MFPIC: Pictures in X
with Metafont and MetaPost

Dr Thomas E. Leathrum Geoffrey Tobiin Daniel H. Luecking

2003/11/14

Contents
1 Introduction 1
1.1 Why? . e e e 1
1.2 WhO? . . . e e e e 1
1.3 What?. . . . e e e e 2
1.4 HOW? . . . e e 2
2 Options. 4
2.1 metapost, \usemetapost i .t i e e e e e e e e e e e e e e e 4
2.2 mplabels, \usemplabels, \nomplabels v v v i v vt e 4
2.3 overlaylabels, \overlaylabels, \nooverlaylabels 5
2.4 truebbox, \usetruebbox, \notruebboxl e e 5
2.5 clip, \clipmfpic, \noclipmfpic & v i v i i i e e e e e e 5
2.6 centeredcaptions, \usecenteredcaptions, \nocenteredcaptions 5
2.7 debug, \mfpicdebugtrue, \mfpicdebugfalse 6
2.8 clearsymbols, \clearsymbols, \noclearsymbols v v v v v v v v v 6
2.9 draft, final, nowrite, \mfpicdraft, \mfpicfinal, \mfpicnowrite 6
2.10 Option ScopingRules. e 6
3 The Macros. 8
3.1 Filesand Environments.. e e e 8
3.2 FIgures.. e e e 10
3.21 METAFONTPRAIrS. e e 10
3.2.2 Points, Lines,andRectangles.., 10
3.23 AWordonListArguments 12
3.24 Axes,AxisMarks,andGrids. 0oL, 12
3.25 CirclesandEllipses. e 15
3.26 CUIVES.. e 16
3.27 Circular Arcs. e e 17
3.2.8 OtherFigures.. i 18
3.29 BarChartsandPieCharts.. 18
3.2.10 Polar Coordinatesto Rectangular. 20
3.3 Colors. . . . 20

MFpPIcversion: 0.7 beta.
*G.Tobin@latrobe.edu.au
Tluecking@uark.edu

CONTENTS ii

3.3.1 Settingthe DefaultColors.. 20
3.3.2 METAPOSTCOIOIS.. 20
3.33 ColorModels. 21
3.3.4 DefiningaColorName.., 22
3.3.5 ColorinMETAFONT o it e e e e e e e e 22

3.4 Shape-Modifier Macros.. 22
341 ClosureofPaths. e 23
3.4.2 Reversal, Connectionand Subpaths.. 23
343 AITOWS.. . o o o e e 24

3.5 RenderingmacroS. i i e e e e e e e 24
351 Drawing. o e e e 24
3.5.2 Shading, Filling, Erasing, Clipping, Hatching. 26
3.5.3 Changingthe Default Rendering. 27
354 Examples. 28

3.6 FunctionsandPlotting. 28
3.6.1 Defining Functions 28
3.6.2 Plotting Functions. 29
3.6.3 Plotting externaldatafiles 30

3.7 Labelsand Captions. e 34
3.7.1 SettingText.. e e 34
3.7.2 Curvessurroundingtext L 37

3.8 Saving and Reusing adFPICPicture.. 38
3.9 Pictureframes.. e 39
3.10 Affine Transforms.. L 39
3.10.1 Affine Transforms of theeTAFONT Coordinate System.. 39
3.10.2 Transformationof Paths.. 40
311 Parameters. e e e e e e e e e A3
3.12 For Advanced USEers. i i i i e e e 46
3.12.1 PowerUSers. o o e e 46
3.12.2 Hackers. o o e e 52

4 Appendices 54
4.1 Acknowledgements.. 54
4.2 ChangesHistory.. 54
4.3 Summary of Options. e 54
4.4 Plotting styles fokplotdata o o 55
4.5 Special considerations when USMBTAFONT v v v v v v v o o . 56
4.6 Special considerations when USMBTAPOST. v v v v v v v v e o a 57
4.6.1 RequiredSUPPOI v i i e e e 57
4.6.2 METAPOSTISNOtMETAFONT . . v v v v v v e e e e e e e e e e e e e 57
4.6.3 Graphicinclusion L 58

4.7 Mrpicandtherestoftheworld. oo oL 59
4.7.1 Theliterature. e e 59

4.7.2 Otherprograms i i i it e e e 60

CONTENTS iii
4.8 Index of commands, options and parametersby page. 62
4.9 Listofcommandsbytype. e 66

4.9.1 FIgures. e e 66
4.9.2 Figuremodifiers. 66
4.9.3 Figurerenderers. e e 66
49.4 Lengths. 67
4.9.5 Coordinate transformation oL 67
49.6 Axes,grids,andmarks. L o 67
4.9.7 Settingoptions. e 67
4.9.8 Changingvalues. e 67
49.9 Changingcolors. e 68
4.9.10 Definingarrays o o i e e 68
4.9.11 Changingbehavior 68
4.9.12 Filesand environments.o 68
4913 Text. . . . e 68
4.9.14 MISC . . v v i e 68

1 Introduction
1.1 Why?

Tom got the idea fomFpPIC' mostly out of a feeling of frustration. Different output mechanisms
for printing or viewing X DVI files each have their own ways to include pictures. More often
than not, there are provisions for including graphic objects into a DVI file ugi¥g\Epecial’s.
However, this technique seemed far fropXE ideal of device independence because different
TeX output drivers recognize differentpecial’ s, and handle them in different ways.

IATEX's picture environment has a hopelessly limited supply of available objects to draw—if
you want to draw a graph of a polynomial curve, you're out of luck.

There was, of course|®&pX, which is wonderfully flexible and general, but its most obvious
feature was its speed—or rather lack of it. Processing a single pictuf€ipdcould often take
several seconds.

It occurred to Tom that it might be possible to take advantage of the fackM#BtFONT is
designedor drawing things. The result of pursuing this ideaispic, a set of macros forgX and
METAFONT which incorporatevETAFONT-drawn pictures into agX file.

With the creation oMETAPOSTby John Hobby, and the almost universal availability of free
PosTScRIPTIinterpreters like GIOSTSCRIPT SOMeMFPIC users wanted to run thewrpPic output
throughMETAPOST, to produce BSTSCRIPT pictures. Moreover, users wanted to be able to use
pdfTeX, which does not get along well with PK fonts, but is quite happy WiHTAPOSTpictures.
Unfortunatelygrafbase.mf, which contained th&ETAFONT macros responsible for processing
MFPIC's output, was far too pixel-oriented fMETAPOST. A new file,grafbase.mp was created,
based very heavily ografbase .mf but compatible wittMETAPOST. Now when arvFPIC output
file saysinput grafbase, eitherMETAFONT or METAPOSTmay be run on it, and each program
will select its own macros, and produce (nearly) the same picture. This gets us away from device
independence, but many users were not so much concerned with that as with having a convenient
way to have text and pictures described in the same document.

With the extra capabilities of ®TSCRIPT (e.g., color) and the corresponding abilities of
METAPOST, there was a demand for somePIC interface to access them. Consequently, switches
(options) have been added to access some of them. When these are used, output files may no longer
be compatible witt(METAFONT.

1.2 Who?

MFEPIC was written primarily by Tom Leathrum during the late (northern hemisphere) spring and
summer of 1992, while at Dartmouth College. Different versions were being written and tested
for nearly two years after that, during which time Tom finished his Ph.D. and took a job at Berry
College, in Rome, GA. Between fall of 1992 and fall of 1993, much of the development was carried
out by others. Those who helped most in this process are credited in the Acknowledgements.

Somewhere in the mid 1990’s the development passed to Geoffrey Tobin who kept things going
for several years.

The addition ofMETAPOST support was carried out by Dan Luecking around 1997-99. He is
also responsible for all other additions and changes since then, with help from Geoffrey and a few
others mentioned in the Acknowledgements.

1if you're wondering how to pronouncetrpiC’; | always say ‘em-effpick’, speaking the first two letters. —DHL.

1.3 WHAT? 2

1.3 What?

SeeREADME. txt for a list and a brief explanation of each of the files. Only five are actually
needed for full access toFpPIC's capabilitiesmfpic.tex, mfpic.sty (the latter needed only for
IATEX's \usepackage), grafbase.mf (needed only iMETAFONT will be processing the figures),
grafbase.mp anddvipsnam.mp (needed only iMETAPOSTWIll be the processor).

The readme file that accompani@spPiC gives some guidence on the proper location for the
installation of these files.

1.4 How?

Setting up EX and METAFONT to process these files will, to an extent, depend on your local
installation. The biggest problem you are likely to have, regardless of your installation, will be
convincing BX and its output drivers to findlETAFONT's output files. You should do whatever is
necessary (perhaps nothing!) to insure th2¢ Tooks in the current directory fort fm files, and
that your dvi driver/viewer looks in the current directory faix files. If you process your pictures
with METAPOSTthere is nothing to do in this regard.

Here is an example of the process: for the samplepfiletures.tex?, first run X on it
(or run BTEX on lapictures.tex). You may see a message framFric that there is no file
pics.tfm, but TeX will continue processing the file anyway. WhepXTis finished, you will now
have a file callegpics.mf. This is theMETAFONT file containing the descriptions of the pictures
for pictures.tex. You need to rurMETAFONT ON pics.mf, with \mode:=localfont Set up.
(Read youMETAFONT manual to see how to do thi¥ Typically, you just type

mf pics.mf
or, to use a particular printer mode suchigsour, possibly something like
mf ’\mode:=1jfour; input pics.mf’

This produces aics.tfm file and a GF file with a name something likécs. 600gf. The actual
number may be different and the extension may get truncated on some file systems. Then you run
GFTOPKoON the GF file to produce a PK font file. (Read y@rToPKkmanual on how to do this.)
Typically, you just run

gftopk pics.600gf

(or possibly gftopk pics.600gf pics.600pk Or gftopk pics.600gf pics.pk).

Now you have the font (thepk file) and font metric file (the.tfm) generated bywETA-
FONT, reprocess the filgictures. tex with TeX. The resulting DVI file should now be complete,
and you should be able to print and view it at your computer (assuming your viewer and print
driver have been set up to be able to find the PK font generateddtem.nf). You can delete
pics.600gf andpics.log.

If you useMFPIC with the metapost option (this would require you to editictures.tex or
lapictures.tex. See chapte? for how to do this), themics.mp is produced, and you need

2Readnfpguide.pdf for examples of minimaliFpic input files.

3If you are new to runninglETAFONT, the documenMetafont for Beginnersy Geoffrey Tobin, is a good start. Fetch
CTAN/info/metafont-for-beginners.tex. ‘CTAN' means the ComprehensivgX Archive Network. You can find the
mirror nearest you by pointing your browseratp: //www.ctan.org/.

1.4 How? 3

to replace thevETAFONT/GFTOPK steps with the single step of runniMETAPOST. (Read your
METAPOSTdocumentation on how to do thi¥ Typically just

mpost pics.mp

or possiblymp pics.mp .

After reprocessingictures.tex with TgX you should then be able to run dvips on the re-
sulting DVI file and print or view its BSTSCRIPT output. It pdf X is used instead ofgX on the
second run, you should be able to view the resulting PDF file with the pictures included.

Itis not advisable to rely on automatic font generation to createttie and. px files. (Differ-
ent systems do this in different ways, so here | will try to give a generic explanation.) The reason:
later editing of a figure will require new files to be built, and most automatic systemaatite-
make the files once they have been created. This is not so much a problem withirthasmFPIC
never tries to load the font if thec fm is absent and therefore no automaticm-making should
ever be triggered. However, if you forget to rarTOPK, then try to view your resulting file, you
may have to search your system and delete some automatically gengratilé (they can turn
up in unpredictable places) before you can see any later changes. It might be wise to write a shell
script (batch file) that (1) runRETAFONT, (2) runsGFTOPKIf step 1 returns no error, (3) deletes
the.tfmif the .pk file does not exist. That way, if anything goes wrong, thei will not contain
the font pMFPIc will draw a rectangle and the figure number in place of the figure).

These processing steps—processing Witk, processing wittMETAFONT/GFTOPK, and re-
processing with @X—may not always be necessary. In particular, if you changegieldcument
without making any changes at all to the pictures, then there will be no need to repeithe
FONT Or METAPOSTSteps.

There are also somewhat subtle circumstance under which you can skip the sgéstdpr
after editing a file that has gone through the above process. Listing the exact cirumstances is rather
involved, so it is recommended that you always repeat gestep if changes have been made.

What makesvrFpic work? When you run gX on the filepictures.tex, the MFPIC macros
issue BX \write commands, writing METAFONT (Or METAPOST) commands to a fileics.mf
(orpics.mp). The user should never have to read or change theifie.nf directly—themFPIC
macros take care of it.

The enterprising user can determine by examiningwtheiC source and the resultingeTA-
FONT file, thatMFPIC drawing macros translate almost directly into Simi&TAFONT/METAPOST
commands, defined in one of the filgsafbase.mf or grafbase.mp. The labels and captions,
however, are placed on the graph pXTusing box placement techniques similar to those used in
IATEX's picture environment (except when optiamplabels is in effect, in which cas®ETAPOST
places the labels).

