
MFPIC: Pictures in TEX
with Metafont and MetaPost

Dr Thomas E. Leathrum Geoffrey Tobin∗ Daniel H. Luecking†

2003/11/14

Contents

1 Introduction 1
1.1 Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Who? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 What? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 How? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Options. 4
2.1 metapost, \usemetapost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 mplabels, \usemplabels, \nomplabels . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 overlaylabels, \overlaylabels, \nooverlaylabels . . . . . . . . . . . . . . . . 5
2.4 truebbox, \usetruebbox, \notruebbox . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 clip, \clipmfpic, \noclipmfpic . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 centeredcaptions, \usecenteredcaptions, \nocenteredcaptions . . . . . . . 5
2.7 debug, \mfpicdebugtrue, \mfpicdebugfalse . . . . . . . . . . . . . . . . . . . 6
2.8 clearsymbols, \clearsymbols, \noclearsymbols . . . . . . . . . . . . . . . . . 6
2.9 draft, final, nowrite, \mfpicdraft, \mfpicfinal, \mfpicnowrite . . . . . . . . . 6
2.10 Option Scoping Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The Macros. 8
3.1 Files and Environments.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

3.2.1 METAFONT Pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
3.2.2 Points, Lines, and Rectangles.. . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 A Word on List Arguments. . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.4 Axes, Axis Marks, and Grids.. . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Circles and Ellipses.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
3.2.6 Curves.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
3.2.7 Circular Arcs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.2.8 Other Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.2.9 Bar Charts and Pie Charts.. . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.10 Polar Coordinates to Rectangular.. . . . . . . . . . . . . . . . . . . . . . 20

3.3 Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

MFPIC version: 0.7 beta.
∗G.Tobin@latrobe.edu.au
†luecking@uark.edu

i



CONTENTS ii

3.3.1 Setting the Default Colors.. . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 METAPOSTColors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.3.3 Color Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.3.4 Defining a Color Name.. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.5 Color inMETAFONT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.4 Shape-Modifier Macros.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.4.1 Closure of Paths.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.4.2 Reversal, Connection and Subpaths.. . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3.5 Rendering macros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.5.1 Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.5.2 Shading, Filling, Erasing, Clipping, Hatching.. . . . . . . . . . . . . . . . 26
3.5.3 Changing the Default Rendering.. . . . . . . . . . . . . . . . . . . . . . 27
3.5.4 Examples.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

3.6 Functions and Plotting.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.6.1 Defining Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.6.2 Plotting Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.6.3 Plotting external data files. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Labels and Captions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.7.1 Setting Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.7.2 Curves surrounding text. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Saving and Reusing anMFPIC Picture. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Picture frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
3.10 Affine Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3.10.1 Affine Transforms of theMETAFONT Coordinate System.. . . . . . . . . . 39
3.10.2 Transformation of Paths.. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 Parameters.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.12 For Advanced Users.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

3.12.1 Power Users.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
3.12.2 Hackers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

4 Appendices 54
4.1 Acknowledgements.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.2 Changes History.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.3 Summary of Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.4 Plotting styles for\plotdata . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.5 Special considerations when usingMETAFONT . . . . . . . . . . . . . . . . . . . 56
4.6 Special considerations when usingMETAPOST . . . . . . . . . . . . . . . . . . . . 57

4.6.1 Required support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.6.2 METAPOSTis notMETAFONT . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.3 Graphic inclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

4.7 MFPIC and the rest of the world. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7.1 The literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.7.2 Other programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60



CONTENTS iii

4.8 Index of commands, options and parameters by page. . . . . . . . . . . . . . . . 62
4.9 List of commands by type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.9.1 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.9.2 Figure modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.9.3 Figure renderers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.9.4 Lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.9.5 Coordinate transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9.6 Axes, grids, and marks. . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.9.7 Setting options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.9.8 Changing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
4.9.9 Changing colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.9.10 Defining arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.9.11 Changing behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.9.12 Files and environments. . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.9.13 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.9.14 Misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68



1 Introduction
1.1 Why?

Tom got the idea forMFPIC1 mostly out of a feeling of frustration. Different output mechanisms
for printing or viewing TEX DVI files each have their own ways to include pictures. More often
than not, there are provisions for including graphic objects into a DVI file using TEX \special’s.
However, this technique seemed far from TEX’s ideal of device independence because different
TEX output drivers recognize different\special’s, and handle them in different ways.

LATEX’s picture environment has a hopelessly limited supply of available objects to draw—if
you want to draw a graph of a polynomial curve, you’re out of luck.

There was, of course, PICTEX, which is wonderfully flexible and general, but its most obvious
feature was its speed—or rather lack of it. Processing a single picture in PICTEX could often take
several seconds.

It occurred to Tom that it might be possible to take advantage of the fact thatMETAFONT is
designedfor drawing things. The result of pursuing this idea isMFPIC, a set of macros for TEX and
METAFONT which incorporateMETAFONT-drawn pictures into a TEX file.

With the creation ofMETAPOST by John Hobby, and the almost universal availability of free
POSTSCRIPT interpreters like GHOSTSCRIPT, someMFPIC users wanted to run theirMFPIC output
throughMETAPOST, to produce POSTSCRIPT pictures. Moreover, users wanted to be able to use
pdfTEX, which does not get along well with PK fonts, but is quite happy withMETAPOSTpictures.
Unfortunatelygrafbase.mf, which contained theMETAFONT macros responsible for processing
MFPIC’s output, was far too pixel-oriented forMETAPOST. A new file,grafbase.mp was created,
based very heavily ongrafbase.mf but compatible withMETAPOST. Now when anMFPIC output
file saysinput grafbase, eitherMETAFONT or METAPOST may be run on it, and each program
will select its own macros, and produce (nearly) the same picture. This gets us away from device
independence, but many users were not so much concerned with that as with having a convenient
way to have text and pictures described in the same document.

With the extra capabilities of POSTSCRIPT (e.g., color) and the corresponding abilities of
METAPOST, there was a demand for someMFPIC interface to access them. Consequently, switches
(options) have been added to access some of them. When these are used, output files may no longer
be compatible withMETAFONT.

1.2 Who?

MFPIC was written primarily by Tom Leathrum during the late (northern hemisphere) spring and
summer of 1992, while at Dartmouth College. Different versions were being written and tested
for nearly two years after that, during which time Tom finished his Ph.D. and took a job at Berry
College, in Rome, GA. Between fall of 1992 and fall of 1993, much of the development was carried
out by others. Those who helped most in this process are credited in the Acknowledgements.

Somewhere in the mid 1990’s the development passed to Geoffrey Tobin who kept things going
for several years.

The addition ofMETAPOST support was carried out by Dan Luecking around 1997–99. He is
also responsible for all other additions and changes since then, with help from Geoffrey and a few
others mentioned in the Acknowledgements.

1If you’re wondering how to pronounce ‘MFPIC’: I always say ‘em-eff-pick’, speaking the first two letters. —DHL.

1



1.3 WHAT? 2

1.3 What?

SeeREADME.txt for a list and a brief explanation of each of the files. Only five are actually
needed for full access toMFPIC’s capabilities:mfpic.tex, mfpic.sty (the latter needed only for
LATEX’s \usepackage), grafbase.mf (needed only ifMETAFONT will be processing the figures),
grafbase.mp anddvipsnam.mp (needed only ifMETAPOSTwill be the processor).

The readme file that accompaniesMFPIC gives some guidence on the proper location for the
installation of these files.

1.4 How?

Setting up TEX and METAFONT to process these files will, to an extent, depend on your local
installation. The biggest problem you are likely to have, regardless of your installation, will be
convincing TEX and its output drivers to findMETAFONT’s output files. You should do whatever is
necessary (perhaps nothing!) to insure that TEX looks in the current directory for.tfm files, and
that your dvi driver/viewer looks in the current directory for.pk files. If you process your pictures
with METAPOST there is nothing to do in this regard.

Here is an example of the process: for the sample filepictures.tex2, first run TEX on it
(or run LATEX on lapictures.tex). You may see a message fromMFPIC that there is no file
pics.tfm, but TEX will continue processing the file anyway. When TEX is finished, you will now
have a file calledpics.mf. This is theMETAFONT file containing the descriptions of the pictures
for pictures.tex. You need to runMETAFONT on pics.mf, with \mode:=localfont set up.
(Read yourMETAFONT manual to see how to do this.3) Typically, you just type

mf pics.mf

or, to use a particular printer mode such asljfour, possibly something like

mf ’\mode:=ljfour; input pics.mf’

This produces apics.tfm file and a GF file with a name something likepics.600gf. The actual
number may be different and the extension may get truncated on some file systems. Then you run
GFTOPKon the GF file to produce a PK font file. (Read yourGFTOPKmanual on how to do this.)
Typically, you just run

gftopk pics.600gf

(or possibly gftopk pics.600gf pics.600pk or gftopk pics.600gf pics.pk ).
Now you have the font (the.pk file) and font metric file (the.tfm) generated byMETA-

FONT, reprocess the filepictures.tex with TEX. The resulting DVI file should now be complete,
and you should be able to print and view it at your computer (assuming your viewer and print
driver have been set up to be able to find the PK font generated frompics.mf). You can delete
pics.600gf andpics.log.

If you useMFPIC with themetapost option (this would require you to editpictures.tex or
lapictures.tex. See chapter2 for how to do this), thenpics.mp is produced, and you need

2Readmfpguide.pdf for examples of minimalMFPIC input files.
3If you are new to runningMETAFONT, the documentMetafont for Beginners, by Geoffrey Tobin, is a good start. Fetch

CTAN/info/metafont-for-beginners.tex. ‘CTAN’ means the Comprehensive TEX Archive Network. You can find the
mirror nearest you by pointing your browser athttp://www.ctan.org/.



1.4 HOW? 3

to replace theMETAFONT/GFTOPK steps with the single step of runningMETAPOST. (Read your
METAPOSTdocumentation on how to do this.4) Typically just

mpost pics.mp

or possibly mp pics.mp .
After reprocessingpictures.tex with TEX you should then be able to run dvips on the re-

sulting DVI file and print or view its POSTSCRIPT output. It pdfTEX is used instead of TEX on the
second run, you should be able to view the resulting PDF file with the pictures included.

It is not advisable to rely on automatic font generation to create the.tfm and.pk files. (Differ-
ent systems do this in different ways, so here I will try to give a generic explanation.) The reason:
later editing of a figure will require new files to be built, and most automatic systems willnot re-
make the files once they have been created. This is not so much a problem with the.tfm, asMFPIC

never tries to load the font if the.tfm is absent and therefore no automatic.tfm-making should
ever be triggered. However, if you forget to runGFTOPK, then try to view your resulting file, you
may have to search your system and delete some automatically generated.pk file (they can turn
up in unpredictable places) before you can see any later changes. It might be wise to write a shell
script (batch file) that (1) runsMETAFONT, (2) runsGFTOPK if step 1 returns no error, (3) deletes
the.tfm if the .pk file does not exist. That way, if anything goes wrong, the.dvi will not contain
the font (MFPIC will draw a rectangle and the figure number in place of the figure).

These processing steps—processing with TEX, processing withMETAFONT/GFTOPK, and re-
processing with TEX—may not always be necessary. In particular, if you change the TEX document
without making any changes at all to the pictures, then there will be no need to repeat theMETA-
FONT or METAPOSTsteps.

There are also somewhat subtle circumstance under which you can skip the second TEX step
after editing a file that has gone through the above process. Listing the exact cirumstances is rather
involved, so it is recommended that you always repeat the TEX step if changes have been made.

What makesMFPIC work? When you run TEX on the filepictures.tex, the MFPIC macros
issue TEX \write commands, writing METAFONT (or METAPOST) commands to a filepics.mf
(or pics.mp). The user should never have to read or change the filepics.mf directly—theMFPIC

macros take care of it.
The enterprising user can determine by examining theMFPIC source and the resultingMETA-

FONT file, thatMFPIC drawing macros translate almost directly into similarMETAFONT/METAPOST

commands, defined in one of the filesgrafbase.mf or grafbase.mp. The labels and captions,
however, are placed on the graph by TEX using box placement techniques similar to those used in
LATEX’s picture environment (except when optionmplabels is in effect, in which caseMETAPOST

places the labels).

4The documentSome experiences on running Metafont and MetaPost, by Peter Wilson, can be useful for beginners.
FetchCTAN/info/metafp.pdf.



2 Options.
There are now several options to theMFPIC package. These can be listed in the standard LATEX
\usepackage optional argument, or can be turned on with certain provided commands (the only
possibility for plain TEX). Some options can be switched off and on throughout the document.
Here we merely list them and provide a general description of their purpose. More details may be
found later in the discussion of the features affected. The headings below give the option name, the
alternative macro and, if available, the command for turning off the option. Any option not among
those given below will be passed on to theGRAPHICSpackage, provided themetapost option has
been used.

If the filemfpic.cfg exists, it will be input just before all options are processed. You can create
such a file containing an\ExecuteOptions command to execute any options you would like to
have as default. Actual options to\usepackage will override these defaults, of course. And so will
any of the commands below.

If the file mfpic.usr exists, it will be input at the end of the loading ofMFPIC. The user can
create such a file containing any of the commands of this section that he would like to have as
default.

2.1 metapost , \usemetapost

SelectsMETAPOSTas the figure processor and makes specific features available. It changes the ex-
tension used on the output file to.mp to signal that it can no longer be processed withMETAFONT.
There is also ametafont option (command\usemetafont), but it is redundant, asMETAFONT is
the default. Either command must come before the\opengraphsfile command (see section3.1).
They should not be used together in the same document. (Actually, they can but one needs to close
one output file and open another. Moreover, it hasn’t ever been seriously tested, and it wasn’t taken
into consideration in writing most of the macros.) If the command form\usemetapost is used
in a LATEX 2ε document, it must come in the preamble. Because of the timing of actions by the
BABEL package and by older versions ofsupp-pdf.tex (input bypdftex.def in theGRAPHICS

package), when pdfLATEX is usedMFPIC should be loaded and\usemetapost (if used) declared
beforeBABEL is loaded.

2.2 mplabels , \usemplabels, \nomplabels

Causes all label creation commands to write their contents to the output file. It has no effect on the
\tcaption command. In this case labels are handled byMETAPOSTand can be rotated. It requires
METAPOST, and will be be ignored without it (METAFONT cannot handle labels). It may also
produce an error either from TEX or METAFONT. Otherwise the commands can come anywhere and
affect subsequent\tlabel commands. When this is in effect, the labels become part of the figure
and, in the default handling, they may be clipped off or covered up by later drawing elements.
But see the next section on theoverlaylabels option. Labels added to a picture contribute to the
bounding box even iftruebbox is not in effect.

The user is responsible for adding the appropriateverbatimtex header to the output file if
necessary. For this purpose, there is the\mfpverbtex command, see section3.7. If the label text
contains only valid plain TEX macros, there is generally no need for averbatimtex preamble at
all. If you add averbatimtex preamble of LATEX code take care to make sureMETAPOST calls
LATEX (for example, by setting the environmental variableTEX to latex in the command shell of

4



2.3 overlaylabels, \overlaylabels, \nooverlaylabels 5

your operating system.).

2.3 overlaylabels , \overlaylabels, \nooverlaylabels

In the past, undermplabels all text labels created by\tlabel and its relatives were added to the
picture byMETAPOSTas they occurred. This made them subject to later drawing commands: they
could be covered up, erased, or clipped. With this option (or after the command\overlaylabels)
text labels are saved in a separate place from the rest of a picture. When a picture is completed,
the labels that were saved are added on top of it. This is the way labels always behave under the
metafont option, because then TEX must add the labels and there is no possibility for special effects
involving clipping or erasing (at theMETAFONT level).

With themetapost option, but withoutmplabels it has been decided to keep the same behavior
(and the same code) as under themetafont option. However, whenmplabels is used, there is the
possibility for special effects with text, and it has always been the behavior before this version to
simply place the labels as they occurred. It turns out that placing the labels at the end is cleaner
and simpler to code, so I experimented with it and rejected it as a default, but now offer it as an
option. With this option,MFPIC labels have almost the same behavior with or withoutmplabels.

2.4 truebbox , \usetruebbox, \notruebbox

Normally METAPOST outputs an EPS file with the actual bounding box of the figure. By default,
MFPIC overridesthis and sets the bounding box to the dimensions specified by the\mfpic com-
mand that produced it. (This used to be needed for TEX is to handle\tlabel commands correctly.
Now, it is just for backward compatability, and for compatability withMETAFONT’s behavior.) It
is reasonable to letMETAPOST have its way, and that is what this option does. If one of the com-
mand forms is used in anmfpic environment, it affects only that environment, otherwise it affects
all subsequent figures. This option currently has no effect withMETAFONT, but should cause no
errors.

2.5 clip , \clipmfpic, \noclipmfpic

Causes all parts of the figure outside the rectangle specified by the\mfpic command to be re-
moved. The commands can come anywhere. If issued inside anmfpic environment they affect the
current figure only. Otherwise all subsequent figures are affected. Note: this is a rather rudimentary
option. It has an often unexpected interaction with truebbox. When both are in effect,METAPOST

will produce a bounding box that is the intersection of two rectangles: the true onewithout clip-
ping, and the box specified in the\mfpic command. It is possible that the actual figure will be
much smaller (even empty!). This is a property of theMETAPOSTclip command and we know of
no way to avoid it.

2.6 centeredcaptions , \usecenteredcaptions, \nocenteredcaptions

Causes multiline captions created by\tcaption to have all lines centered. This has no effect on the
normal LATEX \caption command.5 The commands can be issued anywhere. If inside anmfpic
environment they should come before the\tcaption command and affect only it, otherwise they
affect all subsequent figures.

5This writer [DHL] feels that\tcaption is too limited and users ought to apply the caption by other means, such as
LATEX’s \caption command, outside themfpic environment.



2.7 debug, \mfpicdebugtrue, \mfpicdebugfalse 6

2.7 debug , \mfpicdebugtrue, \mfpicdebugfalse

CausesMFPIC to write a rather large amount of information to the.log file and sometimes to the
terminal. Debug information generated bymfpic.tex while loadingis probably of interest only
to developers, but can be turned on by giving a definition to the command\mfpicdebug prior to
loading.

2.8 clearsymbols , \clearsymbols, \noclearsymbols

MFPIChas two commands,\point and\plotsymbol that place a small symbol at each of a list of
points. The first can place either a small filled disk or an open disk, the choice being dictated by the
setting of the boolean\pointfilltrue or \pointfillfalse. The behavior of\point in the case
of \pointfillfalse is to erase the interior of the disk in addition to drawing its circumference.

The second command\plotsymbol can place a variety of shapes, some open, some not. Its be-
havior until now was always simply to draw the shape without erasing the interior. Two other com-
mands that placed these symbols,\plotnodes and\plot, had the same behavior. With this option,
two of these,\plotsymbol and\plotnodes, will erase the interior of the open symbols before
drawing them. Thus\plotsymbol{SolidCircle} still works just like\pointfilltrue\point,
and now with this option\plotsymbol{Circle} behaves the same as\pointfillfalse\point.
The\plot command is unaffected by this option.

2.9 draft , final , nowrite , \mfpicdraft, \mfpicfinal, \mfpicnowrite

Under themetapost option, the various macros that include the EPS files emit rather large amounts
of confusing error messages when the files don’t exist (especially in LATEX). For this reason, before
each picture is placed,MFPIC checks for the existence of the graphic before trying to include
it. However, on some systems checking for the existence of a nonexistent file can be very slow
because the entire TEX search path will need to be checked. Therefore,MFPIC doesn’t even attempt
any inclusion on the first run. The first run is detected by the non-existence of〈file〉.1, where〈file〉
is the name given in the\opengraphsfile command (but see also section3.1). These options can
be used to override this automatic detection. All the command versions should comebeforethe
\opengraphsfile command. The\mfpicnowrite commandmustcome before it.

These options might be used if, for example, the first figure has an error and is not created by
METAPOST, but you would likeMFPIC to go ahead and include the remaining figures. Then use
final. It can also be used to override a LATEX global draft option. Or if 〈file〉.1 exists, but other
figures still have errors and you would like several runs to be treated as first runs untilMETAPOST

has stopped issuing error messages, then usedraft. These commands also work under themetafont
option, but time and error messages are less of an issue then. If all the figures have been created
and debugged, some time might be saved (with eithermetafont or metapost) by not writing the
output file again, thennowrite can be used.

2.10 Option Scoping Rules

Some of these options merely change TEX behavior, others write information to the output file
for METAFONT or METAPOST. Changes in TEX behavior obey the normal TEX grouping rules,
the information written to the output file obeysMETAFONT grouping rules. Since eachmfpic
environment is both a TEX group and (corresponds to) aMETAFONT group, the following always
holds: use of one of the command forms inside of anmfpic environment makes the change local



2.10 OPTION SCOPINGRULES 7

to that environment.
An effort has been made (as of version 0.7) to make this universal. That is, any of the com-

mands listed above for turning options on and off will be global when issued outside anmfpic
environment. The debug commands are exceptions; they obey all TEX scoping rules.

We have also tried to make all otherMFPIC commands for changing the various parameters
follow this rule: local insidemfpic environment, global outside. However, as of this writing I
don’t claim to have caught every one.

The following are special:\usemetapost, \usemetafont, \mfpicdraft, \mfpicfinal, and
\mfpicnowrite. Their effects are always global, partly because they should occur prior to the
initialization command\opengraphsfile (described in section3.1). Note that\usemetapost
may cause a file of graphic inclusion macros to be input. If this command is issued inside a group,
some definitions in that file may be lost, breaking the graphic inclusion code.



3 The Macros.
In these descriptions we will often refer to ‘METAFONT’ when we really mean ‘METAFONT or
METAPOST’. This will especially be the case whenever we need to refer to commands in the
two languages which are substantially the same, but occasionally we will even talk about run-
ning ‘METAFONT’ when we mean running one or the other to process the figures. If we need to
discriminate between the two processors, (for example when they have different behavior) we will
make the difference explicit.

