section, the value reported to the application will be
None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,
matching sections in the configuration file must be of a type which specifies that it implements the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

<multisection >
description?

</ multisection >
A multisection element is used to describe a section which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which matching sections should be the value &emtienValue
instance. This is required and must be unique within the immediate contents of a section type or schema.
TheSectionValue instance will contain a list of matching sections.

handler (basic-key)

name (basic-key)
For amultisection , any name not already specified as a key may be used. If the valueris, the
attribute attribute must be specified. If the valuefir this attribute is omitted, any name is allowed,
or the name may be omitted. If the valuetisany name is allowed, but some name must be provided. No
other value for the@mame attribute is allowed for anultisection

required (yes|no)
Specifies whether the configuration instance is required to provide at least one matching section. If the
value isyes, an error will be reported if the configuration instance does not include the section. If the
value isno (the default) and the configuration instance does not include the section, the value reported to
the application will beNone.

type (basic-key)
The section type which matching sections must implement. If the value nhames an abstract section type,
matching sections in the configuration file must be of types which specify that they implement the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

3.2 Schema Components

XXX need more explanation

ZConfig supports schema components that can be provided by disparate components, and allows them to be knit
together into concrete schema for applications. Components cannot add additional keys or sections in the application
schema.

A schemacomponents allowed to define new abstract and section types. Components are identified using a dotted-
name, similar to a Python module name. For example, one component raaglhstorage

Schema components are stored alongside application code since they directly reference datatype code. Schema com-
ponents are provided by Python packages. The component definition is normally stored in teerfdlenent.xml’;

an alternate filename may be specified usingitbe attribute of themport element. Components imported using

the %import keyword from a configuration file must be namedrhponent.xml’. The component defines the types
provided by that component; it must have@mponent element as the document element.

The following element is used as the document element for schema components. Note that schema components do not
allow keys and sections to be added to the top-level of a schema; they serve only to provide type definitions.

<component >
description?, (abstracttype | sectiontype)*

10 3 Writing Configuration Schema

</ component >
The top-level element for schema components.

prefix (dotted-name
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts within theomponent element if it hasn’t been overridden by an inner element
with aprefix attribute.

4 Standard ZConfig Datatypes

There are a number of data types which can be identified usindatatype attribute onkey, sectiontype
andschema elements. Applications may extend the set of datatypes by calling¢ister() method of the data
type registry being used or by using Python dotted-names to refer to conversion routines defined in code.

The following data types are provided by the default type registry.

basic-key
The default data type for a key in a ZConfig configuration file. The result of conversion is always lower-case,
and matches the regular expressijarz][-._a-z0-9]* I

boolean
Convert a human-friendly string to a boolean value. The najegeson, andtrue convert toTrue , while no,
off ,andfalse converttoFalse . Comparisons are case-insensitive. All other input strings are disallowed.

byte-size
A specification of a size, with byte multiplier suffixes (for exampl28MB). Suffixes are case insensitive and
may be KB, * MB, or ‘GB

dotted-name
A string consisting of one or moiidentifier values separated by periods{.

dotted-suffix
A string consisting of one or moridentifier values separated by periods '}, possibly prefixed by a period.
This can be used to indicate a dotted name that may be specified relative to some base dotted name.

existing-dirpath
Validates that the directory portion of a pathname exists. For example, if the value providied/ig”, ‘ /foo’
must be an existing directory. No conversion is performed.

existing-directory
Validates that a directory by the given name exists on the local filesystem. No conversion is performed.

existing-file
Validates that a file by the given name exists. No conversion is performed.

existing-path
Validates that a path (file, directory, or symlink) by the given name exists on the local filesystem. No conversion
is performed.

float
A Python float.Inf , -Inf , andNaNare not allowed.

identifier
Any valid Python identifier.

inet-address
An Internet address expressed ashestname port) pair. If only the port is specified, the default host will
be returned fothostname The default host isocalhost ~ on Windows and the empty string on all other
platforms. If the port is omittedone will be returned fomport.

