MEPIC: A Short Introduction

Daniel H. Luecking
2003/11/14

Contents
1 Introduction

2 Positioning text

w

Drawing figures

4 Functions

5 Transforming figures
6 Rendering figures

7 More on text

8 Arrows

9 Color

10 Closing paths

A Appendices
Al MFrPIicIinplain TEX o o e
A2 MFPICwithoutPDF e
A.3 MFPICWItNOUEMETAPOST o v i e e e e e e e e e e e e e e e e
A.4 METAFONT configurationproblems.

MFPIC version: 0.7 beta.
*luecking at uark dot edu

10

13

15

19

20

22

1 Introduction

As this document aims only to instruct the reader in the building of figuresnwdthc, we will not
be too concerned with the intricacies of running programs in various operating systemgXand T
distributions. What will be described here is the simplest case: a command-line system in which
commands are typed at a keyboard. To simplify things further, we will assums Hpat is used
with the metapost option, in a ATpX document, with pdfTpX as the compiler. An appendix will
discuss some of the differences when these assumptions are not satisfied.

We will start right out with the “Hello, world” ofurpPic. Construct aAIpX document by typing
the following in a text editor and saving it d&$rst . tex.

\documentclass{article}
\usepackage [metapost] {mfpic}
\opengraphsfile{myfigs}

\begin{document}

My first figure:
\begin{mfpic} [72] {-1}{1}{-1}{1}
\ellipse{ (0,0),1,.5}
\end{mfpic}
\closegraphsfile
\end{document }

Run the command
pdflatex first

which should create several files, the two most important beingt . pdf andmyfigs.mp. You
can go ahead and openrst.pdf. You should see a 2 inch by 2 inch square with something
similar to #1’ in the lower left corner. This shows where the picture will be when it has been
created.

Now run the command

mpost myfigs

which should create the fileyfigs.1. This is an EPS file (Encapsulated PostScript) and can be
opened in GhostScript or GSview or similar Postscript viewing program to see an ellipse.

If you are viewingfirst.pdf in Acrobat Reader or Adobe Reader, you will need to close it.
Now repeat the pdfilpX step:

pdflatex first

and then view the fileéirst.pdf. You should see something very close to figlire

What can go wrong? According to Murphy’s Law: anythingvipPic is not properly installed,
one could obtain messages of files not found. If that happens, determine (fromgfosystem’s
documentation) whereX input files should go and make sure thapic.tex andmfpic.sty re-
side there. Similarly, find out whereeTAPOSTinputs should go and make sure that fbase . mp
and dvipsnam.mp reside there. Then run whatever command ygeX $ystem might require
to “update the filename database”. You may safely ignore the messagevirenc itself that
myfigs.1 is not found (on the first run of pdfIeX). This file should be created only after running
mpost.

My first figure:
Figure 1.1.

If you get an error message frofiX, carefully check your typing. Also check whether an
older version ofvFpPIC might have been used instead of the current version. If you get an error
message fromMETAPOST do the same, especially within the&pic environment. If you get a
message fronrmETAPOSTthat “Grafbase” believes yowFpPicC installation may be broken, check
the log files €irst.log andmyfigs.log) to find out the locations of these input files:

mfpic.tex andgrafbase.mp

and make sure that both these files are from the most recently installad package. If you are
only evaluatingurFpic without committing to upgrading it, just make sure all the files mentioned
in the previous paragraphs are in the current directory.

If pdfIATEX complains it can’'t write on the fil&irst.pdf, unload first.pdf from your pdf
viewer and try again.

If the figures look a little choppy in Acrobat Reader, turn on “smooth line art” in the edit
preferences dialogue.

I will assume that eventually all went well and you are now able to obtain the ellipse of fig-
urel.l Each time you change aifpic environment or the options to the package, you potentially
change the filayfigs.mp produced and you should repeat the sequence:

pdflatex first
mpost myfigs
pdflatex first

to be sure of seeing the changes.

One thing you might notice about figutel is that the ellipse is positioned quite a bit above
the base line of the text. This is becausepric reserves the amount of space specified in the
arguments of thefpic environment. These arguments afe] {-1}{1}{-1}{1}, which means
the each unit in the picture is 72 times the valuewfpicunit, that is, about one inch. the first
pair of mandatory arguments;1} {1}, indicate thex-coordinates run from-1 to 1. Since these
differ by 2, they indicate a width of two inches. The second pair similarly represents a height of
two inches. But the ellipse is centered(@t0), which is one inch above the bottom (bottom is at

y=—1), and its vertical radius is .5. So the lowest point on the ellipse should be .5 inches above the
bottom of the space reserved FRIC provides a way to fit the space reserved to the actual extent
of ‘ink’ in the picture. That is by the optiottuebbox:

\usepackage [metapost, truebbox] {mfpic}

This would then produce something like figure. From now on, this option will be in effect in
our examples.

My first figure:
Figure 1.2.

Even though the arguments to thépic environment are ignored in determining the size of
the figure (undetruebbox), they are still needed in order to establish the coordinate system that
the ordered pairs refer to (for example, 0) in the\ellipse arguments).

2 Positioning text

By now you are probably thinking: “This so-called ‘Hello, world’ efFpiCc doesn’t say ‘Hello,
world’ anywhere!” We correct that with the following example:

\begin{mfpic}[72]{-1}{1}{-1}{1}
\ellipse{(0,0),1,.5}
\tlabel[cc] (0,0) {Hello, world.}

\end{mfpic}

This should give you figurg. 1l

Hello, world.

Figure 2.1.

The\tlabel command places the given text at the given positi@Q)) adjusted according
to the optional argumentcc], which says to center the text (both vertically and horizontally) at
that location. The cc] is optional. Without it, the text would have the leftmost point of its baseline
(the imaginary line that most letters sit on) placed(o).

You are no doubt thinking: “The ellipse doesn't really match the text. What you need is some
macro that measures the text and produces an oval with similar domensions.” For that we have the
\tlabeloval command. Thetlabeljustify command in the example below is to communi-
cate to both the text placement and the curve generation procedures that they are to be centered at
the point(0,0). (We’'ll see an easier way to do this later.)

\begin{mfpic} [72]{-1} {1} {-1}{1}
\tlabeljustify{cc}
\tlabeloval(0,0) {Hello, world.}

\end{mfpic}

This produces figurd.2.

