
MFPIC: A Short Introduction

Daniel H. Luecking∗

2003/11/14

Contents

1 Introduction 1

2 Positioning text 3

3 Drawing figures 7

4 Functions 10

5 Transforming figures 13

6 Rendering figures 15

7 More on text 19

8 Arrows 20

9 Color 22

10 Closing paths 23

A Appendices 25
A.1 MFPIC in plain TEX .25
A.2 MFPIC without PDF .26
A.3 MFPIC without METAPOST .26
A.4 METAFONT configuration problems . 27

MFPIC version: 0.7 beta.
∗luecking at uark dot edu

i

1 Introduction
As this document aims only to instruct the reader in the building of figures withMFPIC, we will not
be too concerned with the intricacies of running programs in various operating systems and TEX
distributions. What will be described here is the simplest case: a command-line system in which
commands are typed at a keyboard. To simplify things further, we will assume thatMFPIC is used
with themetapost option, in a LATEX document, with pdfLATEX as the compiler. An appendix will
discuss some of the differences when these assumptions are not satisfied.

We will start right out with the “Hello, world” ofMFPIC. Construct a LATEX document by typing
the following in a text editor and saving it asfirst.tex.

\documentclass{article}
\usepackage[metapost]{mfpic}
\opengraphsfile{myfigs}

\begin{document}
My first figure:
\begin{mfpic}[72]{-1}{1}{-1}{1}

\ellipse{(0,0),1,.5}
\end{mfpic}
\closegraphsfile

\end{document}

Run the command

pdflatex first

which should create several files, the two most important beingfirst.pdf andmyfigs.mp. You
can go ahead and openfirst.pdf. You should see a 2 inch by 2 inch square with something
similar to ‘#1’ in the lower left corner. This shows where the picture will be when it has been
created.

Now run the command

mpost myfigs

which should create the filemyfigs.1. This is an EPS file (Encapsulated PostScript) and can be
opened in GhostScript or GSview or similar Postscript viewing program to see an ellipse.

If you are viewingfirst.pdf in Acrobat Reader or Adobe Reader, you will need to close it.
Now repeat the pdfLATEX step:

pdflatex first

and then view the filefirst.pdf. You should see something very close to figure1.1.
What can go wrong? According to Murphy’s Law: anything. IfMFPIC is not properly installed,

one could obtain messages of files not found. If that happens, determine (from your TEX system’s
documentation) where TEX input files should go and make sure thatmfpic.tex andmfpic.sty re-
side there. Similarly, find out whereMETAPOSTinputs should go and make sure thatgrafbase.mp
and dvipsnam.mp reside there. Then run whatever command your TEX system might require
to “update the filename database”. You may safely ignore the message fromMFPIC itself that
myfigs.1 is not found (on the first run of pdfLATEX). This file should be created only after running
mpost.

1

My first figure:

Figure 1.1.

If you get an error message from LATEX, carefully check your typing. Also check whether an
older version ofMFPIC might have been used instead of the current version. If you get an error
message fromMETAPOST do the same, especially within themfpic environment. If you get a
message fromMETAPOST that “Grafbase” believes yourMFPIC installation may be broken, check
the log files (first.log andmyfigs.log) to find out the locations of these input files:

mfpic.tex andgrafbase.mp

and make sure that both these files are from the most recently installedMFPIC package. If you are
only evaluatingMFPIC without committing to upgrading it, just make sure all the files mentioned
in the previous paragraphs are in the current directory.

If pdfLATEX complains it can’t write on the filefirst.pdf, unload first.pdf from your pdf
viewer and try again.

If the figures look a little choppy in Acrobat Reader, turn on “smooth line art” in the edit
preferences dialogue.

I will assume that eventually all went well and you are now able to obtain the ellipse of fig-
ure1.1. Each time you change anmfpic environment or the options to the package, you potentially
change the filemyfigs.mp produced and you should repeat the sequence:

pdflatex first
mpost myfigs
pdflatex first

to be sure of seeing the changes.
One thing you might notice about figure1.1 is that the ellipse is positioned quite a bit above

the base line of the text. This is becauseMFPIC reserves the amount of space specified in the
arguments of themfpic environment. These arguments are[72]{-1}{1}{-1}{1}, which means
the each unit in the picture is 72 times the value of\mfpicunit, that is, about one inch. the first
pair of mandatory arguments,{-1}{1}, indicate thex-coordinates run from−1 to 1. Since these
differ by 2, they indicate a width of two inches. The second pair similarly represents a height of
two inches. But the ellipse is centered at(0,0), which is one inch above the bottom (bottom is at

2

y=−1), and its vertical radius is .5. So the lowest point on the ellipse should be .5 inches above the
bottom of the space reserved. MFPIC provides a way to fit the space reserved to the actual extent
of ‘ink’ in the picture. That is by the optiontruebbox:

\usepackage[metapost,truebbox]{mfpic}

This would then produce something like figure1.2. From now on, this option will be in effect in
our examples.

My first figure:

Figure 1.2.

Even though the arguments to themfpic environment are ignored in determining the size of
the figure (undertruebbox), they are still needed in order to establish the coordinate system that
the ordered pairs refer to (for example(0,0) in the\ellipse arguments).

2 Positioning text
By now you are probably thinking: “This so-called ‘Hello, world’ ofMFPIC doesn’t say ‘Hello,
world’ anywhere!” We correct that with the following example:

\begin{mfpic}[72]{-1}{1}{-1}{1}
\ellipse{(0,0),1,.5}
\tlabel[cc](0,0){Hello, world.}

\end{mfpic}

This should give you figure2.1.

Hello, world.

Figure 2.1.

The\tlabel command places the given text at the given position ((0,0)) adjusted according
to the optional argument[cc], which says to center the text (both vertically and horizontally) at
that location. The[cc] is optional. Without it, the text would have the leftmost point of its baseline
(the imaginary line that most letters sit on) placed at(0,0).

3

You are no doubt thinking: “The ellipse doesn’t really match the text. What you need is some
macro that measures the text and produces an oval with similar domensions.” For that we have the
\tlabeloval command. The\tlabeljustify command in the example below is to communi-
cate to both the text placement and the curve generation procedures that they are to be centered at
the point(0,0). (We’ll see an easier way to do this later.)

\begin{mfpic}[72]{-1}{1}{-1}{1}
\tlabeljustify{cc}
\tlabeloval(0,0){Hello, world.}

\end{mfpic}

This produces figure2.2.