11

inet-binding-address
An Internet address expressed dhastname port) pair. The address is suitable for binding a socket. If only
the port is specified, the default host will be returnedHostname The default host is the empty string on all
platforms. If the port is omittedJone will be returned fomport.

inet-connection-address
An Internet address expressed dshastname port) pair. The address is suitable for connecting a socket to a
server. If only the port is specified,27.0.0.1° will be returned fotostnamelf the port is omittedNone
will be returned forport.

integer
Convert a value to an integer. This will be a Python if the value is in the range allowed liyt , otherwise
a Pythorlong s returned.

ipaddr-or-hostname
Validates a valid IP address or hostname. If the first character is a digit, the value is assumed to be an IP address.
If the first character is not a digit, the value is assumed to be a hostname. Hostnames are converted to lower
case.

locale
Any valid locale specifier accepted by the availdbleale.setlocale() function. Be aware that only the
'C’ locale is supported on some platforms.

null
No conversion is performed; the value passed in is the value returned. This is the default data type for section
values.

port-number
Returns a valid port number as an integer. Validity does not imply that any particular use may be made of the
port, however. For example, port number lower than 1024 generally cannot be bound by non-root users.

socket-address
An address for a socket. The converted value is an object providing two attribfatesly — specifies the
address familyAF_INET or AF_UNIX), with None instead ofAF_UNIX on platforms that don’t support it.
Theaddress attribute will be the address that should be passed to the sobked§ method. If the family
is AF_UNIX, the specific address will be a pathname; if the familAks INET, the second part will be the
result of theinet-addressconversion.

string
Returns the input value as a string. If the source is a Unicode string, this implies that it will be checked to be
simple 7-bitascii. This is the default data type for values in configuration files.

time-interval
A specification of a time interval in seconds, with multiplier suffixes (for exampl). Suffixes are case
insensitive and may be' (seconds), M (minutes), h’ (hours), or d’ (days).

timedelta
Similar to thetime-interval, this data type returns a Python datetime.timedelta object instead of a float. The
set of suffixes recognized bimedelta are: W (weeks), d’ (days), ‘h’ (hours), ‘m (minutes), s’ (seconds).
Values may be floats, for exampkéw 2.5d 7h 12m 0.001s

5 Standard ZConfig Schema Components

ZConfig provides a few convenient schema components as part of the package. These may be used directly or can
server as examples for creating new components.

12 5 Standard ZConfig Schema Components

5.1 ZConfig.components.basic

The ZConfig.components.basic package provides small components that can be helpful in composing
application-specific components and schema. There is no large functionality represented by this package. The de-
fault component provided by this package simply imports all of the smaller components. This can be imported using

<import package="ZConfig.components.basic"/>

Each of the smaller components is documented directly; importing these selectively can reduce the time it takes to
load a schema slightly, and allows replacing the other basic components with alternate components (by using different
imports that define the same type names) if desired.

The Mapping Section Type

There is a basic section type that behaves like a simple Python mapping; this can be imported directly using

<import package="ZConfig.components.basic" file="mapping.xml"/>

This defines a single section typ&;onfig.basic.mapping When this is used, the section value is a Python dictionary
mapping keys to string values.

This type is intended to be used by extending it in simple ways. The simplest is to create a new section type name that
makes more sense for the application:

<import package="ZConfig.components.basic" file="mapping.xml"/>

<sectiontype name="my-mapping"
extends="ZConfig.basic.mapping"
/>

<section name="*"

type="my-mapping"
attribute="map"
/>

This allows a configuration to contain a mapping frbasic-keynames to string values like this:

<my-mapping>
This that
and the other
</my-mapping>

The value of the configuration objectisap attribute would then be the dictionary

{’this’: ’'that’,
'and’: 'the other’,

}

(Recall that thévasic-keydata type converts everything to lower case.)