Figure 2.2.

This would be better still if a little space is left around the text so the ellipse doesn't touch it.
The\tlabelsep command can do that:

\begin{mfpic} [72] {-1}{1}{-1}{1}
\tlabeljustify{cc}
\tlabelsep{3pt}
\tlabeloval(0,0){Hello, world.}
\end{mfpic}

producing figure2.3.

Hello, world.

Figure 2.3.

Now it would be nice to make the text pop out a bit with some color. Adding 11 [yellow]
in front of either\ellipse or \tlabeloval will do that:

\begin{mfpic} [72]{-1}{1}{-1}{1}

\tlabelsep{3pt}

\tlabeljustify{cc}
\gfilllyellow]\tlabeloval(0,0){Hello, world.}

\end{mfpic}

This will produce figure?.4.

Notice that now the boundary of the oval has not been drawn. This is the standard behavior
of MFPIC. A figure command alone will draw the figure. If you want some other rendering than
that, you must explicitly provide all of it. To get the boundary back, simply edithw before the
\gfill. You can draw the curve in a color other than black with an optional argument. We can
also make the line thicker with the commangknwd:

Hello, world.

Figure 2.4.

\begin{mfpic} [72] {-1}{1}{-1}{1}
\penwd{1.5pt}
\tlabelsep{3pt}
\tlabeljustify{cc}
\draw[blue]\gfill[yellow]\tlabeloval (0,0) {Hello, world.}
\end{mfpic}

This will produce figure2.5.

Hello, world.

Figure 2.5.

This last version doesn't look too bad, but it seems that the oval ought to be a little fatter
(slightly higher than it now is). By default;t Labeloval will make the ratio of width to height the
same as that of the text, or rather of the text plus the additional space specifieddny1sep.

This can be changed with an optional argument, a number that multiplies the width-to-height ratio.
Decreasing this ratio will decrease the width (slightly) and increase the height. Here we have also
omitted the\tlabeljustify command and shown thatlabeloval takes a second optional
argument that can be used to ‘justify’ both the curve and the text. To use this, one must explicitly
include the first optional argument; if the default is intended, an empty pair of brackets may be
used.

\begin{mfpic} [72] {-1}{1}{-1}{1}
\penwd{1.5pt}
\tlabelsep{3pt}
\draw[blue]\gfill[yellow]\tlabeloval[.8] [cc] (0,0) {Hello, world.}
\end{mfpic}

This will produce figure?.6.

Hello, world.

Figure 2.6.

The\tlabeloval command places the label last, after the action of all the preceding macros;
therefore the text ends up on top of everything else. Theabeloval command also has a
*-form’ that does everythingexceptplace the text. Finally, ovals are not the only thing that can be
used to surround text. See the manuabfuan . pdf) and below for others.

Here is a more common use ofabel commands: labeling a graph and axes. In the following
example we have givextlabel the option[bl] to place the bottom left corner of the text at the
given coordinates. However, we have usedabelsep{3pt} (which has the additional effect of
moving text away from its nominal location) to prevent the text from colliding with the curve.

\begin{mfpic} [72]{0}{2.5}{0}{1}

\tlabelsep{3pt}

\polyline{ (0,.2),
\tlabel([bl] (.5,1)
\dashed\polyll ef
\tlabel[bl] (1.5,

\end{mfpic}

(.5,1),(1,.7),(1.5,0),(2,.3)}

{Max output}

(0,.2), (.5,.6),(1,.3),(1.5,.7),(2,.1)}
7){Max input}

This will produce figure2.7.

Max output

Max input

Figure 2.7.

Notice that\polyline alone produces a solid line whilelashed\polyline makes a dashed
line. Let us close this section by dressing up this figure with axes, some fat dots marking the
keypoints, and hash marks on the axes:

\begin{mfpic}[72]1{0}{2.5}{0}{1}
\tlabelsep{3pt}
\polyline{(0,.2), (.5,1),(1,.7),(1.5,0),(2,.3)}
\point [3pt]{(0,.2), (.5,1), (l 1), (1.5,0),(2,.3)}
1)
{

\tlabel[bl] (.5 {Max output}

\dashed\polyllne (0,.2),(.5,.6),(1,.3),(L.5,.7),(2,.1)}
\pointfillfalse

\point[3pt}{(.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\tlabel[bl] (1 .7) {Max input}

\axes

\xmarks{0,0.5,1,1.5,2}
\axislabels x{{$505} .5, {$100$} 1, {$150S$} 1.5, {$200S} 2}
\end{mfpic}

This will produce figure2.8.
The optional argument dfpoint specifies the diameter of the points to draw. The command
\pointfillfalse forces the points to be drawn as open circles. The axes configure themselves

Max output

Max input
Q

50 100 150 200
Figure 2.8.

to the size specified in the argument of tif®ic environment. Thexislabels command takes
as arguments a letter, to specify the axis, and a comma separated list of labels, each of which is
specified by some text to place (in braces) and the x-coordinate to place it at.

3 Drawing figures

MFPIC has several predefined figures and commands to obtain essentially any curve (provided
one can obtain enough points on it with sufficient precision). We've already\seefg1ine and
\ellipse. The former needs a list of points to connect with line segments and the latter needs
the center and radii of the ellipse. Thellipse also takes an optional argument: the number of
degrees to rotate the ellipse. Here we list some of the more common such figures. Remember that
all of them will produce some sort of line drawing if used alone. They can be preceded &yed

to make the lines dashed astted to make them dotted. If the figure is a closed cunvgfill

will fill them in.

\begin{mfpic} [72]{0} {4} {0} {1}

\rect{ (0, O) (1,.75)}

\circle{ (1) .45}

\arc[s]{(3,) (2 1),45}

\ellipse[20]1{ (3.5, 0.5), 0.6, 0.4}
\end{mfpic}

This produces figur8.1 The\arc command has several forms. The optional argument picks the
form to use. This one specifies the endpoints of the circular arc and the angle of the arc (the angle
between the radii from the center of the circle to those two points). Other possibilities are a three-
point form (option[t]), a polar form (option[p]), and a center-point-sweep form (optioa],
specify a center, starting point, and angle). See the manual for details. The default (what would be
assumed if no optional argument is given) &5 and is called the point-sweep form.