Hello, world.

Figure 2.2.

This would be better still if a little space is left around the text so the ellipse doesn’t touch it.
The\tlabelsep command can do that:

\begin{mfpic}[72]{-1}{1}{-1}{1}
\tlabeljustify{cc}
\tlabelsep{3pt}
\tlabeloval(0,0){Hello, world.}

\end{mfpic}

producing figure2.3.

Hello, world.

Figure 2.3.

Now it would be nice to make the text pop out a bit with some color. Adding\gfill[yellow]
in front of either\ellipse or \tlabeloval will do that:

\begin{mfpic}[72]{-1}{1}{-1}{1}
\tlabelsep{3pt}
\tlabeljustify{cc}
\gfill[yellow]\tlabeloval(0,0){Hello, world.}

\end{mfpic}

This will produce figure2.4.
Notice that now the boundary of the oval has not been drawn. This is the standard behavior

of MFPIC. A figure command alone will draw the figure. If you want some other rendering than
that, you must explicitly provide all of it. To get the boundary back, simply add\draw before the
\gfill. You can draw the curve in a color other than black with an optional argument. We can
also make the line thicker with the command\penwd:

4

Hello, world.

Figure 2.4.

\begin{mfpic}[72]{-1}{1}{-1}{1}
\penwd{1.5pt}
\tlabelsep{3pt}
\tlabeljustify{cc}
\draw[blue]\gfill[yellow]\tlabeloval(0,0){Hello, world.}

\end{mfpic}

This will produce figure2.5.

Hello, world.

Figure 2.5.

This last version doesn’t look too bad, but it seems that the oval ought to be a little fatter
(slightly higher than it now is). By default,\tlabeloval will make the ratio of width to height the
same as that of the text, or rather of the text plus the additional space specified by\tlabelsep.
This can be changed with an optional argument, a number that multiplies the width-to-height ratio.
Decreasing this ratio will decrease the width (slightly) and increase the height. Here we have also
omitted the\tlabeljustify command and shown that\tlabeloval takes a second optional
argument that can be used to ‘justify’ both the curve and the text. To use this, one must explicitly
include the first optional argument; if the default is intended, an empty pair of brackets may be
used.

\begin{mfpic}[72]{-1}{1}{-1}{1}
\penwd{1.5pt}
\tlabelsep{3pt}
\draw[blue]\gfill[yellow]\tlabeloval[.8][cc](0,0){Hello, world.}

\end{mfpic}

This will produce figure2.6.

Hello, world.

Figure 2.6.

The\tlabeloval command places the label last, after the action of all the preceding macros;
therefore the text ends up on top of everything else. The\tlabeloval command also has a
‘*-form’ that does everythingexceptplace the text. Finally, ovals are not the only thing that can be
used to surround text. See the manual (mfpman.pdf) and below for others.

5

Here is a more common use oftlabel commands: labeling a graph and axes. In the following
example we have given\tlabel the option[bl] to place the bottom left corner of the text at the
given coordinates. However, we have used\tlabelsep{3pt} (which has the additional effect of
moving text away from its nominal location) to prevent the text from colliding with the curve.

\begin{mfpic}[72]{0}{2.5}{0}{1}
\tlabelsep{3pt}
\polyline{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}
\tlabel[bl](.5,1){Max output}
\dashed\polyline{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\tlabel[bl](1.5,.7){Max input}

\end{mfpic}

This will produce figure2.7.

Max output

Max input

Figure 2.7.

Notice that\polyline alone produces a solid line while\dashed\polyline makes a dashed
line. Let us close this section by dressing up this figure with axes, some fat dots marking the
keypoints, and hash marks on the axes:

\begin{mfpic}[72]{0}{2.5}{0}{1}
\tlabelsep{3pt}
\polyline{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}
\point[3pt]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}
\tlabel[bl](.5,1){Max output}
\dashed\polyline{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\pointfillfalse
\point[3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\tlabel[bl](1.5,.7){Max input}
\axes
\xmarks{0,0.5,1,1.5,2}
\axislabels x{{50} .5, {100} 1, {150} 1.5, {200} 2}

\end{mfpic}

This will produce figure2.8.
The optional argument of\point specifies the diameter of the points to draw. The command

\pointfillfalse forces the points to be drawn as open circles. The axes configure themselves

6

Max output

Max input

50 100 150 200

Figure 2.8.

to the size specified in the argument of themfpic environment. Theaxislabels command takes
as arguments a letter, to specify the axis, and a comma separated list of labels, each of which is
specified by some text to place (in braces) and the x-coordinate to place it at.

3 Drawing figures
MFPIC has several predefined figures and commands to obtain essentially any curve (provided
one can obtain enough points on it with sufficient precision). We’ve already seen\polyline and
\ellipse. The former needs a list of points to connect with line segments and the latter needs
the center and radii of the ellipse. The\ellipse also takes an optional argument: the number of
degrees to rotate the ellipse. Here we list some of the more common such figures. Remember that
all of them will produce some sort of line drawing if used alone. They can be preceded by\dashed
to make the lines dashed ordotted to make them dotted. If the figure is a closed curve,\gfill
will fill them in.

\begin{mfpic}[72]{0}{4}{0}{1}
\rect{(0,0),(1,.75)}
\circle{(1.5,.5),.45}
\arc[s]{(3,0),(2,1),45}
\ellipse[20]{(3.5, 0.5), 0.6, 0.4}

\end{mfpic}

This produces figure3.1. The\arc command has several forms. The optional argument picks the
form to use. This one specifies the endpoints of the circular arc and the angle of the arc (the angle
between the radii from the center of the circle to those two points). Other possibilities are a three-
point form (option[t]), a polar form (option[p]), and a center-point-sweep form (option[c],
specify a center, starting point, and angle). See the manual for details. The default (what would be
assumed if no optional argument is given) is[s] and is called the point-sweep form.