A similar shorthand is used when referring to TEX. It should not be taken to mean plainTEX,
but rather whatever version of TEX is used to process the source file: LATEX, pdfTEX, pdfLATEX, etc.

Many of the commands ofMFPIC have optional arguments. These are denoted just as in LATEX,
with square brackets. Thus, the command for drawing a circle can be given

\circle{(0,0),1}

having only the mandatory argument, or

\circle[p]{(0,0),1}

Whenever an optional argument is omitted, the behavior is equivalent to some choice of the op-
tional argument. In this example, the two forms have exactly the same behavior, drawing a circle
centered at(0,0) with radius 1. In this case we will say that[p] is thedefault. Another example
is \point{(1,0)} versus\point[3pt]{(1,0)}. They both place a dot at the point(1,0). The
second one explicitly request that it have diameter3pt; the first will examine the length command
\pointsize, which the user can change, but it is initialized to2pt. In this case we will say the
default is the value of\pointsize, initially 2pt.

Optional arguments forMFPIC commands may consist of empty brackets (completely empty,
no spaces) and the default will be used. This is useful only for commands that have two optional
arguments and one only wants to change from the defaults in the second one. An optional argument
should normally not contain any spaces. Even when the argument contains more than one piece of
data, spaces should not separate the parts. In many cases (perhaps most) this will cause no harm,
but it would be better to avoid doing it altogether.

3.1 Files and Environments.

\opengraphsfile{〈file〉}
. . .

\closegraphsfile

These macros open and close theMETAFONT or METAPOSTfile which will contain the pictures
to be included in this document. The name of the file will be〈file〉.mf (or 〈file〉.mp). Donotspecify
the extension, which is added automatically.

Note: This command will cause〈file〉.mf or 〈file〉.mp to be overwritten if it already exists, so
be sure to consider that when selecting the name. Repeating the running of TEX will overwrite the
file created on previous runs, but that should be harmless. For if no changes are made tomfpic
environments, the identical file will be recreated, and if changes have been made, then you want
the file to be replaced with the new version.

It is possible (buthas notbeen seriously tested) to close one file and open another, and even to
change betweenmetapost andmetafont in between. If anything goes wrong with this, contact the

8



3.1 FILES AND ENVIRONMENTS. 9

maintainer and it might be fixed in some later version.

\mfpic[〈xscale〉][〈yscale〉]{〈xmin〉}{〈xmax〉}{〈ymin〉}{〈ymax〉}
. . .

\endmfpic

These macros open and close themfpic environment in which most of the rest of the macros
make sense. The\mfpic macro also sets up the local coordinate system for the picture. The
〈xscale〉 and 〈yscale〉 parameters establish the length of a coordinate system unit, as a multiple
of the TEX dimension\mfpicunit. If neither is specified, both are taken to be 1 (i.e., each coordi-
nate system unit is 1\mfpicunit). If only one is specified, then they are assumed to be equal. The
〈xmin〉 and 〈xmax〉 parameters establish the lower and upper bounds for thex-axis coordinates;
similarly, 〈ymin〉 and〈ymax〉 establish the bounds for they-axis. These bounds are expressed in
local units—in other words, the actual width of the picture will be(〈xmax〉− 〈xmin〉) · 〈xscale〉
times\mfpicunit, its height(〈ymax〉− 〈ymin〉) · 〈yscale〉 times\mfpicunit, and its depth zero.
One can scale all pictures uniformly by changing\mfpicunit, and scale an individual picture by
changing〈xscale〉 and〈yscale〉. After loadingMFPIC, \mfpicunit has the value1pt. Onept is a
printer’s point, which equals 1/72.27 inches or 0.35146 millimeters.

Note: Changing\mfpicunit or the optional parameters will scale the coordinate system, but
not the values of certain parameters that are defined in absolute units. Examples of these are the
default width of the drawing pen, the default lengths of arrowheads, the default sizes of dashes and
dots, etc. If you wish, you can set these to multiples of\mfpicunit, but it is difficult (and probably
unwise) to get them to scale along with the scale parameters.

In addition to establishing the coordinate system, these scales and bounds are used to estab-
lish the metric for theMETAFONT character or bounding box for theMETAPOST figure described
within the environment. If any of these parameters are changed, the.tfm file (METAFONT) or the
bounding box (METAPOST) will be affected, so you will have to be sure to reprocess the TEX file
after processing the.mf or .mp file, even if no other changes are made in the figure.

\mfpicnumber{〈num〉}
Normally,\mfpic assigns the number 1 to the firstmfpic environment, after which the number

is increased by one for each newmfpic environment. This number is used internally to include the
picture. It is also transmitted to the output file where it is used as the argument to abeginmfpic
command. InMETAFONT this number becomes the position of the character in the font file, while
in METAPOST it is the extension on the graphic file that is output. The above command tellsMFPIC

to ignore this sequence and number the nextmfpic figure with 〈num〉 (and the one after that
〈num〉+ 1, etc.). It is up to the user to make sure no number is repeated, as no checking is done.
Numbers greater than 255 may cause errors, as TEX assumes that characters are represented by 8-
bit numbers. If the first figure is to be numbered something other than 1, then, under themetapost
option, this command should come before\opengraphsfile, as that command checks for the
existence of the first numbered figure to determine if there are figures to be included.

\begin{mfpic}...\end{mfpic}

In LATEX, instead of\mfpic and \endmfpic, you may prefer to use\begin{mfpic} and
\end{mfpic}. This is by no means required: in LATEX \begin{command} invokes\command, and
\end{command} invokes\endcommand, for any environmentcommand.



3.2 FIGURES. 10

The sample filelapictures.tex provided withMFPIC illustrates this use of anmfpic envi-
ronment in LATEX.

The rest of theMFPIC macros do not affect the font metric file (〈file〉.tfm), and so if these
commands are changed or added in your document, you will not have to repeat the third step
of processing (reprocessing with TEX) to complete your TEX document. The same is true when
optionmetapost is selected without thetruebbox option, except under pdfTEX or pdfLATEX. Those
TEX programs will embed the figures right in the.pdf output. For normal LATEX + DVIPS, the
figures are embedded byDVIPS, which must always be repeated.

For the remainder of the macros, the numerical parameters are expressed in the units of the
local coordinate system specified by\mfpic, unless otherwise indicated.

3.2 Figures.

3.2.1 METAFONT PAIRS.

Since many of the arguments of theMFPIC drawing commands are sent toMETAFONT to be inter-
preted, it’s useful to know something aboutMETAFONT concepts.

In particular,METAFONT haspair objects, which may be constants or variables. Pair constants
have the form(x,y). Pairs are two-dimensional rectangular (cartesian) quantities, and are clearly
useful for representing both points and vectors on the plane.

Moreover, we herein often represent each pair by a brief name, such asp, v or c, the meanings
of which are usually obvious in the context of the macro. The succinctness of this notation also
helps us to think geometrically rather than only of coordinates.

METAPOSThas these same concepts, but also has color objects, which may also be constants
or variables. Color constants have the form(r,g,b) wherer, g, andb are numbers between 0
and 1 determining the relative proportions of red, green and blue in the color (rgb model). A color
variable is a name, likemagenta or RoyalBlue (predefined). There are also color functions like
cmyk(x,y,z,w) which is defined to convert cmyk values intoMETAPOST’s native rgb model.

Some commands depend on the value of separately defined parameters. All these parameters
are initialized whenMFPIC is loaded. In the following descriptions we give the initial value of all
the relevant parameters. WhenMETAPOST output is selected, figures can be drawn in any color.
Several of the above mentioned parameters are colors. MFPIC provides commands to change any
of these parameters.

3.2.2 POINTS, L INES, AND RECTANGLES.

\pointdef{〈name〉}(x,y)

Defines a symbolic name for points and their coordinates.〈name〉 is any legal TEX com-
mand namewithout the backslash;x and y are any numbers. For example, after the command
\pointdef{A}(1,3), \A expands to(1,3), while \Ax and\Ay expand to1 and3, respectively.
Because of the way\tlabel is defined (see section3.7below), one cannot use\A to specify where
to place a label (unlessmplabels is in effect), but must use(\Ax,\Ay). In most other commands,
one can use\A where a pair or point is required.

\point[〈ptsize〉]{〈p0〉,〈p1〉,. . .}
Draws small disks centered at the points〈p0〉, 〈p1〉, and so on. If the optional argument〈ptsize〉



3.2 FIGURES. 11

is present, it determines the diameter of the disks, which otherwise equals the TEX dimension
\pointsize, initially 2pt. The disks have a filled interior if the command\pointfilltrue has
been issued (the initial value),\pointfillfalse causes the interior to be erased and an outline
drawn. The color of the circles is the value of the predefined variablepointcolor, and the inside
of the open circles is the value ofbackground.

\plotsymbol[〈size〉]{〈symbol〉}{〈p0〉,〈p1〉,. . .}
Draws small symbols centered at the points〈p0〉, 〈p1〉, and so on. The symbols must be given

by name, and the available symbols areAsterisk, Circle, Diamond, Square, Triangle, Star,
SolidCircle, SolidDiamond, SolidSquare, SolidTriangle, SolidStar, Cross and Plus.
The names should be self-explanatory. Undermetapost, symbols are drawn inpointcolor. The
〈size〉 defaults to\pointsize as in\point above.Asterisk consists of six line segments while
Star is the standard closed, ten-sided polygon. The name ‘\plotsymbol’ comes from the fact that
the\plot command, which was written first, utilizes these same symbols. The command\symbol
was already taken (standard LATEX).

The difference between\pointfillfalse\point. . . and\plotsymbol{Circle}. . . is that
the inside of the circle will not be erased in the second version (i.e., whatever else has already been
drawn in that area will remain visible). This is the default (for backward compatibility), but that
can be changed with the commands below.

\clearsymbols
\noclearsymbols

After the first of these two commands, subsequent\plotsymbol commands will draw the open
symbols with their interiors erased. After the second, the default behavior (described above) will
be restored. These commands have no effect on\point. \plotnodes (see subsection3.5.1) also
responds to the settings made by these commands. The\plot command (also in subsection3.5.1)
does not.

\polyline{〈p0〉,〈p1〉,. . .}
\lines{〈p0〉,〈p1〉,. . .}

Draws the line segment with endpoints at〈p0〉 and〈p1〉, then the line segment with endpoints
at 〈p1〉 and 〈p2〉, etc. The result is an open polygonal path through the specified points, in the
specified order.\polyline and\lines mean the same thing.

\polygon{〈p0〉,〈p1〉,. . .}
Draws a closed polygon with vertices at the specified points in the specified order.

\rect{〈p0〉,〈p1〉}
Draws the rectangle specified by the points〈p0〉 and〈p1〉, these being either pair of opposite

corners of the rectangle in any order.
It is occasionally helpful to know that connected paths like those produced by\polyline or

\rect have asense(a direction). The sense of\polyline is the direction determined by the order
of the points. For\rect the sense may be clockwise or anticlockwise depending on the corners
used: it begins at the first of the two points and goes horizontally from there.



3.2 FIGURES. 12

\regpolygon{〈num〉}{〈name〉}{〈eqn1〉}{〈eqn2〉}
This produces a regular polygon with〈num〉 sides. The second argument,〈name〉 is a symbolic

name. It can be used to refer to the vertices later. The last two arguments should be equations that
position two of the vertices or one vertex and the center. The center is refered to by〈name〉0 and
the vertices by〈name〉1 〈name〉2, etc., going anticlockwise around the polygon. The〈name〉 itself
(without a number) will be aMETAFONT variable assigned the value of〈num〉. For example,

\regpolygon{5}{Meg}{Meg0=(0,1)}{Meg1=(2,0)}

will produce a regular pentagon with its center at(0,1) and its first vertex at(2,0). One could later
draw a star inside it with

\polygon{Meg1,Meg3,Meg5,Meg2,Meg4}

Moreover,Meg will equal 5. The name given becomes aMETAFONT variable and care should be
taken to make the name distinctive so as not to redefine some internal variable.

3.2.3 A WORD ON L IST ARGUMENTS

We have seen already fourMFPIC macros that take a mandatory argument consisting of a list of
coordinate pairs. There are many more, and some that take a comma-separated lists of other types
of items. If the lists are long, especially if they are generated by a program, it might be more
convenient if one could simply refer to an external file for the data. This is possible, and one does
it the following way: instead of\lines{〈list〉}, one can write

\lines\datafile{〈filename〉}
where〈filename〉 is the full name of the file containing the data. The required format of this file
and the details of this usage can be found in subsection3.6.3. This method is available for any
command that takes a comma-separated list of data as its last argument,with the exception of those
commands that adds text to the picture. Examples of the latter are\plottext and\axislabels
(subsection3.7.1).

3.2.4 AXES, AXIS MARKS, AND GRIDS.

\axes[〈hlen〉]
\xaxis[〈hlen〉]
\yaxis[〈hlen〉]

These are retained for backward compatibility, but there are more flexible alternatives below.
They drawx- andy-axes for the coordinate system. The command\axes is equivalent to\xaxis
followed by \yaxis which produce the obvious. Thex- and y-axes extend the full width and
height of themfpic environment. The optional〈hlen〉 sets the length of the arrowhead on each
axis. The default is the value of the TEX dimension\axisheadlen, initially 5pt. The shape of the
arrowhead is determined as in the\arrow macro (section3.4). The color of the head is the value
of headcolor, the shaft isdrawcolor.

Unlike other commands that produce lines or curves, these do not respond to the prefix macros
of sections3.4 and3.5. They always draw a solid line (with an arrowhead unless\axisheadlen
is 0pt). Theydo respond to changes in the pen thickness (see\penwd in section3.11) but that is
pretty much the only possibility for variation.



3.2 FIGURES. 13

\axis[〈hlen〉]{〈one-axis〉}
\doaxes[〈hlen〉]{〈axis-list〉}

These produce any of 6 different axes. The parameter〈one-axis〉 can bex or y, to produce
(almost) the equivalent of\xaxis and\yaxis; or it can bel, b, r, or t to produce an axis on
the border of the picture (left, bottom, right or top, respectively).\doaxes takes a list of any or
all of the six letters (with either spaces or nothing in between) and produces the appropriate axes.
Example:\doaxes{lbrt}. The optional argument sets the length of the arrowhead. In the case of
axes on the edges, the default is the value of\sideheadlen, which MFPIC initializes to0pt. For
thex- andy-axis the default is\axisheadlen as in\xaxis and\yaxis above.

The commands\axis{x}, \axis{y}, and\doaxes{xy} differ from the old\xaxis, \yaxis
and \axes in that these new versions respond to changes made by\setrender (see subsec-
tion 3.5.3). Moreover, prefix macros may be applied to\axis without error (see sections3.4 and
3.5): \dotted\axis{x} draws a dottedx-axis, but\dotted\xaxis produces aMETAFONT error.
A prefix macro applied to\doaxes generates no error, but only the first axis in the list will be
affected.

The side axes are drawn by default with a pen stroke along the very edge of the picture (as
determined by the parameters to\mfpic). This can be changed with the command\axismargin
described below.

Axes on the edges are drawn so that they don’t cross each other.\doaxes{lbrt}, for example,
produces a perfect rectangle. If thex- andy-axis are drawn with\axis or \doaxis, then they will
not cross the side axes. For this to work properly, all the following margin settings have to be done
before the axes are drawn.

\axismargin{〈axis〉}{〈num〉}
\setaxismargins{〈num〉}{〈num〉}{〈num〉}{〈num〉}
\setallaxismargins{〈num〉}

The〈axis〉 is one of the lettersl, b, r, or t. \axismargin causes the given axis to be shifted
inward by the〈num〉 specified (ingraph coordinates). The second command\setaxismargins
takes 4 arguments, using them to set the margins starting with the left and proceeding anticlock-
wise. The last command sets all the axis margins to the same value.

A change to an axis margin affects not only the axis at that edge but also the three axes perpen-
dicular to it. For example, if the margins areMlft , Mbot, Mrt andMtop, then\axis b draws a line
startingMlft graph units from the left edge and endingMrt units from the right edge. Of course,
the entire line isMbot units above the bottom edge. The margins are also respected by thex- and
y-axis, but only when drawn with\axis. The old\xaxis, \yaxis and\axes ignore them.

Special effects can be achieved by lying to one axis about the other margins.

\xmarks[〈len〉]{〈numberlist〉}
\tmarks[〈len〉]{〈numberlist〉}
\bmarks[〈len〉]{〈numberlist〉}
\ymarks[〈len〉]{〈numberlist〉}
\lmarks[〈len〉]{〈numberlist〉}
\rmarks[〈len〉]{〈numberlist〉}
\axismarks{〈axis〉}[〈len〉]{〈numberlist〉}

These macros place hash marks on the appropriate axes at the places indicated by the values



3.2 FIGURES. 14

in the list. The optional〈len〉 gives the length of the hash marks. If〈len〉 is not specified, the TEX
dimension\hashlen, initially 4pt, is used. The marks on thex- andy-axes are centered on the
respective axis; the marks on the border axes are drawn to the inside. Both these behaviors can be
changed (see below). The commands may be repeated as often as desired. (The timing of drawing
commands can make a difference as outlined in appendix4.6.) The command\axismarks{x} is
equivalent to\xmarks and so on for each of the six axes. (I would have used\marks, but eTEX
makes that a primitive.)

The〈numberlist〉 is normally a comma-separated list of numbers. In place of this, one can give
a starting number, an increment and an ending number as in the following example:

\xmarks{-2 step 1 until 2}

is the equivalent of

\xmarks{-2,-1,0,1,2}

One must use exactly the wordsstep and until. There must be spaces between, but the
number of spaces is not significant.6 Users should be aware that if any of the numbers are non-
integral then due to natural round-off effects, the last value might be overshot and a mark not
printed there.

\setaxismarks{〈axis〉}{〈pos〉}
\setbordermarks{〈lpos〉}{〈bpos〉}{〈rpos〉}{〈tpos〉}
\setallbordermarks{〈pos〉}
\setxmarks{〈pos〉}
\setymarks{〈pos〉}

These set the placement of the hash marks relative to the axis. The parameter〈axis〉 is one of the
lettersx, y, l, b, r, or t, and〈pos〉 must be one of the literal wordsinside, outside, centered,
onleft, onright, ontop or onbottom. The second command takes four arguments and sets the
position of the marks on each border. The third command sets the position on all four border axis
to the same value. The last two commands are abbreviations for\setaxismarks{x}{〈pos〉} and
\setaxismarks{y}{〈pos〉}, respectively.

Not all combinations make sense (for example,\setaxismarks{r}{ontop}). In these cases,
no error message is produced:ontop andonleft are considered to be equivalent, as areonbottom
andonright. The parametersinside andoutside make no sense for thex- andy-axes, but if
they are used theninside meansontop for thex-axis andonright for they-axis. These words are
actuallyMETAFONT numeric variables defined in the filegrafbase.mf, and the variablesontop
andonleft, for example, are given the same value.

6ExperiencedMETAFONT programmers may recognize that anything can be used that is permitted inMETAFONT’s
〈forloop〉 syntax. Thus the given example can also be reworded\xmarks{-2 upto 2}, or even\xmarks{2 downto -2}



3.2 FIGURES. 15

\grid[〈ptsize〉]{〈xsep〉,〈ysep〉}
\gridpoints[〈ptsize〉]{〈xsep〉,〈ysep〉}
\lattice[〈ptsize〉]{〈xsep〉,〈ysep〉}
\hgridlines{〈ysep〉}
\vgridlines{〈xsep〉}
\gridlines{〈xsep〉,〈ysep〉}

\grid draws a dot at every point for which the first coordinate is an integer multiple of the
〈xsep〉 and the second coordinate is an integer multiple of〈ysep〉. The diameter of the dot is deter-
mined by〈ptsize〉. The default is.5bp and is hard coded in theMETAFONT macros that ultimately
do the drawing. Under themetapost option, the color of the dot ispointcolor. The commands
\gridpoints and \lattice are synonyms for\grid.

\hgridlines draws the horizontal and\vgridlines the vertical lines through these same
points.\gridlines draws both sets of lines. The thickness of the lines is set by\penwd. Authors
are recommended to either reduce the pen width or changedrawcolor to a lighter color for grids.
Or omit them entirely: well-designed graphs usually don’t need them and almost never should both
horizontals and verticals be used.

\plrgrid{〈rsep〉,〈anglesep〉}
\gridarcs{〈rsep〉}
\gridrays{〈anglesep〉}
\plrpatch{〈rmin〉,〈rmax〉,〈rsep〉,〈tmin〉,〈tmax〉,〈tsep〉}
\plrgridpoints{〈rsep〉,〈anglesep〉}

\plrgrid fills the graph with circular arcs and radial lines.\gridarcs draws only the arcs,
\gridrays only the radial lines.\plrgridpoints places a dot at all the places the rays and arcs
would intersect.

The arcs are centered at(0,0) and the lines emanate from(0,0) (even if (0,0) is not in the
graph space). The correspondingMETAFONT commands actually draw enough to cover the graph
area and then clip them to the graph boundaries. If you don’t want them clipped, use\plrpatch.

\plrpatch draws arcs with radii starting at〈rmin〉, stepping by〈rsep〉 and ending with〈rmax〉.
Each arc goes from angle〈tmin〉 to 〈tmax〉. It also draws radial lines with angles starting at〈tmin〉,
stepping by〈tsep〉 and ending with〈tmax〉. Each line goes from radius〈rmin〉 to 〈rmax〉. If
〈rmax〉− 〈rmin〉 doesn’t happen to be a multiple of〈rsep〉, the arc with radius〈rmax〉 is drawn
anyway. The same is true of the line at angle〈tmax〉, so that the entire boundary is always drawn.

If 〈tsep〉 is larger than〈tmax〉−〈tmin〉, then only the boundary rays will be drawn. If〈rsep〉 is
larger than〈rmax〉−〈rmin〉, then only the boundary arcs will be drawn.

The color used for rays and arcs isdrawcolor, and for dotspointcolor. The advice about
\gridlines holds for\plrgrid as well.