4The documenBSome experiences on running Metafont and MetgRosPeter Wilson, can be useful for beginners.
FetchCTAN/info/metafp.pdf.

2 Options.

There are now several options to thieric package. These can be listed in the standéigkL
\usepackage optional argument, or can be turned on with certain provided commands (the only
possibility for plain BX). Some options can be switched off and on throughout the document.
Here we merely list them and provide a general description of their purpose. More details may be
found later in the discussion of the features affected. The headings below give the option name, the
alternative macro and, if available, the command for turning off the option. Any option not among
those given below will be passed on to thearPHICSpackage, provided theetapost option has

been used.

If the filemfpic.cfg exists, it will be input just before all options are processed. You can create
such a file containing akExecuteOptions command to execute any options you would like to
have as default. Actual optionstasepackage will override these defaults, of course. And so will
any of the commands below.

If the file mfpic.usr exists, it will be input at the end of the loading mfPic. The user can
create such a file containing any of the commands of this section that he would like to have as
default.

2.1 metapost , \usemetapost

SelectaveTAPOSTaS the figure processor and makes specific features available. It changes the ex-
tension used on the output file tep to signal that it can no longer be processed WiHTAFONT.

There is also anetafont option (command,usemetafont), but it is redundant, aBETAFONT is

the default. Either command must come before\theengraphsfile command (see sectidhl).

They should not be used together in the same document. (Actually, they can but one needs to close
one output file and open another. Moreover, it hasn’t ever been seriously tested, and it wasn’t taken
into consideration in writing most of the macros.) If the command fatgenetapost is used

in a BTpX 2¢ document, it must come in the preamble. Because of the timing of actions by the
BABEL package and by older versions@afpp-pdf . tex (input bypdftex.def in the GRAPHICS
package), when pdfIpX is usedmFpPIC should be loaded anthsenetapost (if used) declared
beforeBABEL is loaded.

2.2 mplabels , \usemplabels, \nomplabels

Causes all label creation commands to write their contents to the output file. It has no effect on the
\tcaption command. In this case labels are handledieyapPosTand can be rotated. It requires
METAPOST, and will be be ignored without itMETAFONT cannot handle labels). It may also
produce an error either froneX or METAFONT. Otherwise the commands can come anywhere and
affect subsequentt 1abel commands. When this is in effect, the labels become part of the figure
and, in the default handling, they may be clipped off or covered up by later drawing elements.
But see the next section on theerlaylabels option. Labels added to a picture contribute to the
bounding box even ifruebbox is not in effect.

The user is responsible for adding the appropriatebat imtex header to the output file if
necessary. For this purpose, there isthépverbtex command, see sectiégh?. If the label text
contains only valid plain gX macros, there is generally no need forexbatimtex preamble at
all. If you add averbatimtex preamble of ATEX code take care to make suMeETAPOST calls
IATEX (for example, by setting the environmental variabi to 1atex in the command shell of

2.3 overlaylabels, \overlaylabels, \nooverlaylabels 5

your operating system.).

2.3 overlaylabels , \overlaylabels, \nooverlaylabels

In the past, undemplabels all text labels created bytlabel and its relatives were added to the
picture byMETAPOSTas they occurredThis made them subject to later drawing commands: they
could be covered up, erased, or clipped. With this option (or after the comxeandlaylabels)

text labels are saved in a separate place from the rest of a picture. When a picture is completed,
the labels that were saved are added on top of it. This is the way labels always behave under the
metafont option, because thempeX must add the labels and there is no possibility for special effects
involving clipping or erasing (at theETAFONT level).

With the metapost option, but withoutnplabels it has been decided to keep the same behavior
(and the same code) as under thetafont option. However, whemplabels is used, there is the
possibility for special effects with text, and it has always been the behavior before this version to
simply place the labels as they occurred. It turns out that placing the labels at the end is cleaner
and simpler to code, so | experimented with it and rejected it as a default, but now offer it as an
option. With this optionmFPIC labels have almost the same behavior with or withopitibels.

2.4 truebbox , \usetruebbox, \notruebbox

Normally METAPOST outputs an EPS file with the actual bounding box of the figure. By default,
MFPIC overridesthis and sets the bounding box to the dimensions specified bynife ¢ com-
mand that produced it. (This used to be needed i3 to handle\t 1abel commands correctly.
Now, it is just for backward compatability, and for compatability witETAFONT’s behavior.) It

is reasonable to lelETAPOSThave its way, and that is what this option does. If one of the com-
mand forms is used in anfpic environment, it affects only that environment, otherwise it affects
all subsequent figures. This option currently has no effect wglmAFONT, but should cause no
errors.

2.5 clip, \clipmfpic, \noclipmfpic

Causes all parts of the figure outside the rectangle specified bymttie c command to be re-
moved. The commands can come anywhere. If issued insidédr environment they affect the
current figure only. Otherwise all subsequent figures are affected. Note: this is a rather rudimentary
option. It has an often unexpected interaction with truebbox. When both are in effemtposTt

will produce a bounding box that is the intersection of two rectangles: the truavitimeut clip-

ping, and the box specified in thenfpic command. It is possible that the actual figure will be
much smaller (even empty!). This is a property of leTAPOSTc1ip command and we know of

no way to avoid it.

2.6 centeredcaptions , \usecenteredcaptions, \nocenteredcaptions

Causes multiline captions created\mytaption to have all lines centered. This has no effect on the
normal BTEX \caption command. The commands can be issued anywhere. If insidefanc
environment they should come before theapt ion command and affect only it, otherwise they
affect all subsequent figures.

5This writer [DHL] feels that\tcaption is too limited and users ought to apply the caption by other means, such as
IATEX’s \caption command, outside thefpic environment.

2.7 debug, \mfpicdebugtrue, \mfpicdebugfalse 6

2.7 debug, \mfpicdebugtrue, \mfpicdebugfalse

CausesvFPIC to write a rather large amount of information to theog file and sometimes to the
terminal. Debug information generated b§pic.tex while loadingis probably of interest only
to developers, but can be turned on by giving a definition to the commafith cdebug prior to
loading.

2.8 clearsymbols , \clearsymbols, \noclearsymbols

MFPIC has two commandspoint and\plotsymbol that place a small symbol at each of a list of

points. The first can place either a small filled disk or an open disk, the choice being dictated by the

setting of the booleakpointfilltrue or \pointfillfalse. The behavior ofpoint inthe case

of \pointfillfalse is to erase the interior of the disk in addition to drawing its circumference.
The second commanglotsymbol can place a variety of shapes, some open, some not. Its be-

havior until now was always simply to draw the shape without erasing the interior. Two other com-

mands that placed these symbalslotnodes and\plot, had the same behavior. With this option,

two of these\plotsymbol and\plotnodes, will erase the interior of the open symbols before

drawing them. ThuSplotsymbol {SolidCircle} still works just like\pointfilltrue\point,

and now with this optionplotsymbol {Circle} behaves the same &sointfillfalse\point.

The \plot command is unaffected by this option.

2.9 draft, final, nowrite , \mfpicdraft, \mfpicfinal, \mfpicnowrite

Under themetapost option, the various macros that include the EPS files emit rather large amounts
of confusing error messages when the files don't exist (especiallygi)L For this reason, before

each picture is placedyrFpic checks for the existence of the graphic before trying to include

it. However, on some systems checking for the existence of a nonexistent file can be very slow
because the entirg=X search path will need to be checked. Therefereric doesn’t even attempt

any inclusion on the first run. The first run is detected by the non-exister(&igepf1, where(file)

is the name given in theopengraphsfile command (but see also secti®ri). These options can

be used to override this automatic detection. All the command versions shouldbedarethe
\opengraphsfile command. Th&mfpicnowrite commandmustcome before it.

These options might be used if, for example, the first figure has an error and is not created by
METAPOST, but you would likeMFPIC to go ahead and include the remaining figures. Then use
final. It can also be used to override AAgX global draft option. Or if (file).1 exists, but other
figures still have errors and you would like several runs to be treated as first rung EmaibOST
has stopped issuing error messages, theninagte These commands also work under thetafont
option, but time and error messages are less of an issue then. If all the figures have been created
and debugged, some time might be saved (with eittetafont or metapost) by not writing the
output file again, thenowrite can be used.

2.10 Option Scoping Rules

Some of these options merely chang& behavior, others write information to the output file
for METAFONT or METAPOST. Changes in gX behavior obey the normalgK grouping rules,
the information written to the output file obeys&ETAFONT grouping rules. Since eachfpic
environment is both agX group and (corresponds to)METAFONT group, the following always
holds: use of one of the command forms inside ofnépic environment makes the change local

2.10 OrPTION SCOPINGRULES 7

to that environment.

An effort has been made (as of version 0.7) to make this universal. That is, any of the com-
mands listed above for turning options on and off will be global when issued outsidéepan
environment. The debug commands are exceptions; they obggaticbping rules.

We have also tried to make all otheiFpic commands for changing the various parameters
follow this rule: local insidenfpic environment, global outside. However, as of this writing |
don't claim to have caught every one.

The following are speciakusemetapost, \usemetafont, \mfpicdraft, \mfpicfinal, and
\mfpicnowrite. Their effects are always global, partly because they should occur prior to the
initialization command\opengraphsfile (described in sectio.1). Note that\usemetapost
may cause a file of graphic inclusion macros to be input. If this command is issued inside a group,
some definitions in that file may be lost, breaking the graphic inclusion code.

3 The Macros.

In these descriptions we will often refer telETAFONT when we really meanMETAFONT or
METAPOST. This will especially be the case whenever we need to refer to commands in the
two languages which are substantially the same, but occasionally we will even talk about run-
ning ‘METAFONT when we mean running one or the other to process the figures. If we need to
discriminate between the two processors, (for example when they have different behavior) we will
make the difference explicit.

A similar shorthand is used when referring XTIt should not be taken to mean plajX;
but rather whatever version ofX is used to process the source filTEX, pdfTeX, pdfIATEX, etc.

Many of the commands ofiFPiC have optional arguments. These are denoted just 45:4,L
with square brackets. Thus, the command for drawing a circle can be given

\circle{(0,0),1}
having only the mandatory argument, or
\circle[p]{(0,0),1}

Whenever an optional argument is omitted, the behavior is equivalent to some choice of the op-
tional argument. In this example, the two forms have exactly the same behavior, drawing a circle
centered at0,0) with radius 1. In this case we will say thap] is thedefault Another example
is \point{ (1,0)} versus\point [3pt]{(1,0)}. They both place a dot at the poift,0). The
second one explicitly request that it have diaméter; the first will examine the length command
\pointsize, which the user can change, but it is initializedier . In this case we will say the
default is the value ofpointsize, initially 2pt.

Optional arguments fanFPIC commands may consist of empty brackets (completely empty,
no spaces) and the default will be used. This is useful only for commands that have two optional
arguments and one only wants to change from the defaults in the second one. An optional argument
should normally not contain any spaces. Even when the argument contains more than one piece of
data, spaces should not separate the parts. In many cases (perhaps most) this will cause no harm,
but it would be better to avoid doing it altogether.

3.1 Files and Environments.

\opengraphsfile{(file)}

\closegraphsfile

These macros open and close tieTAFONT or METAPOSTfile which will contain the pictures
to be included in this document. The name of the file willfile) . m£ (or (file) .mp). Do notspecify
the extension, which is added automatically.

Note This command will causéfile) .nf or (file) .mp to be overwritten if it already exists, so
be sure to consider that when selecting the name. Repeating the runniggwillfoverwrite the
file created on previous runs, but that should be harmless. For if no changes are magéecto
environments, the identical file will be recreated, and if changes have been made, then you want
the file to be replaced with the new version.

It is possible (buhas notbeen seriously tested) to close one file and open another, and even to
change betweemetapost andmetafont in between. If anything goes wrong with this, contact the

3.1 HLES AND ENVIRONMENTS. 9

maintainer and it might be fixed in some later version.

\mfpic[(xscalg] [{yscale] {{(xmin)}{{(xmax } {{ymin}{{ymax}

\endmfpic

These macros open and close ttieic environment in which most of the rest of the macros
make sense. Thenfpic macro also sets up the local coordinate system for the picture. The
(xscalé and (yscale parameters establish the length of a coordinate system unit, as a multiple
of the X dimension\mfpicunit. If neither is specified, both are taken to be 1 (i.e., each coordi-
nate system unitis Imfpicunit). If only one is specified, then they are assumed to be equal. The
(xminy and (xmax parameters establish the lower and upper bounds fox-thds coordinates;
similarly, (ymin) and (ymax establish the bounds for theaxis. These bounds are expressed in
local units—in other words, the actual width of the picture will f@max — (xmin)) - (xscale
times\mfpicunit, its height({ymax — (ymin)) - (yscale times\nfpicunit, and its depth zero.