The \polyline command draws straight lines connecting points. We can also draw smooth
curves. Lets take the same points from our\polyline example (figure2.7), but change\polyline
to \curve, omit the text, and add the points from figure2.8:

\begin{mfpic}[72]{0}{2.5}{0}{1}
\curve{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\point[3pt]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

7

Figure 3.1.

\dashed\curve{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\pointfillfalse
\point[3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\end{mfpic}

This should produce figure3.2.

Figure 3.2.

This is somewhat unsatisfying. One could improve the result by selecting more points, or by
increasing the ‘tension’ in the curve.

Roughly speaking, tension determines how straight the segments between the points are, and
how sharp the turns at each point. High tension makes the curve look a little more like a polyline.
The default tension is 1, a tension of about 5 makes the result look somewhat like a polyline with
very slightly rounded corners, very high tensions make the curve indistinguishable from a polyline.
Another effect of increased tension is to reduce the little wobbles we can see in the first curve. Let’s
try a tension of 1.5, which can be specified as an optional argument to\curve:

\begin{mfpic}[72]{0}{2.5}{0}{1}
\curve[1.5]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\point[3pt]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}
\dashed\curve[1.5]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\pointfillfalse
\point[3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\end{mfpic}

This give figure3.3.
When we use\curve, there is no wayMETAPOST can tell if we are just connecting points

or if we are trying to graph a function. Itcannotenforce the requirement, which every function

8

Figure 3.3.

must satisfy, that the curve should travel left-to-right. The command\fcncurve does enforce this
(assuming the points to be connected are listed in left-to-right order). This command also permits
a tension argument. The dotted line in figure3.4 is produced with\curve, the solid one with
\fcncurve. One might want to increase the tension a bit here, too.

\begin{mfpic}[72]{0}{2.5}{0}{1}
\dotted\curve{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}
\fcncurve{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}

\pointfillfalse
\point[3pt]{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}

\end{mfpic}

Figure 3.4.

Other figures available include

\cyclic Used just like\curve but closes the path (connects the last point smoothly to the starting
point).

\polygon Used just like\polyline except it connects the last point to the first with a straight
line.

\sector Makes a wedge with two straight lines and an arc. The arguments are almost the same
as\arc[s], but the order is different: center, radius and two angles.

Here are some other curves that, like\tlabeloval, are proportioned to fit given text. All have
a*-form that draws the path without placing the text.

\tlabelrect This produces a rectangle. It has the same usage as\tlabeloval, except the first
optional argument specifies the radius of quarter-circles used to make rounded corners.

9

\tlabelellipse This is similar to\tlabeloval except that instead of modifying the width-to-
height ratio, the first optional argumentis the width-to-height ratio. If that argument
is 1 (the default) you get a circle.

\tlabelcircle This produces a circle, of course.

4 Functions
METAPOST is able to calculate a number of functions natively, and still more have been defined
in MFPIC. Also available are the usual arithmetic operations. Any validMETAPOST expression,
containing one unknownx and producing a numerical result can be graphed.

Here is an example of the graphs ofy = x2 andy = ±
√

x. Note that exponentials are denoted
by ** and it is important to note that it has the same precedence as multiplication (denoted by a
single*). That is, in a formula like3*3**2, the operations are performed in order, left to right,
producing 92 = 81 and not 3·9 = 27. Parentheses are needed if the latter is intended:3*(3**2).

\setlength{\mfpicunit}{1cm}
\begin{mfpic}{-2.5}{2.5}{-1.5}{4}

\function{-2,2,.1}{x**2}
\function{0,2,.1}{sqrt x}
\function{0,2,.1}{-sqrt x}
\axes
\xmarks{-2,-1,1,2}
\ymarks{-1,1,2,3}
\tlabelsep{3pt}
\axislabels x{{-2}-2,{-1}-1,{1}1,{2}2}
\axislabels y{{-1}-1,{1}1,{2}2,{3}3}

\end{mfpic}

This produces figure4.1.

−2 −1 1 2

−1

1

2

3

Figure 4.1.

10

The command\function has two arguments. The first contains the starting and ending x-
values of the desired graph, followed by astep size. Generally the smaller the steps the better the
accuracy, butMETAPOSThas a limit on the number of steps (usually about 2000). There is also an
optional argument which can be[s], the default, which means the graph is to be smooth, or[p],
which means the graph is constructed by connecting the calculated points with straight lines. Here
is the same example with larger step size to emphasize the difference (see figure4.2)

\setlength{\mfpicunit}{1cm}
\begin{mfpic}{-2.5}{2.5}{-1.5}{4}

\function[p]{-2,2,.5}{x**2}
\function[p]{0,2,.5}{sqrt x}
\function[p]{0,2,.5}{-sqrt x}
\axes
\xmarks{-2,-1,1,2}
\ymarks{-1,1,2,3}
\tlabelsep{3pt}
\axislabels x{{-2}-2,{-1}-1,{1}1,{2}2}
\axislabels y{{-1}-1,{1}1,{2}2,{3}3}

\end{mfpic}

−2 −1 1 2

−1

1

2

3

Figure 4.2.

In addition, one can increase the tension in the curve drawn by putting a tension value after the
s in [s]. For a tension of 2.4:\function[s2.4]{...}.

The functions available includesqrt and all the trig functions:sin x assumesx is an angle
in radians,sind x assumes it is in degrees, with a similar naming convention for the remaining
trig functions. The inverses areasin x, acos x, andatan x, which produce angles in degrees,
andinvsin x, etc., which produce angles in radians. There is alsoln x or log x for the natural
logarithm,exp x for ex, logten x for the base 10 logarithm,logtwo x for base 2, andlogbase
for other bases:logbase(16) x (for example) for base 16. The general syntax of these functions is
the following: if the argument isx alone or a pure number alone or the particular case of a number

11

followed byx (no * in between!) then parentheses are not needed. Example:sin 2x. For almost
anything else, parentheses are required:sin(3*x) or sin(x**2).

Some other functions available are the hyperbolic functions,sinh x, cosh x, etc. (all 6 of
them), and the inverses of three of them:asinh x, acosh x, andatanh x.