5.1 ZConfig.components.basic 13

Perhaps a more interesting applicatiorz@fonfig.basic.mappingis using the derived type to override theytype
If we have the conversion function:

def email_address(value):
userid, hostname = value.split("@", 1)
hostname = hostname.lower() # normalize what we know we can
return "%s@%s" % (userid, hostname)

then we can use this as the key type for a derived mapping type:

<import package="ZConfig.components.basic" file="mapping.xml"/>

<sectiontype name="email-users"
extends="ZConfig.basic.mapping"
keytype="mypkg.datatypes.email_address"
/>

<section name="*"
type="email-users"
attribute="email_users"
/>

5.2 ZConfig.components.logger

The ZConfig.components.logger package provides configuration support for thgging packagein
Python’s standard library. This component can be imported using

<import package="ZConfig.components.logger"/>

This component defines two abstract types and several concrete section types. These can be imported as a unit, as
above, or as four smaller components usable in creating alternate logging packages.

The first of the four smaller components contains the abstract types, and can be imported using

<import package="ZConfig.components.logger" file="abstract.xml"/>

The two abstract types imported by this are:

ZConfig.logger.log
Logger objects are represented by this abstract type.

ZConfig.logger.handler
Each logger object can have one or more “handlers” associated with them. These handlers are responsible for
writing logging events to some form of output stream using appropriate formatting. The output stream may be
a file on a disk, a socket communicating with a server on another system, or a sesjedogf messages.
Section types which implement this type represent these handlers.

The second and third of the smaller components provides section types that act as facttogggirfigrLogger
objects. These can be imported using

14 5 Standard ZConfig Schema Components

<import package="ZConfig.components.logger" file="eventlog.xml"/>
<import package="ZConfig.components.logger" file="logger.xml"/>

The types defined in these components implemenZBenfig.logger.log abstract type. Theebentlog.xml' com-
ponent defines aaventlogtype which represents the root logger from the lthgging package (the return value
of logging.getLogger()), while the logger.xmlI’ component defines bbgger section type which represents a
named logger (as returned lmgging.getLogger(name).

The third of the smaller components provides section types that are factorlegdorg.Handler objects. This
can be imported using

<import package="ZConfig.components.logger" file="handlers.xml"/>

The types defined in this component implementZi@onfig.logger.handlerabstract type.

The configuration objects provided by both the logger and handler types are factories for the finished loggers and
handlers. These factories should be called with no arguments to retrieve the logger or log handler objects. Calling the
factories repeatedly will cause the same objects to be returned each time, so it's safe to simply call them to retrieve the
objects.

The factories for the logger objects, whetheréentlogor logger section type is used, provide@open() method

which may be called to close any log files and re-open them. This is useful when using &ignal to effect log file

rotation: the signal handler can call this method, and not have to worry about what handlers have been registered for
the logger.

Building an application that uses the logging components is fairly straightforward. The schema needs to import the
relevant components and declare their use:

<schema>
<import package="ZConfig.components.logger" file="eventlog.xml"/>
<import package="ZConfig.components.logger" file="handlers.xml"/>

<section type="eventlog" name="*" attribute="eventlog"
required="yes"/>
</schema>

In the application, the schema and configuration file should be loaded normally. Once the configuration object is
available, the logger factory should be called to configure PytHoging package:

import os
import ZConfig

def run(configfile):
schemafile = os.path.join(os.path.dirname(__file_), "schema.xml")
schema = ZConfig.loadSchema(schemafile)
config, handlers = ZConfig.loadConfig(schema, configfile)

configure the logging package:
config.eventlog()

now do interesting things

5.2 ZConfig.components.logger 15

An example configuration file for this application may look like this:

<eventlog>
level info
<logfile>
path Ivar/log/myapp
format %(asctime)s %(levelname)s %(name)s %(message)s

locale-specific date/time representation
dateformat %c
</logfile>

<syslog>
level error
address syslog.example.net:514
format %(levelname)s %(name)s %(message)s
</syslog>
</eventlog>

Refer to thelogging package documentation for the names available in the message format strinfgsn(tiae
key in the log handlers). The date format strings (la¢teformat key in the log handlers) are the same as those
accepted by théme.strftime() function.