The \polyline command draws straight lines connecting points. We can also draw smooth
curves. Lets take the same points from bpsly1ine example (figure.7), but changépolyline
to \curve, omit the text, and add the points from figure:

\begin{mfpic}[72]{0}{2.5}{0}{1}
\Curve{(ol'z)l('Sll)l(ll 7),(1.5,0),

(2,.3)}
\point [3pt]{(0,.2), (.5,1),(1,.7),(1.5,0),(2,.3)}

Figure 3.1.

\dashed\curve{ (0,.2), (.5,.6),(1,.3), (1.5, .7),(2,.1)}
\pointfillfalse
\point [3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\end{mfpic}

This should produce figuré 2

Figure 3.2.

This is somewhat unsatisfying. One could improve the result by selecting more points, or by
increasing the ‘tension’ in the curve.

Roughly speaking, tension determines how straight the segments between the points are, and
how sharp the turns at each point. High tension makes the curve look a little more like a polyline.
The default tension is 1, a tension of about 5 makes the result look somewhat like a polyline with
very slightly rounded corners, very high tensions make the curve indistinguishable from a polyline.
Another effect of increased tension is to reduce the little wobbles we can see in the first curve. Let's
try a tension of 1.5, which can be specified as an optional arguméntiiae:

\begin{mfpic}[72]1{0}{2.5}{0}{1}

\curve[1.51{(0,.2), (.5,1),(1,.7),(1.5,0), (2,.3)}
\point [3pt]{(0,.2), (.5,1), (1,.7), (1.5,0), (2,.3)}
\dashed\curve[1.5]{(0,.2), (.5,.6),(1,.3),(1.5,.7),(2,.1)}
\pointfillfalse
\point [3pt]1{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}
\end{mfpic}

This give figure3.3.
When we use\curve, there is no wayMETAPOST can tell if we are just connecting points
or if we are trying to graph a function. tannotenforce the requirement, which every function

Figure 3.3.

must satisfy, that the curve should travel left-to-right. The commdnécurve does enforce this
(assuming the points to be connected are listed in left-to-right order). This command also permits
a tension argument. The dotted line in figure is produced with\curve, the solid one with
\fcncurve. One might want to increase the tension a bit here, too.

\begin{mfpic}[72]{0}{2.5}{0}{1}
\dotted\curve{ (0,.2), (.5,0),(.85,.5),(1,1), (1.5,0), (2,.3)}
\fcncurve{ (0,.2), (.5,0),(.85,.5),(1,1),(1.5,0), (2,.3)}
\pointfillfalse
\point [3pt]{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}
\end{mfpic}

Figure 3.4.

Other figures available include

\cyclic Used justlike\curve but closes the path (connects the last point smoothly to the starting
point).

\polygon Used just like\polyline except it connects the last point to the first with a straight
line.

\sector Makes a wedge with two straight lines and an arc. The arguments are almost the same
as\arc[s], but the order is different: center, radius and two angles.

Here are some other curves that, like abeloval, are proportioned to fit given text. All have
a *-form that draws the path without placing the text.

\tlabelrect This produces a rectangle. It has the same usagelaeloval, except the first
optional argument specifies the radius of quarter-circles used to make rounded corners.

\tlabelellipse This is similar to\tlabeloval except that instead of modifying the width-to-
height ratio, the first optional argumeistthe width-to-height ratio. If that argument
is 1 (the default) you get a circle.

\tlabelcircle This produces a circle, of course.

4 Functions

METAPOSTIs able to calculate a number of functions natively, and still more have been defined
in MFPIC. Also available are the usual arithmetic operations. Any vBIEFAPOST expression,
containing one unknowr and producing a numerical result can be graphed.

Here is an example of the graphsyof x? andy = +./x. Note that exponentials are denoted
by ** and it is important to note that it has the same precedence as multiplication (denoted by a
single*). That is, in a formula likes*3**2, the operations are performed in order, left to right,
producing = 81 and not 39 = 27. Parentheses are needed if the latter is interited:**2) .

\setlength{\mfpicunit}{lcm}
\begin{mfpic}{- 2 5}{2.5}{-1.5}{4)
\function{-2 1) {x**2)

\function{0, 2 1}{sqrt x}

\function{0,2,.1}{-sqrt x}

\axes

\xmarks{-2,-1,1,2}

\ymarks{-1,1,2,3}

\tlabelsep{3pt}

\axislabels x{{$-2%}-2,{$-1$}-1,{S1S}1, {$2$}2}

\axislabels y{{-1}-1,{S1$}1,{$28}2,{$3%}3}
\end{mfpic}

This produces figuré.1.

Figure 4.1.

10

The command\ function has two arguments. The first contains the starting and ending x-
values of the desired graph, followed bgt@p sizeGenerally the smaller the steps the better the
accuracy, buETAPOSThas a limit on the number of steps (usually about 2000). There is also an
optional argument which can be1, the default, which means the graph is to be smoothpor
which means the graph is constructed by connecting the calculated points with straight lines. Here
is the same example with larger step size to emphasize the difference (seé flyure

\setlength{\mfpicunit}{lcm}
\begin{mfpic}{-2.5}{2.5}{-1.5}{4}

\function[p]{-2,2,.5}{x**2}
\function[p]{0,2,.5}{sqrt x}
\function[p]{0,2,.5}{-sqrt x}
\axes

\xmarks{-2,-1,1,2}

\ymarks{-1,1,2,3}

\tlabelsep{3pt}

\axislabels x{{-2}-2, {$-1S$}-1,{1}1,{$25}2}

\axislabels y{{-1}-1,{$1S}1, {$28}2, {$38}3}
\end{mfpic}

Figure 4.2.

In addition, one can increase the tension in the curve drawn by putting a tension value after the
sin [s]. Foratension of 2.4 function[s2.4]{...}.

The functions available includegrt and all the trig functionssin x assumes is an angle
in radians,sind x assumes it is in degrees, with a similar naming convention for the remaining
trig functions. The inverses aesin x, acos x, andatan x, which produce angles in degrees,
andinvsin x, etc., which produce angles in radians. There is alsx or 1og x for the natural
logarithm,exp x for €, logten x for the base 10 logarithm,ogtwo x for base 2, andogbase
for other basestogbase (16) x (for example) for base 16. The general syntax of these functions is
the following: if the argument ig alone or a pure number alone or the particular case of a number

11

followed by x (no * in between!) then parentheses are not needed. Exasiple2x. For almost
anything else, parentheses are requitgd:(3*x) Or sin (x**2).