These functions (or anyMETAPOSTnumeric expression) can also be used in any of the coordi-
nates of points in drawing commands like\polyline (but not usually in text placement commands
like \tlabeloval). For example (from now on the value of\mfpicunit is set to1cm):

\begin{mfpic}{-.5}{2.5}{-1.5}{1.5}
\polyline{(2,-sqrt 2),(1,-1),(.5,- sqrt .5),(0,0),

(.5,sqrt .5),(1,1),(2,sqrt 2)}
\axes
\xmarks{1,2}
\ymarks{-1,1}
\tlabelsep{3pt}
\axislabels x{{1}1,{2}2}
\axislabels y{{-1}-1,{1}1}

\end{mfpic}

1 2

−1

1

Figure 4.3.

There are other types of functions: parametric functions, and polar coordinate versions. MFPIC

provides\parafcn and \plrfcn to graph these. The\parafcn requires a starting value, and
ending value and a step size just as in\function, but in the second argument there must be either
a pair of expressions in the variablet, separated by a comma and enclosed in parentheses, or a
singlepair-valuedexpression. METAPOSTandMFPIC provide only a few pair-valued functions;
one is used below.

The second argument of\plrfcn must contain a single numeric expression in the variable
t, and indicates a function ofθ to be graphed in polar coordinates:r = f (θ). In the following
example (figure4.4), we draw a portion of the graph ofx= y2 by representing it as the graph of the
parametric equationsx = t2, y = t, and a portion of a circle of radius 1.5 by representing it as the
graph of the pair-valued functiondir(t). The expressiondir(t) gives the point whose distance
from (0,0) is 1 in the direction given by the anglet.

\begin{mfpic}{-2}{4}{-2}{2}
\parafcn{-2,2,.1}{(t**2,t)}
\dotted\parafcn{45,315,5}{1.5*dir(t)}

12

\end{mfpic}

Figure 4.4.

Here is an example of a graph of the polar coordinate functionr = 2sin3θ (figure4.5). We use
the degree versionsind in order to work with integers.

\begin{mfpic}{-2}{2}{-2}{2}
\plrfcn{0,180,5}{2*sind 3t}

\end{mfpic}

Figure 4.5.

5 Transforming figures
METAPOST is capable of any affine transformation (things like shifting, rotating, scaling, reflect-
ing and slanting) of any path. The figures we’ve been dealing with so far (\ellipse, \curve,
\function, etc.) all produce, in theMETAPOST code, the definition of some path (as well as a
drawing of that path). MFPIC provides for different methods of ‘drawing’ the path withprefix
macros. We’ve seen\dashed, \dotted, \gfill so far, in addition to the default\draw. MFPIC

also provides for modifying the shape and position of the path with other prefixes. Here’s a simple
example.

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\rotatepath{(1,.5), 45}\rect{(0,0),(2,1)}

13

\point{(1,.5)}
\end{mfpic}

The command\rotatepath obviously rotates the path that follows, but it needs to know what
the center of rotation will be, and how much to rotate. These are given in its mandatory argument,
separated by a comma. The example above (pictured in figure5.1) rotates 45 degrees around the
center of the rectangle.

Figure 5.1.

Notice that we have no drawing prefix. A combination of transformation-plus-figure is treated
as a figure in its own right and behaves the same. If we want the figure dashed, we could write

\dashed\rotatepath{(1,.5),45}\rect{(0,0),(2,1)}

It may not be obvious, but we can also write a drawing macro between the rotation and the figure,
producing figure5.2

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\rotatepath{(1,.5), 45}\draw\rect{(0,0),(2,1)}
\point{(1,.5)}

\end{mfpic}

Figure 5.2.

This illustrates another property ofMFPIC macros: the combination of a rendering prefix and a
figure is also treated the same as a figure in its own right: the same figure as the one that follows.
In fact, the only difference between\rect and\draw\rect in this example is that the second one
has a minor (!) side effect: the rectangle is drawn.

Finally, try to guess what happens if we add another prefix at the front:

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\dotted\rotatepath{(1,.5), 45}

\draw\rect{(0,0),(2,1)}
\end{mfpic}

14

and if we add another rotation in front of that.

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\rotatepath{(0,0),45}

\dotted\rotatepath{(1,.5), 45}
\draw\rect{(0,0),(2,1)}

\end{mfpic}

Transformations availiable include\scalepath, \shiftpath, \xscalepath, \yscalepath,
\slantpath, and\reflectpath. See the manual for a description of what arguments are required
for each. Here’s a final example, producing figure5.3

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\shiftpath{(-1,1)}\draw[red]\slantpath{.5,1}\dotted
\rotatepath{(0,0), 90}\dashed\rect{(0,0),(2,1)}
\point{(0,0),(2,1)}
\tlabelsep{2pt}
\tlabel[tr](0,0){$(0,0)$}
\tlabel[bl](2,1){$(2,1)$}

\end{mfpic}

(0,0)

(2,1)

Figure 5.3.

6 Rendering figures
Renderingis the act of making a description of a figure visible. Examples are: drawing a solid
curve, drawing a dashed curve, or filling its interior, ForMFPIC figure macros the default, in the
absence of explicit commands, is to use\draw. That is,

\rect{(0,0),(1,2)}

has the same result as

\draw\rect{(0,0),(1,2)}

The default rendering can be changed. Just say\setrender{\dashed}, and all figures afterward
will be dashed (see figure6.1).

15

\begin{mfpic}{0}{2}{0}{1}
\setrender{\dashed}

\rect{(0,0),(1,1)}
\circle{(1.5,.5),.5}

\end{mfpic}

Figure 6.1.

The\setrender command can be inside anmfpic environment to affect only later commands in
that figure, or outside to affect all laterMFPIC figures.

We give a few examples now of the renderings possible. These divide more-or-less into those
that trace a path and those that fill in a path. In order to fill in a path, it must be a closed path, of
course, butMETAPOST distinguishes between closed paths and those that merely happen to end
where they began. There is a good reason for this:METAPOST cannot, without human aid, know
if two points are the same, or merely accidentally so close that the accuracy of the program sees
them as the same. It requires human aid in the form of an explicit request to create a closed path.
Of the MFPIC macros we’ve seen so far,\ellipse, \circle, \rect, \polygon, and\cyclic
produce closed paths, but\polyline, \curve, \function, \parafcn, and\plrfcn do not. Also
producing closed paths are\tlabeloval and its relatives.