See Also:

PEP 282, A Logging Systen
The proposal which described the logging feature for inclusion in the Python standard library.

logging — Logging facility for Python
Python’slogging package documentation, from tRgthon Library Reference

Original Pythorlogging package
This is the original source for tHegging package. This is mostly of historical interest.

6 Using Components to Extend Schema

It is possible to use schema components anddheport construct to extend the set of section types available for a
specific configuration file, and allow the new components to be used in place of standard components.

The key to making this work is the use of abstract section types. Wherever the original schema accepts an abstract
type, it is possible to load new implementations of the abstract type and use those instead of, or in addition to, the
implementations loaded by the original schema.

Abstract types are generally used to represent interfaces. Sometimes these are interfaces for factory objects, and
sometimes not, but there’s an interface that the new component needs to implement. What interface is required should
be documented in thdescription element in theabstracttype element; this may be by reference to an
interface specified in a Python module or described in some other bit of documentation.

The following things need to be created to make the new component usable from the configuration file:

1. Animplementation of the required interface.

2. A schema component that defines a section type that contains the information needed to construct the compo-
nent.

3. A ‘“datatype” function that converts configuration data to an instance of the component.

16 6 Using Components to Extend Schema

For simplicity, let's assume that the implementation is defined by a Python class.

The example component we build here will be in tiidse package, but any package will do. Components load-
able using®import must be contained in thedmponent.xml’ file; alternate filenames may not be selected by the
%import construct.

Create a ZConfig component that provides a section type to support your component. The new section type must
declare that it implements the appropriate abstract type; it should probably look something like this:

<component prefix="noise.server">
<import package="ZServer"/>

<sectiontype name="noise-generator"
implements="ZServer.server"
datatype=".NoiseServerFactory">

<l-- specific configuration data should be described here -->

<key name="port"
datatype="port-number"
required="yes">
<description>
Port number to listen on.
</description>
</key>

<key name="color"
datatype=".noise_color"
default="white">
<description>
Silly way to specify a noise generation algorithm.
</description>
</key>

</sectiontype>
</component>

This example uses one of the standard ZConfig datatypm$;number, and requires two additional types to be
provided by thenoise.server module:NoiseServerFactory andnoise_color()

The noise_color() function is a datatype conversion for a key, so it accepts a string and returns the value that
should be used:

_noise_colors = {
color -> r,g,b
'white’: (255, 255, 255),
pink’: (255, 182, 193),
}

def noise_color(string):
if string in _noise_colors:
return _noise_colors[string]
else:
raise ValueError(unknown noise color: %r’ % string)

NoiseServerFactory is a little different, as it's the datatype function for a section rather than a key. The param-

17

eter isn't a string, but a section value object with two attribupest andcolor

Since theZServer.serverabstract type requires that the component returned is a factory object, the datatype function
can be implemented at the constructor for the class of the factory object. (If the datatype function could select different
implementation classes based on the configuration values, it makes more sense to use a simple function that returns
the appropriate implementation.)

A class that implements this datatype might look like this:

from ZServer.datatypes import ServerFactory
from noise.generator import WhiteNoiseGenerator, PinkNoiseGenerator

class NoiseServerFactory(ServerFactory):

def __init_ (self, section):
host and ip will be initialized by ServerFactory.prepare()
self.host = None
self.ip = None
self.port = section.port
self.color = section.color

def create(self):
if self.color == 'white”:
generator = WhiteNoiseGenerator()
else:
generator = PinkNoiseGenerator()
return NoiseServer(self.ip, self.port, generator)

You'll need to arrange for the package containing this component is available on Pysgerpasth before the
configuration file is loaded; this is mostly easily done by manipulating the PYTHONPATH environment variable.