Some other functions available are the hyperbolic functienish x, cosh x, etc. (all 6 of
them), and the inverses of three of theminh x, acosh x, andatanh x.

These functions (or anyETAPOSThumeric expression) can also be used in any of the coordi-
nates of points in drawing commands likeo1y1ine (but not usually in text placement commands
like \t labeloval). For example (from now on the value gfifpicunit is set tolcm):

\begin{mfpic}{-.5}{2.5}{-1.5}{1.5}
\polyline{ (2,-sqrt 2), (1,-1), (.5,- sqrt .5), (0,0),
(.5,sqrt .5), (1,1), (2,sqrt 2)}
\axes
\xmarks{1l,2}
\ymarks{-1,1}
\tlabelsep{3pt}
\axislabels x{{S1}1, {$2S5}2}
\axislabels y{{-1}-1,{1}1}
\end{mfpic}

=
N+

Figure 4.3.

There are other types of functions: parametric functions, and polar coordinate versims. M
provides\parafcn and \plrfcn to graph these. Th¶fcn requires a starting value, and
ending value and a step size just as flanction, but in the second argument there must be either
a pair of expressions in the variable separated by a comma and enclosed in parentheses, or a
single pair-valuedexpression. MTAPOSTandMFPIC provide only a few pair-valued functions;
one is used below.

The second argument ablrfcn must contain a single numeric expression in the variable
t, and indicates a function df to be graphed in polar coordinates= f(6). In the following
example (figuret.4), we draw a portion of the graph &f= y? by representing it as the graph of the
parametric equations= t2, y =t, and a portion of a circle of radius8Lby representing it as the
graph of the pair-valued functiofir (t). The expressiodir (t) gives the point whose distance
from (0,0) is 1 in the direction given by the angte

\begin{mfpic}{-2}{4}{-2}{2}
\parafcn{-2,2, .1} {(t**2,t)}
\dotted\parafcn{45,315,5}{1.5*dir(t)}

12

\end{mfpic}

Figure 4.4.

Here is an example of a graph of the polar coordinate functier? sin 3 (figure4.5). We use
the degree versiosiind in order to work with integers.

\begin{mfpic}{-2}{2}{-2}{2}
\plrfcn{0,180,5}{2*sind 3t}
\end{mfpic}

Figure 4.5.

5 Transforming figures

METAPOSTIs capable of any affine transformation (things like shifting, rotating, scaling, reflect-
ing and slanting) of any path. The figures we've been dealing with so\farl{pse, \curve,
\function, etc.) all produce, in th&lETAPOST code, the definition of some path (as well as a
drawing of that path). Mpic provides for different methods of ‘drawing’ the path wiphefix
macros We've seen\dashed, \dotted, \gfill so far, in addition to the defaultdraw. MFPIC

also provides for modifying the shape and position of the path with other prefixes. Here’s a simple
example.

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\rotatepath{ (1,.5), 45}\rect{(0,0),(2,1)}

13

\point{(1,.5)}
\end{mfpic}

The command rotatepath obviously rotates the path that follows, but it needs to know what
the center of rotation will be, and how much to rotate. These are given in its mandatory argument,
separated by a comma. The example above (pictured in figllyeotates 45 degrees around the
center of the rectangle.

Figure 5.1.

Notice that we have no drawing prefix. A combination of transformation-plus-figure is treated
as a figure in its own right and behaves the same. If we want the figure dashed, we could write

\dashed\rotatepath{ (1,.5),45}\rect{(0,0), (2,1)}

It may not be obvious, but we can also write a drawing macro between the rotation and the figure,
producing figures.2

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\rotatepath{ (1,.5), 45}\draw\rect{(0,0), (2,1)}
\point{(1,.5)}

\end{mfpic}

Figure 5.2.

This illustrates another property miFPIC macros: the combination of a rendering prefix and a
figure is also treated the same as a figure in its own right: the same figure as the one that follows.
In fact, the only difference betweemrect and\draw\rect in this example is that the second one
has a minor (!) side effect: the rectangle is drawn.

Finally, try to guess what happens if we add another prefix at the front:

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\dotted\rotatepath{ (1,.5), 45}
\draw\rect{(0,0), (2,1)}
\end{mfpic}

14

and if we add another rotation in front of that.

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\rotatepath{ (0,0),45}
\dotted\rotatepath{ (1,
\draw\rect{(0,0), (2,1
\end{mfpic}

.5), 45}
)}

Transformations availiable includescalepath, \shiftpath, \xscalepath, \yscalepath,
\slantpath, and\reflectpath. See the manual for a description of what arguments are required
for each. Here’s a final example, producing figGra

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}
\shiftpath{ (-1,1)} \draw red]\slantpath{.5,1}\dotted
\rotatepath{ (0,0), 90}\dashed\rect{(0,0), (2,1)}
\point{(0,0), (2,1)}
\tlabelsep{2pt}
\tlabel[tr] (0,0){$(0,0)$%
\tlabel[bl](2,1){$(2,1)$

\end{mfpic}

Figure 5.3.

6 Rendering figures

Renderingis the act of making a description of a figure visible. Examples are: drawing a solid
curve, drawing a dashed curve, or filling its interior, fkFpPIC figure macros the default, in the
absence of explicit commands, is to ugeaw. That is,

\rect{(0,0), (1,2)}
has the same result as
\draw\rect{(0,0), (1,2)}

The default rendering can be changed. Just\say render {\dashed}, and all figures afterward
will be dashed (see figui@1).

15

\begin{mfpic}{0}{2}{0}{1}
\setrender{\dashed}
\rect{(0,0), (1,1)}
\circle{(1.5,.5),.5}
\end{mfpic}

’

\
Lo
I\ /

— = — -

|
|
|

Figure 6.1.

The\setrender command can be inside apic environment to affect only later commands in
that figure, or outside to affect all latsiFpPIC figures.

We give a few examples now of the renderings possible. These divide more-or-less into those
that trace a path and those that fill in a path. In order to fill in a path, it must be a closed path, of
course, buMETAPOST distinguishes between closed paths and those that merely happen to end
where they began. There is a good reason for MistAPOST cannot, without human aid, know
if two points are the same, or merely accidentally so close that the accuracy of the program sees
them as the same. It requires human aid in the form of an explicit request to create a closed path.
Of the MFPIC macros we've seen so farellipse, \circle, \rect, \polygon, and\cyclic
produce closed paths, butolyline, \curve, \function, \parafcn, and\plrfcn do not. Also
producing closed paths axelabeloval and its relatives.