One can scale all pictures uniformly by changingpicunit, and scale an individual picture by
changing(xscal¢ and(yscalé. After loadingMFPIC, \mfpicunit has the valuapt. Onept is a
printer’s point which equals 1/72.27 inches or 0.35146 millimeters.

Note Changing\mfpicunit or the optional parameters will scale the coordinate system, but
not the values of certain parameters that are defined in absolute units. Examples of these are the
default width of the drawing pen, the default lengths of arrowheads, the default sizes of dashes and
dots, etc. If you wish, you can set these to multiplesnafpicunit, but it is difficult (and probably
unwise) to get them to scale along with the scale parameters.

In addition to establishing the coordinate system, these scales and bounds are used to estab-
lish the metric for theveTAFONT character or bounding box for theeTAPOSTfigure described
within the environment. If any of these parameters are changedt tirefile (METAFONT) or the
bounding box METAPOST) Will be affected, so you will have to be sure to reprocess théfile
after processing thenf or .mp file, even if no other changes are made in the figure.

\mfpicnumber {{num}

Normally, \mfpic assigns the number 1 to the fitsto i c environment, after which the number
is increased by one for each newipic environment. This number is used internally to include the
picture. It is also transmitted to the output file where it is used as the argumenttd @nfpic
command. I'METAFONT this number becomes the position of the character in the font file, while
in METAPOSTIt is the extension on the graphic file that is output. The above commanditatic
to ignore this sequence and number the netic figure with (numy (and the one after that
(num + 1, etc.). It is up to the user to make sure no number is repeated, as no checking is done.
Numbers greater than 255 may cause errorsggsassumes that characters are represented by 8-
bit numbers. If the first figure is to be numbered something other than 1, then, undestéipest
option, this command should come beforeengraphsfile, as that command checks for the
existence of the first numbered figure to determine if there are figures to be included.

\begin{mfpic}...\end{mfpic}

In IATEX, instead of\mfpic and \endmfpic, you may prefer to us@€begin{mfpic} and
\end{mfpic}. This is by no means required: BTEX \begin{command} invokes\command, and
\end{command} invokes\endcommand, for any environmentommand.

3.2 HGURES 10

The sample filelapictures.tex provided withmFPIC illustrates this use of anfpic envi-
ronment in ATEX.

The rest of thevFPIC macros do not affect the font metric filgfile) . £ fm), and so if these
commands are changed or added in your document, you will not have to repeat the third step
of processing (reprocessing witgEX) to complete your X document. The same is true when
optionmetapost is selected without theuebbox option, except under pdgK or pdfIATEX. Those
TeX programs will embed the figures right in thedf output. For normalAIpX + DVIPS, the
figures are embedded ImywiPs, which must always be repeated.

For the remainder of the macros, the numerical parameters are expressed in the units of the
local coordinate system specified hyfpic, unless otherwise indicated.

3.2 Figures.
3.2.1 METAFONT PAIRS.

Since many of the arguments of thiePiC drawing commands are sentNETAFONT to be inter-
preted, it's useful to know something abowt TAFONT concepts.

In particular, METAFONT haspair objects, which may be constants or variables. Pair constants
have the form(x, y) . Pairs are two-dimensional rectangular (cartesian) quantities, and are clearly
useful for representing both points and vectors on the plane.

Moreover, we herein often represent each pair by a brief name, suyglvasc, the meanings
of which are usually obvious in the context of the macro. The succinctness of this notation also
helps us to think geometrically rather than only of coordinates.

METAPOSThas these same concepts, but also has color objects, which may also be constants
or variables. Color constants have the formg, b) wherer, g, andb are numbers between 0
and 1 determining the relative proportions of red, green and blue in the color (rgb model). A color
variable is a name, likeagenta or RoyalBlue (predefined). There are also color functions like
cmyk (X, Y, Z, W) which is defined to convert cmyk values it TAPOST'S native rgb model.

Some commands depend on the value of separately defined parameters. All these parameters
are initialized whemvrpic is loaded. In the following descriptions we give the initial value of all
the relevant parameters. Whste TAPOST output is selected, figures can be drawn in any color.
Several of the above mentioned parameters are colorsid/provides commands to change any
of these parameters.

3.2.2 POINTS, LINES, AND RECTANGLES.

\pointdef{({name} (x,y)

Defines a symbolic name for points and their coordinaeame is any legal EX com-
mand namewithout the backslashx andy are any numbers. For example, after the command
\pointdef{A} (1,3), \A expands to(1, 3), while \Ax and\Ay expand tol and 3, respectively.
Because of the wayt 1abel is defined (see sectigh7below), one cannot use: to specify where
to place a label (unlessplabels is in effect), but must use(\2x, \Ay) . In most other commands,
one can us&2 where a pair or point is required.

\point [(ptsize] {{po), (P1), ...}
Draws small disks centered at the poifys), (p1), and so on. If the optional argume(ptisize

3.2 HGURES 11

is present, it determines the diameter of the disks, which otherwise equalgXhéirfiension
\pointsize, initially 2pt. The disks have a filled interior if the commakgointfilltrue has
been issued (the initial value)pointfillfalse causes the interior to be erased and an outline
drawn. The color of the circles is the value of the predefined varighlet color, and the inside

of the open circles is the value bfickground.

\plotsymbol[(siz&] {(symbo}} {(po), (P1), ...}

Draws small symbols centered at the poifps), (p1), and so on. The symbols must be given
by name, and the available symbols aseerisk, Circle, Diamond, Square, Triangle, Star,
SolidCircle, SolidDiamond, SolidSquare, SolidTriangle, SolidStar, Cross andPlus.

The names should be self-explanatory. Unaletapost, symbols are drawn ipointcolor. The
(size defaults to\pointsize as in\point above Asterisk consists of six line segments while
Star is the standard closed, ten-sided polygon. The nametsymbol’ comes from the fact that
the\plot command, which was written first, utilizes these same symbols. The commanitb 1
was already taken (standafdgX).

The difference betweehpointfillfalse\point... and \plotsymbol{Circle}... is that
the inside of the circle will not be erased in the second version (i.e., whatever else has already been
drawn in that area will remain visible). This is the default (for backward compatibility), but that
can be changed with the commands below.

\clearsymbols
\noclearsymbols

After the first of these two commands, subsequenbt symbol commands will draw the open
symbols with their interiors erased. After the second, the default behavior (described above) will
be restored. These commands have no effectperint. \plotnodes (See subsectioB.5.1) also
responds to the settings made by these commands\glilke command (also in subsecti@b.1)
does not.

\polyline{(po),{(p1),...}
\lines{(po), {(p1),...}
Draws the line segment with endpoints(ab) and(ps), then the line segment with endpoints
at (p1) and(py), etc. The result is an open polygonal path through the specified points, in the
specified ordenpolyline and\1lines mean the same thing.

\polygon{(po), (P1) ...}
Draws a closed polygon with vertices at the specified points in the specified order.

\rect {(po), (P1)}

Draws the rectangle specified by the poifyg) and(p1), these being either pair of opposite
corners of the rectangle in any order.

It is occasionally helpful to know that connected paths like those produceddiy1ine or
\rect have asensda direction). The sense gpolyline is the direction determined by the order
of the points. Fonrect the sense may be clockwise or anticlockwise depending on the corners
used: it begins at the first of the two points and goes horizontally from there.

3.2 HGURES 12

\regpolygon{(num}{(name}{(eqn)} {(eqm)}
This produces a regular polygon withurm) sides. The second argumefritame is a symbolic
name. It can be used to refer to the vertices later. The last two arguments should be equations that
position two of the vertices or one vertex and the center. The center is referedriarbg 0 and
the vertices byname1 (name2, etc., going anticlockwise around the polygon. Thame itself
(without a number) will be METAFONT variable assigned the value @fum). For example,

\regpolygon{5} {Meg}{Meg0=(0, 1) } {Megl=(2,0)}

will produce a regular pentagon with its cente(@tl) and its first vertex af2, 0). One could later
draw a star inside it with

\polygon{Megl,Meg3,Meg5,Meqg2,Megd}

Moreover,Meg will equal 5. The name given becomesi@TAFONT variable and care should be
taken to make the name distinctive so as not to redefine some internal variable.

3.2.3 A WORD ONLIST ARGUMENTS

We have seen already fomrPIiC macros that take a mandatory argument consisting of a list of
coordinate pairs. There are many more, and some that take a comma-separated lists of other types
of items. If the lists are long, especially if they are generated by a program, it might be more
convenient if one could simply refer to an external file for the data. This is possible, and one does

it the following way: instead of 1ines{(list) }, one can write

\lines\datafile{(filename}

where (filename is the full name of the file containing the data. The required format of this file
and the details of this usage can be found in subse&i6rd This method is available for any
command that takes a comma-separated list of data as its last argwitletite exception of those
commands that adds text to the pictuxamples of the latter argplottext and\axislabels
(subsectior8.7.1).

3.2.4 AXES, AXIS MARKS, AND GRIDS.

\axes[(hlen)]
\xaxis[(hlen)]
\yaxis[(hlen))

These are retained for backward compatibility, but there are more flexible alternatives below.
They drawx- andy-axes for the coordinate system. The commascks is equivalent to\xaxis
followed by \yaxis which produce the obvious. The andy-axes extend the full width and
height of themfpic environment. The optionghlen) sets the length of the arrowhead on each
axis. The default is the value of theX dimension\axisheadlen, initially 5pt. The shape of the
arrowhead is determined as in therrow macro (sectior8.4). The color of the head is the value
of headcolor, the shaft isirawcolor.

Unlike other commands that produce lines or curves, these do not respond to the prefix macros
of sections3.4 and3.5. They always draw a solid line (with an arrowhead unlessi sheadlen
is Opt). Theydo respond to changes in the pen thickness {seewd in section3.11) but that is
pretty much the only possibility for variation.

3.2 HGURES 13

\axis[(hlen] {(one-axi$}
\doaxes [(hlen)] { (axis-list) }

These produce any of 6 different axes. The paramgtee-axis can bex or y, to produce
(almost) the equivalent ofxaxis and\yaxis; or it can bel, b, r, or t to produce an axis on
the border of the picture (left, bottom, right or top, respectivelykhaxes takes a list of any or
all of the six letters (with either spaces or nothing in between) and produces the appropriate axes.
Example:\doaxes{1lbrt}. The optional argument sets the length of the arrowhead. In the case of
axes on the edges, the default is the valugsifieheadlen, which MFPIC initializes to0pt. For
thex- andy-axis the default iSaxisheadlen as in\xaxis and\yaxis above.

The command$axis{x}, \axis{y}, and\doaxes{xy} differ from the old\xaxis, \yaxis
and \axes in that these new versions respond to changes madesbyrender (see subsec-
tion 3.5.3. Moreover, prefix macros may be applied\taxis without error (see sectioris4 and
3.5): \dotted\axis{x} draws a dotted-axis, but\dotted\xaxis produces aMETAFONT error.

A prefix macro applled td.doaxes generates no error, but only the first axis in the list will be
affected.

The side axes are drawn by default with a pen stroke along the very edge of the picture (as
determined by the parameters\tetpic). This can be changed with the commandismargin
described below.

Axes on the edges are drawn so that they don’t cross each othekes{1brt}, for example,
produces a perfect rectangle. If teandy-axis are drawn withaxis or \doaxis, then they will
not cross the side axes. For this to work properly, all the following margin settings have to be done
before the axes are drawn.

\axismargin{(axig} {{num}
\setaxismargins{{num}{{num}{{num}{{num}
\setallaxismargins{{num}

The (axis) is one of the letters, b, r, or t. \axismargin causes the given axis to be shifted
inward by the (num specified (ingraph coordinates). The second commavittaxismargins
takes 4 arguments, using them to set the margins starting with the left and proceeding anticlock-
wise. The last command sets all the axis margins to the same value.

A change to an axis margin affects not only the axis at that edge but also the three axes perpen-
dicular to it. For example, if the margins a¥, Mpot, Myt andMygp, then\axis b draws a line
startingMy; graph units from the left edge and endikty units from the right edge. Of course,
the entire line iVt UNits above the bottom edge. The margins are also respected kyahd
y-axis, but only when drawn withaxis. The old\xaxis, \yaxis and\axes ignore them.

Special effects can be achieved by lying to one axis about the other margins.

\xmarks [(len)] { (numberlis}}
\tmarks [(len)] { (numberlis}}
\bmarks [(len)] { (numberlis}}
\ymarks [(len)] { (numberlis}}
\1lmarks[(len)] {(numberlis}}
\rmarks [({len)] { (numberlis}}

\axismarks{(axis} [(len)] { (numberlis}}
These macros place hash marks on the appropriate axes at the places indicated by the values

3.2 HGURES 14

in the list. The optionallen) gives the length of the hash marks{lén) is not specified, thegX
dimension\hashlen, initially 4pt, is used. The marks on the andy-axes are centered on the
respective axis; the marks on the border axes are drawn to the inside. Both these behaviors can be
changed (see below). The commands may be repeated as often as desired. (The timing of drawing
commands can make a difference as outlined in appeh@ixThe command axismarks{x} is
equivalent to\xmarks and so on for each of the six axes. (I would have ugettks, but eEX
makes that a primitive.)