Your configuration file can now include the following to load and use your new component:

%import noise

<noise-generator>
port 1234
color white
</noise-generator>

7 ZConfig — Basic configuration support

The mainZConfig package exports these convenience functions:

loadConfig (schema, un[l, overrideﬂ)
Load and return a configuration from a URL or pathname givemiby url may be a URL, absolute path-
name, or relative pathname. Fragment identifiers are not suppartedmads a reference to a schema loaded

by loadSchema() or loadSchemakFile() . The return value is a tuple containing the configuration ob-
ject and a composite handler that, when called with a name-to-handler mapping, calls all the handlers for the
configuration.

The optionabverridesargument represents information derived from command-line arguments. If given, it must
be either a sequence of value specifierdyomne. A value specifieis a string of the fornoptionpatkrvalue The
optionpathspecifies the “full path” to the configuration setting: it can contain a sequence of hames, separated
by ‘/ ' characters. Each name before the last names a section from the configuration file, and the last name

18 7 ZConfig — Basic configuration support

corresponds to a key within the section identified by the leading section nanogsiolipathcontains only one
name, it identifies a key in the top-level schemalueis a string that will be treated just like a value in the
configuration file.

loadConfigFile ('schema, fiIE, urI[, overrides]])
Load and return a configuration from an opened file objecturllfis omitted, one will be computed based
on thename attribute offile, if it exists. If no URL can be determined, &binclude statements in the
configuration must use absolute URLschemais a reference to a schema loadedlbgdSchema() or
loadSchemakFile() . The return value is a tuple containing the configuration object and a composite handler
that, when called with a name-to-handler mapping, calls all the handlers for the configuratioaveFhdes
argument is the same as for tll@dConfig() function.

loadSchema (url)
Load a schema definition from the URItl. url may be a URL, absolute pathname, or relative pathname.
Fragment identifiers are not supported. The resulting schema object can be palesstCtinfig() or
loadConfigFile() . The schema object may be used as many times as needed.

loadSchemaFile (file[, url])
Load a schema definition from the open file objgiet If url is given and nolNone, it should be the URL of
resource represented file. If url is omitted orNone, a URL may be computed from theame attribute of
file, if present. The resulting schema object can be pasdedd&onfig() or loadConfigFile() . The
schema object may be used as many times as needed.

The following exceptions are defined by this package:

exceptionConfigurationError
Base class for exceptions specific to #f@éonfig package. All instances providenaessage attribute that
describes the specific error, andidh attribute that gives the URL of the resource the error was located in, or
None.

exceptionConfigurationSyntaxError
Exception raised when a configuration source does not conform to the allowed syntax. In addition to the
message andurl attributes, exceptions of this type offer theeno attribute, which provides the line
number at which the error was detected.

exceptionDataConversionError
Raised when a data type conversion fails witalueError . This exception is a subclass of both
ConfigurationError andValueError . Thestr() of the exception provides the explanation from
the originalValueError , and the line number and URL of the value which provoked the error. The following
additional attributes are provided:

Attribute Value

colno column number at which the value startsNone
exception the originalValueError instance

lineno line number on which the value starts

message str() returned by the originaValueError

value original value passed to the conversion function
url URL of the resource providing the value text

exceptionSchemagrror
Raised when a schema contains an error. This exception type provides the attnibuti#seno , andcolno
which provide the source URL, the line number, and the column number at which the error was detected. These
attributes may b&lone in some cases.

exceptionSchemaResourceError
Raised when there’s an error locating a resource required by the schema. This is derivedtissnaError .
Instances of this exception class add the attribfitssame , package , andpath , which hold the filename
searched for within the package being loaded, the name of the package, angé#tle attribute of the
package itself (oNone if it isn't a package or could not be imported).

19

exceptionSubstitutionReplacementError
Raised when the source text contains references to names which are not defimggping The attributes
source andname provide the complete source text and the name (converted to lower case) for which no
replacement is defined.

exceptionSubstitutionSyntaxError
Raised when the source text contains syntactical errors.