The following example illustrates filling with a hatching pattern (parallel lines) anthéiting.
Clearing the interior of a path may not seem like rendering, it is treated in exactly the same way
(think of it as a negative rendering). We first hatch a rectangle, then clear out a smaller rectangle
with rounded corners to place our text inside. The results are in fiydre

\begin{mfpic}{0}{2}{0}{2}
\draw[red]\lhatch[2pt] [blue]\rect{(0,0), (2,2)}
\gclear\tlabelrect[6pt] [cc] (1,1) {Hatching!}
\end{mfpic}

Hatching

Figure 6.2.

This example illustrates thatihatch fills with left slanting lines. And that it takes two optional
arguments. The first is the distance between lines, and the second is the color to make the lines.
There are als@rhatch which slants the lines the other wayghat ch which uses both slants, and
\thatch which can draw the lines at any angle.

16

Here is another example of rendering (figr&). The new macro iSpolkadot. We've re-
peated this example twice to show the effect of changing the order of the prefixes. Each prefix
applies its rendering to the result of everything to the right of it. In the second example the hatch-
ing goes over the dots (and a bit of the dashes as well). Ifgfe11 were first, it would cover
almost everything else.

\begin{mfpic}{0}{6}{0}{2}
\penwd{2pt }
\hatchwd{2pt}
\drawcolor{blue}
\hatchcolor{red}
\fillcolor{green}
\dashed\polkadot\rhatch[5pt]\gfill[yellow]\rect{(0,0), (2.8,1.8)}
\rhatch[5pt]\dashed\polkadot\gfill[yellow]\rect{(3,0),(5.8,1.8)}
\end{mfpic}

We've added a couple of other new features to this example. To emphasize effects, we've increased
the thickness of the drawing pehpenwd) and the hatch lines\batchwd). We've also used the
\drawcolor macro and its relatives to set the colors to be used.\Fhékadot macro uses the

color setby\fillcolor; so does\gfill if no optional color is given.

'/

Figure 6.3.

If one wants to plot several curves in a single graph, they often need to be rendered differently.
The three methods we've seen so fadraw, \dashed, and\dotted, may not be enough. The
\dashed and\dotted commands permit an optional argument to adjust the length of the dashes
and spaces, and size of the dots. One can also change the curve thicknegs:with But that
may not be ‘different’ enough. MPiC provides a few solutions. When color is available, they may
be drawn in different colors. When not, there are two possibilitigshdashed and\plot.

The first,\gendashed, is a generalized dashing macro. It takes one mandatory argument, the
name of a dashing pattern. Named dashing patterns may be created witta theattern com-
mand, as shown by the following example (see figurg:

\begin{mfpic}{-3.5}{3.5}{-1}{1}
\dashpattern{dotdash}{0pt, 4pt, 3pt, 4pt}
\gendashed{dotdash}\function{-pi,pi, .2} {sin 2x}
\function{-pi,pi,.2}{cos 2x}

\axes

\end{mfpic}

17

Figure 6.4.

The \dashpattern command takes a name and an even number of lengths. The first, third,
etc., lengths represent the lengths of dashes (heans a dot), and the second, fourth, etc., repre-
sent spaces. The given pattern is dot-space-dash-space. This pattern, when useddashed
command, is repeated for the length of the curve.

This last example illustrates that the predefinetiraposTvariablepi (equal to 3.14159) can
be used pretty much anywhere a number can be used (except, often, in text label commands).

Another way to get more distinctive curves is to ‘dot’ them with something other than tiny
dots. The\plot command does that. It takes one mandatory argument, the name of a symbol to
use instead of a dot. Here are the same two cuypest-ed (figure6.5):

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}
\setlength{\pointsize}{2.5pt}
\plot{Triangle}\function{-pi,pi,.2}{sin 2x}

\plot [2pt, 6pt]{SolidCircle}\function{-pi,pi,.2}{cos 2x}

\axes
\end{mfpic}
AN . AN
‘.AA AA . 1‘ .AA AA .‘
De A . Ae A .
A A A A
A A A S, A
A A A
. A . . A . A
. AA . AA . AA . AA
. . . .
N N
o Bpnt oo Bppt
Figure 6.5.

The \plot command takes an optional argument to specify the size of the symbols and the
spacing between them. The size of the symbols can also be adjusted by changing the length com-
mand\pointsize (that also adjusts the size of the dots placed with\iheint command).

In this last example)\plotnodes is similar to \plot, except it placed the symbols at the
‘nodes’ defined by the path command. In the casgfahction, these are the pointsy, f (X))
with x¢ stepping through all the-values determined by the first argument\a@fanction (fig-
ure6.6).

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}
\plotnodes[2.5pt]{Square}\function{-pi,pi,pi/16}{sin 2x}
\axes

\end{mfpic}

18

Figure 6.6.

See the manual for the list of predefined symbols available to\thet and \plotnodes
command.

7 More on text

The text positioning commands used so far in this guide are entirely handlegkbgrTATEX.

This is why we have occasionally had to say that certain things could be done “except in text
placement commands”. It is possible for text positioning to be done witlETAPOST, making

many things possible that couldn’t be done otherwise. For example, text can be rotated about the
point of placement. You are probably thinking th&iX can rotate text, but it is not all that easy

to arrange for the point on the graph where we place the text to be the center of rotation. Below are
two examples, in which we attempt to place the text separated @) by 5pt and rotated 45
degrees aroun(D,0). In the first we try to useA[EX's \rotatebox command, and in the second

we turn onMETAPOSThandling of labels and use a rotation option to th@éabel command.

\begin{mfpic}{0}{1}{0}{1}

\point{(0,0)}

\polyline{ (0,0), (1,1)}
\tlabel[B1](0,0) {\rotatebox{45}{\hspace{5pt}Test text}}
\end{mfpic}\renewcommand\thefigure{\thesection.\arabic{figure}a}

\usemplabels

\begin{mfpic}{0}{1}{0} {1}
\point{(0,0)}
\polyline{(0,0), (1,1)}
\tlabelsep{5pt}
\tlabel[B145] (0,0) {Test text}

\end{mfpic}

(@) (b)
Figure 7.1.