3.2.5 CIRCLES AND ELLIPSES.

\circle[〈format〉]{〈specification〉}
Draws a circle. Starting withMFPIC version 0.7, there are 4 different ways to specify a circle, so

\circle can be given an optional argument that determines what data is specified in the mandatory
argument.



3.2 FIGURES. 16

\circle[p]{〈c〉,〈r〉}
\circle[c]{〈c〉,〈p〉}
\circle[t]{〈p1〉,〈p2〉,〈p3〉}
\circle[s]{〈p1〉,〈p2〉,〈θ〉}

The optional arguments produce circles according to the following descriptions.

[p] ThePolar form is the default. The data in the mandatory argument should then be the center
c and radiusr of the circle.

[c] TheCenter-point form. In this case the data should be the center and one point on the circum-
ference.

[t] TheThree-point form. The data are three points that do not lie in a straight line.

[s] Thepoint-sweep. The data are two points on the circle, followed by the angle of arc between
them.

These optional arguments are also used in the\arc command (see subsection3.2.7). The\circle
command draws the whole circle which the equivalent\arc command draws only part of. The
sense of the circle produced is anticlockwise except in the case[t], where it is the direction
determined by the order of the three points, and the case[s], where it is determined by〈θ〉:
clockwise if negative, anticlockwise if positive.

\ellipse[〈θ〉]{〈c〉,〈rx〉,〈ry〉}
Draws an ellipse with thex radius〈rx〉 andy radius〈ry〉, centered at the point〈c〉. The optional

parameter〈θ〉 provides a way of rotating the ellipse by〈θ〉 degrees anticlockwise around its center.

3.2.6 CURVES.

\curve[〈tension〉]{〈p0〉,〈p1〉,. . .}
Draws a smooth path through the specified points, in the specified order. It is ‘smooth’ in two

ways: it never changes direction abruptly (no ‘corners’ or ‘cusps’ on the curve), and it tries to make
turns that are not too sharp. This latter property is acheived by specifying (toMETAFONT) that the
tangent to the curve at each listed point is to be parallel to the line from that point’s predecessor to
its successor.

The optional〈tension〉 influenceshow smooth the curve is. The special valueinfinity (in
fact, usually anything greater than about 10), makes the curve not visibly different from a polyline.
The higher the value of tension, the sharper the corners on the curve and the flatter the portions in
between. METAFONT requires the tension to be larger than 0.75. The default value of the tension
is 1 whenMFPIC is loaded, but that can be changed with the following command.

\settension{〈num〉}
This sets the default tension for all commands that take an optional tension parameter.

\cyclic[〈tension〉]{〈p0〉,〈p1〉,. . .}
Draws a cyclic (i.e., closed)METAFONT Bézier curve through the specified points, in the spec-

ified order. It uses the same procedure as\curve, but treats the first listed point as having the last



3.2 FIGURES. 17

as its predecessor and the last point has the first as its successor. The〈tension〉 is as in the\curve
command.

Occasionally it is necessary to specify a sequence of points withincreasing xcoordinates and
draw a curve through them. One would then like the resulting curve both to be smoothand to
represent a function (that is, the curve always has increasingx coordinate, never turning leftward).
This cannot be guaranteed with the\curve command unless the tension isinfinity.

\fcncurve[〈tension〉]{(x0,y0),(x1,y1),. . .}

Draws a curve through the points specified. If the points are listed with increasing (or de-
creasing)x coordinates, the curve will also have increasing (resp., decreasing)x coordinates. The
〈tension〉 is a number equal to or greater than 1.0 which controls how tightly the curve is drawn.
Generally, the larger it is, the closer the curve is to the polyline through the points. The default
tension is typically 1.2 (actually 1.2 times the value set with\settension). For those who know
something aboutMETAFONT, this ‘tension’ is not the same as theMETAFONT notion of tension,
the tension in the\curve command, but it functions in a similar fashion. In this case it can be any
positive number, but only values greater than or equal to 1 guarantee the property of never doubling
back.

3.2.7 CIRCULAR ARCS.

\arc[〈format〉]{〈specification〉}
Draws a circular arc specified as determined by the〈format〉 optional parameter. This macro

and\circle are unusual in that the optional〈format〉 parameter determines the format of the other
parameter, as indicated below. The user is responsible for ensuring that the parameter values make
geometric sense.

\arc[s]{〈p0〉,〈p1〉,〈sweep〉}
\arc[t]{〈p0〉,〈p1〉,〈p2〉}
\arc[p]{〈c〉,〈θ1〉,〈θ2〉,〈r〉}
\arc[a]{〈c〉,〈r〉,〈θ1〉,〈θ2〉}
\arc[c]{〈c〉,〈p1〉,〈θ〉}

The optional arguments produce arcs according to the following descriptions.

[s] Thepoint-Sweep formis the default format. It draws the circular arc starting from the point
〈p0〉, ending at the point〈p1〉, and covering an arc angle of〈sweep〉 degrees, measured
anticlockwise around the center of the circle. If, for example, the points〈p0〉 and〈p1〉 lie on
a horizontal line with〈p0〉 to theleft, and〈sweep〉 is between 0 and 360 (degrees), then the
arc will sweepbelowthe horizontal line (in order for the arc to be anticlockwise). A negative
value of〈sweep〉 gives a clockwise arc from〈p0〉 to 〈p1〉.

[t] The Three-point formdraws the circular arc which passes through all three points given, in
the order given. Internally, this is converted to two applications of the point-sweep form.

[p] ThePolar formdraws the arc of a circle with center〈c〉 starting at the angle〈θ1〉 and ending
at the angle〈θ2〉, with radius〈r〉. Both angles are measured anticlockwise from the positive
x axis.



3.2 FIGURES. 18

[a] TheAlternate polar formdraws the arc of a circle with center〈c〉 and radius〈r〉, starting at the
angle〈θ1〉 and ending at the angle〈θ2〉. Both angles are measured anticlockwise from the
positivex axis. This is provided because it seems a more reasonable order of arguments, and
matches the order\sector requires (see subsection3.2.8below). Thep option is retained
for backward compatibility.

[c] TheCenter-point formdraws the circular arc with center〈c〉, starting at the point〈p1〉, and
sweeping an angle of〈θ〉 around the center from that point. (This and the point sweep form
are the basic methods of handling arcs—the previous three formats are translated to one of
these two before drawing.)

3.2.8 OTHER FIGURES.

\turtle{〈p0〉,〈v1〉,〈v2〉,. . .}
Draws a line segment, starting from the point〈p0〉, and extending along the (2-dimensional

vector) displacement〈v1〉. It then draws a line segment from the previous segment’s endpoint,
along displacement〈v2〉. This continues for all listed displacements, a process similar to ‘turtle
graphics’.

\sector{〈c〉,〈r〉,〈θ1〉,〈θ2〉}
Draws the sector, from the angle〈θ1〉 to the angle〈θ2〉 inside the circle with center at the point

〈c〉 and radius〈r〉, where both angles are measured in degrees anticlockwise from the direction
parallel to thex axis. The sector forms a closed path.Note: \sector and\arc[p] have the same
parameters, butin a different order.7

\makesector

The\sector command requires the center of the arc as one of its arguments. But if one doesn’t
know that center (say one only knows three points the arc connects) then even though the arc can
be drawn,\sector cannot. The\makesector command, when followed by any\arc command,
will find the center and connect it to the two ends of the arc. It will actually attempt to do the same
with any path that follows, but the ‘center’ it finds (if it finds one) will usually be meaningless.

3.2.9 BAR CHARTS AND PIE CHARTS.

\barchart[〈start〉,〈sep〉,〈r〉]{〈h-or-v〉}{〈list〉}
\bargraph. . .
\gantt. . .
\histogram. . .
\chartbar{〈num〉}
\graphbar{〈num〉}
\histobar{〈num〉}

The macro\barchart computes a bar chart or a Gantt chart. It does not draw the bars, but only
defines their rectangular paths which the user may then draw or fill or both using the\chartbar
macros (see below). Since bar charts have many names,\bargraph and\histogram are provided

7This apparently was unintended, but we now have to live with it so as not to break existing.tex files.



3.2 FIGURES. 19

as synonyms. The macro\gantt is also a synonym; whether a Gantt chart or bar chart is created
depends on the data.

〈h-or-v〉 should bev if you want the ends of the bars to be measured vertically from thex-axis,
orh if they should be measured horizontally from they-axis.〈list〉 should be a comma-separated list
of numbers and/or pairs giving the coordinates of the end(s) of each bar. A numberc is interpreted
as the pair(0,c); a pair (a,b) is interpreted as an interval giving the ends of the bar (for Gantt
diagrams). The rest of this description refers to theh case; thev case is analogous.

By default the bars are 1 graph unit high (thickness), fromy = n−1 to y = n. Their width and
location are determined by the data. The optional parameter consists of three numeric parameters
separated by commas.〈start〉 is they-coordinate of the bottom edge of the first bar,〈sep〉 is the
distance between the bottom edges of successive bars, and〈r〉 is the fraction of〈sep〉 occupied
by each bar. The default behavior corresponds to[0,1,1]. In general, bar numbern will be from
y = 〈start〉+(n−1)∗ 〈sep〉 to y = 〈start〉+(n−1+ 〈r〉)∗ 〈sep〉

Notice the bars are numbered in order from bottom to top. You can reverse them by making
〈sep〉 negative, and making〈start〉 the top edge of the first bar.

The fraction〈r〉 should be between -1 and 1. A negative value reverses the direction from the
‘leading edge’ of the bar to the ‘trailing edge’. For example, if one bar chart is created with

\barchart[1,1,-.4]{h}{..}

and another with

\barchart[1,1,.4]{h}{..}

both having the same number of bars, then the first will have its first bar fromy= 1 toy= 1− .4=
.6, while the second will have its first bar adjacent to that one, from 1 to 1+ .4. Similarly the next
bars will be above and belowy = 2, etc. This makes it easy to draw bars next to one another for
comparison.

The macro\chartbar (synonyms\graphbar, \ganttbar, and\histobar) takes a number
from 1 to the number of elements in the〈list〉 and draws the rectangular path. This behaves just
like any other figure macro, and the prefix macros from section3.5 may be used to give adjacent
bars contrasting colors, fills, etc.

\piechart[〈dir〉〈angle〉]{〈c〉,〈r〉}{〈list〉}
\piewedge[〈spec〉〈trans〉]{〈num〉}

The macro\piechart also does not draw anything, but computes the\piewedge regions
described below. The first part of the optional parameter,〈dir〉, is a single letter which may be either
c ora which stand forclockwiseor anticlockwise, respectively. It is common to draw piecharts with
the largest wedge starting at 12 o’clock (angle 90 degrees) and successive wedges clockwise from
there. This is the default. You can change the starting angle from 90 with the〈angle〉 parameter,
and the change the direction to counter-clockwise by specifyinga for 〈dir〉. It is also traditional to
arrange the wedges from largest to smallest, except there is often a miscellaneous category which
is usually last and may be larger than some others. Therefore\piechart makes no attempt to
sort the data. The data is entered as a comma separated〈list〉 of positive numbers in the second
required parameter. These are only used to determine the relative sizes of the wedges and are
not printed anywhere. The first required parameter should contain a pair〈c〉 for the center and a
positive number〈r〉 for the radius, separated by a comma.



3.3 COLORS 20

After a\piechart command has been issued, the individual wedges may be drawn, filled, etc.,
using\piewedge{1}, \piewedge{2}, etc. Without the optional argument, the wedges are located
according to the arguments of the last\piechart command. The optional argument to\piewedge
can override this. The parameter〈spec〉 is a single letter, which can bex, s or m. Thex stands for
explodedand it means the wedge is moved directly out from the center of the pie a distance〈trans〉.
〈trans〉 should then be a pure number and is interpreted as a distance in graph units. Thes stands
for shiftedand in this case〈trans〉 should be a pair of the form(〈dx〉,〈dy〉) indicating the wedge
should be shifted〈dx〉 horizontally and〈dy〉 vertically (in graph units). Them stands formove to,
and〈trans〉 is then the absolute coordinates(〈x〉,〈y〉) in the graph where the point of the wedge
should be placed.

3.2.10 POLAR COORDINATES TORECTANGULAR.

\plr{(〈r0〉,〈θ0〉), (〈r1〉,〈θ1〉), . . .}

Replaces the specified list of polar coordinate pairs by the equivalent list of rectangular (carte-
sian) coordinate pairs. Through\plr, commands designed for rectangular coordinates can be ap-
plied to data represented in polar coordinates—and to data containing both rectangular and polar
coordinate pairs.

3.3 Colors

3.3.1 SETTING THE DEFAULT COLORS.

\drawcolor[〈model〉]{〈colorspec〉}
\fillcolor. . .
\hatchcolor. . .
\pointcolor. . .
\headcolor. . .
\tlabelcolor. . .
\backgroundcolor. . .

These macros set the default color for various drawing elements. Any curve (with one ex-
ception, those drawn by\plotdata), whether solid, dashed, dotted, or plotted in symbols, will
be in the color set by\drawcolor. Set the color used by\gfill with \fillcolor. For all the
hatching commands use\hatchcolor. For the\point, \plotsymbol and\grid commands use
\pointcolor, and for arrowheads,\headcolor. Whenmplabels is in effect, the color of labels can
be set with\tlabelcolor, and one can set the color used by\gclear with \backgroundcolor
(the same color is used in the interior of unfilled points drawn with\point). The optional〈model〉
may be one ofrgb, RGB, cmyk, gray, andnamed. The〈colorspec〉 depends on the model, as out-
lined below. Each of these commands sets a correspondingMETAPOSTcolor variable with the same
name (except\backgroundcolor sets the colorbackground). Thus one can set the filling color
to the drawing color with\fillcolor{drawcolor}.

3.3.2 METAPOSTCOLORS.

If the optional〈model〉 specification is omitted, the color specification may be any expression
recognized as a color byMETAPOST. In METAPOST, a color is a triple of numbers like(1,.5,.5),
with the coordinates between 0 and 1, representing red, green and blue levels, respectively. White



3.3 COLORS 21

is given by(1,1,1) and black by(0,0,0). METAPOSTalso has color variables and several have
been predefined:red, green, blue, yellow, cyan, magenta, white, andblack. All the names in
the LATEX COLORpackage’sdvipsnam.def are predefined color variable names. SinceMETAPOST

allows color expressions, colors may be added and multiplied by numerics. Moreover, several
METAPOSTcolor functions have been defined ingrafbase.mp:

cmyk(c,m,y,k)

Converts acmyk color specification toMETAPOST’s native rgb. For example, the command
cmyk(1,0,0,0) yields(0,1,1), which is the definition ofcyan.

RGB(R,G,B)

Converts anRGB color specification torgb. It essentially just divides each component by 255.

gray(g)

Converts a numericg (a gray level) to the corresponding multiple of(1,1,1).

named(〈name〉), rgb(r,g,b)

These are essentially no-ops. However;rgb will truncate the arguments to the 0–1 range, an
unknown〈name〉 is converted toblack, and an unknown numeric argument is set to 0.

As an example of the use of these functions, one could conceivable write:

\drawcolor{0.5*RGB(255,0,0)+0.5*cmyk(1,0,0,0)}

to have all curves drawn in a color halfway between red and cyan (which turns out to be the same
asgray(0.5)).

3.3.3 COLOR MODELS.

When the optional〈model〉 is specified in the color setting commands, it determines the format of
the color specification:

Model: Specification:
rgb Three numbers in the range 0 to 1 separated by commas.
RGB Three numbers in the range 0 to 255 separated by commas.
cmyk Four numbers in the range 0 to 1 separated by commas.
gray One number in the range 0 to 1, with 1 indicating white, 0 black.
named A METAPOSTcolor variable name either predefined byMFPIC or by the user.

MFPIC translates

\fillcolor[cmyk]{1,.3,0,.2}

into the equivalent of

\fillcolor{cmyk(1,.3,0,.2)}.

Note that when the optional model is specified, the color specification must not be enclosed in
parentheses. Note also that each model name is the name of a color function described in the
previous subsection. That is how the models are implemented internally.



3.4 SHAPE-MODIFIER MACROS. 22

3.3.4 DEFINING A COLOR NAME .

\mfpdefinecolor{〈name〉}{〈model〉}{〈colorspec〉}
This defines a color variable〈name〉 for later use, either in the commands\drawcolor, etc., or

in the optional parameters to\draw, etc. The name can be used alone or in thenamed model. The
mandatory〈model〉 and〈colorspec〉 are as above.

A final caution, the colors of anMFPIC figure are stored in the.mp output file, and are not
related to colors used or defined by the LATEX COLOR package. In particular a color defined only
by LATEX’s \definecolor command will remain unknown toMFPIC. Conversely, LATEX commands
will not recognize any color defined only by\mfpdefinecolor.

3.3.5 COLOR IN METAFONT

METAFONT was never meant to understand colors, but it certainly can be taught the difference
between black and white and, to a limited extent, various grays. Starting with version 0.7,MFPIC

will no longer generate an error when a color-changing command is used under themetafont option.
Instead, when possible, the variables that represent colors inMETAPOST will be converted to a
numeric value between 0 and 1 inMETAFONT. When possible (for example, when a region is
filled) the numeric will be interpreted as a gray level and shading (see subsection3.5.2) will be
used to approximate the gray. In other cases (drawing or dashing of curves, placing of points or
symbols, filling with a pattern of hatch lines) the number will be interpreted as black or white: a
value less than 1 will cause the figure to be rendered (in black), while a value equal to 1 (white)
will cause pixels corresponding to the figure to be erased.

This is still somewhat experimental and depends on adhering to certain restrictions. META-
FONT’s syntax does not recognize a triple of numbers as any sort of data structure, but it does
allow commandsto have any number of parameters in parentheses. So colors must be specified
using the color commands such asrgb(1,1,0) or color names such asyellow, and never as a
bare triple. Also, as currently written, the color names defined indvipsnam.mp are not defined
in METAFONT. With these provisions the sameMFPIC code can often produce either gray scale
METAFONT pictures orMETAPOSTcolor pictures depending only on themetapost option.

The commands\shade and\gfill[gray(.75)] (see subsection3.5.2for their meaning) will
produce a similar shade of gray, but there is a difference. The first simply adds small dots on top of
whatever is already drawn. The second, however, tries to simulate theMETAPOSTeffect, which is
to cover up whatever is previously drawn. Therefore, it first zeros all affected pixels before adding
the dots to simulate gray. In particular,\gfill[white] should have the same effect as\gclear.

3.4 Shape-Modifier Macros.

SomeMFPIC macros operate asshape-modifiermacros—for example, if you want to put an ar-
rowhead on a line segment, you could write:\arrow\lines{(0,0),(1,0)}. These are always
prefixed to some figure drawing command, and apply only to the next following figure macro
(which can be rather far removed) provided that only other prefix commands intervene. This is a
rather long section, but even more modification prefixes are documented in subsection3.10.2.

For the purposes of these macros, a distinction must be made in the figure macros between
‘open’ and ‘closed’ paths. A path that merely returns to its starting point isnot automatically
closed; such a path is open, and must be explicitly closed, for example by\lclosed (see below).



3.4 SHAPE-MODIFIER MACROS. 23

The (already) closed paths are those that have ‘closed’ in their name plus:\rect, \circle,
\ellipse, \sector, \cyclic, \polygon, \plrregion, \chartbar, \piewedge, \tlabelrect,
\tlabeloval, \tlabelellipse, \tlabelcircle and\btwnfcn (below).

3.4.1 CLOSURE OFPATHS.

\lclosed. . .

Makes each open path into a closed path by adding a line segment between the endpoints of
the path.

\bclosed[〈tens〉]. . .
This macro is similar to\lclosed, except that it closes an open path smoothly by drawing

a Bézier curve. A B́ezier is METAFONT’s natural way of connecting points into a curve, and
\bclosed is the simplest and most efficient closure next to\lclosed. Moreover it usually gives
a reasonably aesthetic result. Sometimes, however, one might wish a tighter connection. If that is
the case, use the optional argument with a value of the tension〈tens〉 greater than 1, the default.
The command\settension (see subsection3.2.6) can be used to change the default.

\sclosed[〈tens〉]. . .
This closes the curve by mimicking the definition of the\curve command. That command

tries to force the curve to pass through thenth point in a direction parallel to the line from point
(n−1) to point (n+ 1). In order to close a curve in this way, the direction at the two endpoints
often has to be changed, and this changes the shape of the first and last segments of the curve. Use
\bclosed if you don’t wish this to happen. However,\sclosed\curve produces the same result
as\cyclic given the same points and tension valuse. The optional tension argument is as in the
\bclosed command.

3.4.2 REVERSAL, CONNECTION AND SUBPATHS.

\reverse. . .

Turns a path around, reversing its sense. This will affect both the direction of arrows (e.g. bi-
directional arrows can be coded with\arrow\reverse\arrow. . ., where the first\arrow modifier
applies to thereversedpath), and the order of endpoints for a\connect. . .\endconnect environ-
ment (below).

\connect . . . \endconnect

This pair of macros, acting as an environment, adds line segments from the trailing endpoint
of one path to the leading endpoint of the next path, in the given order. The result is a connected,
openpath.

Note: In LATEX, this pair of macros can be used in the form of a LATEX-style environment called
connect —as in\begin{connect}. . .\end{connect}.

\partpath{〈frac1〉,〈frac2〉}. . .
\subpath{〈num1〉,〈num2〉}. . .

Both produce a part of the following path. In\partpath the parameters〈frac1〉 and〈frac2〉
should be numbers between 0 and 1. The path produced travels the same course as the path that



3.5 RENDERING MACROS 24

follows, but starts at the point that is〈frac1〉 of the original length along it, and ends at the point
〈frac2〉 of its original length. If〈frac1〉 is greater than〈frac2〉, the sense of the path is reversed. In
\subpath, the two numbers should be between 0 and the number of Bézier segments in the path.
This is mainly for experiencedMETAFONTers and provides anMFPIC interface toMETAFONT’s
‘subpath’ operation.

As an example of\partpath, one can put an arrowhead (see next subsection) in the middle of
a path with something like the following.