7.1 Basic Usage

The simplest use afConfig is to load a configuration based on a schema stored in a file. This example loads a
configuration file specified on the command line using a schema in the same directory as the script:

import os
import sys
import ZConfig

try:
myfile = _ file_
except NameError:
myfile = os.path.realpath(sys.argv[0])
mydir = os.path.dirname(myfile)
schema = ZConfig.loadSchema(os.path.join(mydir, 'schema.xml’))
conf, handler = ZConfig.loadConfig(schema, sys.argv[1])

If the schema file contained this schema:

<schema>

<key name='server’ required='yes'/>

<key name=attempts’ datatype='integer’ default="5'/>
</schema>

and the file specified on the command line contained this text:

sample configuration

server Www.example.com

then the configuration objeconf loaded above would have two attributes:

Attribute | Value

server ‘www.example.com’
attempts 5
8 ZConfig.datatypes — Default data type registry

20 8 ZConfig.datatypes — Default data type registry

TheZConfig.datatypes module provides the implementation of the default data type registry and all the standard
data types supported &Config . A number of convenience classes are also provided to assist in the creation of
additional data types.

A datatype registrys an object that provides conversion functions for data types. The interface for a registry is fairly
simple.

A conversion functiotis any callable object that accepts a single argument and returns a suitable value, or raises an
exception if the input value is not acceptablalueError is the preferred exception for disallowed inputs, but any
other exception will be properly propagated.

classRegistry ([stock])
Implementation of a simple type registry. If givestockshould be a mapping which defines the “built-in”
data types for the registry; if omitted dlone, the standard set of data types is used (see section 4, “Standard
ZConfig Datatypes”).

Registry objects have the following methods:

get (nameg
Return the type conversion routine foame If the conversion function cannot be found, an (unspecified)
exception is raised. If the name is not provided in the stock set of data types by this registry and has not
otherwise been registered, this method uses#¢laech() method to load the conversion function. This is the
only method the rest dConfig requires.

register (. name, conversign
Register the data type namameto use the conversion functiaonversion If nameis already registered or
provided as a stock data typéalueError s raised (this includes the case whaamewas found using the
search() method).

search (nam¢
This is a helper method for the default implementation ofgb) method. Ifnameis a Python dotted-name,
this method loads the value for the name by dynamically importing the containing module and extracting the
value of the name. The name must refer to a usable conversion function.

The following classes are provided to define conversion functions:

classMemoizedConversion (conversioi
Simple memoization for potentially expensive conversions. This conversion helper caches each successful con-
version for re-use at a later time; failed conversions are not cached in any way, since it is difficult to raise a
meaningful exception providing information about the specific failure.

classRangeCheckedConversion (conversimﬁ, min[, max]])
Helper that performs range checks on the result of another conversion. Values passed to instances of this con-
version are converted usirgnversionand then range checkechin andmax if given and notNone, are the
inclusive endpoints of the allowed range. Values returneddmyersiorwhich lay outside the range described
by minandmaxcausevalueError to be raised.

classRegularExpressionConversion (regexy
Conversion that checks that the input matches the regular expresgien If it matches, returns the input,
otherwise raise¥alueError

9 ZConfig.loader — Resource loading support

This module provides some helper classes used by the primary APIs exported@othiy package. These classes
may be useful for some applications, especially applications that want to use a non-default data type registry.

classResource (file, url[, fragmenﬂ)
Obiject that allows an open file object and a URL to be bound together to ease handling. Instances have the
attributesfile , url , andfragment which store the constructor arguments. These objects also have a

21

close() method which will callclose() onfile, then set thdile attribute toNone and theclosed
toTrue .

classBaselLoader ()
Base class for loader objects. This should not be instantiated directly, l@tiResource() method must
be overridden for the instance to be used via the public API.

classConfigLoader (schema
Loader for configuration files. Each configuration file must conform to the sclsetr@ma The load*()
methods return a tuple consisting of the configuration object and a composite handler.

classSchemaloader ([registry])
Loader that loads schema instances. All schema loaded I8chemaloader will use the same
data type registry. Ifregistry is provided and notNone, it will be used, otherwise an instance of
ZConfig.datatypes.Registry will be used.