The first produces figuré.laand the second produces figurelh Our goal was to get the
baseline of the text lined up with the reference line drawn.

19

In the first example AIEX’s \rotatebox command produces the following result, where we
put a frame around both the unrotated text and the rotated result to emphasizélpkaekes as

the boundaries: f

This is then placed by thec1abel command with the lower left corner of tleaiter box at(0,0).
But IATEX's axis of rotation was at the lower left corner of the inner box. In the second case,
METAPOST placed the label. The commandlabelsep{5pt} and the parametegmB145] explic-
itly request that the label be placed with its left baseline 5 points f@) and rotated 45 degrees
about that point

The\usemplabels command used above aske TAPOSTto arrange for the setting of labels.
Adding the optionmplabels to the \usepackage command that loadsiFPIC has the same effect
for the whole document. There can be problems with usieEgaPOSTto set labels. One is that
METAPOSThas to call a&ex program to do the actual typesetting, and then one must either make
arrangements that ensueTAPOSTWiIll call LATEX, or never use any macros in the labels that are
not defined in plaingX. If one does arrange fofIeX to be used, one needs to arrange thaTgX
preamble is prepended to the outpup file. The \mfpverbtex command can be used for this.

The commandnomplabels can be used to return to having labels set at the document level.
For the rest of this guide, we hawglabels in effect.

There are a few more commands that place text on the picture. All of them pass the final
responsability for text placement toeTAPOSTif mplabels is in effect. See the manual for more
details.

8 Arrows

The commandarrow adds an arrowhead onto tked of any path that follows. For this to have
predictable effects, you need to know which part of a curve is the end, and which the start. Not
surprisingly, for the commands that connect a list of points in order the first point in the list is the
start point and the last point is the end. Except the closed paths(ic, \polygon, etc.); for
them, the start and the end points are the same, but the order of the points gives a direction to the
arrowhead. The defaultircle has an anticlockwise direction, but if the circle is defined by three
points (for example) the direction of the circle is determined by the order in which the points are
written.

Anyway, here are a few examples, illustrating the use afrow, and some of its optional
arguments.

\begin{mfpic}{0}{4}{0}{4}
\arrow[r -5]\circle{(1,1),.5}
\arrow[b 4pt]\arrow\polyline{ (3,2), (3,0)}
\arrow[c red]\reverse\arrow\polyline{(0,3), (2,3)}
\arrow[l Spt]\rect{(4,2),(2,4)}

\end{mfpic}

See figure8.1for the results of this example. There are four possible optional arguments, the first
character inside the brackets tells what option the rest of the argument applies to. The first example

20

above starts withr’, which stands for ‘rotate’ and asks for the arrowhead to be rotated -5 degrees
(5 degrees clockwise). The second starts withwhich stands for ‘backset’ and it moves the head
back 4pt from where it would otherwise be placed. In the example, this is used to put a double
arrowhead on the line. In the third example we put an arrow at both ends by reversing the sense of
the curve in between the twarrow prefixes. We also used the lettet in the optional argument

of one arrowhead. This stands for ‘color’ and the requested colakis.'Finally, the 1 option,
standing for ‘length’, changes the length of the arrowheabto(from the defaul8pt). The space
between the letter and the value in these arguments may be omitted.

O

Figure 8.1.

The options can be combined in one commard:row [cblue] [bdpt] [r25] [16pt] would
produce aspt long blue arrowhead rotated 25 degrees anticlockwise, set 4ackThe setting
back is done in the direction determinaflier rotation. The order of the options is not significant.

The need to occasionally tweak the arrowhead with a small rotation will be apparent if you
look closely at the circle example without any rotation.

The shape of the arrowhead can be changed withithedshape command. The following ex-
ample draws the arrowhead first normally, and then after an instance of this command. We increase
the length of head and the thickness of the pen to emphasize the effects.

\begin{mfpic}{0}{4}{0}{4}
\setlength{\headlen}{20pt}
\penwd{3pt}
\arrow\polyline{ (0, 3), (4,3)}

\headshape{.5}{2}{true}
\arrow\polyline{ (0,1), (4,1)}
\end{mfpic}

The results are pictured in figuBe2 The first argument tdheadshape sets the ratio of width to

height for the head. We have cut it in half here. The second argument sets the tension in the curves
that form the sides of the head. This reduces the curvature in the sides. The third argument can be
only true or false and determines whether the head is a solid shape, or only the two ‘barbs’. The
defaults correspond ttheadshape{1}{1}{false}

21

>

-

Figure 8.2.

9 Color

We saw the use of color in earlier sections, and now it's time to be systematic about it. The several
rendering commands have a color option; examples @rew, \gfill, \arrow, and the hatching
commands. However, even those commands that don't provide such an option can have the color
of their rendering changed. i#i1C provides the following commands to change certain colors.
Those commands with a color option can be used without that option and then they will the use
the appropriate color described here. Each of these color-changing commands takes a mandatory
argument containing the color to change to, and an optional argument to be described later.

\backgroundcolor This setsthe colorto be usedbyclear. Itis the same color used hpoint
for the inside of the points whetpointfillfalse has been used. METAPOST, the
only way to clear the inside of a region is to cover it up. The default color for this
purpose isihite. Use this command to change that default.

\drawcolor This sets the default color used by those rendering commands that draw a path. This
includes\draw, but also includesdashed, \dotted, \plot and\plotnodes. It is
also used by other commands that produce lines or curves: figure macros used without
any rendering prefix, as well asxes and related commands.

\fillcolor This sets the default color used hyfill. It is also the color used bypolkadot
(which has no color option).

\hatchcolor This sets the default color used by any hatching command.

\headcolor This sets the default color for arrowheads added by theow command. It is also
the color of arrowheads on any coordinate axis.

\pointcolor This sets the color used byoint, \grid, and\plotsymbol (the last one will be
described later).

\tlabelcolor This sets the color used for all text labels if tinplabels option is turned on.

The color can be a common name for a color, provided that name is one of the following:
white, black, red, green, blue, cyan, magenta, Of yellow. We have already seen this usage. It
can also be a color name defined in the dite psnam.mp that accompaniegFPIC. It can also be
an explicit color formula, where color formulas are described invtheic manual.