\arrow\partpath{0,.5}\draw. . .

3.4.3 ARROWS.

\arrow[l〈headlen〉][r〈rotate〉][b〈backset〉][c〈color〉]. . .
Draws an arrowhead at the endpoint of the open path (or at the last key point of the closed path)

that follows. The optional parameter〈headlen〉 determines the length of the arrowhead. The default
is the value of the TEX dimension\headlen, initially 3pt. The optional parameter〈rotate〉 allows
the arrowhead to be rotated anticlockwise around its point an angle of〈rotate〉 degrees. The default
is 0. The optional parameter〈backset〉 allows the arrowhead to be ‘set back’ from its original point,
thus allowing e.g. double arrowheads. This parameter is in the form of a TEX dimension—its
default value is0pt. If an arrowhead is both rotated and set back, the rotation affects the direction
in which the arrowhead is set back. The optional〈color〉 defaults toheadcolor. The optional
parameters may appear in any order, but the indicated key character for each parameter must always
appear.

3.5 Rendering macros

3.5.1 DRAWING.

WhenMFPIC is loaded, the initial way in which figures are drawn is with a solid outline. That is,
\lines{(1,0),(1,1),(0,0)} will draw two solid lines connecting the points. When the macros
in this section are used, any previously established default (see subsection3.5.3below) is overrid-
den.

\draw[〈color〉]. . .
Draws the subsequent path using a solid outline. For an example: to both draw a curve and

hatch its interior,\draw\hatch must be used. The default for〈color〉 is drawcolor.
To save repetition, the color used for the following commands is alsodrawcolor: \dashed,

\dotted, \plot, \plotnodes, and\gendashed,

\dashed[〈length〉,〈space〉]. . .
Draws dashed segments along the path specified in the next command. The default length of

the dashes is the value of the TEX dimension\dashlen, initially 4pt. The default space between
the dashes is the value of the TEX dimension\dashspace, initially 4pt. The dashes and the spaces
between may be increased or decreased by as much as1

n of their value, wheren is the number of
spaces appearing in the curve, in order to have the proper dashes at the ends. The dashes at the
ends are half of\dashlen long.



3.5 RENDERING MACROS 25

\dotted[〈size〉,〈space〉]. . .
Draws dots along the specified path. The default size of the dots is the value of the TEX di-

mension\dotsize, initially 0.5pt. The default space between the dots is the value of the TEX
dimension\dotspace, initially 3pt. The size of the spaces may be adjusted as in\dashed.

\plot[〈size〉,〈space〉]{〈symbol〉}. . .
Similar to\dotted except copies of〈symbol〉 are drawn along the path. Possible symbols are

those listed under\plotsymbol in subsection3.2.2. The default〈size〉 is \pointsize and the
default〈space〉 is \symbolspace, initially 5pt.

\plotnodes[〈size〉]{〈symbol〉}. . .
This places a symbol (same possibilities as in\plotsymbol, see subsection3.2.2) at each node

of the path that follows. A node is one of the points through whichMETAFONT draws its curve.
If one of the macros\polyline{. . .} or \curve{. . .} follows, each of the points listed is a node.
In the\datafile command (below), each of the data points in the file is. In the function macros
(below) the points corresponding to〈min〉, 〈max〉 and each step in between are nodes. The optional
〈size〉 defaults to\pointsize. If the command\clearsymbols has been issued then the interiors
of the open symbols are erased. The effect of something like the following is rather nice:

\clearsymbols
\plotnodes{Circle}\draw\polyline{...}

This will first draw the polyline with solid lines, and then the points listed will be plotted as open
circles with the portion of the lines inside the circles erased. One sees a series of open circles
connected one to the next by line segments

\dashpattern{〈name〉}{〈len1〉,〈len2〉,. . .,〈len2k〉}
For more general dash patterns than\dashed and \dotted provide, there is a generalized

dashing command. One must first establish a named dashing pattern with this command.〈name〉
can be any sequence of letters and underscores. Try to make it distinctive to avoid undoing some
internal variable.〈len1〉 through〈len2k〉 are an even number of lengths. The odd ones determine
the lengths of dashes, the even ones the lengths of spaces. A dash of length0pt means a dot. An
alternating dot-dash pattern can be specified with

\dashpattern{dotdash}{0pt,4pt,3pt,4pt}.

Note: Since pens have some thickness, dashes look a little longer, and spaces a little shorter, than
the numbers suggest. If one wants dashes and space with the same length, one needs to take the
size desired and increase the spaces by the thickness of the drawing pen (normally0.5pt) and
decrease the dashes by the same amount.

If \dashpattern is used with an odd number of entries, a space of length0pt is appended.
This makes the last dash in one copy of the pattern abut the first dash in the next copy.

\gendashed{〈name〉}. . .
Once a dashing pattern name has been defined, it can be used in this command to draw the

curve that follows it. Using a name not previously defined will cause the curve to be drawn with



3.5 RENDERING MACROS 26

a solid line, and generate aMETAFONT warning, but TEX will not complain. If all the dimensions
in a dash pattern are 0,\gendashed responds by drawing a solid curve. The same is true if the
pattern has only one entry.

3.5.2 SHADING , FILLING , ERASING, CLIPPING, HATCHING.

These macros can all be used to fill (or unfill) the interior of closed paths, even if the paths cross
themselves. Filling an open curve is technically an error, but theMETAFONT code responds by
drawing the path and not doing any filling. These macros replace the default rendering: when they
are used the outline will not be drawn unless an explicit prefix to do so is present.

\gfill[〈color〉]. . .
Fills in the subsequent closed path. UnderMETAPOST it fills with 〈color〉, which defaults to

fillcolor. UnderMETAFONT it approximates the color with a shade of gray, clears the interior,
and then fills with a pattern of black and white pixels simulating gray.

\gclear. . .

Erases everythinginside the subsequent closed path (except text labels under some circum-
stances, see section2.2and2.3). UnderMETAPOSTit actually fills with the predefined color named
background. Sincebackground is normally white, and so are most actual backgrounds, this is
usually indistinguishable from clearing.

\gclip. . .

Erases everythingoutsidethe subsequent closed path from the picture (except text labels under
some circumstances, see section2.2and2.3).

\shade[〈shadesp〉]. . .
Shades the interior of the subsequent closed path with dots. The diameter of the dots is the

METAFONT variableshadewd, set by the macro\shadewd{〈size〉}. Normally this is0.5pt. The
optional argument specifies the spacing between (the centers of) the dots, which defaults to the TEX
dimension\shadespace, initially 1pt. If \shadespace is less thanshadewd, the closed path is
filled with black, as if with\gfill. UnderMETAPOST this macro actually fills the path’s interior
with a shade of gray. The shade to use is computed based on\shadespace andshadewd. The
default values of these parameters correspond to a gray level of 75% of white.8 The METAFONT

version attempts to optimize the dots to the pixel grid corresponding to the printers resolution
(to avoid generating dither lines). Because this involves rounding, it will happen that values of
\shadespace that are relatively close and at the same time close toshadewd produce exactly
the same shade. Most of the time, however, values of\shadespace that differ by at least 20%
will produce different patterns. The actual behavior for particular values of the parameters and
particular printer resolutions cannot be predicted, and we even make no guarantee it will not change
from one version ofMFPIC to another.

\polkadot[〈space〉]. . .
Fills the interior of a closed path with large dots. This is almost what\shade does, but there are

several differences.\shade is intended solely to simulate a gray fill inMETAFONT where the only

8If \shadewd is w and\shadespace is s, then the level of gray is 1− (w/s)2, where 0 denotes black and 1 white.



3.5 RENDERING MACROS 27

color is black. So it is optimized for small dots aligned to the pixel grid (inMETAFONT). In META-
POSTall it does is fill with gray and is intended merely for compatibility. The macro\polkadot is
intended for large dots in any color, and so it optimizes spacing (a nice hexagonal array) and makes
no attempt to align at the pixel level. The〈space〉 defaults to the TEX dimension\polkadotspace,
initially 10pt. The diameter of the dots is the value of theMETAFONT variablepolkadotwd, which
can be set with\polkadotwd{〈size〉}, and is initially5pt. The dots are colored withfillcolor.
In METAFONT, nonblack values offillcolor will produce shaded dots.

\thatch[〈hatchsp〉,〈angle〉][〈color〉]. . .
Fills a closed path with equally spaced parallel lines at the specified angle. The thickness of the

lines is set by the macro\hatchwd. In the optional argument,〈hatchsp〉 specifies the space between
lines, which defaults to the TEX dimension\hatchspace, initially 3pt. The〈angle〉 defaults to 0.
The 〈color〉 defaults tohatchcolor. If \hatchspace is less than the line thickness, the closed
path is filled with〈color〉, as if with \gfill. If the first optional argument appears, both parts
must be present, separated by a comma. For the color argument to be present, the other optional
argument must also be present. However, if one wishes only to override the default color one can
use an empty first optional argument (completely empty, no spaces).

\lhatch[〈hatchsp〉][〈color〉]. . .
Draws lines shading in the subsequent closed path in a left-oblique hatched (upper left to lower

right) pattern. It is exactly the same as\thatch[〈hatchsp〉,-45][〈color〉]. . .

\rhatch[〈hatchsp〉][〈color〉]. . .
Draws lines shading in the subsequent closed path in a right-oblique hatched (lower left to

upper right) pattern. It is exactly the same as\thatch[〈hatchsp〉,45][〈color〉]. . .

\hatch[〈hatchsp〉][〈color〉]. . .
\xhatch[〈hatchsp〉][〈color〉]. . .

Draws lines shading in the subsequent closed path in a cross-hatched pattern. It is exactly the
same as\rhatch followed by\lhatch using the same〈hatchsp〉 and〈color〉.

Hatching should normally be used very sparingly, or never if alternatives are available (color,
shading). Hatching at two different angles is, however, almost the only way to fill in two regions
thatautomaticallyshows the overlapping region.

3.5.3 CHANGING THE DEFAULT RENDERING.

Renderingis the process of converting a geometric description into a drawing. InMETAFONT,
this means producing a bitmap (METAFONT stores these inpicture variables), either by stroking
(drawing) a path using a particular pen), or by filling a closed path. InMETAPOST it means pro-
ducing a POSTSCRIPT description of strokes with pens, and fills

\setrender{〈TEX commands〉}
Initially, MFPIC uses the\draw command (stroking) as the default operation when a figure is

to be rendered. However, this can be changed to any combination ofMFPIC rendering commands
and/or other TEX commands, by using the\setrender command. This redefinition is local inside



3.6 FUNCTIONS AND PLOTTING. 28

an mfpic environment, so it can be enclosed in braces to restrict its range. Outside anmfpic
environment it is a global redefinition.

For example, after\setrender{\dashed\shade} the command\circle{(0,0),1} pro-
duces a shaded circle with a dashed outline. Any explicit rendering prefix overrides this default.

3.5.4 EXAMPLES.

It may be instructive, for the purpose of understanding the syntax ofshape-modifier and rendering
prefixes, to consider two examples:

\draw\shade\lclosed\lines{...}

which shades inside a polygon and draws its outline; and

\shade\lclosed\draw\lines{...}

which draws all of the outlineexceptthe line segment supplied by\lclosed, then shades the
interior. Thus, in the first case the path is defined (by\lines) then closed, then the resulting
closed path is shaded, then drawn; while in the second case the order is: defined, drawn, closed,
shaded. In particular, what is drawn is the path not yet closed.

3.6 Functions and Plotting.

In the following macros, expressions likef (x), g(t) stand for any legalMETAFONT expression, in
which the only unknown variables are those indicated (x in the first case, andt in the second).

3.6.1 DEFINING FUNCTIONS

\fdef{〈fcn〉}{〈param1〉,〈param2〉,. . .}{〈mf-expr〉}
Defines aMETAFONT function〈fcn〉 of the parameters〈param1〉, 〈param2〉, . . ., by theMETA-

FONT expression〈mf-expr〉 in which the only free parameters are those named. The return type of
the function is the same as the type of the expression. What is allowed for the function name〈fcn〉
is more restrictive thanMETAFONT’s rule for variable names. Roughly speaking, it should con-
sist of letters and underscore characters only. (In particular, for those that know what this means,
the name should have no suffixes.) Try to make the names distinctive to avoid redefining internal
METAFONT commands.

The expression〈mf-expr〉 is passed directly into the correspondingMETAFONT macro and in-
terpreted there, soMETAFONT’s rules for algebraic expressions apply. If\fdef occurs inside an
mfpic environment, it is local to that environment, otherwise it is available to all subsequentmfpic
environments.

As an example, after\fdef{myfcn}{s,t}{s*t-t}, any place below where aMETAFONT ex-
pression is required, you can usemyfcn(2,3) to mean2*3-3 andmyfcn(x,x) to meanx*x-x.

Operations available include+, -, *, /, and** (x**y= xy), with ( and) for grouping. Functions
already available include the standardMETAFONT functionsround, floor, ceiling, abs, sqrt,
sind, cosd, mlog, andmexp. Note that inMETAFONT the operations* and** have the same level
of precedence, sox*y**z means(xy)z. Use parentheses liberally!

(Notes:The METAFONT trigonometric functionssind andcosd take arguments in degrees;
mlog(x)= 256lnx, andmexp is its inverse.) You can also define the function〈fcn〉 by cases, using
theMETAFONT conditional expression

if 〈boolean〉: 〈expr〉 elseif 〈boolean〉: . . . else: 〈expr〉 fi.



3.6 FUNCTIONS AND PLOTTING. 29

Relations available for the〈boolean〉 part of the expression include=, <, >, <=, <> and>=.
Complicated functions can be defined by a compound expression, which is a series ofMETA-

FONT statements, followed by an expression, all enclosed in the commandsbegingroup and
endgroup. The\fdef command automatically supplies the grouping around the definition so the
user need not type them if the entire〈mf-expr〉 is one such compound expression. METAFONT

functions can callMETAFONT functions, even recursively.
Many common functions have been predefined ingrafbase. These include all the usual trig

functionstand, cotd, secd, cscd, which take angles in degrees, plus variantssin, cos, tan, cot,
sec, andcsc, which take angles in radians. Some inverse trig functions are also available, the
following produce angles in degrees:asin, acos, andatan, and the following in radians:invsin,
invcos, invtan. The exponential and hyperbolic functions:exp, sinh, cosh, tanh, and their
inversesln (or log), asinh, acosh, andatanh are also defined.

3.6.2 PLOTTING FUNCTIONS

The plotting macros take two or more arguments. They have an optional first argument,〈spec〉,
which determines whether a function is drawn smooth (as aMETAFONT Bézier curve), or polygonal
(as line segments)—if〈spec〉 is p, the function will be polygonal. Otherwise the〈spec〉 should be
s, followed by an optional positive number no smaller than 0.75. In this case the function will be
smooth with a tension equal to the number. See the\curve command (subsection3.2.6) for an
explanation of tension. The default〈spec〉 depends on the purpose of the macro.

One compulsory argument contains three values〈min〉, 〈max〉 and〈step〉 separated by commas.
The independent variable of a function starts at the value〈min〉 and steps by〈step〉 until reaching
〈max〉. If 〈max〉−〈min〉 is not a whole number of steps, then round((〈max〉−〈min〉)/〈step〉) equal
steps are used. One may have to experiment with the size of〈step〉, sinceMETAFONT merely
connects the points corresponding to these steps with whatit considers to be a smooth curve.
Smaller〈step〉 gives better accuracy, but too small may cause the curve to exceedMETAFONT’s
capacity or slow down its processing. Increasing the tension may help keep the curve in line, but
at the expense of reduced smoothness.

There are one or more subsequent arguments, each of which is aMETAFONT function or ex-
pression as described above.

\function[〈spec〉]{〈xmin〉,〈xmax〉,〈∆x〉}{ f (x)}
Plots f (x), aMETAFONT numeric function or expression of one numeric argument, which must

be denoted by a literalx. The default〈spec〉 is s. For example

\function{0,pi,pi/10}{sin x}

draws the graph of sinx between 0 andπ.

\parafcn[〈spec〉]{〈tmin〉,〈tmax〉,〈∆t〉}{〈pfcn〉}
Plots the parametric path determined by〈pfcn〉, where〈pfcn〉 is a METAFONT function or ex-

pression of one numeric argumentt, returning aMETAFONT pair. Or a pair of numeric expressions
(x(t),y(t)) enclosed in parentheses and separated by a comma. The default〈spec〉 is s. For exam-
ple

\parafcn{0,1,.1}{(2t, t + t*t)}

plots a smooth parabola from(0,0) to (2,2).



3.6 FUNCTIONS AND PLOTTING. 30

\plrfcn[〈spec〉]{〈θmin〉,〈θmax〉,〈∆θ〉}{ f (t)}

Plots the polar function determined byr = f (θ), where f is aMETAFONT numeric function or
expression of one numeric argument, andθ varies from〈θmin〉 to 〈θmax〉 in steps of〈∆θ〉. Eachθ
value is interpreted as an angle measured indegrees. In the expressionf (t), the unknownt stands
for θ. The default〈spec〉 is s. For example

\plrfcn{0,90,5}{sind (2t)}

draws one loop of a 4-petal rosette. If one needs radian measures, use something like the following.

\plrfcn{0,pi*radian,pi*radian/18}{sin (2t/radian)}

\btwnfcn[〈spec〉]{〈xmin〉,〈xmax〉,〈∆x〉}{ f (x)}{g(x)}

Draws the region between the two functionsf (x) andg(x), these being numeric functions of
one numeric argumentx. The region is bounded also by the vertical lines at〈xmin〉 and 〈xmax〉.
Unlike the previous function macros, the default〈spec〉 is p—this macro is intended to be used
for shading between drawn functions, a task for which smoothness is usually unnecessary. For
example

\shade\btwnfcn{0,180,5}{0}{sind x}

shades the area between first crest of a sine wave and the x-axis.
Note: the effect of\btwnfcn could also be accomplished with

\lclosed\connect
\function{〈xmin〉,〈xmax〉,〈∆x〉}{ f (x)}
\reverse\function{〈xmin〉,〈xmax〉,〈∆x〉}{g(x)}
\endconnect

\plrregion[〈spec〉]{〈θmin〉,〈θmax〉,〈∆θ〉}{ f (t)}

Plots the polar region determined byr = f (θ), where f is a METAFONT numeric function of
one numeric argumentt. Theθ values are angles (measured indegrees), varying from〈θmin〉 to
〈θmax〉 in steps of〈∆θ〉. In the expressionf (t), thet stands forθ. The region is also bounded by
the angles〈θmin〉 and〈θmax〉, i.e. by the line segments joining the origin to the endpoints of the
function. The default〈spec〉 is p —this macro is intended to be used for shading a region with the
boundary drawn, a task for which smoothness is usually unnecessary. For example

\shade\plrregion{0,90,5}{sind (2t)}

shades one loop of the 4-petal rosette.

3.6.3 PLOTTING EXTERNAL DATA FILES

\datafile[〈spec〉]{〈file〉}
\smoothdata[〈tension〉]
\unsmoothdata

\datafile defines a curve connecting the points listed in the file〈file〉. (The context makes it
clear whether this meaning of\datafile or that of subsection3.2.3is meant.) The〈spec〉 may be
p to produce a polygonal path, ors followed by a tension value (as in\curve) to produce a smooth
path. If no〈spec〉 is given, the default is initiallyp, but\smoothdata may be used to change this.



3.6 FUNCTIONS AND PLOTTING. 31

Thus, after the command\smoothdata[〈tension〉] the default〈spec〉 is changed tos〈tension〉.
If the tension parameter is not supplied it defaults to1.0 (or the value set by the\settension
command if one has been used).

The command\unsmoothdata restores the default〈spec〉 to p.
By default, each non-blank line in the file is assumed to contain at least two numbers, separated

by whitespace (blanks or tabs). The first two numbers on each line are assumed to represent thex-
andy-coordinates of a point. Initial blank lines in the file are ignored, as are comments. The com-
ment character in the data file is assumed to be%, but it can be reset using\mfpdatacomment (be-
low). Any blank line other than at the start of the file causes the curve to terminate. The\datafile
command may be preceded by any of the prefix commands, so that, for example, a closed curve
could be formed with\lclosed\datafile{data.dat}.

The\datafile command has another use, independent of the above description. We saw in
subsection3.2.3that anyMFPIC command (other than one that prints text labels) that takes as its
last argument a list of points (or numerical values) separated by commas, can have that list replaced
with a reference to an external data file. For example, if a fileptlist.dat contains two or more
numerical values per line separated by whitespace, then one can draw a dot at each of the points
corresponding to the first pair of numbers on each line with the following.

\point\datafile{ptlist.dat}

In fact there is no essential difference between ‘\datafile[p]’ and ‘\polyline\datafile’, and
no difference between ‘\datafile[s]’ and ‘\curve\datafile’.

Here is the full list ofMFPIC macros that allow this usage of\datafile:

• Numeric data:\piechart, \barchart, \numericarray, and all the axis marks commands.

• Point or vector data:\point, \plotsymbol, \polyline, \polygon, \fcncurve, \curve,
\cyclic, \turtle, \qspline, \closedqspline, \cspline, \closedcspline,
\mfbezier, \closedmfbezier, \qbeziers, \closedqbeziers, and\pairarray.

\mfpdatacomment\〈char〉
Changes〈char〉 to a comment character and changes the usual TEX comment character% to an

ordinary characterwhile reading a datafile for drawing.

\using{〈in-pattern〉}{〈out-pattern〉}
Used to change the assumptions about the format of the data file. For example, if there are

four numbers on each line separated by commas, to plot the third against the second (in that order)
you can say\using{#1,#2,#3,#4}{(#3,#2)}. This means the following: Everything on a line
up to the first comma is assigned to parameter#1, everything from there up to the second comma
is assigned to parameter#2, etc. Everything from the third comma to the end of line is assigned
to #4. When the line is processed by TEX a METAFONT pair is produced representing a point on
the curve. METAFONT pair expressions can be used in the output portion of\using. For exam-
ple \using{#1,#2,#3}{(#2,#1)/10} or even\using{#1 #2 #3}{polar(#1,#2)} if the data
are polar coordinates. The default assumptions of the\datafile command (i.e., space separated
numbers, the first two determining each point) correspond to the setting

\using{#1 #2 #3}{(#1,#2)}



3.6 FUNCTIONS AND PLOTTING. 32

The\using command cannot normally be used in the replacement text of another command. Or
rather, it can be so used, but then each# has to be doubled. If a\using declaration occurs in an
mfpic environment it is local to that environment. Otherwise it affects all subsequent ones.