9.1 Loader Objects

Loader objects provide a general public interface, an interface which subclasses must implement, and some utility
methods.

The following methods provide the public interface:

loadURL (url)
Open and load a resource specified by the URL This method uses thieadResource() method to
perform the actual load, and returns whatever that method returns.

loadFile (file[, url])
Load from an open file objedile. If given and noNone, url should be the URL of the resource represented by
file. If omitted orNone, thename attribute offile is used to compute file: URL, if present. This method
uses thdoadResource() method to perform the actual load, and returns whatever that method returns.

The following method must be overridden by subclasses:

loadResource (resourcg
Subclasses @aseLoader mustimplement this method to actually load the resource and return the appropri-
ate application-level object.

The following methods can be used as utilities:

isPath (9
Return true ifs should be considered a filesystem path rather than a URL.

normalizeURL (url-or-path)

Return a URL forurl-or-path. If url-or-path refers to an existing file, the correspondifilg: URL is
returned. Otherwiserl-or-pathis checked for sanity: if it does not have a schexeuyeError s raised, and
if it does have a fragment identifie€onfigurationError is raised. This useisPath() to determine

whetherurl-or-pathis a URL of a filesystem path.

openResource (url)
Returns a resource object that represents the URRLThe URL is opened using thellib2.urlopen()
function, and the returned resource object is created usiegteResource() . If the URL cannot be
openedConfigurationError is raised.

createResource (file, url)
Returns a resource object for an open file and URL, givefileaandurl, respectively. This may be overridden
by a subclass if an alternate resource implementation is desired.

22 9 ZConfig.loader — Resource loading support

10 ZConfig.cmdline — Command-line override support

This module exports an extended version of @enfigLoader class from thezConfig.loader module. This
provides support for overriding specific settings from the configuration file from the command line, without requiring
the application to provide specific options for everything the configuration file can include.

classExtendedConfigLoader (schema
Construct &ConfigLoader subclass that adds support for command-line overrides.

The following additional method is provided, and is the only way to provide position information to associate with
command-line parameters:

addOption (spe({, pos])
Add a single value to the list of overridden values. H®pecargument is a value specified, as described for
the ZConfig .loadConfig() function. A source position for the specifier may be giverpas If posis
specified and nolNone, it must be a sequence of three values. The first is the URL of the source (or some
other identifying string). The second and third are the line number and column of the setting. These position
information is only used to constructCataConversionError when data conversion fails.

11 ZConfig.substitution — String substitution

This module provides a basic substitution facility similar to that found in the Bourne siedin(most Wnix plat-
forms).

The replacements supported by this module include:

Source | Replacement | Notes
$$ $ 1)
$name The result of looking umame | (2)
${ namé | The result of looking umame

Notes:

(1) This is different from the Bourne shell, which use¢kto generate a$’ in the result text. This difference avoids
having as many special characters in the syntax.

(2) Any character which immediately followsamemay not be a valid character in a name.

In each casenameis a non-empty sequence of alphanumeric and underscore characters not starting with a digit. If
there is not a replacement foame the exceptiorSubstitutionReplacementError is raised. Note that the
lookup is expected to be case-insensitive; this module will always use a lower-case version of the name to perform the

query.
This module provides these functions:
substitute (s, mapping

Substitute values frormappinginto s. mappingcan be aict or any type that supports tlget() method

of the mapping protocol. Replacement values are copied into the result without further interpretation. Raises
SubstitutionSyntaxError if there are malformed constructssn

isname (')
ReturnsTrue if sis a valid name for a substitution text, otherwise returakse .

23

11.1 Examples

>>> from ZConfig.substitution import substitute
>>> d = {'name’: 'value’,
‘top”: '$middle’,
'middle’ : ’bottom’}
>>>
>>> substitute('$name’, d)
‘value’
>>> substitute('$top’, d)
"$middle’

A Schema Document Type Definition

The following is the XML Document Type Definition f&&Config schema:

<l--

* * * * * *

Copyright (c) 2002, 2003 Zope Corporation and Contributors.
All Rights Reserved.