The following example illustrates filling with a hatching pattern (parallel lines) and anunfilling.
Clearing the interior of a path may not seem like rendering, it is treated in exactly the same way
(think of it as a negative rendering). We first hatch a rectangle, then clear out a smaller rectangle
with rounded corners to place our text inside. The results are in figure6.2.

\begin{mfpic}{0}{2}{0}{2}
\draw[red]\lhatch[2pt][blue]\rect{(0,0),(2,2)}
\gclear\tlabelrect[6pt][cc](1,1){Hatching!}

\end{mfpic}

Hatching!

Figure 6.2.

This example illustrates that\lhatch fills with left slanting lines. And that it takes two optional
arguments. The first is the distance between lines, and the second is the color to make the lines.
There are also\rhatch which slants the lines the other way,\xhatch which uses both slants, and
\thatch which can draw the lines at any angle.

16

Here is another example of rendering (figure6.3). The new macro is\polkadot. We’ve re-
peated this example twice to show the effect of changing the order of the prefixes. Each prefix
applies its rendering to the result of everything to the right of it. In the second example the hatch-
ing goes over the dots (and a bit of the dashes as well). If the\gfill were first, it would cover
almost everything else.

\begin{mfpic}{0}{6}{0}{2}
\penwd{2pt}
\hatchwd{2pt}
\drawcolor{blue}
\hatchcolor{red}
\fillcolor{green}
\dashed\polkadot\rhatch[5pt]\gfill[yellow]\rect{(0,0),(2.8,1.8)}
\rhatch[5pt]\dashed\polkadot\gfill[yellow]\rect{(3,0),(5.8,1.8)}

\end{mfpic}

We’ve added a couple of other new features to this example. To emphasize effects, we’ve increased
the thickness of the drawing pen (\penwd) and the hatch lines (\hatchwd). We’ve also used the
\drawcolor macro and its relatives to set the colors to be used. The\polkadot macro uses the
color set by\fillcolor; so does\gfill if no optional color is given.

Figure 6.3.

If one wants to plot several curves in a single graph, they often need to be rendered differently.
The three methods we’ve seen so far,\draw, \dashed, and\dotted, may not be enough. The
\dashed and\dotted commands permit an optional argument to adjust the length of the dashes
and spaces, and size of the dots. One can also change the curve thickness with\penwd. But that
may not be ‘different’ enough. MFPIC provides a few solutions. When color is available, they may
be drawn in different colors. When not, there are two possibilities:\gendashed and\plot.

The first,\gendashed, is a generalized dashing macro. It takes one mandatory argument, the
name of a dashing pattern. Named dashing patterns may be created with the\dashpattern com-
mand, as shown by the following example (see figure6.4):

\begin{mfpic}{-3.5}{3.5}{-1}{1}
\dashpattern{dotdash}{0pt,4pt,3pt,4pt}
\gendashed{dotdash}\function{-pi,pi,.2}{sin 2x}
\function{-pi,pi,.2}{cos 2x}
\axes

\end{mfpic}

17

Figure 6.4.

The \dashpattern command takes a name and an even number of lengths. The first, third,
etc., lengths represent the lengths of dashes (0pt means a dot), and the second, fourth, etc., repre-
sent spaces. The given pattern is dot-space-dash-space. This pattern, when used in a\gendashed
command, is repeated for the length of the curve.

This last example illustrates that the predefinedMETAPOSTvariablepi (equal to 3.14159) can
be used pretty much anywhere a number can be used (except, often, in text label commands).

Another way to get more distinctive curves is to ‘dot’ them with something other than tiny
dots. The\plot command does that. It takes one mandatory argument, the name of a symbol to
use instead of a dot. Here are the same two curves\plot-ed (figure6.5):

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}
\setlength{\pointsize}{2.5pt}
\plot{Triangle}\function{-pi,pi,.2}{sin 2x}
\plot[2pt,6pt]{SolidCircle}\function{-pi,pi,.2}{cos 2x}
\axes

\end{mfpic}

Figure 6.5.

The \plot command takes an optional argument to specify the size of the symbols and the
spacing between them. The size of the symbols can also be adjusted by changing the length com-
mand\pointsize (that also adjusts the size of the dots placed with the\point command).

In this last example,\plotnodes is similar to \plot, except it placed the symbols at the
‘nodes’ defined by the path command. In the case of\function, these are the points(xk, f (xk))
with xk stepping through all thex-values determined by the first argument of\function (fig-
ure6.6).

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}
\plotnodes[2.5pt]{Square}\function{-pi,pi,pi/16}{sin 2x}
\axes

\end{mfpic}

18

Figure 6.6.

See the manual for the list of predefined symbols available to the\plot and \plotnodes
command.

7 More on text
The text positioning commands used so far in this guide are entirely handled by TEX or LATEX.
This is why we have occasionally had to say that certain things could be done “except in text
placement commands”. It is possible for text positioning to be done withinMETAPOST, making
many things possible that couldn’t be done otherwise. For example, text can be rotated about the
point of placement. You are probably thinking that LATEX can rotate text, but it is not all that easy
to arrange for the point on the graph where we place the text to be the center of rotation. Below are
two examples, in which we attempt to place the text separated from(0,0) by 5pt and rotated 45
degrees around(0,0). In the first we try to use LATEX’s \rotatebox command, and in the second
we turn onMETAPOSThandling of labels and use a rotation option to the\tlabel command.

\begin{mfpic}{0}{1}{0}{1}
\point{(0,0)}
\polyline{(0,0),(1,1)}

\tlabel[Bl](0,0){\rotatebox{45}{\hspace{5pt}Test text}}
\end{mfpic}\renewcommand\thefigure{\thesection.\arabic{figure}a}

\usemplabels
\begin{mfpic}{0}{1}{0}{1}

\point{(0,0)}
\polyline{(0,0),(1,1)}
\tlabelsep{5pt}
\tlabel[Bl45](0,0){Test text}

\end{mfpic}

Te
st

te
xt

(a)

Te
st

tex
t

(b)

Figure 7.1.

The first produces figure7.1aand the second produces figure7.1b. Our goal was to get the
baseline of the text lined up with the reference line drawn.