\sequence

As a special case, you can plot any number against its sequence position, with something like
\using{#1 #2}{(\sequence,#1)}. Here, the macro\sequence will take on the values1, 2, etc.
as lines are read from the file.

\usingpairdefault
\usingnumericdefault

The command\usingpairdefault restores the above default for pair data. The command
\usingnumericdefault is the equivalent of\using{#1 #2}{#1}.

Note that the default value of\using appears to reference three arguments. If there are only
two numbers on a line separated by whitespace, this will still work because of TEX’s argument
matching rules. TEX’s file reading mechanism normally converts the EOL to a space, but there
are exceptions soMFPIC internally adds a space at the end of each line read in to be on the safe
side. Then the default definition of\using reads everything up to the first space as#1 (whitespace
is normally compressed to a single space by TEX’s reading mechanism), then everything to the
second space (the one added at the end of the line, perhaps) is#2, then everything to the EOL is
#3. This might assign an empty argument to#3, but it is discarded anyway.

If the numerical data contain percentages with explicit% signs, then choose another comment
character with\mfpdatacomment. This will change% to an ordinary characterin the data file.
However, in your\using command it would still be read as a comment. The following example
shows how to overcome this:

\makepercentother
\using{#1% #2 #3}{(#1/100,#2)}
\makepercentcomment

Here is an analysis of the meaning of this example: everything in a line, up to the first per-
cent followed by a space is assigned to parameter#1, everything from there to the next space is
assigned to#2 and the rest of the line (which may be empty) is#3. On the output side in the
above example, the percentage is divided by 100 to convert it to a fraction, and plotted against the
second parameter. Note: normal comments should not be used between\makepercentother and
\makepercentcomment, for obvious reasons.

\plotdata[〈spec〉]{〈file〉}
This plots several curves from a single file. The〈spec〉 and the command\smoothdata have

the same effect on each curve as in the\datafile command. The data for each curve is a succes-
sion of nonblank lines separated from the data for the next curve by a single blank line. Apair of
successive blank lines is treated as the end of the data. No prefix macros are permitted in front of
\plotdata.

Each successive curve in the data file is drawn differently. By default, the first is drawn as a solid
line the next dashed, the third dotted, etc., through a total of six different line types. A\gendashed



3.6 FUNCTIONS AND PLOTTING. 33

command is used with predefined dash patterns nameddashtype0 throughdashtype5. This be-
havior can be changed with:

\coloredlines
\pointedlines
\datapointsonly
\dashedlines

The command\coloredlines changes to cycling through eight different colors starting with
black (hey, black is a color too). This has an effect only forMETAPOST. The sole exception
to the general rule that all curves are drawn indrawcolor is the \plotdata command after
\coloredlines has been issued. The command\pointedlines causes\plotdata to use\plot
commands, cycling through nine symbols. The command\datapointsonly causes\plotdata
to use\plotnodes{〈symbol〉} commands to plot the data points only. (See the Appendix for more
details.) The command\dashedlines restores the default. If, for some reason, you do not like the
default starting line style (say you want to start with a color other than black), you can use one of
the following commands.

\mfplinetype{〈num〉}, or
\mfplinestyle{〈num〉}

Here〈num〉 is a non-negative number, less than the number of different drawing types available.
The four previous commands reset the number to 0, so if you use one of them, issue\mfplinetype
after it. The different line styles are numbered starting from 0. If two or more\plotdata com-
mands are used in the samemfpic environment, the numbering in each continues where the one
before left off (unless you issue one of the commands above in between).\mfplinestyle means
the same as\mfplinetype, and is included for compatibility. See the Appendix to find out what
dash pattern, color or symbol corresponds to each number by default. The commands below can
be used to change the default dashess, colors, or symbols.

\reconfigureplot{dashes}{〈pat1〉,...,〈patn〉}
\reconfigureplot{colors}{〈clr1〉,...,〈clrn〉}
\reconfigureplot{symbols}{〈symb1〉,...,〈symbn〉}

The first argument of\reconfigureplot is the rendering method to change:dashes, colors,
or symbols. The second argument is a list of dash patterns, colors, or symbols. The dash patterns
should be names of patterns defined through the use of\dashpattern. The colors can be any
color names already known toMETAPOST, or defined through\mfpdefinecolor. The symbols
can be any of those listed with the\plotsymbol command (see subsection3.2.2), or any known
METAFONT path variable. The colors can also beMETAPOST expressions of type color, and the
symbols can be expressions of type path. Within amfpic environment, the changes made are local
to that environment. Outside, they affect all subsequent environments.

\defaultplot{dashes}
\defaultplot{colors}
\defaultplot{symbols}

The command\defaultplot restores the built-in defaults for the indicated method of render-
ing in \plotdata.



3.7 LABELS AND CAPTIONS. 34

The commands\using, \mfpdatacomment and\sequence have the same meaning here (for
\plotdata) as they do for\datafile (above). The sequence numbering for\sequence starts
over with each new curve.

3.7 Labels and Captions.

3.7.1 SETTING TEXT.

If option metafont is in effect macros\tlabel, \tlabels, \axislabels and\tcaption do not
affect theMETAFONT file (〈file〉.mf) at all, but are added to the picture by TEX. If metapost is in
effect butmplabels is not, they do not affect theMETAPOST file. In these cases, if these macros
are the only changes or additions to your document, there is no need to repeat the processing with
METAFONT or METAPOSTnor the reprocessing with TEX in order to complete your TEX document.

\tlabel[〈just〉](〈x〉,〈y〉){〈labeltext〉}
\tlabel[〈just〉]{〈pair-list〉}{〈label text〉}
\tlabels{〈params1〉 〈params2〉 . . .}

Places TEX labels on the graph. (Not to be confused with LATEX’s \label command.) The
special form\tlabels (note the plural) essentially just applies\tlabel to each set of parameters
listed in its argument. That is, each〈paramsk〉 is a valid set of parameters for a\tlabel command.
These can be separated by spaces, newlines, or nothing at all. They shouldnot be separated by
blank lines.

The last required parameter is ordinary TEX text. The pair(〈x〉,〈y〉) gives the coordinates of a
point in the graph where the text will be placed. It may optionally be enclosed in braces. In fact, the
second syntax may be used ifmplabels is in effect, where〈pair-list〉 is any expression recognized
as a pair byMETAPOST, or a comma-separated list of such pairs.

The optional parameter[〈just〉] specifies thejustification, the relative placement of the label
with respect to the point(〈x〉,〈y〉). It is a two-character sequence where the first character is one
of t (top), c (center),b (bottom), orB (Baseline), to specify vertical placement, and the second
character is one ofl (left), c (center), orr (right), to specify horizontal placement. These letters
specify what part of thetext is to be placed at the given point, sor puts the right end of the text
there—which means the text will be left of the point. The default justification is[Bl].

Whenmplabels is in effect, the two characters may optionally be followed by a number, spec-
ifying an angle in degrees to rotate the text about the point(〈x〉,〈y〉). If the angle is supplied
without mplabels it is ignored after a warning. If the angle is absent, there is no rotation. Note that
the rotation takes place after the placement and uses the given point as the center of rotation. For
example,[cr] will place the text left of the point, while[cr180] will rotate it around to the right
side of the point (and upsidedown, of course).

There should be no spaces before, between, or after the first two characters. However the num-
ber, if present, is only required to be a validMETAPOSTnumerical expression containing no bracket
characters; as such, it may contain some spaces (e.g., around operations as in45 + 30).

A multiline \tlabel may be specified by explicit line breaks, which are indicated by the\\
command or the\cr command. This is a very rudimentary feature. By default it left justifies the
lines and causes\tlabel to redefine\\. One can center a line by putting\hfil as the first thing
in the line, and right justify by putting\hfill there (these are TEX primitives). Redefining\\
can interfere with LATEX’s definition. For better control in LATEX use\shortstack inside the label



3.7 LABELS AND CAPTIONS. 35

(or atabular environment or some other environment which always initializes\\ with its own
definition).

If the label goes beyond the bounds of the graph in any direction, the space reserved for the
graph is expanded to make room for it. (Note: this behavior is very much different from that of the
LATEX picture environment.)

If the mplabels option is in effect,\tlabel will write a btex . . . etex group to the output
file, allowing METAPOST to arrange for typesetting the label. Normally, the label becomes part of
the picture, rather than being laid on top of it, and can be covered up by any filling macros that
follow, or clipped off by\gclear or \gclip. However, under theoverlaylabels option (or after the
command\overlaylabels), labels are saved and added to the picture at the very end. This may
prevent some special effects, but it makes the behavior of labels much more consistent through all
the 12 permissable settings of the optionsmetapost, mplabels, clip, andtruebbox.

\everytlabel{〈TEX-code〉}
One problem with multi-line\tlabels is that each line of their contents constitutes a separate

group. This makes it difficult to change the\baselineskip (for example) inside a label. The
command\everytlabel saves it’s contents in a token register and the code is issued in each
\tlabel, as the last thing before the actual line(s) of text. Any switch you want to apply to every
line can be supplied. For example

\everytlabel{\bf\baselineskip 10pt}

will make every line of every\tlabel’s text come out bold with 10 point baselines. The effect of
\everytlabel is local to themfpic environment, if it is issued inside one. Note that the lines of
a tlabel are wrapped in a box, but the commands of\everytlabel are outside all of them, so no
actual text should be produced by these commands.

Using\tlabel without an optional argument is equivalent to specifying[Bl]. Use the follow-
ing command to change this behavior.

\tlabeljustify{〈just〉}
After this command the placement of all subsequent labels without optional argument will be

as specified in this command. For example,\tlabeljustify{cr45} would cause all subsequent
\tlabel commands lacking an optional argument to be placed as if the argument[cr45] were
used in each. Ifmplabels is not in effect at the time of this command, the rotation part will be saved
in case that option is turned on later, but a warning message will be issued. Withoutmplabels, the
rotation is ignored by\tlabel .

\tlabeloffset{〈hlen〉}{〈vlen〉}
\tlabelsep{〈len〉}

The first command causes all subsequent\tlabel commands to shift the label right by〈hlen〉
and up by〈vlen〉 (negative lengths cause it to be shifted left and down, respectively).

The\tlabelsep command causes labels to be shifted by the given amount in a direction that
depends on the optional positioning parameter. For example, if the first letter ist the label is shifted
down by the amount〈len〉 and if the second letter isl it is also shifted right. In all cases it is shifted
awayfrom the point of placement (unless the dimension is negative). Ifc or B is the first parameter,
no vertical shift takes place, and ifc is the second, there is no horizontal shift. This is intended to



3.7 LABELS AND CAPTIONS. 36

be used in cases where something has been drawn at that particular point, in order to separate
the text from the drawing, but the value is also written to the output file for use by\tlabelrect
(subsection3.7.2) and related commands.

\axislabels{〈axis〉}[〈just〉]{{〈text1〉}〈n1〉,{〈text2〉}〈n2〉,. . .}
This command places the given TEX text (〈textk〉) at the given positions (〈nk〉) on the given

axis, 〈axis〉, which must be a single letter and one ofl, b, r, t, x, or y. The text is placed as in
\tlabels (including the taking into account of\tlabelsep and\tlableoffset), except that
the default justification depends on the axis (the settings of\tlabeljustify are ignored). In the
case of the border axes, the default is to place the label outside the axis and centered. So, for
example, for the bottom axis it is[tc]. The defaults for thex- andy-axis are below and left, re-
spectively. The optional〈just〉 can be used to change this. For example, to place the labelsinside
the left border axis, use[cl]. If mplabels is in effect, rotations can be included in the justifica-
tion parameter. For example, to place the text strings ‘first’, ‘second’ and ‘third’ just below the
positions 1, 2 and 3 on thex-axis, rotated so they read upwards at a 90 degree angle, one can use
\axislabels{x}[cr90]{{first}1, {second}2, {third}3}

\plottext[〈just〉]{〈text〉}{(x0,y0), (x1,y1), . . .}

Similar in effect to\point and\plotsymbol (but without requiringMETAFONT), \plottext
places a copy of〈text〉 at each of the listed points. It simply issues multiple\tlabel commands
with the same text and optional parameter, but at the different points listed. This is intended to plot
a set of points with a single letter or font symbol (instead of aMETAFONT generated shape). Like
\axislabels, this does not respond to the setting of\tlabeljustify. It has a default setting
of [cc] if the optional argument is omitted. The points may be MetaPost pair expressions under
mplabels, but they mustnot be individually enclosed in braces. (This requirement is new with
version 0.7; prior to that pairs in braces didn’t work reliably anyway.) This command is actually
unnecessary undermplabels as the plain\tlabel command can then be given a list of points. The
\tlabel command is more efficient, and\plottext is converted to it internally.

\mfpverbtex{〈TEX-cmds〉}
This writes averbatimtex block to the.mp file. It makes sense only if themplabels option

is used and so only forMETAPOST. The 〈TEX-cmds〉 in the argument are written to the.mp file,
preceded by theMETAPOST commandverbatimtex and followed byetex. Line breaks within
the〈TEX-cmd〉 are preserved. The\mfpverbtex command must come before any\tlabel that is
to be affected by it. Any settings common to allmfpic environments should be in a\mfpverbtex
command preceding all such environments. It may be issued at any point afterMFPIC is loaded, and
any number of times. If it issued before\opengraphsfile, its contents are saved and written by
that command. Because of the wayMETAPOSThandlesverbatimtex material, the effects cannot
be constrained by any grouping unless one places TEX grouping commands within〈TEX-cmds〉.

\tcaption[〈maxwd〉,〈linewd〉]{〈caption text〉}
Places a TEX caption at the bottom of the graph. (Not to be confused with LATEX’s similar

\caption command.) The macro will automatically break lines which are too much wider than
the graph—if the\tcaption line exceeds〈maxwd〉 times the width of the graph, then lines will
be broken to form lines at most〈linewd〉 times the width of the graph. The default settings for



3.7 LABELS AND CAPTIONS. 37

〈maxwd〉 and〈linewd〉 are 1.2 and 1.0, respectively.\tcaption typesets its argument twice (as
does LATEX’s \caption), the first time to test its width, the second time for real. Therefore, the
user is advisednot to include any global assignments in the caption text.

If the \tcaption and graph have different widths, the two are centered relative to each other.
If the \tcaption takes multiple lines, then the lines are both left- and right-justified (except for
the last line), but the first line is not indented. If the optioncenteredcaptions is in effect, each line
of the caption will be centered.

In a\tcaption, Explicit line breaks may be specified by using the\\ command. The separa-
tion between the bottom of the picture and the caption can be changed by increasing or decreasing
the skip\mfpiccaptionskip (a ‘rubber’ length in Lamport’s terminology).

Many MFPIC users find the\tcaption command too limiting (one cannot, for example, place
the caption to the side of the figure). It is common to use some other method (such as LATEX’s
\caption command in afigure environment). The dimensions\mfpicheight and\mfpicwidth
(see section3.11) might be a convenience for plain TEX users who want to roll their own caption
macros.

3.7.2 CURVES SURROUNDING TEXT

\tlabelrect[〈rad〉][〈just〉]〈pair〉{〈text〉}
\tlabelrect*...

This and the following two methods of surounding a bit of text with a curve share some com-
mon characteristics which will be described here. The commands all take an optional argument that
can modify the shape of the curve. After that come arguments exactly as for the\tlabel command
except that only a single point is permitted, not a list. (So〈pair〉 is either of the form(〈x〉,〈y〉)
or the same enclosed in braces, or formplabels a pair expression in braces.) After processing the
surrounding curve, a\tlabel is applied to those arguments unless a* is present. In order for the
second optional argument to be recognized as the second, the first optional argument must also be
present. An empty first optional argument is permitted, causing the default value to be used. The
default for the justification parameter iscc, for compatibility with pastMFPIC versions in which
these commands all centered the figure around the point and no justification parameter existed.
This default can be changed with the\tlpathjustify command below.

The plain rectangle version produces a frame separated from the text on all sides by the amount
defined with\tlabelsep. All other versions produce the smallest described curve that contains
this rectangle.

These commands may be preceded by prefix macros (see the sections3.4 and 3.5, above).
They all have a ‘*-form’ which produces the curve but omits placing the text. All have the effect of
rendering the pathbeforeplacing any text. For example,\gclear\tlabelrect. . . will clear the
rectangle and then place the following text in the cleared space.

The optional argument of\tlabelrect, 〈rad〉, is a dimension, defaulting to0pt, that produces
rounded corners made from quarter-circles of the given radius. If the corners are rounded, the sides
are expanded slightly so the resulting shape still encompasses the rectangle mentioned above.
There is one special case for the optional argument〈rad〉: if the keyword ‘roundends’ is used
instead of a dimension, the radius will be chosen to make the nearest quarter circles just meet, so
the narrow side of the rectangle is a half circle.



3.8 SAVING AND REUSING AN MFPICPICTURE. 38

\tlabeloval[〈mult〉][〈just〉]〈pair〉{〈text〉}
\tlabeloval*...

This is similar to\tlabelrect, except it draws an ellipse. The ellipse is calculated to have the
same ratio of width to height as the rectangle mentioned above. The optional〈mult〉 is a multiplier
that increases or decreases this ratio. Values of〈mult〉 larger than 1 increase the width and decrease
the height.

\tlabelellipse[〈ratio〉][〈just〉]〈pair〉{〈text〉}
\tlabelellipse*...
\tlabelcircle[〈just〉]〈pair〉{〈text〉}
\tlabelcircle*...

Draws the smallest ellipse centered at the point that encompasses the rectangle defined above,
and that has a ratio of width to height equal to〈ratio〉 then places the text. The default ratio is
1, which produces a circle. We also provide the command\tlabelcircle, which take only the
[〈just〉] optional argument. Internally, it just processes any* and calls\tlabelellipse with
parameter 1.

In the above\tlabel... curves, the optional parameter should be positive. If it is zero, all
the curves silently revert to\tlabelrect. If it is negative, it is silently accepted. In the case of
\tlabelrect this causes the quarter-circles at the corners to be indented rather than convex. In
the other cases, there is no visible effect, but in all cases the sense of the curve is reversed.

\tlpathjustify{〈just〉}
This can be used to change the default justification for\tlabelrect and friends. The〈just〉

parameter is exactly as in\tlabeljustify in subsection3.7.1.

3.8 Saving and Reusing anMFPIC Picture.

These commands have been changed from versions prior to 0.3.14 in order to behave more like the
LATEX’s \savebox, and also to allow the reuse of an allocated box. Past files that use\savepic
will have to be edited to add\newsavepic commands that allocate the TEX boxes.

\newsavepic{〈picname〉}
\savepic{〈picname〉}
\usepic{〈picname〉}

\newsavepic allocates a box (like LATEX’s \newsavebox) in which to save a picture. As in
\newsavebox, 〈picname〉 is a control sequence. Example:\newsavepic{\foo}.

\savepic saves thenext\mfpic picture in the named box, which should have been previously
allocated with\newsavepic. (This command should not be usedinsideanmfpic environment.)
The next picture will not be placed, but saved in the box for later use. This is primarily intended as
a convenience. Onecoulduse

\savebox{〈picname〉}{〈entiremfpic environment〉},

but\savepic avoids having to place themfpic environment in braces, and avoids one extra level
of TEX grouping. It also avoids reading the entiremfpic environment as a parameter, which would
nullify MFPIC’s efforts to preserve line breaks in parameters written to theMETAFONT output file.



3.9 PICTURE FRAMES. 39

If you repeat\savepic with the same〈picname〉, the old contents are replaced with the next
picture.

\usepic copies the picture that had been saved in the named box. This may be repeated as
often as liked to create multiple copies of one picture.

3.9 Picture frames.

When TEX is run but beforeMETAFONT or METAPOST has been run on the output file,MFPIC

detects that the.tfm file is missing or that the firstMETAPOST figure file 〈file〉.1 is missing. In
these cases, themfpic environment draws only a rectangular frame with dimensions equal to the
nominal size of the picture, containing the figure name and number (and any TEX labels). The
command(s) used internally to do this are made available to the user.

\mfpframe[〈fsep〉]〈 material-to-be-framed〉\endmfpframe
\mfpframed[〈fsep〉]{〈material-to-be-framed〉}

These surround their contents with a rectangular frame consisting of lines with thickness
\mfpframethickness separated from the contents by the〈fsep〉 if specified, otherwise by the
value of the dimension\mfpframesep. The default value of the TEX dimensions\mfpframesep
and\mfpframethickness are2pt and0.4pt, respectively. The\mfpframe . . . \endmfpframe
version is preferred aroundmfpic environments or verbatim material since it avoids reading the
enclosed material before appropriate\catcode changes go into effect. In LATEX, one can also use
the\begin{mfpframe} . . . \end{mfpframe} syntax.

An alternative way to framemfpic pictures is to save them with\savepic (see previous sec-
tion) and issue a corresponding\usepic command inside any framing environment/command of
the user’s choice or devising.

3.10 Affine Transforms.

Coordinate transformations that keep parallel lines in parallel are calledaffine transforms. These
include translation, rotation, reflection, scaling and skewing (slanting). For theMETAFONT co-
ordinate system only—that is, for paths, but not for\tlabel’s (let alone\tcaption’s)—MFPIC

provides the ability to applyMETAFONT affine transforms.

3.10.1 AFFINE TRANSFORMS OF THE METAFONTCOORDINATE SYSTEM.

\coords . . . \endcoords

All affine transforms are restricted to the innermost enclosing\coords. . .\endcoords pair. If
there isnosuch enclosure, then the transforms will apply to the rest of themfpic environment

Note: In LATEX, a coords environment may be used.