This software is subject to the provisions of the Zope Public License,

Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.

Please note that not all documents that conform to this DTD are
legal ZConfig schema. The ZConfig reference manual describes many
constraints that are important to understanding ZConfig schema.

-—->

<l-- DTD for ZConfig schema documents. -->

<IELEMENT schema (description?, metadefault?, example?,
import*,
(sectiontype | abstracttype)*,
(section | key | multisection | multikey)*)>
<IATTLIST schema
extends NMTOKEN #IMPLIED
prefix NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
keytype NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED>

<IELEMENT component (description?, (sectiontype | abstracttype)*)>
<IATTLIST component
prefix NMTOKEN #IMPLIED>

<I[ELEMENT import EMPTY>
<IATTLIST import
file CDATA #IMPLIED

24 A Schema Document Type Definition

package NMTOKEN #MPLIED
src CDATA #IMPLIED>

<IELEMENT description (#PCDATA)*>
<IATTLIST description
format NMTOKEN #IMPLIED>

<I[ELEMENT metadefault (#PCDATA)*>
<IELEMENT example (#PCDATA)*>

<I[ELEMENT sectiontype (description?,
(section | key | multisection | multikey)*)>

<IATTLIST sectiontype

name NMTOKEN #REQUIRED

prefix NMTOKEN #IMPLIED

keytype NMTOKEN #IMPLIED

datatype = NMTOKEN #IMPLIED

implements NMTOKEN #IMPLIED

extends NMTOKEN #IMPLIED>

<IELEMENT abstracttype (description?)>

<IATTLIST abstracttype
name NMTOKEN #REQUIRED
prefix NMTOKEN #IMPLIED>

<I[ELEMENT default (#PCDATA)*>
<IATTLIST default
key CDATA #IMPLIED>

<IELEMENT key (description?, metadefault?, example?, default*)>
<IATTLIST key

name CDATA #REQUIRED

attribute NMTOKEN #IMPLIED

datatype NMTOKEN #IMPLIED

handler NMTOKEN #IMPLIED

required (yes|no) "no"

default CDATA #IMPLIED>

<IELEMENT multikey (description?, metadefault?, example?, default*)>
<IATTLIST multikey

name CDATA #REQUIRED

attribute NMTOKEN #IMPLIED

datatype NMTOKEN #IMPLIED

handler NMTOKEN #IMPLIED

required (yes|no) "no">

<IELEMENT section (description?)>
<IATTLIST section

name CDATA #REQUIRED
attribute NMTOKEN ~ #IMPLIED
type NMTOKEN #REQUIRED

handler NMTOKEN #IMPLIED
required (yes|no) "no">

<IELEMENT multisection (description?)>
<IATTLIST multisection

name CDATA #REQUIRED
attribute NMTOKEN #IMPLIED
type NMTOKEN #REQUIRED

25

handler
required

NMTOKEN #IMPLIED
(yes|no) "no">

26

A Schema Document Type Definition

	1 Introduction
	2 Configuration Syntax
	2.1 Extending the Configuration Schema
	2.2 Textual Substitution in Values

	3 Writing Configuration Schema
	3.1 Schema Elements
	3.2 Schema Components

	4 Standard ZConfig Datatypes
	5 Standard ZConfig Schema Components
	5.1 ZConfig.components.basic
	The Mapping Section Type

	5.2 ZConfig.components.logger

	6 Using Components to Extend Schema
	7 ZConfig --- Basic configuration support
	7.1 Basic Usage

	8 ZConfig.datatypes --- Default data type registry
	9 ZConfig.loader --- Resource loading support
	9.1 Loader Objects

	10 ZConfig.cmdline --- Command-line override support
	11 ZConfig.substitution --- String substitution
	11.1 Examples

	A Schema Document Type Definition