The (numberlis} is normally a comma-separated list of numbers. In place of this, one can give
a starting number, an increment and an ending number as in the following example:

\xmarks{-2 step 1 until 2}
is the equivalent of
\xmarks{-2,-1,0,1,2}

One must use exactly the wordsep anduntil. There must be spaces between, but the
number of spaces is not signific&ntsers should be aware that if any of the numbers are non-
integral then due to natural round-off effects, the last value might be overshot and a mark not
printed there.

\setaxismarks{{axig} {(po9}
\setbordermarks{(Ipos)} {(bpos}{{rpos} {{tpos }
\setallbordermarks{(po9}

\setxmarks {{po9}

\setymarks{(po9}

These set the placement of the hash marks relative to the axis. The pargxistés one of the
lettersx, v, 1, b, r, or t, and(pog must be one of the literal words:side, outside, centered,
onleft, onright, ontop Or onbottom. The second command takes four arguments and sets the
position of the marks on each border. The third command sets the position on all four border axis
to the same value. The last two commands are abbreviationséoaxismarks{x} {(pog} and
\setaxismarks{y}{(po9}, respectively.

Not all combinations make sense (for examplestaxismarks{r}{ontop}). In these cases,
no error message is producedrop andonleft are considered to be equivalent, asafeottom
andonright. The parametersnside andoutside make no sense for the andy-axes, but if
they are used thethside meansntop for thex-axis antbnright for they-axis. These words are
actuallyMETAFONT numeric variables defined in the filgafbase.mf, and the variablesntop
andonleft, for example, are given the same value.

SExperiencedETAFONT programmers may recognize that anything can be used that is permitiegTAFONT's
(forloop) syntax. Thus the given example can also be rewordedrks{-2 upto 2}, or even\xmarks{2 downto -2}

3.2 HGURES 15

\grid[{ptsize] {(xsep, (ysep}
\gridpoints [{ptsize] {{(xsep, (ysep}
\lattice[(ptsize] {(xsep, (ysep}
\hgridlines{(ysep}
\vgridlines{(xsep}
\gridlines{{(xsep, (ysep}

\grid draws a dot at every point for which the first coordinate is an integer multiple of the
(xsep and the second coordinate is an integer multiplé/e&p. The diameter of the dot is deter-
mined by(ptsize. The default is. 5bp and is hard coded in theETAFONT macros that ultimately
do the drawing. Under thmetapost option, the color of the dot isointcolor. The commands
\gridpoints and \lattice are synonyms fokgrid.

\hgridlines draws the horizontal antlvgridlines the vertical lines through these same
points.\gridlines draws both sets of lines. The thickness of the lines is sepbywd. Authors
are recommended to either reduce the pen width or charge-olor to a lighter color for grids.

Or omit them entirely: well-designed graphs usually don't need them and almost never should both
horizontals and verticals be used.

\plrgrid{(rsep, (anglesep}

\gridarcs{(rsep}

\gridrays{(anglesep}

\plrpatch{{rmin), (rmax, (rsep, (tmin), (tmay, (tsep }
\plrgridpoints{(rsep, (anglesep}

\plrgrid fills the graph with circular arcs and radial linegjridarcs draws only the arcs,
\gridrays only the radial lines\plrgridpoints places a dot at all the places the rays and arcs
would intersect.

The arcs are centered @,0) and the lines emanate fro(®,0) (even if (0,0) is not in the
graph space). The correspondingTAFONT commands actually draw enough to cover the graph
area and then clip them to the graph boundaries. If you don’t want them clippedty uset ch.

\plrpatch draws arcs with radii starting &tmin), stepping byrsep and ending withrmax.
Each arc goes from ang{émin) to (tmax. It also draws radial lines with angles startingtain),
stepping by(tsep and ending with(tmaxX. Each line goes from radiugmin) to (rmax. If
(rmax — (rmin) doesn’t happen to be a multiple ¢fsep, the arc with radiugrmax) is drawn
anyway. The same is true of the line at an@ifeax, so that the entire boundary is always drawn.

If (tsep is larger thanitmax — (tmin), then only the boundary rays will be drawn.{ifep is
larger thanirmax) — (rmin), then only the boundary arcs will be drawn.

The color used for rays and arcsdsawcolor, and for dotspointcolor. The advice about
\gridlines holds for\plrgrid as well.

3.2.5 QARCLES AND ELLIPSES.

\circle[(format] {(specification}

Draws a circle. Starting witkiFpic version 0.7, there are 4 different ways to specify a circle, so
\circle can be given an optional argument that determines what data is specified in the mandatory
argument.

3.2 HGURES 16

\circle[p] {<C>r <I’>}
\circle[e] {(c), (p)}
\circle[t1{<pl>r<p2>< 3))
\circle[s]{(p1),{p2), (B)}

The optional arguments produce circles according to the following descriptions.

[p] ThePolar formis the default. The data in the mandatory argument should then be the center
c and radiug of the circle.

[c] TheCenter-point formin this case the data should be the center and one point on the circum-
ference.

[t] TheThree-point formThe data are three points that do not lie in a straight line.

[s] Thepoint-sweepThe data are two points on the circle, followed by the angle of arc between
them.

These optional arguments are also used in\the command (see subsectidr2.?). The\circle
command draws the whole circle which the equivalentc command draws only part of. The
sense of the circle produced is anticlockwise except in the ¢cagsewhere it is the direction
determined by the order of the three points, and the ¢asewhere it is determined by8):
clockwise if negative, anticlockwise if positive.

\ellipse[(8)]{(C), (rx), (ry)}

Draws an ellipse with thg radius(ry) andy radius(ry), centered at the poirit). The optional
paramete(B) provides a way of rotating the ellipse K§) degrees anticlockwise around its center.

3.2.6 QJURVES.

\curve[(tension] {(po), (P1), ...}

Draws a smooth path through the specified points, in the specified order. It is ‘smooth’ in two
ways: it never changes direction abruptly (no ‘corners’ or ‘cusps’ on the curve), and it tries to make
turns that are not too sharp. This latter property is acheived by specifyiMgftaroNT) that the
tangent to the curve at each listed point is to be parallel to the line from that point’s predecessor to
its successor.

The optional({tension influenceshow smooth the curve is. The special valugfinity (in
fact, usually anything greater than about 10), makes the curve not visibly different from a polyline.
The higher the value of tension, the sharper the corners on the curve and the flatter the portions in
between. METAFONT requires the tension to be larger than 0.75. The default value of the tension
is 1 whenmFPIC is loaded, but that can be changed with the following command.

\settension{{num}
This sets the default tension for all commands that take an optional tension parameter.

\cyclic[(tension]{{po), (P1),...}

Draws a cyclic (i.e., closed)ETAFONT Bézier curve through the specified points, in the spec-
ified order. It uses the same procedureé asrve, but treats the first listed point as having the last

3.2 HGURES 17

as its predecessor and the last point has the first as its success¢erdiern) is as in the\curve
command.

Occasionally it is necessary to specify a sequence of pointsimgtbasing xcoordinates and
draw a curve through them. One would then like the resulting curve both to be sizodto
represent a function (that is, the curve always has increasingrdinate, never turning leftward).
This cannot be guaranteed with theurve command unless the tensioniisfinity.

\fcncurve [(tension] { (Xo, Yo) , (X1, Y1) /.- .}

Draws a curve through the points specified. If the points are listed with increasing (or de-
creasing coordinates, the curve will also have increasing (resp., decreasawrdinates. The
(tension is a number equal to or greater tha® Which controls how tightly the curve is drawn.
Generally, the larger it is, the closer the curve is to the polyline through the points. The default
tension is typically 12 (actually 12 times the value set withsettension). For those who know
something aboutETAFONT, this ‘tension’ is not the same as tReETAFONT notion of tension,
the tension in thacurve command, but it functions in a similar fashion. In this case it can be any
positive number, but only values greater than or equal to 1 guarantee the property of never doubling
back.

3.2.7 QRCULAR ARCS.

\arc[(format] { (specificatiof}

Draws a circular arc specified as determined by (foemat) optional parameter. This macro
and\circle are unusual in that the optiondbrmat) parameter determines the format of the other
parameter, as indicated below. The user is responsible for ensuring that the parameter values make
geometric sense.

\arc[s]{{po),(p1), (Sweep}
\arc[t]{{Po), (P1), (P2)}
\arc[pl{{c), (01),(B2), (r)}
\arc[a] {{c),(r), (1), (02)}
\arc(c] {{c), {p1),(6)}

The optional arguments produce arcs according to the following descriptions.

[s] Thepoint-Sweep fornis the default format. It draws the circular arc starting from the point
(po), ending at the pointp;), and covering an arc angle d¢¢weep degrees, measured
anticlockwise around the center of the circle. If, for example, the pdjisand(p;) lie on
a horizontal line with{po) to theleft, and(sweep is between 0 and 360 (degrees), then the
arc will sweepbelowthe horizontal line (in order for the arc to be anticlockwise). A negative
value of (sweep gives a clockwise arc fronipp) to (p1).

[t] TheThree-point formdraws the circular arc which passes through all three points given, in
the order given. Internally, this is converted to two applications of the point-sweep form.

[p] ThePolar formdraws the arc of a circle with centér) starting at the anglé8;) and ending
at the anglg8,), with radius(r). Both angles are measured anticlockwise from the positive
X axis.

3.2 HGURES 18

[a] TheAlternate polar forndraws the arc of a circle with cent@s) and radiugr), starting at the
angle(6:) and ending at the angl@®,). Both angles are measured anticlockwise from the
positivex axis. This is provided because it seems a more reasonable order of arguments, and
matches the ordersector requires (see subsecti@?2.8below). Thep option is retained
for backward compatibility.

[c] The Center-point formdraws the circular arc with centéc), starting at the poin{p), and
sweeping an angle @B) around the center from that point. (This and the point sweep form
are the basic methods of handling arcs—the previous three formats are translated to one of
these two before drawing.)

3.2.8 OrHER FIGURES.

\turtle{(po), V1), (V2),...}

Draws a line segment, starting from the po{pb), and extending along the (2-dimensional
vector) displacemenfvs). It then draws a line segment from the previous segment’s endpoint,
along displacemenfv,). This continues for all listed displacements, a process similar to ‘turtle
graphics’.

\sector{(c), {r), (61), (62)}

Draws the sector, from the ang(@;) to the anglg8,) inside the circle with center at the point
(c) and radius(r), where both angles are measured in degrees anticlockwise from the direction
parallel to thex axis. The sector forms a closed patlote \sector and\arc[p] have the same
parameters, bun a different order’

\makesector

The\sector command requires the center of the arc as one of its arguments. But if one doesn’t
know that center (say one only knows three points the arc connects) then even though the arc can
be drawn,\sector cannot. Thé\makesector command, when followed by anyarc command,
will find the center and connect it to the two ends of the arc. It will actually attempt to do the same
with any path that follows, but the ‘center’ it finds (if it finds one) will usually be meaningless.

3.2.9 BaR CHARTS AND PIE CHARTS.

\barchart [(start), (sep, (r)] {{(h-or-v)} { (list)}
\bargraph...
\gantt...
\histogram...
\chartbar{{num}
\graphbar { (num }
\histobar{{num}
The macro\barchart computes a bar chart or a Gantt chart. It does not draw the bars, but only
defines their rectangular paths which the user may then draw or fill or both usingithetbar
macros (see below). Since bar charts have many namesgraph and\histogram are provided

"This apparently was unintended, but we now have to live with it so as not to break existingjles.

3.2 HGURES 19

as synonyms. The mack@antt is also a synonym; whether a Gantt chart or bar chart is created
depends on the data.

(h-or-v) should bev if you want the ends of the bars to be measured vertically from-tdods,
orh if they should be measured horizontally from thaxis. (list) should be a comma-separated list
of numbers and/or pairs giving the coordinates of the end(s) of each bar. A naisheterpreted
as the pair(0,c); a pair(a,b) is interpreted as an interval giving the ends of the bar (for Gantt
diagrams). The rest of this description refers tottlwase; ther case is analogous.

By default the bars are 1 graph unit high (thickness), fyomn — 1 toy = n. Their width and
location are determined by the data. The optional parameter consists of three numeric parameters
separated by commasstart) is they-coordinate of the bottom edge of the first b@ep is the
distance between the bottom edges of successive bargy amdthe fraction of(sep occupied
by each bar. The default behavior correspondgita, 1]. In general, bar numberwill be from
y= (start) + (n— 1) x (sep toy = (start) + (Nn— 1+ (r)) = (sep

Notice the bars are numbered in order from bottom to top. You can reverse them by making
(sep negative, and makingstart) the top edge of the first bar.

The fraction(r) should be between -1 and 1. A negative value reverses the direction from the
‘leading edge’ of the bar to the ‘trailing edge’. For example, if one bar chart is created with

\barchart[1,1,-.4]7{h}{..}
and another with
\barchart[1,1,.4]1{h}{..}

both having the same number of bars, then the first will have its first banfrethtoy=1—.4=

.6, while the second will have its first bar adjacent to that one, from 104l Similarly the next
bars will be above and below= 2, etc. This makes it easy to draw bars next to one another for
comparison.