Transforms provided byMFPIC.

\rotate{〈θ〉} Rotates around origin by〈θ〉 degrees
\rotatearound{〈point〉}{〈θ〉} Rotates around point〈point〉 by 〈θ〉 degrees
\turn[〈point〉]{〈θ〉} Rotates around point〈point〉 (origin is default) by〈θ〉
\mirror{〈p1〉}{〈p2〉} Same as\reflectabout
\reflectabout{〈p1〉}{〈p1〉} Reflect about the line〈p1〉--〈p2〉
\shift{〈pair〉} Shifts origin by the vector〈pair〉



3.10 AFFINE TRANSFORMS. 40

\scale{〈s〉} Scales uniformly by a factor of〈s〉
\xscale{〈s〉} Scales only the X coordinates by a factor of〈s〉
\yscale{〈s〉} Scales only the Y coordinates by a factor of〈s〉
\zscale{〈pair〉} Scales uniformly by magnitude of〈pair〉, and rotates by angle of〈pair〉
\xslant{〈s〉} Skew inX direction by the multiple〈s〉 of Y
\yslant{〈s〉} Skew inY direction by the multiple〈s〉 of X
\zslant{〈pair〉} Seezslanted in grafdoc.tex
\boost{〈χ〉} Special relativity boost byχ, seeboost in grafdoc.tex
\xyswap Exchanges the values ofx andy.

An arbitraryMETAFONT transformation can be implemented with

\applyT{〈transformer〉}
This is mainly for METAFONT hackers. This applies theMETAFONT 〈transformer〉 to the

current coordinate system. For example, theMFPIC TEX macro \zslant#1 is implemented as
\applyT{zslanted #1} where the argument#1 is a METAFONT pair, such as(x,y). Any code
that satisfiesMETAFONT’s syntax for a〈transformer〉 (see D. E. Knuth, “TheMETAFONTbook”)
is permitted, although no effort is made to correctly write TEX special characters nor to preserve
linebreaks in the code.

When any of these commands is issued, the effect is to transform all subsequent figures (within
the enclosingcoords or mfpic environment). In particular, attention may need to be paid to
whether these transformations move (part of) the figure outside the space allotted by the\mfpic
command parameters.

A not-so-obvious point is that if several of these transformations are applied in succession,
then the most recent is applied first, so that figures are transformed as if the transformations were
applied in the reverse order of their occurrence. This is similar to the application of prefix macros
(as well as application of transformations in mathematics:T1T2z usually means to applyT1 to the
result ofT2z).

3.10.2 TRANSFORMATION OFPATHS.

In the previous section we discussed transformations of theMETAFONT coordinate system. Those
macros affect thedrawingof paths and other figures, but do not change the actual paths. We will
explain the distinction after introducing two macros for storing and reusing figures.

\store{〈path variable〉}{〈path〉}
\store{〈path variable〉}〈path〉

This stores the following〈path〉 in the specifiedMETAFONT 〈path variable〉. Any valid META-
FONT symbolic token will do, in particular, any sequence of letters or underscores. You should be
careful to make the name distinctive to avoid overwriting the definition of some internal variable.
The stored path may later be used as a figure macro using\mfobj (below). The〈path〉 may be any
of the figure macros (such as\curve{(0,0),(1,0),(1,1)}) or the result of modifying it. For
example.

\store{pth}\lclosed\reverse\curve{(0,0),(1,0),(1,1)})

In fact,\store is a prefix macro that does nothing to the following curve except store it. It acts
as a rendering macro with a null rendering, so the curve is not made visible unless other rendering



3.10 AFFINE TRANSFORMS. 41

macros appear before or after it. It is special in that it is the only prefix macro that allows the
following path to be an argument, that is, enclosed in braces. This is solely to support pastMFPIC

versions in which\store wasnot defined as a prefix macro.

\mfobj{〈path expression〉}
\mpobj{〈path expression〉}

The 〈path expression〉 is a previously stored path variable, or a validMETAFONT (or META-
POST) expression combining such variables and/or constant paths. This allows the use of path
variables or expressions as figure macros, permitting all prefix operations, etc.. Here’s some over-
simplified uses of\store and\mfobj:

\store{my_f}{\circle{...}} % Store a circle.
\dotted\mfobj{my_f} % Now draw it dotted,
\hatch\mfobj{my_f} % and hatch its interior
% Store two curves:
\store{my_f}{\curve{...}}
\store{my_g}{\curve{...}}
% Store two combinations of them:
\store{my_h}{\mfobj{my_f--my_g--cycle}} % a MF path expression
\store{my_k}{%

\lclosed\connect % a combination path created from
\mfobj{my_f}\mfobj{my_g} % mfpic commands.
\endconnect}

\dotted\mfobj{my_f} % Draw the first dotted,
\dotted\mfobj{my_g} % then the second.
\shade\mfobj{my_h} % Now shade one combination.
\hatch\mfobj{my_k} % and hatch the other

The two forms\mfobj and\mpobj are absolutely equivalent.
It should be noted that everyMFPIC figure is implicitly stored in the objectcurpath. So you

can use\mfobj{curpath} and get the path defined by the most recent sequence of prefix macros
and figure.

Getting back to coordinate transforms, if one changes the coordinate system and then stores
and draws a curve, say by

\coords
\rotate{45 deg}
\store{xx}{\rect{(0,0),(1,1)}}
\dashed\mfobj{xx}

\endcoords

one will get a transformed picture, but the object\mfobj{xx} will contain the simple, unrotated
rectangular path and drawing it later (outside thecoords environment) will prove that. This is
because thecoords environment works at the drawing level, not at the definition level. In oversim-
plified terms,\dashed invokes the transformation, but not\store. More precisely,MFPIC prefix
macros have an input and an output and a side effect. The input is the output of whatever follows



3.10 AFFINE TRANSFORMS. 42

it, the output can be the same as the input (the case for rendering prefixes) or modified version of
that (the closure prefixes). The side effect is the drawing (dashing, filling) of the path, appending of
an arrowhead, etc.. These side effects have to know where to place their marks, so a computation
is invoked that converts the user’s graph coordinates intoMETAFONT’s drawing coordinates. The
previous transformation macros work by modifying the parameters used in this computation.

The following transformation prefixes provide a means of actually creating and storing a trans-
formed path. In the terms just discussed, their input is a path, their output is the transformed path,
and they have no side effects (other than invoking the default rendering if no rendering prefix was
previously provided).

\rotatepath{(〈x〉,〈y〉),〈θ〉}. . .
\shiftpath{(〈dx〉,〈dy〉)}. . .
\scalepath{(〈x〉,〈y〉),〈s〉}. . .
\xscalepath{〈x〉,〈s〉}. . .
\yscalepath{〈y〉,〈s〉}. . .
\slantpath{〈y〉,〈s〉}. . .
\xslantpath{〈y〉,〈s〉}. . .
\yslantpath{〈x〉,〈s〉}. . .
\reflectpath{〈p1〉,〈p2〉}. . .
\xyswappath. . .
\transformpath{〈transformer〉}. . .

\rotatepath rotates the following path by〈θ〉 degrees about point(〈x〉,〈y〉). After the com-
mands:

\store{xx}{\rotatepath{(0,0), 45}\rect{(0,0),(1,1)}}

the object\mfobj{xx} contains an actual rotated rectangle, as drawing it will prove. The above
macro, and the five that follow are extremely useful (and better thancoords environments) if one
needs to draw a figure, together with many slightly different versions of it.

\shiftpath shifts the following path by the horizontal amount〈dx〉 and the vertical amount
〈dy〉.

\scalepath scales (magnifies or shrinks) the following path by the factor〈s〉, in such a way
that the point(〈x〉,〈y〉) is kept fixed. That is

\scalepath{(0,0),2}\rect{(0,0),(1,1)}

is essentially the same as\rect{(0,0),(2,2)}, while

\scalepath{(1,1),2}\rect{(0,0),(1,1)}

is the same as\rect{(-1,-1),(1,1)}. In both cases the rectangle is doubled in size. In the first
case the lower left corner stays the same, while in the second case the the upper right corner stays
the same.

\xscalepath is similar to\scalepath, but only thex-direction is scaled, and all points with
first coordinate equal to〈x〉 remain fixed.\yscalepath is similar, except they-direction is affected.

\slantpath applies a slant transformation to the following path, keeping points with second
coordinate equal to〈y〉 fixed. That is, a pointpon the path is moved right by an amount proportional
to the height ofp above the liney = 〈y〉, with s being the proportionality factor. Vertical lines in
the path will acquire a slope of 1/s, while horizontal lines stay horizontal.



3.11 PARAMETERS. 43

\xslantpath is an alias for\slantpath
\yslantpath is similar to\xslantpath, but exchanges the roles ofx andy coordinates.
\reflectpath returns the mirror image of the following path, where the line determined by

the points〈p1〉 and〈p2〉 is the mirror.
\xyswappath returns the path with the roles ofx andy exchanged. This is similar in some

respects to\reflectpath{(0,0),(1,1)}, and produces the same result if thex andy scales of
the picture are the same. However,\reflectpath compensates for such different scales (so the
path shape remains the same), while\xyswappath does not (so that after a swap, verticals become
horizontal and horizontals become vertical). One cannot have both when the scales are different.

For METAFONT or METAPOSTpower users,\transformpath can take any ‘transformer’ and
transform the following path with it. Here, atransformeris anything that can follow a path and
create a new path. Examples arescaled, shifted (1,1), androtatedabout (0,1).

All these prefixes change only the path that follows, not any rendering of it that follows. For
example:

\gfill\rotatepath{(0,0),90}\dashed\rect{(0,0),(1,1)}

will not produce a rotated dashed rectangle. Rather the original rectangle will be dashed, and the
rotated rectangle will be filled.

3.11 Parameters.

There are many parameters inMFPIC which the user can modify to obtain different effects, such
as different arrowhead size or shape. Most of these parameters have been described already in the
context of macros they modify, but they are all described together here.

Many of the parameters are stored by TEX as dimensions, and so are available even if there is
no METAFONT file open; changes to them are not subject to the usual TEX rules of scope however:
they are local to TEX groups only if set inside anmfpic environment otherwise they are global. This
is for consistency: other parameters are stored byMETAFONT (so the macros to change them will
have no effect unless aMETAFONT file is open) and the changes are subject toMETAFONT’s rules of
scope—to theMFPIC user, this means that changes inside the\mfpic . . . \endmfpic environment
are local to that environment, but other TEX groupings have no effect on scope. Some commands
(notably those that set the axismargins and\tlabel parameters) change both TEX parameters and
METAFONT parameters, and it is important to keep then consistent.

\mfpicunit

This TEX dimension stores the basic unit length forMFPIC pictures—thex andy scales in the
\mfpic macro are multiples of this unit. The default value is1pt.

\pointsize

This TEX dimension stores the diameter of the circle drawn by the\point macro and the
diameter of the symbols drawn by\plotsymbol and by\plot. The default value is2pt.

\pointfilltrue and\pointfillfalse

This TEX boolean switch determines whether the circle drawn by\point will be filled or open
(outline drawn, inside erased). The default istrue: filled. This value is local to any TEX group
inside anmfpic environment. Outside such it is global.



3.11 PARAMETERS. 44

\pen{〈drawpensize〉}
\drawpen{〈drawpensize〉}
\penwd{〈drawpensize〉}

Establishes the width of the normal drawing pen. The default is0.5pt. This width is stored by
METAFONT. The shading dots and hatching pen are unaffected by this. There exist three aliases for
this command, the first two to maintain backward compatibility, the last one for consistency with
other dimension changing commands. Publishers generally recommended authors to use at least a
width of one-half point for drawings submitted for publication.

\shadewd{〈dotdiam〉}
Sets the diameter of the dots used in the shading macro. The drawing and hatching pens are

unaffected by this. The default is0.5pt, and the value is stored byMETAFONT.

\hatchwd{〈hatchpensize〉}
Sets the line thickness used in the hatching macros. The drawing pen and shading dots are

unaffected by this. The default is0.5pt, and the value is stored byMETAFONT.

\polkadotwd{〈polkadotdiam〉}
Sets the diameter of the dots used in the\polkadot macro. The default is5pt, and the value

is stored byMETAFONT.

\headlen

This TEX dimension stores the length of the arrowhead drawn by the\arrowmacro. The default
value is3pt.

\axisheadlen

This TEX dimension stores the length of the arrowhead drawn by the\axes, \xaxis and
\yaxis macros, and by the macros\axis and\doaxes when applied to the parametersx and
y.

\sideheadlen

This TEX dimension stores the length of the arrowhead drawn by the\axis and \doaxes
macros when applied tol, b, r or t. The default value is0pt.

\headshape{〈hdwdr〉}{〈hdten〉}{〈hfilled〉}
Establishes the shape of the arrowhead drawn by the\arrow and\axes macros. The value of

〈hdwdr〉 is the ratio of the width of the arrowhead to its length;〈hdten〉 is the tension of the B́ezier
curves; and〈hfilled〉 is a METAFONT boolean value indicating whether the arrowheads are to be
filled (if true) or open. The default values are 1, 1,false, respectively. The〈hdwdr〉, 〈hdten〉 and
〈hfilled〉 values are stored byMETAFONT. Setting〈hdten〉 to ‘infinity’ will make the sides of the
arrowheads straight lines. These values are all stored byMETAFONT.

\dashlen, \dashspace

These TEX dimensions store, respectively, the length of dashes and the length of spaces between
dashes, for lines drawn by the\dashed macro. The\dashed macro may adjust the dashes and the



3.11 PARAMETERS. 45

spaces between by as much as1
n of their value, wheren is the number of spaces appearing in the

curve, in order not to have partial dashes at the ends. The default values are both4pt. The dashes
will actually be longer (and the spaces shorter) by the thickness of the pen used when they are
drawn.

\dashlineset, \dotlineset

These macros provide convenient standard settings for the\dashlen and\dashspace dimen-
sions. The macro\dashlineset sets both values to4pt; the macro\dotlineset sets\dashlen
to 1pt and\dashspace to 2pt.

\hashlen

This TEX dimension stores the length of the axis hash marks drawn by the\xmarks and
\ymarks macros. The default value is4pt.

\shadespace

This TEX dimension establishes the spacing between dots drawn by the\shade macro. The
default value is1pt.

\darkershade, \lightershade

These macros both multiply the\shadespace dimension by constant factors, 5/6 = .833333
and 6/5 = 1.2 respectively, to provide convenient standard settings for several levels of shading.

\polkadotspace

This TEX dimension establishes the spacing between the centers of the dots used in the macro
\polkadot. The default is10pt.

\dotsize, \dotspace

These TEX dimensions establishes the size and spacing between the centers of the dots used in
the\dotted macro. The defaults are0.5pt and3pt.

\symbolspace

Similar to\dotspace, this TEX dimension establishes the space between symbols placed by
the macro\plot{〈symbol〉}. . . . Its default is5pt.

\hatchspace

This TEX dimension establishes the spacing between lines drawn by the\hatch macro. The
default value is3pt.

\tlabelsep{〈separation〉}
This macro establishes the separation between a label and its nominal position. It affects

text written with any of the commands\tlabel, \tlabels, \axislabels or \plottext. It
also sets the separation between the text and the curve defined by the commands\tlabelrect,
\tlabeloval or\tlabelellipse. The default is0pt. The value is stored by both TEX andMETA-
FONT.



3.12 FOR ADVANCED USERS. 46

\tlabeloffset{〈hlen〉}{〈vlen〉}
This macro establishes a uniform offset that applies to all labels. It affects text written with any

of the commands\tlabel, \tlabels, \axislabels or \plottext. The default is to have both
horizontal and vertical offsets of0pt. The values are stored by both TEX andMETAFONT.

\mfpdataperline

WhenMFPIC is reading data from files and writing it to the output file, this macro stores the
maximum number of points that will be written on a single line in the output file. Its default is
defined by\def\mfpdataperline{5}.

\mfpicheight, \mfpicwidth

These TEX dimensions store the height and width of the figure created by the most recently
completedmfpic environment. This might perhaps be of interest to hackers or to aid in precise
positioning of the graphics. They are meant to be read-only: the\endmfpic command globally
sets them equal to the height and width of the picture. ButMFPIC does not otherwise make any use
of them.

3.12 For Advanced Users.

3.12.1 POWER USERS.

\qspline{〈list〉}
\closedqspline{〈list〉}
\cspline{〈list〉}
\closedcspline{〈list〉}

These are alternate ways of defining curves. In each case,〈list〉 is a comma separated list of
points. These represent not the points the curve passes through, but thecontrol points. The first two
produce quadratic B-splines and the last two produce cubic B-splines. If you don’t know what B-
splines are, or don’t know what control points are, it is recommended you not use these commands.

\cbclosed. . .
\qbclosed. . .

These are prefix macros for closing curves. The first closes with a cubic B-spline, the second
with a quadratic B-spline. They will close any given curve, but the command\cbclosed is meant
to close a cubic B-spline (see above). That is,\cbclosed\cspline should produce the same
result as\closedcspline with the same argument. The corresponding statements are true of
\qbclosed: it is meant to close a quadratic B-spline and\qbclosed\qspline should produce the
same result as\closedqspline with the same argument.

The power user, having noticed that\curve and\cyclic insert some direction modifiers into
the path created, may have decided that there is noMFPIC command to create a simpleMETAFONT

default style path, for example(1,1)..(0,1)..(0,0)..cycle. If so, he or she has forgotten
about\mfobj: the command

\mfobj{(1,1)..(0,1)..(0,0)..cycle}



3.12 FOR ADVANCED USERS. 47

will produce, in the.mf file, exactly this path, but surround it with the TEX wrapping needed to
makeMFPIC’s prefix macro system work. However, the syntax of more complicated paths can be
extremely lengthy, so we offer this interface:

\mfbezier[〈tens〉]{〈list〉}
\closedmfbezier[〈tens〉]{〈list〉}

This connects the points in the list with the path join operator..tension 〈tens〉... If the
tension option[〈tens〉] is omitted, the value set by\settension (initially 1) is used. One can get
a cyclic path by prepending\bclosed (with matching tension option), but it will not produce the
same result as\closedmfbezier. These are cubic B́ezier’s (but you know that if you are a power
user). Quadratic B́eziers (as in LATEX’s picture environment) can be obtained with the following:

\qbeziers[〈tens〉]{〈list〉}
\closedqbeziers[〈tens〉]{〈list〉}

Note the plural, to indicate that they will draw a series of quadratic Béziers. In the〈list〉, the
first, third, fifth, etc., are the points to connect, while the second, fourth, etc., are the control points.
The open version requires an ending point, and so needs an odd number of points in the list. The
closed version assumes the first point is the ending, and so requires an even number in the list. The
curve will not automatically be smooth. That depends on the choice of the control points.

\mfsrc{〈metafont code〉}
\mfcmd{〈metafont code〉}
\mflist{〈metafont code〉}

These all write the〈metafont code〉 directly to theMETAFONT file, using a TEX \write com-
mand. Line breaks within〈metafont code〉 are preserved.9 Almost all theMFPIC drawing macros
invoke one of these. Because of the way TEX reads and processes macro arguments, not all drawing
macros preserve line breaks (nor do they all need to). However, the ones that operate on long lists
of pair or numeric data (for example,\point, \curve, etc.), do preserve line breaks in that data.
The difference in these is minor:\mfsrc writes its argument without change,\mfcmd appends
a semicolon (‘;’) to the code, while\mflist surrounds its argument with parentheses and then
appends a semicolon.

Using these can have some rather bizarre consequences, though, so it is not recommended to
the unwary. It is, however, currently the only way to make use ofMETAFONT’s equation solving
ability. Here’s an oversimplified example:

\mfpic[20]{-0.5}{1.5}{0}{1.5}
\mfsrc{z1=(0,0);

z2-z3=(1,2);
z2+2z3=(1,-1);} % z2=(1,1), z3=(0,-1)

\arc[t]{z1,z2,z3}
\endmfpic

Check out the sampleforfun.tex for a more realistic example.

9Under most circumstances, but not if the command (plus its argument) is part of another macro



3.12 FOR ADVANCED USERS. 48

\setmfvariable{〈type〉}{〈name〉}{〈value〉}
\setmpvariable{〈type〉}{〈name〉}{〈value〉}

These formerly internalMFPIC macros can be use to define symbolic names for anyMETAFONT

or METAPOSTvariable type. They are interchangeable; you can use either one with or without the
metapost option. As an example of their use, since dimensions are numeric data types inMETA-
FONT, the command

\setmfvariable{numeric}{my_dim}{7pt}

would set theMETAFONT variablemy_dim to the value7pt. After that,my_dim can be used in any
drawingcommand where a dimension is required:

\plotsymbol[my_dim]{Triangle}\rect{(0,0),(1,1)}

will plot the rectangle with small triangles spaced7pt apart.
You can define paths this way (\setmfvariable{path}{X}{(0,0)..(1,1)..(0,1)}), but

the 〈value〉 has to be validMETAFONT path construction syntax,not something like\rect{. . .}.
You need\store if you want to set a variable to anMFPIC path. However, defined either way, they
can be used in\mfobj.

A variable defined this way is local to themfpic environment it is contained in. It is in fact local
to anyMETAFONT group. InMFPIC, only\connect . . . \endconnect and\mfpic . . . \endmfpic
createMETAFONT groups in the graph file.

\noship
\stopshipping
\resumeshipping

\stopshipping turns off character shipping (byMETAFONT to the TFM and GF files, or by
METAPOST to appropriate EPS output file) until\resumeshipping occurs. If you want just one
character not shipped, just use\noship inside the mfpic environment. This is useful if all one
wishes to do in the currentmfpic environment is to maketiles (see below).