19

In the first example, LATEX’s \rotatebox command produces the following result, where we
put a frame around both the unrotated text and the rotated result to emphasize what LATEX sees as
the boundaries:

Te
st

te
xt

This is then placed by the\tlabel command with the lower left corner of theouterbox at(0,0).
But LATEX’s axis of rotation was at the lower left corner of the inner box. In the second case,
METAPOSTplaced the label. The command\tlabelsep{5pt} and the parameter[Bl45] explic-
itly request that the label be placed with its left baseline 5 points from(0,0) and rotated 45 degrees
about that point.

The\usemplabels command used above asksMETAPOST to arrange for the setting of labels.
Adding the optionmplabels to the\usepackage command that loadsMFPIC has the same effect
for the whole document. There can be problems with usingMETAPOST to set labels. One is that
METAPOSThas to call atex program to do the actual typesetting, and then one must either make
arrangements that ensureMETAPOSTwill call LATEX, or never use any macros in the labels that are
not defined in plainTEX. If one does arrange for LATEX to be used, one needs to arrange that a LATEX
preamble is prepended to the output.mp file. The\mfpverbtex command can be used for this.

The command\nomplabels can be used to return to having labels set at the document level.
For the rest of this guide, we havemplabels in effect.

There are a few more commands that place text on the picture. All of them pass the final
responsability for text placement toMETAPOST if mplabels is in effect. See the manual for more
details.

8 Arrows
The command\arrow adds an arrowhead onto theendof any path that follows. For this to have
predictable effects, you need to know which part of a curve is the end, and which the start. Not
surprisingly, for the commands that connect a list of points in order the first point in the list is the
start point and the last point is the end. Except the closed paths (\cyclic, \polygon, etc.); for
them, the start and the end points are the same, but the order of the points gives a direction to the
arrowhead. The default\circle has an anticlockwise direction, but if the circle is defined by three
points (for example) the direction of the circle is determined by the order in which the points are
written.

Anyway, here are a few examples, illustrating the use of\arrow, and some of its optional
arguments.

\begin{mfpic}{0}{4}{0}{4}
\arrow[r -5]\circle{(1,1),.5}
\arrow[b 4pt]\arrow\polyline{(3,2),(3,0)}
\arrow[c red]\reverse\arrow\polyline{(0,3),(2,3)}
\arrow[l 5pt]\rect{(4,2),(2,4)}

\end{mfpic}

See figure8.1 for the results of this example. There are four possible optional arguments, the first
character inside the brackets tells what option the rest of the argument applies to. The first example

20

above starts with ‘r’, which stands for ‘rotate’ and asks for the arrowhead to be rotated -5 degrees
(5 degrees clockwise). The second starts with ‘b’, which stands for ‘backset’ and it moves the head
back4pt from where it would otherwise be placed. In the example, this is used to put a double
arrowhead on the line. In the third example we put an arrow at both ends by reversing the sense of
the curve in between the two\arrow prefixes. We also used the letter ‘c’ in the optional argument
of one arrowhead. This stands for ‘color’ and the requested color is ‘red’. Finally, thel option,
standing for ‘length’, changes the length of the arrowhead to5pt (from the default3pt). The space
between the letter and the value in these arguments may be omitted.

Figure 8.1.

The options can be combined in one command:\arrow[cblue][b4pt][r25][l6pt] would
produce a6pt long blue arrowhead rotated 25 degrees anticlockwise, set back4pt. The setting
back is done in the direction determinedafter rotation. The order of the options is not significant.

The need to occasionally tweak the arrowhead with a small rotation will be apparent if you
look closely at the circle example without any rotation.

The shape of the arrowhead can be changed with the\headshape command. The following ex-
ample draws the arrowhead first normally, and then after an instance of this command. We increase
the length of head and the thickness of the pen to emphasize the effects.

\begin{mfpic}{0}{4}{0}{4}
\setlength{\headlen}{20pt}
\penwd{3pt}
\arrow\polyline{(0,3),(4,3)}

\headshape{.5}{2}{true}
\arrow\polyline{(0,1),(4,1)}

\end{mfpic}

The results are pictured in figure8.2. The first argument to\headshape sets the ratio of width to
height for the head. We have cut it in half here. The second argument sets the tension in the curves
that form the sides of the head. This reduces the curvature in the sides. The third argument can be
only true or false and determines whether the head is a solid shape, or only the two ‘barbs’. The
defaults correspond to\headshape{1}{1}{false}

21

Figure 8.2.

9 Color
We saw the use of color in earlier sections, and now it’s time to be systematic about it. The several
rendering commands have a color option; examples are\draw, \gfill, \arrow, and the hatching
commands. However, even those commands that don’t provide such an option can have the color
of their rendering changed. MFPIC provides the following commands to change certain colors.
Those commands with a color option can be used without that option and then they will the use
the appropriate color described here. Each of these color-changing commands takes a mandatory
argument containing the color to change to, and an optional argument to be described later.

\backgroundcolor This sets the color to be used by\gclear. It is the same color used by\point
for the inside of the points when\pointfillfalse has been used. InMETAPOST, the
only way to clear the inside of a region is to cover it up. The default color for this
purpose iswhite. Use this command to change that default.

\drawcolor This sets the default color used by those rendering commands that draw a path. This
includes\draw, but also includes\dashed, \dotted, \plot and\plotnodes. It is
also used by other commands that produce lines or curves: figure macros used without
any rendering prefix, as well as\axes and related commands.

\fillcolor This sets the default color used by\gfill. It is also the color used by\polkadot
(which has no color option).

\hatchcolor This sets the default color used by any hatching command.

\headcolor This sets the default color for arrowheads added by the\arrow command. It is also
the color of arrowheads on any coordinate axis.

\pointcolor This sets the color used by\point, \grid, and\plotsymbol (the last one will be
described later).

\tlabelcolor This sets the color used for all text labels if themplabels option is turned on.

The color can be a common name for a color, provided that name is one of the following:
white, black, red, green, blue, cyan, magenta, or yellow. We have already seen this usage. It
can also be a color name defined in the filedvipsnam.mp that accompaniesMFPIC. It can also be
an explicit color formula, where color formulas are described in theMFPIC manual.