The macro\chartbar (Synonyms\graphbar, \ganttbar, and\histobar) takes a number
from 1 to the number of elements in tkiést) and draws the rectangular path. This behaves just
like any other figure macro, and the prefix macros from se@iémay be used to give adjacent
bars contrasting colors, fills, etc.

\piechart [{dir)(angle]{(c), (r)} {(list)}
\piewedge [(Speg (trans)] {{num}}

The macro\piechart also does not draw anything, but computes theewedge regions
described below. The first part of the optional paramétiar), is a single letter which may be either
c or a which stand forclockwiseor anticlockwiserespectively. It is common to draw piecharts with
the largest wedge starting at 12 o’clock (angle 90 degrees) and successive wedges clockwise from
there. This is the default. You can change the starting angle from 90 witfatigge) parameter,
and the change the direction to counter-clockwise by specifyifog (dir). It is also traditional to
arrange the wedges from largest to smallest, except there is often a miscellaneous category which
is usually last and may be larger than some others. Theréfarechart makes no attempt to
sort the data. The data is entered as a comma sepdlstedf positive numbers in the second
required parameter. These are only used to determine the relative sizes of the wedges and are
not printed anywhere. The first required parameter should contain ddgpder the center and a
positive numbefr) for the radius, separated by a comma.

3.3 COLORS 20

After a\piechart command has been issued, the individual wedges may be drawn, filled, etc.,
using\piewedge {1}, \piewedge{2}, etc. Without the optional argument, the wedges are located
according to the arguments of the last echart command. The optional argument\ipiewedge
can override this. The paramet@peg is a single letter, which can be s or m. Thex stands for
explodedand it means the wedge is moved directly out from the center of the pie a digtearcss.

(trans) should then be a pure number and is interpreted as a distance in graph unitsstihds
for shiftedand in this casétrans) should be a pair of the form{dx), (dy)) indicating the wedge
should be shifteddx) horizontally and(dy) vertically (in graph units). The stands formove to
and(trans) is then the absolute coordinate&), (y)) in the graph where the point of the wedge
should be placed.

3.2.10 PRLAR COORDINATES TORECTANGULAR.

\plr{ ((ro), (o)), ({r1), (1)), ...}

Replaces the specified list of polar coordinate pairs by the equivalent list of rectangular (carte-
sian) coordinate pairs. Througl1r, commands designed for rectangular coordinates can be ap-
plied to data represented in polar coordinates—and to data containing both rectangular and polar
coordinate pairs.

3.3 Colors
3.3.1 STTING THE DEFAULT COLORS.

\drawcolor[{mode}] {{colorspe¢}
\fillcolor...

\hatchcolor...

\pointcolor...

\headcolor...

\tlabelcolor...
\backgroundcolor...

These macros set the default color for various drawing elements. Any curve (with one ex-
ception, those drawn byplotdata), whether solid, dashed, dotted, or plotted in symbols, will
be in the color set bydrawcolor. Set the color used bygfill with \fillcolor. For all the
hatching commands us@atchcolor. For the\point, \plotsymbol and\grid commands use
\pointcolor, and for arrowheadsheadcolor. Whenmplabels is in effect, the color of labels can
be set with\t 1abelcolor, and one can set the color used\ay1ear with \backgroundcolor
(the same color is used in the interior of unfilled points drawn withint). The optionakmode}
may be one ofgb, RGB, cmyk, gray, andnamed. The (colorspe¢ depends on the model, as out-
lined below. Each of these commands sets a correspontimgPosTcolor variable with the same
name (exceptbackgroundcolor sets the colobackground). Thus one can set the filling color
to the drawing color withifillcolor{drawcolor}.

3.3.2 METAPOSTCOLORS.

If the optional (mode} specification is omitted, the color specification may be any expression
recognized as a color BYETAPOST. In METAPOST, a color is a triple of numbers likel, .5, .5),
with the coordinates between 0 and 1, representing red, green and blue levels, respectively. White

3.3 COLORS 21

is given by (1,1,1) and black by(0, 0, 0). METAPOSTalso has color variables and several have
been predefinedted, green, blue, yellow, cyan, magenta, white, andblack. All the names in

the BTEX coLORpackage’sivipsnam.def are predefined color variable names. SinegAPOST

allows color expressions, colors may be added and multiplied by numerics. Moreover, several
METAPOSTcolor functions have been defineddnafbase . mp:

cmyk (C, M, Y, K)

Converts acmyk color specification toMETAPOSTS nativergb. For example, the command
cmyk (1,0,0,0) yields (0,1, 1), which is the definition otyan.
RGB (R, G, B)

Converts arRGB color specification togb. It essentially just divides each component by 255.

gray (9)
Converts a numerig (a gray level) to the corresponding multiple @f, 1, 1) .
named ((name), rgb (r, g, b)

These are essentially no-ops. Howewveyn will truncate the arguments to the 0-1 range, an
unknown(name is converted tlack, and an unknown numeric argument is set to O.

As an example of the use of these functions, one could conceivable write:
\drawcolor{0.5*RGB(255,0,0)+0.5*cmyk (1,0,0,0) }

to have all curves drawn in a color halfway between red and cyan (which turns out to be the same
asgray (0.5)).

3.3.3 OOLORMODELS.

When the optiona{mode} is specified in the color setting commands, it determines the format of
the color specification:

Model: Specification:

rgb Three numbers in the range 0 to 1 separated by commas.

RGB Three numbers in the range 0 to 255 separated by commas.

cmyk Four numbers in the range 0 to 1 separated by commas.

gray One number in the range 0 to 1, with 1 indicating white, O black.

named A METAPOSTcolor variable name either predefinedbypric or by the user.

MFPICtranslates
\fillcolor[cmyk]{1,.3,0,.2}

into the equivalent of
\fillcolor{cmyk(1,.3,0,.2)}.

Note that when the optional model is specified, the color specification must not be enclosed in
parentheses. Note also that each model name is the name of a color function described in the
previous subsection. That is how the models are implemented internally.

3.4 SHAPE-MODIFIER MACROS. 22

3.3.4 DeFINING A COLOR NAME.

\mfpdefinecolor{(name} {(mode}} {(colorspe¢}

This defines a color variablg@ame for later use, either in the commandsrawcolor, etc., or
in the optional parameters ta@iraw, etc. The name can be used alone or inrtli@ed model. The
mandatory{mode} and(colorspeg are as above.

A final caution, the colors of amFpIcC figure are stored in themp output file, and are not
related to colors used or defined by th&2X coLOR package. In particular a color defined only
by IATEX’s \definecolor command will remain unknown tarpic. Conversely ATEX commands
will not recognize any color defined only byifpdefinecolor.

3.3.5 (GOLOR IN METAFONT

METAFONT was never meant to understand colors, but it certainly can be taught the difference
between black and white and, to a limited extent, various grays. Starting with versionr®.g

will no longer generate an error when a color-changing command is used undetalfent option.
Instead, when possible, the variables that represent colangimpPoST will be converted to a
numeric value between 0 and 1 ilEETAFONT. When possible (for example, when a region is
filled) the numeric will be interpreted as a gray level and shading (see subsadiénwill be

used to approximate the gray. In other cases (drawing or dashing of curves, placing of points or
symbols, filling with a pattern of hatch lines) the number will be interpreted as black or white: a
value less than 1 will cause the figure to be rendered (in black), while a value equal to 1 (white)
will cause pixels corresponding to the figure to be erased.

This is still somewhat experimental and depends on adhering to certain restrictiama: M
FONT's syntax does not recognize a triple of numbers as any sort of data structure, but it does
allow commandgo have any number of parameters in parentheses. So colors must be specified
using the color commands such asb (1,1, 0) or color names such agllow, and never as a
bare triple. Also, as currently written, the color names definedvitpsnam.mp are not defined
in METAFONT. With these provisions the sam&PIC code can often produce either gray scale
METAFONT pictures omMETAPOST color pictures depending only on thestapost option.

The commandsshade and\gfill [gray (.75)] (See subsectiod.5.2for their meaning) will
produce a similar shade of gray, but there is a difference. The first simply adds small dots on top of
whatever is already drawn. The second, however, tries to simulategherosT effect, which is
to cover up whatever is previously drawn. Therefore, it first zeros all affected pixels before adding
the dots to simulate gray. In particulagfill [white] should have the same effect'aglear.

3.4 Shape-Modifier Macros.

SomeMFPIC macros operate aghape-modifiemacros—for example, if you want to put an ar-
rowhead on a line segment, you could writerrow\lines{ (0,0), (1,0)}. These are always
prefixed to some figure drawing command, and apply only to the next following figure macro
(which can be rather far removed) provided that only other prefix commands intervene. This is a
rather long section, but even more modification prefixes are documented in sub8ebfiéh

For the purposes of these macros, a distinction must be made in the figure macros between
‘open’ and ‘closed’ paths. A path that merely returns to its starting poimbisautomatically
closed; such a path is open, and must be explicitly closed, for examplechysed (see below).

3.4 SHAPE-MODIFIER MACROS. 23

The (already) closed paths are those that havesed’ in their name plus:\rect, \circle,
\ellipse, \sector, \cyclic, \polygon, \plrregion, \chartbar, \piewedge, \tlabelrect,
\tlabeloval, \tlabelellipse, \tlabelcircle and\btwnfcn (below).

3.4.1 (Q.0OSURE OFPATHS.

\lclosed...

Makes each open path into a closed path by adding a line segment between the endpoints of
the path.

\bclosed[(teng]...

This macro is similar to\1closed, except that it closes an open path smoothly by drawing
a Bézier curve. A Bzier isSMETAFONT's natural way of connecting points into a curve, and
\bclosed is the simplest and most efficient closure nexttelosed. Moreover it usually gives
a reasonably aesthetic result. Sometimes, however, one might wish a tighter connection. If that is
the case, use the optional argument with a value of the terigdog greater than 1, the default.
The command settension (See subsectioB.2.g can be used to change the default.

\sclosed[(teng]...

This closes the curve by mimicking the definition of theurve command. That command
tries to force the curve to pass through titk point in a direction parallel to the line from point
(n—1) to point(n+ 1). In order to close a curve in this way, the direction at the two endpoints
often has to be changed, and this changes the shape of the first and last segments of the curve. Use
\bclosed if you don’t wish this to happen. Howeversclosed\curve produces the same result
as\cyclic given the same points and tension valuse. The optional tension argument is as in the
\bclosed command.

3.4.2 ReEVERSAL, CONNECTION AND SUBPATHS.

\reverse...

Turns a path around, reversing its sense. This will affect both the direction of arrows (e.g. bi-
directional arrows can be coded withrrow\reverse\arrow..., where the firskarrow modifier
applies to theeversedpath), and the order of endpoints fok@nnect...\endconnect environ-
ment (below).

\connect ... \endconnect

This pair of macros, acting as an environment, adds line segments from the trailing endpoint
of one path to the leading endpoint of the next path, in the given order. The result is a connected,
openpath.

Note In IATEX, this pair of macros can be used in the form ofeK-style environment called
connect —as iN\begin{connect}...\end{connect}.

\partpath{(fracl), (frac2)}...
\subpath{(num, (num32}...

Both produce a part of the following path. hpartpath the parameteréfracl) and (frac2)
should be numbers between 0 and 1. The path produced travels the same course as the path that

3.5 RENDERING MACROS 24

follows, but starts at the point that {fracl) of the original length along it, and ends at the point
(frac2) of its original length. If(fracl) is greater tharfrac2), the sense of the path is reversed. In
\subpath, the two numbers should be between 0 and the numbeénieBsegments in the path.
This is mainly for experiencedETAFONTers and provides amFPIC interface toOMETAFONT’S
‘subpath’ operation.

As an example ofpartpath, one can put an arrowhead (see next subsection) in the middle of
a path with something like the following.

\arrow\partpath{0,.5}\draw...
3.4.3 ARROWS

\arrow[1l(headlen] [r(rotate)] [b(backsel] [c(calor)]...

Draws an arrowhead at the endpoint of the open path (or at the last key point of the closed path)
that follows. The optional parametéreadlen determines the length of the arrowhead. The default
is the value of the @X dimension\headlen, initially 3pt. The optional parametérotate) allows
the arrowhead to be rotated anticlockwise around its point an angletafe) degrees. The default
is 0. The optional parametébackse} allows the arrowhead to be ‘set back’ from its original point,
thus allowing e.g. double arrowheads. This parameter is in the form gKadimension—its
default value i9pt. If an arrowhead is both rotated and set back, the rotation affects the direction
in which the arrowhead is set back. The optiof@dlor) defaults toheadcolor. The optional
parameters may appear in any order, but the indicated key character for each parameter must always
appear.