\patharr{〈pv〉}. . .\endpatharr
This pair of macros, acting as an environment, accumulate all enclosing paths, in order, into a

path array named〈pv〉. A path array is a collection of paths with a common base name indexed by
integers from 1 to the number of paths. Any path in the array can be accessed by means of\mfobj.
For example, after

\patharr{pa}
\rect{(0,0),(1,1)} \circle{(.5,.5), .5}

\endpatharr

then\mfobj{pa[1]} refers to the rectangle and\mfobj{pa[2]} refers to the circle. In case ex-
plicit numbers are used,METAFONT allowspa1 as an abbreviation forpa[1]. However, if a nu-
meric variable or some expression is used (e.g.,pa[n+1]) the square brackets are required.

This command can only be used in anmfpic environment. The definitions it makes are, how-
ever, global.



3.12 FOR ADVANCED USERS. 49

Note: In LATEX, this pair of macros can be used in the form of a LATEX-style environment called
patharr—as in\begin{patharr}. . .\end{patharr}.

\pairarray{〈var〉}〈list-of-points〉
\numericarray{〈var〉}〈list-of-numbers〉

These enable the simultaneous definition of pair and numeric variables. For example, after

\pairarray{X}{(0,1),(1,1),(0,0),(1,0)}

the variablesX1, X2, X3, andX4 are equal to the given points in that order. And then

\polyline{X1,X2,X3,X4}

will draw the lines connecting these four points. The index may optionally be put in square brackets
and may be separated from the name by any number of spaces. If a numeric expression is used
instead of an explicit number, square bracketsmustsurround it:X[1+1], X[2], X2 andX 2 are all
the same. The arrays are defined locally if these commands occur in anmfpic environment, global
otherwise. In all arrays, the variableX itself (not followed by any digit or brackets) is a number
equal to the number of elements in the array.

Array variables may be used only where the values are processed only byMETAFONT or META-
POST, they are unknown to TEX. In particular, they cannot be used in commands that position text
unlessmplabels is in effect.

Several commands inMFPIC define arrays of objects that can be used in other commands.
The main ones are\piechart and\barchart. These arrays are always global. Using\piechart
causes the following arrays to become defined:

• piewedge, a path array describing the wedges of the chart. The command\piewdge{〈num〉}
(without optional argument) is almost exactly the same as\mfobj{piewedge[〈num〉]}.

• pieangle, a numeric array, the starting angle of each wedge.

• piedirection, a pair array, the unit vectors pointing in the directions of the centers of
the wedges. If\pieangle1 is 0 andpieangle2 is 90 degrees, thenpiedirection1 is
(cos45,sin45).

Using\barchart causes the following arrays to become defined. The exact meaning depends
on whether bars are horizontal or vertical. The following describes horizontal bars; interchange the
roles ofx andy if they are vertical:

• barstart, the position on they-axis of the leading edge of the bars.

• barbegin, thex-coordinate of the leftmost end of the bars.

• barend, thex-coordinate of the rightmost end of the bars.

• chartbar, the rectangular path of the bar;chartbar1 is the rectangle with corners at
(barbegin1,barstart1) and (barend1,barstart+barwd), wherebarwd is the width
(thickness) of the bar.



3.12 FOR ADVANCED USERS. 50

• barlength, the same asbarend. This is for backward compatibility; the was name chosen
at a time when all the bars had one side on an axis (i.e.,barbegin[n] = 0).

\tile{〈tilename〉,〈unit〉,〈wd〉,〈ht〉,〈clip〉}
. . .

\endtile

In this environment, all drawing commands contribute to atile. A tile is a rectangular picture
which may be used to fill the interior of closed paths. The units of drawing are given by〈unit〉,
which should be a dimension (like1pt or 2in). The tile’s horizontal dimensions are 0 to〈wd〉 ·
〈unit〉 and its vertical dimensions 0 to〈ht〉 · 〈unit〉, so 〈wd〉 and〈ht〉 should be pure numbers. If
〈clip〉 is true then all drawing is clipped to be within the tile’s boundary.

By using this macro, you can design your own fill patterns (to use them, see the\tess macro
below), but please take some care with the æsthetics! The〈tilename〉 is globally defined by this
command.

\tess{〈tilename〉}. . .
Tile the interior of a closed path with a tessellation comprised of copies of thetile specified by

〈tilename〉. There is no default〈tilename〉; you must make all your own tiles. Tiling an open curve
is technically an error, but theMETAFONT code responds by drawing the path and not doing any
tiling.

Tiling large regions with complicated tiles can exceed the capacity of some versions ofMETA-
POST. There is less of a problem withMETAFONT. This is not becauseMETAFONT has greater
capacity, but because of the natural difference between bitmaps and vector graphics.

In METAPOST, the tiles are copied with whatever color they are given when they are defined.
They can be multicolored.

\cutoffafter{〈obj〉}. . .
\cutoffbefore{〈obj〉}. . .
\trimpath{〈dim1〉,〈dim2〉}. . .
\trimpath{〈dim1〉}. . .

These are prefix macros. The first two take an ‘object’ (a variable in which a path was previ-
ously stored using\store) and uses it to trim one end off the following path.\cutoffbefore cuts
off the part of the path before its first intersection with the object, while\cutoffafter cuts off
the part after the last intersection. If the path does not intersect the object, nothing is cut off. If the
object and the path intersect in more than one point, as little as possible (usually10) is cut off. This
is completely reliably only when there is only one point of intersection.

The\trimpath macro takes two dimensions separated by commas and trims those lengths off
the initial and terminal ends of the path. If only one dimension is given, that is used at both ends.
This macro is essentially equivalent to applying\cutoffafter and then\cutoffbefore where
the objects are circles which have radii equal to the given dimensions and which are centered at the
endpoints of the path. Consequently, if the path is shorter than either dimension, it will not intersect
either circle and nothing will be trimmed. Similarly, if the result of\cutoffafter is shorter than
the first dimension, then\cutoffbefore will not trim any more off. The first two macros can be

10METAFONT’s methods for finding the ‘first’ point of intersection do not always find the actual first one.



3.12 FOR ADVANCED USERS. 51

used to create a curve that starts or ends right at another figure without having to find the point
where the two curves intersect. The third one can be used on the result to produce a curve that
stops just short of the point of intersection.

\mftitle{〈title〉}
Write the string〈title〉 to theMETAFONT file, and use it as aMETAFONT message. (SeeThe

METAFONTbook, chapter 22, page 187, for two uses of this.)

\tmtitle{〈title〉}
Write the text〈title〉 to the TEX document, and to the log file, and use it implicitly in\mftitle.

This macro forms a local group around its argument.

Since TEX is limited to 256 dimension registers, and since dimensions are so important to type-
setting and drawing, it is common to use up all 256 when drawing packages are loaded. Therefore
MFPIC uses font dimensions to store dimension values. The following is the command that handles
the allocation of these dimensions.

\newfdim{〈fdim〉}
This create a new global font dimension named〈fdim〉, which is a TEX control sequence (with

backslash). It can be used almost like an ordinary TEX dimension. One exception is that the TEX
commands\advance, \multiply and\divide cannot be applied directly to font dimensions (nor
LATEX’s \addtolength); however, the font dimension can be copied to a temporary TEX dimension
register, which can then be manipulated and copied back (using\setlength in LATEX, if desired).
Another exception is that all changes to a font dimension are global in scope. Also beware that
\newfdim uses font dimensions from a single font, thedummy font, which most TEX systems ought
to have. (You’ll know if yours doesn’t, becauseMFPIC will fail upon loading!) Also, implemen-
tations of TEX differ in the number of font dimensions allowed per font. Hopefully,MFPIC won’t
exceed your local TEX’s limit.

All of MFPIC’s basic dimension parameters are font dimensions. We have lied slightly when we
called them ‘TEX dimensions’. We arrange for them to be local tomfpic environments by saving
their values at the start and restoring them at the end.

\setmfpicgraphic{〈filename〉}
This is the command that is invoked to place the graphic created. See appendix4.6.3 for a

discussion of its use and its default definition. It is a user-level macro so that it can be redefined in
unusual cases. It operates on the output of the following macro:

\setfilename{〈file〉}{〈num〉}
MFPIC’s figure inclusion code ultimately executes\setmfpicgraphic on the result of apply-

ing \setfilename to two arguments: the file name specified in the\opengraphsfile command
and the number of the current picture. Normally\setfilename just puts them together with the ‘.’
separator (because that is usually the wayMETAPOSTnames its output), but this can be redefined
if the METAPOST output undergoes further processing or conversion to another format in which
the name is changed. Any redefinition of\setfilename must come before\opengraphsfile be-
cause that command tests for the existence of the first figure. After any redefinition,\setfilename



3.12 FOR ADVANCED USERS. 52

must be a macro with two arguments that creates the actual filename from the above two parts. It
should also be completely expandable. See the appendices, subsection4.6.3for further dicussion.

\preparemfpicgraphic{〈filename〉}
This command is automatically invoked before\setmfpicgraphic to make any preparations

needed. The default definition is to do nothing except when theGRAPHICSpackage is used. That
package provides no clean way to determine the bounding box of the graphic after it is included.
SinceMFPIC needs this information, this command redefines an internal command of the graphics
package to make the data available. If\setmfpicgraphic is redefined then this may also have to
be redefined.

\getmfpicoffset{〈filename〉}
This command is automatically invoked after\setmfpicgraphic to store the offset of the

lower left corner of the figure in the macros\mfpicllx and\mfpiclly. If \setmfpicgraphic is
redefined then this may also have to be redefined.

\ifmfpmpost

Users wishing to write code that adjusts its behavior to the graph file processor can use this
to test which option is in effect. The macro\usemetapost sets it true and\usemetafont sets it
false. There are no commands\mfpmposttrue nor\mfpmpostfalse, since the user should not be
changing the setting once it is set: a great deal ofMFPIC internal code depends on them, and on
keeping them consistent with the\opengraphsfile commands reading of these booleans.

\mfpicversion

This expands to the currentMFPIC version multiplied by 100. At this writing, it produces ‘70’
because the version is 0.7. It can be used to test for the current version:

\ifx\mfpicversion\undefined \def\mfpicversion{0}\fi
\ifnum\mfpicversion>70 ... \else ... \fi

\mfpicversion was added in version 0.7.

3.12.2 HACKERS.

MFPICemploys a modified version of LATEX’s \@ifnextchar that not only skips over spaces when
seeking the next character, but also skips over\relax or tokens that have been\let equal to it.
This is because, in contexts where we try to preserve lines, we make the end-of-line character
active and set it equal to\relax. Since it is hard to predict in what context a macro will be used,
this gives code like

\function
[s1.2]{0,2,.1}{x**2 }

the same behavior in both.11 One consequence is that putting\relax to stop a command from
seeing a ‘[’ as the start of an optional argument will not work forMFPIC commands. The same
holds for the ‘*’ in those few commands that have a star-form, and also for other commands that
look ahead (\tlabel looks for a ‘(’ starting off the location, and macros that operate on lists of data

11Actually, because of a bug in previous versions, this was not true, but it is now. I hope.



3.12 FOR ADVANCED USERS. 53

look ahead for ‘\datafile’). This is not a serious problem, because there is only one command
(\smoothdata) that takes an optional arguments but doesn’t have mandatory arguments after that.
If a ‘\relax’ appeared after any otherMFPIC command, it would be taken as an argument and an
error would result. In any case,\empty will stop the looking ahead if it should ever be necessary.

Most of MFPIC’s commands have arguments with parts delimited by commas and parentheses.
In most cases this is no problem because they are written unchanged to the.mf and there they
are parsed just fine. Some commands’ arguments, however, have to be parsed by both TEX and
METAFONT. Examples are\tlabel (sometimes, undermplabels), and\pointdef. One might be
tempted to useMETAPOST expressions there and that works fine as long as they do not contain
commas or parentheses. In such cases, they can sometimes be enclosed in braces to prevent TEX
seeing these elements as delimiters, but sometimes these braces might get written to the.mf (or
.mp) output and cause aMETAFONT (METAPOST) error. In such cases the following work-around
might be possible:

\def\identity#1{#1}
\pointdef{A}(\identity{angle (1,2)},3)
\rect{(0,0),\A}

The braces prevent TEX’s argument parsing from seeing the first comma as a delimiter, but
upon writing to the.mf, the\identity commands are expanded and only the contents appear in
the output. (TEX parses the argument to assign meanings to\Ax and\Ay.)



4 Appendices
4.1 Acknowledgements.

Tom would like to thank all of the people at Dartmouth as well as out in the network world for
testingMFPIC and sending him back comments. He would particularly like to thank:

Geoffrey Tobin for his many suggestions, especially about cleaning up theMETAFONT code,
enforcing dimensions, fixing the dotted line computations, and speeding up the shading routines
(through this process, Geoffrey and Tom managed to teach each other many of the subtleties of
METAFONT), and for keeping track ofMFPIC for nearly a year while Tom finished his thesis;

Bryan Green for his many suggestions, some of which (including his rewriting the\tcaption
macro) ultimately led to the current version’s ability to put graphs in-line or side-by-side; and

Uwe Bonnes and Jaromı́r Kuben, who worked out rewrites ofMFPIC during Tom’s working
hiatus and who each contributed several valuable ideas.

Some credit also belongs to Anthony Stark, whose work on a FIG toMETAFONT converter has
had a serious impact on the development of many ofMFPIC’s capabilities.

Finally, Tom would like to thank Alan Vlach, the other TEXnician at Berry College, for helping
him decide on the format of many of the macros, and for helping with testing.

Dan Luecking would like to echo Tom’s thanks to all of the above, especially Geoffrey Tobin
and Jaroḿır Kuben. And to add the names Taco Hoekwater, for comments, advice and suggestions,
and Zaimi Sami Alex for suggestions.

But mostly, he’d like to thank Tom Leathrum for starting it all.

4.2 Changes History.

See the filechanges.txt for a somewhat sporadic and rambling history of changes toMFPIC. See
the filereadme.txt for a list of any known problems.

4.3 Summary of Options

Unless otherwise stated, any of the command forms will be local to the currentmfpic environment
if used inside. Otherwise it will affect all later environments.

OPTION: COMMAND FORM(S): RESTRICTIONS:

metapost \usemetapost Command must come before
\opengraphsfile. Incompatible with
metafont option.

metafont \usemetafont The default. Command must come before
\opengraphsfile. Incompatible with
metapost option.

mplabels \usemplabels,
\nomplabels

Requiresmetapost. If command is used
inside anmfpic environment, it should
come before\tlabel commands to be
affected.

54



4 APPENDICES 55

overlaylabels \overlaylabels,
\nooverlaylabels

Has no effect withoutmetapost.

truebbox \usetruebbox,
\notruebbox

Has no effect withoutmetapost.

clip \clipmfpic,
\noclipmfpic

No restrictions.

clearsymbols \clearsymbols,
\noclearsymbols

No restrictions.

centeredcaptions \usecenteredcaptions,
\nocenteredcaptions

No restrictions.

debug \mfpicdebugtrue,
\mfpicdebugfalse

To turn on debugging whilemfpic.tex is
loading, issue\def\mfpicdebug{true}.

draft
final
nowrite

\mfpicdraft
\mfpicfinal
\mfpicnowrite

Should not be used together. Command
forms should come before
\opengraphsfile

4.4 Plotting styles for\plotdata

When\plotdata passes from one curve to the next, it increments a counter and uses that counter
to select a dash pattern, color, or symbol. It uses predefined dash pattern namesdashtype0 through
dashtype5, or predefined color namescolortype0 throughcolortype7, or predefined symbols
pointtype0 throughpointtype8. Here follows a description of each of these variables. These
variables must not be used in the second argument of\reconfigureplot, whose purpose is to
redefine these variables.

Under\dashedlines, we have the following dash patterns:

NAME PATTERN MEANING

dashtype0 0bp solid line
dashtype1 3bp,4bp dashes
dashtype2 0bp,4bp dots
dashtype3 0bp,4bp,3bp,4bp dot-dash
dashtype4 0bp,4bp,3bp,4bp,0bp,4bp dot-dash-dot
dashtype5 0bp,4bp,3bp,4bp,3bp,4bp dot-dash-dash

Under\coloredlines, we have the following colors. Except forblack andred, each color is
altered as indicated. This is an attempt to make the colors more equal in visibility against a white
background. (The success of this attempt varies greatly with the output or display device.)



4 APPENDICES 56

NAME COLOR (R,G,B)

colortype0 black (0,0,0)
colortype1 red (1,0,0)
colortype2 blue (.2, .2,1)
colortype3 orange (.66, .34,0)
colortype4 green (0, .8,0)
colortype5 magenta (.85,0, .85)
colortype6 cyan (0, .85, .85)
colortype7 yellow (.85, .85,0)

Under \pointedlines and \datapointsonly, the following symbols are used. Internally
each is referred to by the numeric name, but they are identical to the more descriptive name.
Syntactically, all areMETAFONT path variables. (The order changed between versions 0.6 and
0.7.)

NAME DESCRIPTION

pointtype0 Circle
pointtype1 Cross
pointtype2 SolidDiamond
pointtype3 Square
pointtype4 Plus
pointtype5 Triangle
pointtype6 SolidCircle
pointtype7 Star
pointtype8 SolidTriangle

4.5 Special considerations when usingMETAFONT

The most important restriction inMETAFONT is on the size of a picture. Coordinates inMETAFONT

ultimately refer to pixel units in the font that is output. These are required to be less than 4096,
so an absolute limit on the size of a picture is whatever length a row of 4096 pixels is. In fonts
prepared for a LaserJet4 (600 DPI), this means about 6.8 inches. For a 1200 DPI pronter, the limit
is about 3.4 inches.

A similar limit holds for numbers input, and the values of variables:METAFONT will return an
error forsin 4096. Intermediate values can be greater (sin (2*2048) will cause no error), but
final, stored results are subject to the limit. AnMFPIC example that generated an error recently
was:

\mfpicunit 1mm
\mfpic[10]{-3}{7}{-3.5}{5}
\function{-4.5,4,.1}{x*x}

\endmfpic

The problem was the value of(−4.5)2 = 20.25 in pixel units (after multiplying by the\mfpic
scaling factor the\mfpicunit in inches and the DPI value): 20.25×10×0.03937×600> 4783.
The error did not occur at the point of creating the font, but merely at the point of storing the path
in an internal variable for manipulation and drawing.



4 APPENDICES 57

4.6 Special considerations when usingMETAPOST

4.6.1 REQUIRED SUPPORT

To useMFPIC with METAPOST, the following support is needed (besides a workingMETAPOST

installation):

Under plainTEX The fileepsf.tex
Under LATEX209 The fileepsf.tex or epsf.sty
Under LATEX 2ε The packageGRAPHICSor GRAPHICX

Under pdfLATEX The packageGRAPHICSor GRAPHICX with optionpdftex
Under plain pdfTEX The filessupp-pdf.tex andsupp-mis.tex
In all cases The filesgrafbase.mp anddvipsnam.mp plus, of course,mfpic.tex (and

mfpic.sty for LATEX)

The filesgrafbase.mp anddvipsnam.mp should be in a directory searched byMETAPOST.
The remaining files should be in directories searched by the appropriate TEX variant. If META-
POSTcannot find the filegrafbase.mp, then by default it will try to inputgrafbase.mf, which is
generally futile (or fatal).

In case pdfLATEX is used, the graphics package is given thepdftex option. This option requires
the filepdftex.def which currently inputs the filessupp-pdf.tex andsupp-mis.tex. The file
pdftex.def is supplied with theGRAPHICSpackage. The other two are usually supplied with a
pdfTEX distribution, and are definitely part of the ConTEXt distribution. Older versions had some
bugs in connection with theBABEL package. One workaround was to load theGRAPHICSpackage
andMFPIC beforeBABEL.

If the user loads one of the above required files or packages before theMFPIC macros are
loaded thenMFPIC will not reload them. If they have not been input,MFPIC will load whichever
one it decides is required. In the LATEX 2ε case,MFPIC will load theGRAPHICSpackage. If the user
wishesGRAPHICX, then that package must be loaded beforeMFPIC.

4.6.2 METAPOST IS NOT METAFONT

POSTSCRIPT is not a pixel oriented language and so neither isMETAPOST. The model for draw-
ing objects is completely different betweenMETAFONT andMETAPOST, and so one cannot always
expect the same results. METAPOSTsupport inMFPIC was carefully written so that files success-
fully printed withMFPIC usingMETAFONT would be just as successfully printed usingMETAPOST.
Nevertheless, it frequently choke on files that make use of the\mfsrc command for writing code
directly to the.mf file. While grafbase.mp is closely based ongrafbase.mf, much of the code
had to be completely rewritten.

Pictures inMETAPOSTare stored as (possibly nested) sequences of objects, where objects are
things like points, paths, contours, other pictures, etc. InMETAFONT, pictures are stored as a grid
of pixels. Pictures that are relatively simple in one program might be very complex in the other and
even exceed memory allocated for their storage. Two examples are the\polkadot and\hatch
commands. When the polkadot space and size are both too small, a\polkadot-ed region has been
known to exceedMETAPOSTcapacity, while being well withinMETAFONT capacity. InMETAPOST

the memory consumed by\hatch goes up in direct proportion to the linear dimensions of the figure
being hatched, while inMETAFONT it goes up in proportion to the area, and then the reverse can
happen, withMETAFONT’s capacity exeeded far sooner thatMETAPOST’s.



4 APPENDICES 58

In METAPOST it is important to note that each prefix modifies the result of the entire follow-
ing sequence. In essence prefixes can be viewed as being applied in the opposite order to their
occurrence. Example:

\dashed\gfill\rect{(0,0),(1,1)}

This adds the dashed outline to the filled rectangle. That is, first the rectangle is defined, then it is
filled, then the outline is drawn in dashed lines. This makes a difference when colors other than
black are used. Drawing is done with the center of the virtual pen stroked down the middle of the
boundary, so half of its width falls inside the rectangle. On the other hand, filling is done right up
to the boundary. In this example, the dashed lines are drawn on top of part of the fill. In the reverse
order, the fill would cover part of the outline.