The optional argument is one of tkhelor models See the manual for details, but the syntax is
just like that of thecoLOR package’s\color command. For example,

22

\pointcolor[rgb]{0,1,0}

would use the color modegb with parameters 0, 1, and O (this is green). After each of these com-
mands a certain color name is assigned a value. For example, a use pfthecolor command
assigns a value to the color namedintcolor. This pattern is followed for all the color setting
commands above (i.e\drawcolor setsdrawcolor) except\backgroundcolor, which assigns
its value to the color namegkckground.

Color names fomFpPIC use can be defined using thefpdefinecolor command. Here’s an
example (figuré®.1). Note the use of the color nameintcolor to make arrowheads and points
have the same color.

\begin{mfpic}{0}{3.5}{0}{3.5}
\tlabelcolor{red}
\pointcolor{rgb(0,1,0)}% green
\drawcolor[rgb]{0,0,1} % blue
\fillcolor{Goldenrod} % from dvipsnam.mp
\headcolor{pointcolor} % will be green after above
\mfpdefinecolor{DarkerRed}{rgb}{.67,0,0}
\hatchcolor{DarkerRed}
\penwd{lpt}
\gfill\circle{(1,1),.5}
\point [3pt]{(1,.5),(1,1.5),(.5,1),(1.5,1)}
\hatch\rect{(2.5,2.5), (3.5,3.5)}
\arrow[l 5pt]\polyline{(1,1), (3,3)}
\tlabel[cc] (1,3) {Examples \\of\\colors}
\end{mfpic}

Examples
of
colors

Figure 9.1.

10 Closing paths

There are many different ways to modify a figure. We have already ‘seetvw, which appends
an arrowhead\ reverse which reverses the sense, and several that apply an affine transformation
(\rotatepath, \shiftpath, etc.). Now we will see the simple operation of closing a path.

All methods of closing a path have to connect the end to the start, but simply drawing a con-
nection is not enoughuETAPOSThas to be told to close the path, and what kind of connection is

23

desired. We have several macros that can do the job, the simplest\ieingsed, which closes
with a straight line. Putting1closed in front of \polyline, for example, produces the same
result as\polygon. Another macro is\sclosed which produces a smooth closure. Putting it in
front of \curve gives the same result asyclic. There is one other useful macrg;closed,
which also informsveTaAPOSTto make a smooth closure. The difference betwestiosed and
\bclosed is that the first modifies slightly the original path (in order to achieve the effect that
\sclosed+ \curve = \cyclic), the second just ask8ETAPOSTto do its best to connect the
ends smoothly. Here’s an example comparing the two smooth methods (figgiye

\begin{mfpic}{0}{4}{0} {4}
% an open curve:
\curve{ (0.49,3),(.5,3.7),(1,4),(1.5,3.7), (1.51,3)}
% \sclosed a shifted copy:
\draw\gfill[green]\sclosed\shiftpath{(2,0)}
\curve{ (0.49,3), (.5,3.7), (1,4),(1.5,3.7), (1.51,3) }
% \bclosed another copy:
\draw\gfill[yellow]\bclosed\shiftpath{(2,-2)}
\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}
% \cyclic with same points, shifted:
\draw\gfill[red]\shiftpath{ (0,-2)}
\cyclic{(0.49,3),(.5,3.7),(1,4),(1.5,3.7), (1.51,3)}
\tlabeljustify{bc}
\nomplabels
\tlabels{
(1,2.4)
(3,2.4)
(1,0.4)
(3,0.4)

\cs{curve}}
\cs{sclosed}}
\cs{cyclic}}
\cs{bclosed}}

,— -

}
% Some points to help illustrate
\point{(0.49,3), (.5,3.7),(1,4),(1.5,3.7), (1.51,3)}
\point{(2.49,3),(2.5,3.7),(3,4),(3.5,3.7),(3.51,3)}
\point{(0.49,1), (.5,1.7),(1,2),(1.5,1.7),(1.51,1)}
\point{(2.49,1),(2.5,1.7),(3,2),(3.5,1.7),(3.51,1)}
\end{mfpic}

A word about the labels: we turned offplabels with the command\nomplabels, because
we used a command ¢s) defined for this document and not known to bagiX Dr IATEX. The
labels therefore are position ATEX while it assembles this document, instead ofMTAPOST
which would call a separate instance gXTor IATEX where \cs was unknown. We could have
keptmplabels, provided we had usethfpverbtex to write the appropriaté*TgX preamble to the
.mp output. It would need to be some subset of the preamble of this document.

24

() @

\curve \sclosed

® O

\cyclic \bclosed
Figure 10.1.

A Appendices

In addition to pdf&TEX, M FPiCc works with plain pdf X, IATEX, and plain EX. Instead ofMETA-
POSTas the figure processaETAFONT can also be used. Let’s start with the difference between
usingMFPIC in a plain BX document and using it in &IeX document.

A.1 MFpicin plain TEX

Here is a sample plain pdfX document with results the same as our first “Hello, world” example.
Let’s call this fileplfirst

\input mfpic
\usemetapost
\opengraphsfile{myfigs}
My first figure:
\mfpic[72] {-1}{1}{-1}{1}
ll

\ellipse{(0,0),1,.5}
\endmfpic
\closegraphsfile

\end

The main difference is the lack ofTEX commands. The crucial difference is in the first two
lines. There we simplyinput mfpic and we turn OMETAPOSTSsupport with thé\ usemetapost
command instead of an option Yosepackage.

Since\usepackage and its options don't exist in plaingk, all those features that we select
with options in ETgX must be selected by some command in plain. For examplemiiegbels
option is replaced with the commandsemplabels (which can also be used iATEX).

Also, plain X doesn’t have environments, so insteadbgin{mfpic} we just usémfpic
and instead ofend {mfpic} we use\endmfpic.

The external processing is essentially the same:

pdftex plfirst
mpost myfigs
pdftex plfirst

should producelfirst.pdf with the same picture of an ellipse.

25

A.2 MFpPicwithout PDF

If we wish to use nonPDF versions 6TEX or plain TgX, the only difference is in the processing
steps. To procesSirst . tex with IATEX, run the command

latex first
followed by

mpost myfigs
followed by latex again.

latex first

Then run the dvi processor of your choice. It should be one that can successfully handle eps figures
(or at least the simple eps producedNogTAPOST). CertainlybvipPs can do it:

dvips first

will producefirst.ps. The file.ps file can be viewed withsviEw or printed, or converted to PDF
with some distillation program likes2pDF. Also bviPDFM (if recent, and properly configured)
can be used convert thevi file to PDF.