3.5 Rendering macros
3.5.1 DRAWING.

WhenMFPIC is loaded, the initial way in which figures are drawn is with a solid outline. That is,
\lines{(1,0), (1,1), (0,0)} will draw two solid lines connecting the points. When the macros
in this section are used, any previously established default (see subsebtigioelow) is overrid-
den.

\draw[(color)]...

Draws the subsequent path using a solid outline. For an example: to both draw a curve and
hatch its interior\draw\hatch must be used. The default f¢rolor) is drawcolor.

To save repetition, the color used for the following commands is @&s@color: \dashed,
\dotted, \plot, \plotnodes, and\gendashed,

\dashed[(length, (spacé]...

Draws dashed segments along the path specified in the next command. The default length of
the dashes is the value of thgXTdimension\dashlen, initially 4pt. The default space between
the dashes is the value of theXrdimension\dashspace, initially 4pt. The dashes and the spaces
between may be increased or decreased by as mu#h)htheir value, where is the number of
spaces appearing in the curve, in order to have the proper dashes at the ends. The dashes at the
ends are half ofdashlen long.

3.5 RENDERING MACROS 25

\dotted[(siz&, (space]...

Draws dots along the specified path. The default size of the dots is the value giXtth-T
mension\dotsize, initially 0.5pt. The default space between the dots is the value of e T
dimension\dot space, initially 3pt. The size of the spaces may be adjusted ag#zhed.

\plot [(siz8, (space] { (symbo]}...

Similar to\dotted except copies ofsymbo) are drawn along the path. Possible symbols are
those listed undekplotsymbol in subsectior8.2.2 The default(size is \pointsize and the
default(spacg is \symbolspace, initially 5pt.

\plotnodes[(Siz&] {{symbo]}...

This places a symbol (same possibilities asghot symbol, see subsectiob 2.2 at each node
of the path that follows. A node is one of the points through whiGiTAFONT draws its curve.
If one of the macrospolyline{...} or \curve{...} follows, each of the points listed is a node.
In the \datafile command (below), each of the data points in the file is. In the function macros
(below) the points corresponding fmin), (max and each step in between are nodes. The optional
(size defaults to\pointsize. If the command clearsymbols has been issued then the interiors
of the open symbols are erased. The effect of something like the following is rather nice:

\clearsymbols
\plotnodes{Circle}\draw\polyline{...}

This will first draw the polyline with solid lines, and then the points listed will be plotted as open
circles with the portion of the lines inside the circles erased. One sees a series of open circles
connected one to the next by line segments

\dashpattern{(name}{(lenl), (len2,..., (len2K}

For more general dash patterns thatashed and \dotted provide, there is a generalized
dashing command. One must first establish a named dashing pattern with this confmaamg.
can be any sequence of letters and underscores. Try to make it distinctive to avoid undoing some
internal variable(lenl) through(len2K are an even number of lengths. The odd ones determine
the lengths of dashes, the even ones the lengths of spaces. A dash ofllengtkans a dot. An
alternating dot-dash pattern can be specified with

\dashpattern{dotdash} {Opt, 4pt, 3pt, 4pt}.

Note Since pens have some thickness, dashes look a little longer, and spaces a little shorter, than
the numbers suggest. If one wants dashes and space with the same length, one needs to take the
size desired and increase the spaces by the thickness of the drawing pen (normallyand
decrease the dashes by the same amount.

If \dashpattern is used with an odd number of entries, a space of lengthis appended.
This makes the last dash in one copy of the pattern abut the first dash in the next copy.

\gendashed{(namej}...

Once a dashing pattern name has been defined, it can be used in this command to draw the
curve that follows it. Using a name not previously defined will cause the curve to be drawn with

3.5 RENDERING MACROS 26

a solid line, and generatense TAFONT warning, but EX will not complain. If all the dimensions
in a dash pattern are Qgendashed responds by drawing a solid curve. The same is true if the
pattern has only one entry.

3.5.2 SHADING, FILLING, ERASING, CLIPPING, HATCHING.

These macros can all be used to fill (or unfill) the interior of closed paths, even if the paths cross
themselves. Filling an open curve is technically an error, butMBeAFONT code responds by
drawing the path and not doing any filling. These macros replace the default rendering: when they
are used the outline will not be drawn unless an explicit prefix to do so is present.

\gfill[(color)]...

Fills in the subsequent closed path. UndmTaPosTit fills with (color), which defaults to
fillcolor. UnderMETAFONT it approximates the color with a shade of gray, clears the interior,
and then fills with a pattern of black and white pixels simulating gray.

\gclear...

Erases everythinqiside the subsequent closed path (except text labels under some circum-
stances, see secti@rzand2.3). UnderMETAPOSTIt actually fills with the predefined color named
background. Sincebackground is hormally white, and so are most actual backgrounds, this is
usually indistinguishable from clearing.

\gclip...

Erases everythingutsidethe subsequent closed path from the picture (except text labels under
some circumstances, see sectiohand2.3).

\shade [(shadesp]...

Shades the interior of the subsequent closed path with dots. The diameter of the dots is the
METAFONT variableshadewd, set by the macrashadewd{(sizé}. Normally this is0.5pt. The
optional argument specifies the spacing between (the centers of) the dots, which defaultgXo the T
dimension\shadespace, initially 1pt. If \shadespace is less tharshadewd, the closed path is
filled with black, as if with\gfi11. UnderMETAPOSTthis macro actually fills the path’s interior
with a shade of gray. The shade to use is computed basedtonriespace and shadewd. The
default values of these parameters correspond to a gray level of 75% of\ilfieMETAFONT
version attempts to optimize the dots to the pixel grid corresponding to the printers resolution
(to avoid generating dither lines). Because this involves rounding, it will happen that values of
\shadespace that are relatively close and at the same time closehtalewd produce exactly
the same shade. Most of the time, however, valuessatdespace that differ by at least 20%
will produce different patterns. The actual behavior for particular values of the parameters and
particular printer resolutions cannot be predicted, and we even make no guarantee it will not change
from one version of1FPIC to another.

\polkadot [(Spac@]...

Fills the interior of a closed path with large dots. This is almost what.de does, but there are
several differences.shade is intended solely to simulate a gray fill METAFONT where the only

8If \shadewd is w and\shadespace is s, then the level of gray is 1 (w/s)?, where 0 denotes black and 1 white.

3.5 RENDERING MACROS 27

color is black. So it is optimized for small dots aligned to the pixel gridMBTAFONT). In META-

posrTall it does is fill with gray and is intended merely for compatibility. The magrel kadot is
intended for large dots in any color, and so it optimizes spacing (a nice hexagonal array) and makes
no attempt to align at the pixel level. Thgpace defaults to the @X dimension\polkadot space,

initially 10pt. The diameter of the dots is the value of theTAFONT variablepolkadotwd, which

can be set withppolkadotwd{(sizé }, and is initially 5pt. The dots are colored withi1lcolor.

In METAFONT, nonblack values ofillcolor will produce shaded dots.

\thatch[(hatchsp, (anglé] [{color)]...

Fills a closed path with equally spaced parallel lines at the specified angle. The thickness of the
lines is set by the macrthat chwd. In the optional argumenthatchsp specifies the space between
lines, which defaults to thegK dimension\hatchspace, initially 3pt. The(angle defaults to 0.
The (color) defaults tohatchcolor. If \hatchspace is less than the line thickness, the closed
path is filled with(color), as if with \gfill. If the first optional argument appears, both parts
must be present, separated by a comma. For the color argument to be present, the other optional
argument must also be present. However, if one wishes only to override the default color one can
use an empty first optional argument (completely empty, no spaces).

\lhatch[(hatchsp] [{color)]...

Draws lines shading in the subsequent closed path in a left-oblique hatched (upper left to lower
right) pattern. It is exactly the same ashatch[(hatchsp,-45] [{color)]...

\rhatch[(hatchsp] [{color)]...

Draws lines shading in the subsequent closed path in a right-oblique hatched (lower left to
upper right) pattern. It is exactly the same\agatch [(hatchsp, 45] [{(color)]...

\hatch[(hatchsp] [{(color)]...
\xhatch[(hatchsp] [(color)]...

Draws lines shading in the subsequent closed path in a cross-hatched pattern. It is exactly the
same asrhatch followed by \1lhatch using the saméhatchsp and(color).

Hatching should normally be used very sparingly, or never if alternatives are available (color,
shading). Hatching at two different angles is, however, almost the only way to fill in two regions
thatautomaticallyshows the overlapping region.

3.5.3 (HANGING THE DEFAULT RENDERING.

Renderingis the process of converting a geometric description into a drawinglEITAFONT,
this means producing a bitmag€TAFONT stores these ipicture variables), either by stroking
(drawing) a path using a particular pen), or by filling a closed pativBmAPOSTIit means pro-
ducing a BSTScRIPT description of strokes with pens, and fills

\setrender {(TeX commands

Initially, MFPIC uses the.draw command (stroking) as the default operation when a figure is
to be rendered. However, this can be changed to any combinatierro€ rendering commands
and/or other X commands, by using theset render command. This redefinition is local inside

3.6 FUNCTIONS AND PLOTTING. 28

anmfpic environment, so it can be enclosed in braces to restrict its range. Outsiagp an
environment it is a global redefinition.

For example, aftehsetrender{\dashed\shade} the command\circle{ (0,0),1} pro-
duces a shaded circle with a dashed outline. Any explicit rendering prefix overrides this default.

3.5.4 EAMPLES.

It may be instructive, for the purpose of understanding the syntakabe-modifier and rendering
prefixes to consider two examples:

\draw\shade\lclosed\lines{...}
which shades inside a polygon and draws its outline; and
\shade\lclosed\draw\lines{...}

which draws all of the outlinexceptthe line segment supplied byl closed, then shades the
interior. Thus, in the first case the path is defined {hynes) then closed, then the resulting
closed path is shaded, then drawn; while in the second case the order is: defined, drawn, closed,
shaded. In particular, what is drawn is the path not yet closed.

3.6 Functions and Plotting.

In the following macros, expressions lik€x), g(t) stand for any legalETAFONT expression, in
which the only unknown variables are those indicatethhe first case, andin the second).

3.6.1 DEFINING FUNCTIONS

\fdef{(fcn)} {(paraml, (param2, ...} {(mf-expi}

Defines aveTAFONT function (fcn) of the parameter§param, (param32, ..., by theMETA-

FONT expressiormf-expl in which the only free parameters are those named. The return type of
the function is the same as the type of the expression. What is allowed for the functiorifoeme

is more restrictive thamETAFONT's rule for variable names. Roughly speaking, it should con-
sist of letters and underscore characters only. (In particular, for those that know what this means,
the name should have no suffixes.) Try to make the names distinctive to avoid redefining internal
METAFONT commands.

The expressioimf-expi is passed directly into the correspondimgTAFONT macro and in-
terpreted there, SMETAFONT'S rules for algebraic expressions apply\Hdef occurs inside an
mfpic environment, it is local to that environment, otherwise it is available to all subsegfieint
environments.

As an example, afterfdef {myfcn}{s,t}{s*t-t}, any place below where ETAFONT ex-
pression is required, you can usgfcn (2, 3) to mear2*3-3 andmyfcn (x, x) t0 meanx*x-x.

Operations available include -, *, /, and** (x**y=xY), with (and) for grouping. Functions
already available include the standard TAFONT functionsround, floor, ceiling, abs, sqrt,
sind, cosd, mlog, andmexp. Note that inMETAFONT the operations and** have the same level
of precedence, sory**z meangxy)?. Use parentheses liberally!

(Notes: The METAFONT trigonometric functionsind and cosd take arguments in degrees;
mlog (x) = 2561nX, andmexp is its inverse.) You can also define the functien) by cases, using
the METAFONT conditional expression

if (boolean: (exph elseif (boolean: ... else: (expn fi.

3.6 FUNCTIONS AND PLOTTING. 29

Relations available for théboolean part of the expression include <, >, <=, <> and>=.

Complicated functions can be defined by a compound expression, which is a senesoef
FONT statements, followed by an expression, all enclosed in the commandsgroup and
endgroup. The\fdef command automatically supplies the grouping around the definition so the
user need not type them if the entifef-expl) is one such compound expressionEMFONT
functions can calMETAFONT functions, even recursively.

Many common functions have been predefinediatbase. These include all the usual trig
functionstand, cotd, secd, cscd, which take angles in degrees, plus variatits, cos, tan, cot,
sec, andcsc, which take angles in radians. Some inverse trig functions are also available, the
following produce angles in degreesiin, acos, andatan, and the following in radiansinvsin,
invcos, invtan. The exponential and hyperbolic functionstp, sinh, cosh, tanh, and their
inverseslin (or log), asinh, acosh, andatanh are also defined.

3.6.2 ROTTING FUNCTIONS

The plotting macros take two or more arguments. They have an optional first argyspet,
which determines whether a function is drawn smooth as BAFONT Bézier curve), or polygonal

(as line segments)—ifspe¢ is p, the function will be polygonal. Otherwise thspe¢ should be

s, followed by an optional positive number no smaller than 0.75. In this case the function will be
smooth with a tension equal to the number. See\ther-ve command (subsectioB.2.6 for an
explanation of tension. The defay#ipeg depends on the purpose of the macro.