4.6.3 GRAPHIC INCLUSION

It may be impossible to completely cater to all possible methods of graphic inclusions with auto-
matic tests. The macro that is invoked to include the POSTSCRIPT graphic is\setmfpicgraphic
and the user may (carefully!) redefine this to suit special circumstances. Actually,MFPIC runs the
following sequence:

\preparemfpicgraphic{〈filename〉}
\setmfpicgraphic{〈filename〉}
\getmfpicoffset{〈filename〉}

The following are the default definitions for\setmfpicgraphic:

In plain TEX: \def\setmfpicgraphic#1{\epsfbox{#1}}
In LATEX209: \def\setmfpicgraphic#1{\epsfbox{#1}}
In LATEX 2ε: \def\setmfpicgraphic#1{\includegraphics{#1}}
In pdfLATEX: \def\setmfpicgraphic#1{\includegraphics{#1}}
In pdfTEX: \def\setmfpicgraphic#1{\convertMPtoPDF{#1}{1}{1}}

Moreover, sinceMETAPOST by default writes files with numeric extensions, we add code to
each figure, so that these graphics are correctly recognized as EPS or MPS. For example, to the
figure with extension.1, we add the equivalent of one of the following

\DeclareGraphicsRule{.1}{eps}{.1}{} in LATEX 2ε.

\DeclareGraphicsRule{.1}{mps}{.1}{} in pdfLATEX.

After running the command\setmfpicgraphic, MFPIC runs\getmfpicoffset to store the
lower left corner of the bounding box of the figure in two macros\mfpicllx and\mfpiclly.
All the above versions of\setmfpicgraphic (except\includegraphics) make this informa-
tion available; the definition of\getmfpicoffset merely copies it into these two macros. What
MFPIC does in the case of\includegraphics is to modify (locally) the definition of an inter-
nal command of the graphics package so that it copies the information to those macros, and
then\getmfpicoffset does nothing. This internal modification is accomplished by the macro
\preparemfpicgraphic. Changes to\setmfpicgraphic might require changing either or both
of \preparemfpicgraphic and \getmfpicoffset. All three of these commands are fed the
graphic’s file name as the only argument, although only\setmfpicgraphic currently does any-
thing with it.



4 APPENDICES 59

One possible reason for wanting to redefine\setmfpicgraphic might be to rescale all pic-
tures. This isdefinitely nota good idea without the optionmplabels since theMFPIC code for
placing labels and captions and reserving space for the picture relies on the picture having the
dimensions given by the arguments to the\mfpic command. Withmplabels plus truebbox it will
probably work, but (i) it hasnot been considered in writing theMFPIC code, (ii) it will then scale
all the text as well as the figure, and (iii) it will scale all line thickness, which should normally be
a design choice independent of the size of a picture. To rescale all pictures, one need only change
\mfpicunit and rerun TEX andMETAPOST.

A better reason might be to allow the conversion of yourMETAPOST figures to some other
format. Then redefining\setmfpicgraphic could enable including the appropriate file in the
appropriate format.

The filename argument mentioned above is actually the result obtained by running the macro
\setfilename. The command\setfilename gets two arguments: the name of theMETAPOST

output file (set in the\opengraphsfile command) without extension, and the number of the pic-
ture. The default definition of\setfilename merely inserts a dot between the two arguments. That
is \setfilename{fig}{1} producesfig.1. You can redefine this behavior also. Any changes to
\setfilename must come after theMFPIC macros are input and before the\opengraphsfile
command. Any changes to\setmfpicgraphic must come after theMFPIC macros are input and
before any\mfpic commands, but it is best to place it before the\opengraphsfile command.

As MFPIC is currently written,\setfilename must becompletely expandable, which means it
should contain no definitions, no assignments such as\setcounter, and no calculations. To test
whether a proposed definition is completely expandable, put

\message{***\setfilename{file}{1}***}

after the definition in a.tex file and view the result on the terminal or in the.log file. You should
see only your expected filename between the asterisks.

4.7 MFPIC and the rest of the world

4.7.1 THE LITERATURE

There are at least two places whereMFPIC has garnered more than a cursory mention. The most
up-to-date is a section inThe LATEX Graphics Companionby Michel Goossens, Sebastian Rahtz
and Frank Mittelbach. It describes a version prior to the introduction ofMETAPOSTsupport, but it
correctly describes a subset of its current commands and abilities.

The other isTEX Unboundby Alan Hoenig, which contains a chapter onMFPIC. Unfortunately,
it describes a version that was replaced in 1996 with version 0.2.10.9. The following summarizes
the differences between the description12 found in Chapter 15 andMFPIC versions 0.2.10.9 through
the current one:

\wedge is now renamed\sector to avoid conflict with the TEX command of the same name.
The syntax is slightly different from that given for\wedge:

\sector{(〈x〉,〈y〉), 〈radius〉, 〈angle1〉, 〈angle2〉}
12While I’m at it: TEX Unboundoccasionally refers toMFPIC using a logo-like formatting in which the ‘MF’ is in a

special font and the ‘I’ is lowered. This ‘logo’ may suggest a relationship betweenMFPIC and PICTEX. There is no such
relationship, and there is no official logo-like designation forMFPIC.



4 APPENDICES 60

The macro\plr{(〈r0〉,〈θ0〉),(〈r1〉,〈θ1〉),. . .} is used to convert polar coordinate pairs to
rectangular coordinates, so the commands\plrcurve, \plrcyclic, \plrlines and\plrpoint
were dropped fromMFPIC. Now use

\curve{\plr{(〈r0〉,〈θ0〉),(〈r1〉,〈θ1〉),. . .}}
instead of

\plrcurve{(〈r0〉,〈θ0〉),(〈r1〉,〈θ1〉),. . .}
and similarly for\cyclic, \lines and \point with respect to\plrcyclic, \plrlines and
\plrpoint.

\fill is now renamed\gfill to avoid conflict with the LATEX command of the same name.
\rotate, which rotates a following figure about a point, is now renamed\rotatepath to

avoid confusion with a similar name for a transformation (see below).
\white is now renamed\gclear because\white is too likely to be chosen for, or confused

with, a color command.

The following affine transform commands were changed from a third person indicative form
(which could be confused with a plural noun) to an imperative form:

Old name: New name:
\boosts \boost
\reflectsabout \reflectabout
\rotatesaround \rotatearound
\rotates \rotate
\scales \scale
\shifts \shift
\xscales \xscale
\xslants \xslant
\xyswaps \xyswap
\yscales \yscale
\yslants \yslant
\zscales \zscale
\zslants \zslant

\caption and\label are now renamed\tcaption and\tlabel to avoid conflict with the
LATEX commands.

\mfcmd was renamed\mfsrc for clarity, and (in version 0.7) a new\mfcmd was defined, which
is pretty much the same except it appends a semicolon to its argument.

There is a misprint:\axisheadlin should be\axisheadlen.
Finally, in the LATEX template on page 496:MFPIC now supports the\usepackage method of

loading.

4.7.2 OTHER PROGRAMS

There exists a program,FIG2MFPIC that producesMFPIC code as output. The code produced (as
of this writing) is somewhat old and mostly incompatible with the description in this manual.
Fortunately, it is accompanied by the appropriate versions of filesmfpic.tex andgrafbase.mf.
Unfortunately, the names conflict with the current filenames and so they should only be used in



4 APPENDICES 61

circumstances where no substitution will occur, say in a local directory with the other sources for
the document being produced. Moreover, the documentation in this manual may not apply to the
code produced. However the information inTEX Unboundmay apply.

There exist a package,CIRCUIT_MACROS, that can produce a variety of output formats, one of
which isMFPIC code. One writes a file (don’t ask me what it consists of) and apparently processes it
with M4 and thenDPIC to produce the output. TheMFPIC code produced appears to be compatible
with the currentMFPIC.



4 APPENDICES 62

4.8 Index of commands, options and parameters by page

\applyT, 40
\arc, 17
\arrow, 24
Asterisk, 11
\axes, 12
\axis, 13
\axisheadlen, 44
\axislabels, 36
\axismargin, 13
\axismarks, 13

\backgroundcolor, 20
\barchart, 18
\bargraph, 18
\bclosed, 23
\begin{mfpic}, 9
\bmarks, 13
\boost, 40
\btwnfcn, 30

\cbclosed, 46
centeredcaptions, 5
\chartbar, 18
Circle, 11
\circle, 15, 16
\clearsymbols, 6, 11

clearsymbols, 6
clip, 5
\clipmfpic, 5
\closedcspline, 46
\closedmfbezier, 47
\closedqbeziers, 47
\closedqspline, 46
\closegraphsfile, 8
cmyk(c,m,y,k), 21
\coloredlines, 33
\connect, 23
\coords, 39
Cross, 11
\cspline, 46
\curve, 16
\cutoffafter, 50
\cutoffbefore, 50

\cyclic, 16

\darkershade, 45
\dashed, 24
\dashedlines, 33
\dashlen, 44
\dashlineset, 45
\dashpattern, 25
\datafile, 12, 30, 31
\datapointsonly, 33

debug, 6
\defaultplot, 33
Diamond, 11
\doaxes, 13
\dotlineset, 45
\dotsize, 45
\dotspace, 45
\dotted, 25

draft, 6
\draw, 24
\drawcolor, 20
\drawpen, 44

\ellipse, 16
\endconnect, 23
\endcoords, 39
\endmfpframe, 39
\endmfpic, 9
\endpatharr, 48
\endtile, 50
\everytlabel, 35

\fcncurve, 17
\fdef, 28
\fillcolor, 20
fillcolor, 26, 27
final, 6
\function, 29

\gclear, 26
\gclip, 26
\gendashed, 25
\getmfpicoffset, 52, 58



4 APPENDICES 63

\gfill, 26
\graphbar, 18
gray(g), 21
\grid, 15
\gridarcs, 15
\gridlines, 15
\gridpoints, 15
\gridrays, 15

\hashlen, 45
\hatch, 27
\hatchcolor, 20
\hatchspace, 45
\hatchwd, 44
\headcolor, 20
\headlen, 44
\headshape, 44
\hgridlines, 15
\histobar, 18
\histogram, 18

\ifmfpmpost, 52

\lattice, 15
\lclosed, 23
\lhatch, 27
\lightershade, 45
\lines, 11
\lmarks, 13

\makepercentcomment, 32
\makepercentother, 32
\makesector, 18

metapost, 4
\mfbezier, 47
\mfcmd, 47
\mflist, 47
\mfobj, 41
\mfpdatacomment, 31
\mfpdataperline, 46
\mfpdefinecolor, 22
\mfpframe, 39
\mfpframed, 39
\mfpic, 9
\mfpiccaptionskip, 37

\mfpicdebugfalse, 6
\mfpicdebugtrue, 6
\mfpicdraft, 6, 7
\mfpicfinal, 6, 7
\mfpicheight, 46
\mfpicnowrite, 6, 7
\mfpicnumber, 9
\mfpicunit, 43
\mfpicversion, 52
\mfpicwidth, 46
\mfplinestyle, 33
\mfplinetype, 33
\mfpverbtex, 36
\mfsrc, 47
\mftitle, 51
\mirror, 39

mplabels, 4
\mpobj, 41

named(〈name〉), 21
\newfdim, 51
\newsavepic, 38
\nocenteredcaptions, 5
\noclearsymbols, 6, 11
\noclipmfpic, 5
\nomplabels, 4
\nooverlaylabels, 5
\noship, 48
\notruebbox, 5

nowrite, 6
\numericarray, 49

\opengraphsfile, 8
\overlaylabels, 5

overlaylabels, 5

\pairarray, 49
\parafcn, 29
\partpath, 23
\patharr, 48
\pen, 44
\penwd, 44
\piechart, 19
\piewedge, 19
\plot, 25



4 APPENDICES 64

\plotdata, 32
\plotnodes, 25
\plotsymbol, 11
\plottext, 36
\plr, 20
\plrfcn, 30
\plrgrid, 15
\plrgridpoints, 15
\plrpatch, 15
\plrregion, 30
Plus, 11
\point, 10
\pointcolor, 20
\pointdef, 10
\pointedlines, 33
\pointfillfalse, 43
\pointfilltrue, 43
\pointsize, 43
\polkadot, 26
\polkadotspace, 45
\polkadotwd, 44
\polygon, 11
\polyline, 11
\preparemfpicgraphic, 52, 58

\qbclosed, 46
\qbeziers, 47
\qspline, 46

\reconfigureplot, 33
\rect, 11
\reflectabout, 39
\reflectpath, 42
\regpolygon, 12
\resumeshipping, 48
\reverse, 23
RGB(R,G,B), 21
rgb(r,g,b), 21
\rhatch, 27
\rmarks, 13
\rotate, 39
\rotatearound, 39
\rotatepath, 42

\savepic, 38

\scale, 40
\scalepath, 42
\sclosed, 23
\sector, 18
\sequence, 32
\setallaxismargins, 13
\setallbordermarks, 14
\setaxismargins, 13
\setaxismarks, 14
\setbordermarks, 14
\setfilename, 51, 59
\setmfpicgraphic, 51, 58
\setmfvariable, 48
\setmpvariable, 48
\setrender, 27
\settension, 16
\setxmarks, 14
\setymarks, 14
\shade, 26
\shadespace, 45
\shadewd, 44
\shift, 39
\shiftpath, 42
\sideheadlen, 44
\slantpath, 42
\smoothdata, 30
SolidCircle, 11
SolidDiamond, 11
SolidSquare, 11
SolidStar, 11
SolidTriangle, 11
Square, 11
Star, 11
\stopshipping, 48
\store, 40
\subpath, 23
\symbolspace, 45

\tcaption, 36
\tess, 50
\thatch, 27
\tile, 50
\tlabel, 34
\tlabelcircle, 38
\tlabelcolor, 20



4 APPENDICES 65

\tlabelellipse, 38
\tlabeljustify, 35
\tlabeloffset, 35, 46
\tlabeloval, 38
\tlabelrect, 37
\tlabels, 34
\tlabelsep, 35, 45
\tlpathjustify, 38
\tmarks, 13
\tmtitle, 51
\transformpath, 42
Triangle, 11
\trimpath, 50

truebbox, 5
\turn, 39
\turtle, 18

\unsmoothdata, 30
\usecenteredcaptions, 5
\usemetafont, 7
\usemetapost, 4, 7
\usemplabels, 4
\usepic, 38
\usetruebbox, 5
\using, 31
\usingnumericdefault, 32
\usingpairdefault, 32

\vgridlines, 15

\xaxis, 12
\xhatch, 27
\xmarks, 13
\xscale, 40
\xscalepath, 42
\xslant, 40
\xslantpath, 42
\xyswap, 40
\xyswappath, 42

\yaxis, 12
\ymarks, 13
\yscale, 40
\yscalepath, 42
\yslant, 40

\yslantpath, 42

\zscale, 40
\zslant, 40



4 APPENDICES 66

4.9 List of commands by type

4.9.1 FIGURES

\arc
\axis
\btwnfcn
\chartbar
\circle
\closedcspline
\closedmfbezier
\closedqbeziers
\closedqspline
\cspline
\curve
\cyclic
\datafile
\ellipse
\fcncurve
\function
\graphbar
\histobar
\lines
\mfbezier
\mfobj
\parafcn
\piewedge
\plrfcn
\plrregion
\polygon
\polyline
\qbeziers
\qspline
\rect
\regpolygon
\sector
\tlabelcircle
\tlabelellipse
\tlabeloval
\tlabelrect
\turtle

4.9.2 FIGURE MODIFIERS

\arrow
\bclosed
\cbclosed

\connect, \endconnect
\cutoffafter
\cutoffbefore
\lclosed
\makesector
\partpath
\qbclosed
\reflectpath
\reverse
\rotatepath
\scalepath
\sclosed
\shiftpath
\slantpath
\subpath
\transformpath
\trimpath
\xscalepath
\xslantpath
\xyswappath
\yscalepath
\yslantpath

4.9.3 FIGURE RENDERERS

\dashed
\dotted
\draw
\gclear
\gclip
\gendashed
\gfill
\hatch
\lhatch
\plot
\plotdata (sort of)
\plotnodes
\polkadot
\rhatch
\shade
\tess
\thatch
\xhatch



4 APPENDICES 67

4.9.4 LENGTHS

\axisheadlen
\dashlen
\dotsize
\dotspace
\hashlen
\hatchspace
\headlen
\mfpiccaptionskip
\mfpicheight
\mfpicunit
\mfpicwidth
\pointsize
\polkadotspace
\shadespace
\sideheadlen
\symbolspace

4.9.5 COORDINATE TRANSFORMATION

\applyT
\boost
\coords, \endcoords
\mirror
\reflectabout
\rotate
\rotatearound
\scale
\shift
\turn
\xscale
\xslant
\xyswap
\yscale
\yslant
\zscale
\zslant

4.9.6 AXES, GRIDS, AND MARKS

\axes
\axis
\axismarks
\bmarks
\doaxes
\grid
\gridarcs

\gridlines
\gridpoints
\gridrays
\hgridlines
\lattice
\lmarks
\plotsymbol
\plrgrid
\plrgridpoints
\plrpatch
\point
\rmarks
\tmarks
\vgridlines
\xaxis
\xmarks
\yaxis
\ymarks

4.9.7 SETTING OPTIONS

\clearsymbols
\clipmfpic
\mfpicdebugfalse
\mfpicdebugtrue
\mfpicdraft
\mfpicfinal
\mfpicnowrite
\nocenteredcaptions
\noclearsymbols
\noclipmfpic
\nomplabels
\nooverlaylabels
\noship
\notruebbox
\overlaylabels
\resumeshipping
\stopshipping
\usecenteredcaptions
\usemetafont
\usemetapost
\usemplabels
\usetruebbox

4.9.8 CHANGING VALUES

\axismargin



4 APPENDICES 68

\darkershade
\dashlineset
\dashpattern
\dotlineset
\drawpen
\hatchwd
\headshape
\lightershade
\mfpicnumber
\mfplinestyle
\mfplinetype
\pen
\penwd
\polkadotwd
\setallaxismargins
\setallbordermarks
\setaxismargins
\setaxismarks
\setbordermarks
\setmfvariable
\setmpvariable
\settension
\setxmarks
\setymarks
\shadewd

4.9.9 CHANGING COLORS

\backgroundcolor
\drawcolor
\fillcolor
\hatchcolor
\headcolor
\mfpdefinecolor
\pointcolor
\tlabelcolor

4.9.10 DEFINING ARRAYS

\barchart
\bargraph
\histogram
\numericarray
\pairarray
\patharr, \endpatharr
\piechart

4.9.11 CHANGING BEHAVIOR

\clearsymbols
\coloredlines
\dashedlines
\datapointsonly
\defaultplot
\everytlabel
\makepercentcomment
\makepercentother
\mfpdatacomment
\mfpdataperline
\mfpverbtex
\noclearsymbols
\pointedlines
\pointfillfalse
\pointfilltrue
\reconfigureplot
\setrender
\smoothdata
\tlabeljustify
\tlabeloffset
\tlabelsep
\tlpathjustify
\unsmoothdata
\using
\usingnumericdefault
\usingpairdefault

4.9.12 FILES AND ENVIRONMENTS

\closegraphsfile
\mfpframe, \endmfpframe
\mfpic, \endmfpic
\opengraphsfile

4.9.13 TEXT

\axislabels
\plottext
\tcaption
\tlabels
\tlabel

4.9.14 MISC

\fdef
\getmfpicoffset
\ifmfpmpost



4 APPENDICES 69

\mfcmd
\mflist
\mfpframed
\mfpicversion
\mfpverbtex
\mfsrc
\mftitle
\newfdim
\newsavepic
\plr
\pointdef
\preparemfpicgraphic
\savepic
\setmfpicgraphic
\setfilename
\sequence
\store
\tile, \endtile
\tmtitle
\usepic


	Introduction
	Why?
	Who?
	What?
	How?

	Options.
	metapost, usemetapost 
	mplabels, usemplabels , 
omplabels 
	overlaylabels, overlaylabels , 
ooverlaylabels 
	truebbox, usetruebbox , 
otruebbox 
	clip, clipmfpic , 
oclipmfpic 
	centeredcaptions, usecenteredcaptions , 
ocenteredcaptions 
	debug, mfpicdebugtrue , mfpicdebugfalse 
	clearsymbols, clearsymbols , 
oclearsymbols 
	draft, final, nowrite, mfpicdraft , mfpicfinal , mfpicnowrite 
	Option Scoping Rules

	The Macros.
	Files and Environments.
	Figures.
	Metafont Pairs.
	Points, Lines, and Rectangles.
	A Word on List Arguments
	Axes, Axis Marks, and Grids.
	Circles and Ellipses.
	Curves.
	Circular Arcs.
	Other Figures.
	Bar Charts and Pie Charts.
	Polar Coordinates to Rectangular.

	Colors
	Setting the Default Colors.
	Metapost Colors.
	Color Models.
	Defining a Color Name.
	Color in Metafont

	Shape-Modifier Macros.
	Closure of Paths.
	Reversal, Connection and Subpaths.
	Arrows.

	Rendering macros
	Drawing.
	Shading, Filling, Erasing, Clipping, Hatching.
	Changing the Default Rendering.
	Examples.

	Functions and Plotting.
	Defining Functions
	Plotting Functions
	Plotting external data files

	Labels and Captions.
	Setting Text.
	Curves surrounding text

	Saving and Reusing an mfpic Picture.
	Picture frames.
	Affine Transforms.
	Affine Transforms of the Metafont Coordinate System.
	Transformation of Paths.

	Parameters.
	For Advanced Users.
	Power Users.
	Hackers.


	Appendices
	Acknowledgements.
	Changes History.
	Summary of Options
	Plotting styles for plotdata 
	Special considerations when using Metafont
	Special considerations when using Metapost
	Required support
	Metapost is not Metafont
	Graphic inclusion

	Mfpic and the rest of the world
	The literature
	Other programs

	Index of commands, options and parameters by page
	List of commands by type
	Figures
	Figure modifiers
	Figure renderers
	Lengths
	Coordinate transformation
	Axes, grids, and marks
	Setting options
	Changing values
	Changing colors
	Defining arrays
	Changing behavior
	Files and environments
	Text
	Misc