The optional argument is one of thecolor models. See the manual for details, but the syntax is
just like that of theCOLOR package’s\color command. For example,

22

\pointcolor[rgb]{0,1,0}

would use the color modelrgb with parameters 0, 1, and 0 (this is green). After each of these com-
mands a certain color name is assigned a value. For example, a use of the\pointcolor command
assigns a value to the color namedpointcolor. This pattern is followed for all the color setting
commands above (i.e.,\drawcolor setsdrawcolor) except\backgroundcolor, which assigns
its value to the color namedbackground.

Color names forMFPIC use can be defined using the\mfpdefinecolor command. Here’s an
example (figure9.1). Note the use of the color namepointcolor to make arrowheads and points
have the same color.

\begin{mfpic}{0}{3.5}{0}{3.5}
\tlabelcolor{red}
\pointcolor{rgb(0,1,0)}% green
\drawcolor[rgb]{0,0,1} % blue
\fillcolor{Goldenrod} % from dvipsnam.mp
\headcolor{pointcolor} % will be green after above
\mfpdefinecolor{DarkerRed}{rgb}{.67,0,0}
\hatchcolor{DarkerRed}
\penwd{1pt}
\gfill\circle{(1,1),.5}
\point[3pt]{(1,.5),(1,1.5),(.5,1),(1.5,1)}
\hatch\rect{(2.5,2.5),(3.5,3.5)}
\arrow[l 5pt]\polyline{(1,1),(3,3)}
\tlabel[cc](1,3){Examples \\of\\colors}

\end{mfpic}

Examples
of
colors

Figure 9.1.

10 Closing paths
There are many different ways to modify a figure. We have already seen\arrow, which appends
an arrowhead,\reverse which reverses the sense, and several that apply an affine transformation
(\rotatepath, \shiftpath, etc.). Now we will see the simple operation of closing a path.

All methods of closing a path have to connect the end to the start, but simply drawing a con-
nection is not enough.METAPOSThas to be told to close the path, and what kind of connection is

23

desired. We have several macros that can do the job, the simplest being\lclosed, which closes
with a straight line. Putting\lclosed in front of \polyline, for example, produces the same
result as\polygon. Another macro is\sclosed which produces a smooth closure. Putting it in
front of \curve gives the same result as\cyclic. There is one other useful macro,\bclosed,
which also informsMETAPOST to make a smooth closure. The difference between\sclosed and
\bclosed is that the first modifies slightly the original path (in order to achieve the effect that
\sclosed+ \curve = \cyclic), the second just asksMETAPOST to do its best to connect the
ends smoothly. Here’s an example comparing the two smooth methods (figure10.1).

\begin{mfpic}{0}{4}{0}{4}
% an open curve:
\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}
% \sclosed a shifted copy:
\draw\gfill[green]\sclosed\shiftpath{(2,0)}

\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}
% \bclosed another copy:
\draw\gfill[yellow]\bclosed\shiftpath{(2,-2)}

\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}
% \cyclic with same points, shifted:
\draw\gfill[red]\shiftpath{(0,-2)}

\cyclic{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}
\tlabeljustify{bc}
\nomplabels
\tlabels{

(1,2.4){\cs{curve}}
(3,2.4){\cs{sclosed}}
(1,0.4){\cs{cyclic}}
(3,0.4){\cs{bclosed}}

}
% Some points to help illustrate
\point{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}
\point{(2.49,3),(2.5,3.7),(3,4),(3.5,3.7),(3.51,3)}
\point{(0.49,1),(.5,1.7),(1,2),(1.5,1.7),(1.51,1)}
\point{(2.49,1),(2.5,1.7),(3,2),(3.5,1.7),(3.51,1)}

\end{mfpic}

A word about the labels: we turned offmplabels with the command\nomplabels, because
we used a command (\cs) defined for this document and not known to basic TEX or LATEX. The
labels therefore are position by LATEX while it assembles this document, instead of byMETAPOST

which would call a separate instance of TEX or LATEX where\cs was unknown. We could have
keptmplabels, provided we had used\mfpverbtex to write the appropriate LATEX preamble to the
.mp output. It would need to be some subset of the preamble of this document.

24

\curve \sclosed

\cyclic \bclosed

Figure 10.1.

A Appendices
In addition to pdfLATEX, M FPIC works with plain pdfTEX, LATEX, and plain TEX. Instead ofMETA-
POSTas the figure processor,METAFONT can also be used. Let’s start with the difference between
usingMFPIC in a plain TEX document and using it in a LATEX document.

A.1 MFPIC in plain TEX

Here is a sample plain pdfTEX document with results the same as our first “Hello, world” example.
Let’s call this fileplfirst

\input mfpic
\usemetapost

\opengraphsfile{myfigs}
My first figure:
\mfpic[72]{-1}{1}{-1}{1}

\ellipse{(0,0),1,.5}
\endmfpic
\closegraphsfile

\end

The main difference is the lack of LATEX commands. The crucial difference is in the first two
lines. There we simply\input mfpic and we turn onMETAPOSTsupport with the\usemetapost
command instead of an option to\usepackage.

Since\usepackage and its options don’t exist in plain TEX, all those features that we select
with options in LATEX must be selected by some command in plain. For example, themplabels
option is replaced with the command\usemplabels (which can also be used in LATEX).

Also, plain TEX doesn’t have environments, so instead of\begin{mfpic} we just use\mfpic
and instead of\end{mfpic} we use\endmfpic.

The external processing is essentially the same:

pdftex plfirst
mpost myfigs
pdftex plfirst

should produceplfirst.pdf with the same picture of an ellipse.

25

A.2 MFPIC without PDF

If we wish to use nonPDF versions of LATEX or plain TEX, the only difference is in the processing
steps. To processfirst.tex with LATEX, run the command

latex first

followed by

mpost myfigs

followed by latex again.

latex first

Then run the dvi processor of your choice. It should be one that can successfully handle eps figures
(or at least the simple eps produced byMETAPOST). CertainlyDVIPS can do it:

dvips first

will producefirst.ps. The file.ps file can be viewed withGSVIEW or printed, or converted to PDF
with some distillation program likePS2PDF. Also DVIPDFM (if recent, and properly configured)
can be used convert the.dvi file to PDF.