One compulsory argument contains three valieis), (maX and(step) separated by commas.
The independent variable of a function starts at the véatie) and steps bystep until reaching
(max. If (maxX — (min) is not a whole number of steps, then rodf{chax — (min))/(step) equal
steps are used. One may have to experiment with the siZetef), since METAFONT merely
connects the points corresponding to these steps with ivltainsiders to be a smooth curve.
Smaller(step gives better accuracy, but too small may cause the curve to execestFONT'S
capacity or slow down its processing. Increasing the tension may help keep the curve in line, but
at the expense of reduced smoothness.

There are one or more subsequent arguments, each of whiahesAroNT function or ex-
pression as described above.

\function[(SPEQ] {(Xmin), (Xmax), (&X)} { f(x)}
Plotsf(x), aMETAFONT numeric function or expression of one numeric argument, which must
be denoted by a literal. The defaultspeg is s. For example

\function{0,pi,pi/10}{sin x}
draws the graph of sikbetween 0 andi

\parafcn [(SPEG] {(tmin), (tmax) , (AL) } {{pfcn) }

Plots the parametric path determined(pjcr), where(pfcn) is aMETAFONT function or ex-
pression of one numeric argumenteturning aMETAFONT pair. Or a pair of numeric expressions
(X(t),y(t)) enclosed in parentheses and separated by a comma. The defedlis s. For exam-

ple
\parafcn{0,1,.1}{(2t, t + t*t)}
plots a smooth parabola fro(d,0) to (2,2).

3.6 FUNCTIONS AND PLOTTING. 30

\plrfcn[(sped]{(Bmin), (Omax), (AB)} {f(t)}

Plots the polar function determined by= f(8), wheref is aMETAFONT numeric function or
expression of one numeric argument, @&whries from(Bmin) to (Bmay) in steps of{AB). Each®
value is interpreted as an angle measuredbgreesin the expressioffi(t), the unknowrt stands
for 8. The default(speg¢ is s. For example

\plrfcn{0,90,5}{sind (2t)}
draws one loop of a 4-petal rosette. If one needs radian measures, use something like the following.

\plrfcn{0,pi*radian,pi*radian/18}{sin (2t/radian)}

\btwnfcn [(SPeG] { Xmin), (Xmax), (&%)} { f(x)} {g(x)}
Draws the region between the two functiofix) andg(x), these being numeric functions of
one numeric argument. The region is bounded also by the vertical linegXatin) and (Xmax)-
Unlike the previous function macros, the defa{dpe¢ is p—this macro is intended to be used
for shading between drawn functions, a task for which smoothness is usually unnecessary. For
example

\shade\btwnfcn{0,180,5}{0}{sind x}

shades the area between first crest of a sine wave and the x-axis.
Note: the effect ofibtwnfcn could also be accomplished with
\1lclosed\connect
\function{{Xmin), (Xmax), (&%)} { f(x)}
\reverse\function{(Xmin), (Xmax) (&%)} {9(x)}
\endconnect

\plrregion[(SpeQ]{(Bmin), (Bmax), (AB)} { f(t)}

Plots the polar region determined by= f(8), wheref is aMETAFONT numeric function of
one numeric argument The 6 values are angles (measureddiegreey, varying from (Bpmin) to
(Bmax) In steps of(AB). In the expressiori(t), thet stands foif. The region is also bounded by
the anglesBmin) and (Bmayx), i-€. by the line segments joining the origin to the endpoints of the
function. The defaultspe¢ is p —this macro is intended to be used for shading a region with the
boundary drawn, a task for which smoothness is usually unnecessary. For example

\shade\plrregion{0, 90,5} {sind (2t)}
shades one loop of the 4-petal rosette.

3.6.3 R.OTTING EXTERNAL DATA FILES

\datafile[(speg]{(file)}
\smoothdata [(tension]
\unsmoothdata

\datafile defines a curve connecting the points listed in the(file). (The context makes it
clear whether this meaning dfiatafile or that of subsectiofi.2.3is meant.) Théspe¢ may be
p to produce a polygonal path, erfollowed by a tension value (as rurve) to produce a smooth
path. If no(speg is given, the default is initially, but\smoothdata may be used to change this.

3.6 FUNCTIONS AND PLOTTING. 31

Thus, after the commantsmoothdatal(tension] the default(spe¢ is changed tos(tension.
If the tension parameter is not supplied it defaults to (or the value set by th&settension
command if one has been used).

The commandunsmoothdata restores the defau{speg to p.

By default, each non-blank line in the file is assumed to contain at least two numbers, separated
by whitespace (blanks or tabs). The first two numbers on each line are assumed to represent the
andy-coordinates of a point. Initial blank lines in the file are ignored, as are comments. The com-
ment character in the data file is assumed té,dmit it can be reset usingnfpdatacomment (be-
low). Any blank line other than at the start of the file causes the curve to terminateddterile
command may be preceded by any of the prefix commands, so that, for example, a closed curve
could be formed with 1closed\datafile{data.dat}.

The\datafile command has another use, independent of the above description. We saw in
subsectiorB.2.3that anymFPIC command (other than one that prints text labels) that takes as its
last argument a list of points (or numerical values) separated by commas, can have that list replaced
with a reference to an external data file. For example, if afilei st . dat contains two or more
numerical values per line separated by whitespace, then one can draw a dot at each of the points
corresponding to the first pair of numbers on each line with the following.

\point\datafile{ptlist.dat}

In fact there is no essential difference betweetutafile[p]’ and ‘\polyline\datafile’, and
no difference betweendatafile[s]’ and ‘\curve\datafile’.
Here is the full list ofMFPIC macros that allow this usage ofiatafile:

e Numeric data\piechart, \barchart, \numericarray, and all the axis marks commands.

e Point or vector dataipoint, \plotsymbol, \polyline, \polygon, \fcncurve, \curve,
\cyclic, \turtle, \gspline, \closedgspline, \cspline, \closedcspline,
\mfbezier, \closedmfbezier, \gbeziers, \closedgbeziers, and\pairarray.

\mfpdatacomment\(char)

Changesgchar) to a comment character and changes the uggac®mment character to an
ordinary charactewhile reading a datafile for drawing

\using{(in-pattern } { (out-pattern }

Used to change the assumptions about the format of the data file. For example, if there are
four numbers on each line separated by commas, to plot the third against the second (in that order)
you can say\using{#1, #2, #3,#4}{ (#3, #2) }. This means the following: Everything on a line
up to the first comma is assigned to paramétereverything from there up to the second comma
is assigned to parametee, etc. Everything from the third comma to the end of line is assigned
to #4. When the line is processed bgpX'a METAFONT pair is produced representing a point on
the curve. METAFONT pair expressions can be used in the output portionuefing. For exam-
ple \using{#1,#2,#3}{ (#2,#1)/10} or even\using{#1 #2 #3}{polar(#1,#2)} if the data
are polar coordinates. The default assumptions ofitheafile command (i.e., space separated
numbers, the first two determining each point) correspond to the setting

\using{#1 #2 #3}{ (#1,#2))

3.6 FUNCTIONS AND PLOTTING. 32

The\using command cannot normally be used in the replacement text of another command. Or
rather, it can be so used, but then eadhas to be doubled. If ausing declaration occurs in an
mfpic environment it is local to that environment. Otherwise it affects all subsequent ones.

\sequence

As a special case, you can plot any number against its sequence position, with something like
\using{#1 #2}{(\sequence, #1)}. Here, the macr@sequence will take on the values, 2, etc.
as lines are read from the file.

\usingpairdefault
\usingnumericdefault

The command\usingpairdefault restores the above default for pair data. The command
\usingnumericdefault is the equivalent ofusing{#1 #2}{#1}.

Note that the default value ofusing appears to reference three arguments. If there are only
two numbers on a line separated by whitespace, this will still work becausgXaf argument
matching rules. gX’s file reading mechanism normally converts the EOL to a space, but there
are exceptions smFPIC internally adds a space at the end of each line read in to be on the safe
side. Then the default definition dfising reads everything up to the first spacetagwhitespace
is normally compressed to a single space p}'3 reading mechanism), then everything to the
second space (the one added at the end of the line, perhajs)tieen everything to the EOL is
#3. This might assign an empty argumentt) but it is discarded anyway.

If the numerical data contain percentages with expticigns, then choose another comment
character with\mfpdatacomment. This will changes to an ordinary characten the data file
However, in younnusing command it would still be read as a comment. The following example
shows how to overcome this:

\makepercentother
\using{#1% #2 #3}{(#1/100,%2)}
\makepercentcomment

Here is an analysis of the meaning of this example: everything in a line, up to the first per-
cent followed by a space is assigned to paramgteeverything from there to the next space is
assigned tot2 and the rest of the line (which may be empty)tis On the output side in the
above example, the percentage is divided by 100 to convert it to a fraction, and plotted against the
second parameter. Note: normal comments should not be used betwgenercentother and
\makepercentcomment, for obvious reasons.

\plotdata[(speg]{(file)}

This plots several curves from a single file. T{spe¢ and the commandsmoothdata have
the same effect on each curve as inthetafile command. The data for each curve is a succes-
sion of nonblank lines separated from the data for the next curve by a single blank |iadr. &
successive blank lines is treated as the end of the data. No prefix macros are permitted in front of
\plotdata.

Each successive curve in the data file is drawn differently. By default, the firstis drawn as a solid
line the next dashed, the third dotted, etc., through a total of six different line typegsrllashed

3.6 FUNCTIONS AND PLOTTING. 33

command is used with predefined dash patterns natasiek ype0 throughdashtype5. This be-
havior can be changed with:

\coloredlines
\pointedlines
\datapointsonly
\dashedlines

The command coloredlines changes to cycling through eight different colors starting with
black (hey, black is a color too). This has an effect only f@ETAPOST. The sole exception
to the general rule that all curves are drawndirawcolor is the \plotdata command after
\coloredlines has been issued. The commamdintedlines causesSplotdata to use\plot
commands, cycling through nine symbols. The commeafitt apointsonly causeS\plotdata
to use\plotnodes {(Symbo)} commands to plot the data points only. (See the Appendix for more
details.) The commantiashedlines restores the default. If, for some reason, you do not like the
default starting line style (say you want to start with a color other than black), you can use one of
the following commands.

\mfplinetype{{(num}, or
\mfplinestyle{{num}

Here(num is a non-negative number, less than the number of different drawing types available.
The four previous commands reset the number to 0, so if you use one of themyiissliénet ype
after it. The different line styles are numbered starting from 0. If two or mareotdata com-
mands are used in the samgpic environment, the numbering in each continues where the one
before left off (unless you issue one of the commands above in betweep).inestyle means
the same asmfplinetype, and is included for compatibility. See the Appendix to find out what
dash pattern, color or symbol corresponds to each number by default. The commands below can
be used to change the default dashess, colors, or symbols.

\reconfigureplot{dashes}{(pat), ..., (pat)}
\reconfigureplot{colors}{{clry), ..., {(clry)}
\reconfigureplot{symbols}{{symh), ..., (symh)}

The first argument ofreconfigureplot is the rendering method to changeshes, colors,
or symbols. The second argument is a list of dash patterns, colors, or symbols. The dash patterns
should be names of patterns defined through the usel@afhpattern. The colors can be any
color names already known t@eTAPOST, or defined throughmfpdefinecolor. The symbols
can be any of those listed with thelotsymbol command (see subsectiB.2, or any known
METAFONT path variable. The colors can also kneTAPOST expressions of type color, and the
symbols can be expressions of type path. Withirfiai c environment, the changes made are local
to that environment. Outside, they affect all subsequent environments.

\defaultplot{dashes}
\defaultplot{colors}
\defaultplot{symbols}

The commanddefaultplot restores the built-in defaults for the indicated method of render-
ing in \plotdata.

3.7 LABELS AND CAPTIONS. 34

The command§using, \mfpdatacomment and\sequence have the same meaning here (for
\plotdata) as they do fondatafile (above). The sequence numbering feequence starts
over with each new curve.

3.7 Labels and Captions.
3.7.1 SETTING TEXT.

If option metafont is in effect macrositlabel, \tlabels, \axislabels and\tcaption do not

affect themeTAFONT file ((file) .m£) at all, but are added to the picture bgXT If metapost is in

effect butmplabels is not, they do not affect theeTAPOSTfile. In these cases, if these macros

are the only changes or additions to your document, there is no need to repeat the processing with
METAFONT Or METAPOSTNOT the reprocessing witheX in order to complete yourgX document.

\tlabel[{just] ((x), (y)) { (labeltex}}
\tlabel[(just)] {(pair-list)} { (label tex}}
\tlabels{(paramg) (paramsg) ...}

Places EX labels on the graph. (Not to be confused witigX’s \label command.) The
special form\t1labels (note the plural) essentially just applieslabel to each set of parameters
listed in its argument. That is, ea¢baramg) is a valid set of parameters fohalabel command.
These can be separated by spaces, newlines, or nothing at all. They shobtl separated by
blank lines.