A.3 MFPICwithout METAPOST

MFPIC can produce figures usingeTAFONT instead ofMETAPOST. What it does is work with
METAFONT to produce a made-to-order font, where each picture is a large character in that font.
Since pdfX and pdfBTEX do not work well with the fonts produced byeTAFONT, and
many PDF viewers don’t display them well anyway, | do not recommend usiryC to produce
PDF without turning orMETAPOST support. However, all dvi viewers ami/iPs do work well
with such fonts, so it can make sense to Ms@IC with METAFONT if you don’t need the features
that METAPOST enables: color and rotation of labels. One advantage of doing this is the smaller
number of files produced. If there are 10Gpic figures in a documentETAPOST produces
100 files (apart from a couple of temporary files and theg file), but theMETAFONT procedure
produces only four files no matter how many figures are present.
To useMFPIC without METAPOST, omit themetapost option or the\usemetapost command.
If you want a visible reminder of the fact th®ETAFONT is being used, you can use timetafont
option or the\usemetafont command. Of course, you may not usplabels without METAPOST.
You may use the color commands and options, but the only colors actually produced will be black
and white (and occasionally a pattern of pixels that simulate gray). The processing steps are differ-
ent. After

latex first (Ortex plfirst)
run METAFONT:
mf myfigs

This should produce three filesyfigs.log, myfigs.tfm, andmyfigs.600gf. The last one
(which might have a different number on your system) is callgereric font(GF) file and con-
tains the bitmap descriptions. If the file producetlisigs.2602gf, and the.t fmis not produced,
that indicates a configuration problem with your system that we’ll get to later. If this did work, one

26

needs to convert thes file to a PK font file, the standard format for bitmap fonts in tiX World.
This may be done with

gftopk myfigs.600gf

Some systems may require you to name the output file on the command line:
gftopk myfigs.600gf myfigs.600pk

And some systems may require the extension to be simply
gftopk myfigs.600gf myfigs.pk

Finally, some systems may havevakeEPK or MKTEXPK command that can be used in place of
the combination oMETAFONT andGFTOPK You'll have to check what your system has and what
its usage might be, and what it might do with the PK file produced.

After the above, one again runkatex first’ (or ‘tex plfirst’), and then the .dvi can be
viewed or processed with dvips. The two filegfigs.log andmyfigs.600gf can be deleted;
onlymyfigs.tfmandmyfigs.600pk are needed. If the viewed image shows the pictures at a far
different size than you expect, this can also indicate a configuration problem.

Some systems permit on-the-fly creation of PK files by varialis. processing programs. It
is not wise to allow this to happen when working wittrpiC. The problem is that this automatic
creation process isot repeated when a figure is edited unless the old PK files are deleted, and
it may take some hunting to even locate them. One shalvaysfollow the METAFONT step
with the GFTOPK step. You might even want to write a batch script or makefile to ensure that this
happens.

Another problem, more an annoyance, that can occur comes from the behavior of most dvi
viewers: most will reload advi file if they detect that it has changed (or if asked to), but will
usuallynotreload any fonts even if they have changed. So if one is going through a edit-compile-
view cycle involvingMmFPic figures, one usually has to close the viewer and open it again before
one can see changes that were made in the figures after starting the viewer.

A.4 METAFONT configuration problems

To diagnose these problems it important to know something ghoter modes METAFONT
produces bitmap images of characters. This means a description of a block of pixels, telling which
ones are black and which are white. If the description says that 60 pixels in a row are black, that
produces a thin black line. How long that line is depends on the size of a printer’s pixels. For the
LaserJet IV, there are 600 pixels to the inch, so 60 pixels makes 1/10 of an inch. The LaserJet Il,
however, has 300 pixels to the inch, so 60 pixels is 1/5 of an inch long. WBtFONT needs in
order to produce an image that is the correct size is (at a minimunmgsiodutionof the intended
printer. This is typically reported in DPI (dots per inch) amdTAFONT keeps the value in the
variablepixels_per_inch.

As part of the configuration of your DVI viewer or ofviPs you may have needed to select a
printer from a list, or edit a line in some configuration file (eq@xnfig.ps). What was going on
then was the assigning of a defamETAFONT printer mode. There is a file on mogt systems
namednodes.mf which assigns symbolic names to a set of parameters that enalbbeeONT to
tune its output to a particular printer. For example, the LaserJet IV is given the ngfmt’ and
that name is associated with the value 600dotels_per_inch. In order to tellMETAFONT to

27

make output for the LaserJet IV, one can put that information on the command line:
mf \mode:=17jfour; input myfigs

Your operating system orgK distribution may require you to quote the backslash in the above
command.

There is a system for making the selection of the correct mode semi-automatic, not requiring a
command line specification. Near the endnofies . nf is a line similar to

localfont:=1jfour;

This is intended to equate the symbolic naimealfont with the user's default printer. If the
LaserJet IV is your default printer, the line above would be the correct one. If it is not, then that
line should be changed. This can be done with an ordinary text editor, or gusyStem may
have a configuration utility to take care of it.

If you say “nf myfigs” on anMFPIC file myfigs.mf, MFPIC'S internal code will detect that
no mode was defined on the command line. It will then chedkifalfont is defined and if so,
use that for the printer mode. Finally, if that fails, it will seléctfour. If even that is unknown,
METAFONT will go into proof modeand sebixels_per_inch equal to approximately 2602 (and
it will notproduce a tfm file).

MFpPicdoesn’t need to know all the parameters associated to a printer mode, only the value of
pixels_per_inch. If you get a GF file that indicates an incorrect DPI value for your printer, you
should arrange for the line ifbdes.nf that setslocalfont to be corrected. At the very least it
should equateocalfont to a name defined inodes .mf and associated to a printer with the same
DPI as yours. After changingodes.mf, you need to run whatever programs yogXTsystems
requires to remake theeTAFONT format.

28

	Introduction
	Positioning text
	Drawing figures
	Functions
	Transforming figures
	Rendering figures
	More on text
	Arrows
	Color
	Closing paths
	Appendices
	Mfpic in plain TeX
	Mfpic without PDF
	Mfpic without Metapost
	Metafont configuration problems