A.3 MFPIC without METAPOST

MFPIC can produce figures usingMETAFONT instead ofMETAPOST. What it does is work with
METAFONT to produce a made-to-order font, where each picture is a large character in that font.

Since pdfTEX and pdfLATEX do not work well with the fonts produced byMETAFONT, and
many PDF viewers don’t display them well anyway, I do not recommend usingMFPIC to produce
PDF without turning onMETAPOST support. However, all dvi viewers andDVIPS do work well
with such fonts, so it can make sense to useMFPIC with METAFONT if you don’t need the features
that METAPOST enables: color and rotation of labels. One advantage of doing this is the smaller
number of files produced. If there are 100MFPIC figures in a document,METAPOST produces
100 files (apart from a couple of temporary files and the.log file), but theMETAFONT procedure
produces only four files no matter how many figures are present.

To useMFPIC without METAPOST, omit themetapost option or the\usemetapost command.
If you want a visible reminder of the fact thatMETAFONT is being used, you can use themetafont
option or the\usemetafont command. Of course, you may not usemplabels without METAPOST.
You may use the color commands and options, but the only colors actually produced will be black
and white (and occasionally a pattern of pixels that simulate gray). The processing steps are differ-
ent. After

latex first (or tex plfirst)

run METAFONT:

mf myfigs

This should produce three files:myfigs.log, myfigs.tfm, and myfigs.600gf. The last one
(which might have a different number on your system) is called ageneric font(GF) file and con-
tains the bitmap descriptions. If the file produced ismyfigs.2602gf, and the.tfm is not produced,
that indicates a configuration problem with your system that we’ll get to later. If this did work, one

26

needs to convert thegf file to a PK font file, the standard format for bitmap fonts in the TEX world.
This may be done with

gftopk myfigs.600gf

Some systems may require you to name the output file on the command line:

gftopk myfigs.600gf myfigs.600pk

And some systems may require the extension to be simply.pk:

gftopk myfigs.600gf myfigs.pk

Finally, some systems may have aMAKEPK or MKTEXPK command that can be used in place of
the combination ofMETAFONT andGFTOPK. You’ll have to check what your system has and what
its usage might be, and what it might do with the PK file produced.

After the above, one again runs ‘latex first’ (or ‘ tex plfirst’), and then the .dvi can be
viewed or processed with dvips. The two filesmyfigs.log andmyfigs.600gf can be deleted;
only myfigs.tfm andmyfigs.600pk are needed. If the viewed image shows the pictures at a far
different size than you expect, this can also indicate a configuration problem.

Some systems permit on-the-fly creation of PK files by various.dvi processing programs. It
is not wise to allow this to happen when working withMFPIC. The problem is that this automatic
creation process isnot repeated when a figure is edited unless the old PK files are deleted, and
it may take some hunting to even locate them. One shouldalways follow the METAFONT step
with the GFTOPKstep. You might even want to write a batch script or makefile to ensure that this
happens.

Another problem, more an annoyance, that can occur comes from the behavior of most dvi
viewers: most will reload a.dvi file if they detect that it has changed (or if asked to), but will
usuallynot reload any fonts even if they have changed. So if one is going through a edit-compile-
view cycle involvingMFPIC figures, one usually has to close the viewer and open it again before
one can see changes that were made in the figures after starting the viewer.

A.4 METAFONT configuration problems

To diagnose these problems it important to know something aboutprinter modes. METAFONT

produces bitmap images of characters. This means a description of a block of pixels, telling which
ones are black and which are white. If the description says that 60 pixels in a row are black, that
produces a thin black line. How long that line is depends on the size of a printer’s pixels. For the
LaserJet IV, there are 600 pixels to the inch, so 60 pixels makes 1/10 of an inch. The LaserJet II,
however, has 300 pixels to the inch, so 60 pixels is 1/5 of an inch long. WhatMETAFONT needs in
order to produce an image that is the correct size is (at a minimum) theresolutionof the intended
printer. This is typically reported in DPI (dots per inch) andMETAFONT keeps the value in the
variablepixels_per_inch.

As part of the configuration of your DVI viewer or ofDVIPS you may have needed to select a
printer from a list, or edit a line in some configuration file (e.g.,config.ps). What was going on
then was the assigning of a defaultMETAFONT printer mode. There is a file on most TEX systems
namedmodes.mf which assigns symbolic names to a set of parameters that enableMETAFONT to
tune its output to a particular printer. For example, the LaserJet IV is given the name ‘ljfour’ and
that name is associated with the value 600 forpixels_per_inch. In order to tellMETAFONT to

27

make output for the LaserJet IV, one can put that information on the command line:

mf \mode:=ljfour; input myfigs

Your operating system or TEX distribution may require you to quote the backslash in the above
command.

There is a system for making the selection of the correct mode semi-automatic, not requiring a
command line specification. Near the end ofmodes.mf is a line similar to

localfont:=ljfour;

This is intended to equate the symbolic namelocalfont with the user’s default printer. If the
LaserJet IV is your default printer, the line above would be the correct one. If it is not, then that
line should be changed. This can be done with an ordinary text editor, or your TEX system may
have a configuration utility to take care of it.

If you say “mf myfigs” on an MFPIC file myfigs.mf, MFPIC’s internal code will detect that
no mode was defined on the command line. It will then check iflocalfont is defined and if so,
use that for the printer mode. Finally, if that fails, it will selectljfour. If even that is unknown,
METAFONT will go into proof modeand setpixels_per_inch equal to approximately 2602 (and
it will not produce a.tfm file).

MFPIC doesn’t need to know all the parameters associated to a printer mode, only the value of
pixels_per_inch. If you get a GF file that indicates an incorrect DPI value for your printer, you
should arrange for the line inmodes.mf that setslocalfont to be corrected. At the very least it
should equatelocalfont to a name defined inmodes.mf and associated to a printer with the same
DPI as yours. After changingmodes.mf, you need to run whatever programs your TEX systems
requires to remake theMETAFONT format.

28

	Introduction
	Positioning text
	Drawing figures
	Functions
	Transforming figures
	Rendering figures
	More on text
	Arrows
	Color
	Closing paths
	Appendices
	Mfpic in plain TeX
	Mfpic without PDF
	Mfpic without Metapost
	Metafont configuration problems