The last required parameter is ordinapKText. The pair({xX), (y)) gives the coordinates of a
point in the graph where the text will be placed. It may optionally be enclosed in braces. In fact, the
second syntax may be usedriplabels is in effect, whergpair-list) is any expression recognized
as a pair byMETAPOST, or a comma-separated list of such pairs.

The optional parametel(just)] specifies thgustification the relative placement of the label
with respect to the point(x), (y)) . It is a two-character sequence where the first character is one
of t (top), c (center),b (bottom), orB (Baseline), to specify vertical placement, and the second
character is one of (left), c (center), orr (right), to specify horizontal placement. These letters
specify what part of theéextis to be placed at the given point, sguts the right end of the text
there—which means the text will be left of the point. The default justificatidmis .

Whenmplabels is in effect, the two characters may optionally be followed by a number, spec-
ifying an angle in degrees to rotate the text about the poxt, (y)). If the angle is supplied
without mplabels it is ignored after a warning. If the angle is absent, there is no rotation. Note that
the rotation takes place after the placement and uses the given point as the center of rotation. For
example,[cr] will place the text left of the point, whilécr180] will rotate it around to the right
side of the point (and upsidedown, of course).

There should be no spaces before, between, or after the first two characters. However the num-
ber, if present, is only required to be a vali@ TAPOSTnumerical expression containing no bracket
characters; as such, it may contain some spaces (e.g., around operatiofis as).

A multiline \t1label may be specified by explicit line breaks, which are indicated by\the
command or thecr command. This is a very rudimentary feature. By default it left justifies the
lines and causestlabel to redefine\\. One can center a line by putting£il as the first thing
in the line, and right justify by puttinghfill there (these aregK primitives). Redefining\\
can interfere withATEX’s definition. For better control il’[EX use\shortstack inside the label

3.7 LABELS AND CAPTIONS. 35

(or atabular environment or some other environment which always initializesvith its own
definition).

If the label goes beyond the bounds of the graph in any direction, the space reserved for the
graph is expanded to make room for it. (Note: this behavior is very much different from that of the
IATEX picture environment.)

If the mplabels option is in effect,\t1abel will write a btex ... etex group to the output
file, allowing METAPOSTtO arrange for typesetting the label. Normally, the label becomes part of
the picture, rather than being laid on top of it, and can be covered up by any filling macros that
follow, or clipped off by\gclear or \gclip. However, under theverlaylabels option (or after the
command\overlaylabels), labels are saved and added to the picture at the very end. This may
prevent some special effects, but it makes the behavior of labels much more consistent through all
the 12 permissable settings of the optiamgapost, mplabels, clip, andtruebbox.

\everytlabel {(TeX-code }

One problem with multi-liné t1abels is that each line of their contents constitutes a separate
group. This makes it difficult to change theaselineskip (for example) inside a label. The
command\everytlabel saves it's contents in a token register and the code is issued in each
\tlabel, as the last thing before the actual line(s) of text. Any switch you want to apply to every
line can be supplied. For example

\everytlabel{\bf\baselineskip 10pt}

will make every line of everyitlabel’s text come out bold with 10 point baselines. The effect of
\everytlabel is local to themfpic environment, if it is issued inside one. Note that the lines of
a tlabel are wrapped in a box, but the commandseotrytlabel are outside all of them, so no
actual text should be produced by these commands.

Using\tlabel without an optional argument is equivalent to specifyisg] . Use the follow-
ing command to change this behavior.

\tlabeljustify{(just)}

After this command the placement of all subsequent labels without optional argument will be
as specified in this command. For examplelabel justify{cr45} would cause all subsequent
\tlabel commands lacking an optional argument to be placed as if the argurem] were
used in each. Ifnplabels is not in effect at the time of this command, the rotation part will be saved
in case that option is turned on later, but a warning message will be issued. Witplattls, the
rotation is ignored byt label .

\tlabeloffset{(hlen}{(vlen}
\tlabelsep{(len)}

The first command causes all subsequentibel commands to shift the label right lilen)
and up by(vlen) (negative lengths cause it to be shifted left and down, respectively).
The\tlabelsep command causes labels to be shifted by the given amount in a direction that
depends on the optional positioning parameter. For example, if the first lettdradabel is shifted
down by the amounflen) and if the second letter isit is also shifted right. In all cases it is shifted
awayfrom the point of placement (unless the dimension is negative)otfs is the first parameter,
no vertical shift takes place, anddfis the second, there is no horizontal shift. This is intended to

3.7 LABELS AND CAPTIONS. 36

be used in cases where something has been drawn at that particular point, in order to separate
the text from the drawing, but the value is also written to the output file for use bybelrect
(subsectior8.7.2 and related commands.

\axislabels{(axis)} [(just)]{{{text)} (), {({texb)}(ny),...}

This command places the givepXtext ({texk)) at the given positions((k)) on the given
axis, (axis), which must be a single letter and onelof, r, t, x, ory. The text is placed as in
\tlabels (including the taking into account oftlabelsep and\tlableoffset), except that
the default justification depends on the axis (the settings dfbel justify are ignored). In the
case of the border axes, the default is to place the label outside the axis and centered. So, for
example, for the bottom axis it iscc]. The defaults for the- andy-axis are below and left, re-
spectively. The optiongjjust) can be used to change this. For example, to place the |aiside
the left border axis, usecl]. If mplabels is in effect, rotations can be included in the justifica-
tion parameter. For example, to place the text strings ‘first’, ‘second’ and ‘third’ just below the
positions 1, 2 and 3 on theaxis, rotated so they read upwards at a 90 degree angle, one can use
\axislabels{x}[cr90]{{first}l, {second}2, {third}3}

\plottext [(just)] ({tex)}{ (Xo,Yo), (X1,¥Y1), ...}

Similar in effect to\point and\plotsymbol (but without requiringUETAFONT), \plottext
places a copy oftext) at each of the listed points. It simply issues multipte abel commands
with the same text and optional parameter, but at the different points listed. This is intended to plot
a set of points with a single letter or font symbol (instead efexAFONT generated shape). Like
\axislabels, this does not respond to the setting\aflabeljustify. It has a default setting
of [cc] if the optional argument is omitted. The points may be MetaPost pair expressions under
mplabels, but they mustot be individually enclosed in braces. (This requirement is new with
version 0.7; prior to that pairs in braces didn't work reliably anyway.) This command is actually
unnecessary undetplabels as the plaintlabel command can then be given a list of points. The
\tlabel command is more efficient, anglottext is converted to it internally.

\mfpverbtex{(TEX-cmd$}

This writes averbatimtex block to the.mp file. It makes sense only if th@plabels option
is used and so only foneTAPOST. The (TeX-cmd$ in the argument are written to thenp file,
preceded by th&1ETAPOST commandverbatimtex and followed byetex. Line breaks within
the (TEX-cmd are preserved. Thenfpverbtex command must come before anylabel that is
to be affected by it. Any settings common tomatlic environments should be in\afpverbtex
command preceding all such environments. It may be issued at any poinafteris loaded, and
any number of times. If it issued befokepengraphsfile, its contents are saved and written by
that command. Because of the wagTAPOSThandlesrerbat imtex material, the effects cannot
be constrained by any grouping unless one plag¥sgfouping commands withigTeX-cmds.

\tcaption[{maxwd, (linewd)] { (caption tex}}

Places a gX caption at the bottom of the graph. (Not to be confused wiliX’s similar
\caption command.) The macro will automatically break lines which are too much wider than
the graph—if the\tcaption line exceedgmaxwd times the width of the graph, then lines will
be broken to form lines at mosgtinewd) times the width of the graph. The default settings for

3.7 LABELS AND CAPTIONS. 37

(maxwd and (linewd) are 1.2 and 1.0, respectivel\tcaption typesets its argument twice (as
does ATEX’s \caption), the first time to test its width, the second time for real. Therefore, the
user is advisedotto include any global assignments in the caption text.

If the \tcaption and graph have different widths, the two are centered relative to each other.
If the \tcaption takes multiple lines, then the lines are both left- and right-justified (except for
the last line), but the first line is not indented. If the opti@nteredcaptions is in effect, each line
of the caption will be centered.

In a\tcaption, Explicit line breaks may be specified by using thecommand. The separa-
tion between the bottom of the picture and the caption can be changed by increasing or decreasing
the skip\mfpiccaptionskip (a ‘rubber’ length in Lamport’s terminology).

Many MFPIC users find the tcapt ion command too limiting (one cannot, for example, place
the caption to the side of the figure). It is common to use some other method (sudpés L
\caption command in &igure environment). The dimensionsfpicheight and\mfpicwidth
(see sectiord.11) might be a convenience for plaipX users who want to roll their own caption
macros.

3.7.2 QJRVES SURROUNDING TEXT

\tlabelrect [{rad)] [{just)](pair){(text}
\tlabelrect*...

This and the following two methods of surounding a bit of text with a curve share some com-
mon characteristics which will be described here. The commands all take an optional argument that
can modify the shape of the curve. After that come arguments exactly as faritkieel command
except that only a single point is permitted, not a list. (Bair) is either of the form((x), (y}))
or the same enclosed in braces, orrgilabels a pair expression in braces.) After processing the
surrounding curve, atlabel is applied to those arguments unlessia present. In order for the
second optional argument to be recognized as the second, the first optional argument must also be
present. An empty first optional argument is permitted, causing the default value to be used. The
default for the justification parameterds, for compatibility with pastvrpicC versions in which
these commands all centered the figure around the point and no justification parameter existed.
This default can be changed with thelpathjustify command below.

The plain rectangle version produces a frame separated from the text on all sides by the amount
defined with\tlabelsep. All other versions produce the smallest described curve that contains
this rectangle.

These commands may be preceded by prefix macros (see the sectiaml 3.5, above).

They all have a*-form’ which produces the curve but omits placing the text. All have the effect of
rendering the patbeforeplacing any text. For examplégclear\tlabelrect... will clear the
rectangle and then place the following text in the cleared space.

The optional argument oft Labelrect, (rad), is a dimension, defaulting tipt, that produces
rounded corners made from quarter-circles of the given radius. If the corners are rounded, the sides
are expanded slightly so the resulting shape still encompasses the rectangle mentioned above.
There is one special case for the optional arguniead): if the keyword roundends’ is used
instead of a dimension, the radius will be chosen to make the nearest quarter circles just meet, so
the narrow side of the rectangle is a half circle.

3.8 SAVING AND REUSING AN MFPICPICTURE. 38

\tlabeloval [{mult}] [{just)](pair){(text}
\tlabeloval*...

This is similar to\t 1abelrect, except it draws an ellipse. The ellipse is calculated to have the
same ratio of width to height as the rectangle mentioned above. The opfiouigl is a multiplier
that increases or decreases this ratio. Valuémoift) larger than 1 increase the width and decrease
the height.

\tlabelellipse[(ratio)] [(just)](pair){(text}
\tlabelellipse*...
\tlabelcircle[(just)](pair){(text}
\tlabelcircle*...

Draws the smallest ellipse centered at the point that encompasses the rectangle defined above,
and that has a ratio of width to height equal(tatio) then places the text. The default ratio is
1, which produces a circle. We also provide the commearichbelcircle, which take only the
[(just)] optional argument. Internally, it just processes angnd calls\tlabelellipse with
parameter 1.

In the above\tlabel... curves, the optional parameter should be positive. If it is zero, all
the curves silently revert tot1abelrect. If it is negative, it is silently accepted. In the case of
\tlabelrect this causes the quarter-circles at the corners to be indented rather than convex. In
the other cases, there is no visible effect, but in all cases the sense of the curve is reversed.

\tlpathjustify{(just)}

This can be used to change the default justification\fdrabelrect and friends. Théejust)
parameter is exactly as itlabeljustify in subsectior8.7.1

3.8 Saving and Reusing amFPIC Picture.

These commands have been changed from versions prior to 0.3.14 in order to behave more like the
IATEX’s \savebox, and also to allow the reuse of an allocated box. Past files thatusepic
will have to be edited to adthewsavepic commands that allocate theX boxes.

\newsavepic{(picname}
\savepic{(pichamé}
\usepic{(picname}

\newsavepic allocates a box (likeA[EX's \newsavebox) in which to save a picture. As in
\newsavebozx, (picname is a control sequence. Exampletewsavepic{\foo}.

\savepic saves th@ext\mfpic picture in the named box, which should have been previously
allocated with\newsavepic. (This command should not be usiedideanmfpic environment.)
The next picture will not be placed, but saved in the box for later use. This is primarily intended as
a convenience. Oneulduse

\savebox {{picname} { (entiremfpic environmernt},

but \savepic avoids having to place thefpic environment in braces, and avoids one extra level
of TeX grouping. It also avoids reading the entirgpic environment as a parameter, which would
nullify MFPIC's efforts to preserve line breaks in parameters written tovtBeaAFONT output file.

3.9 RCTURE FRAMES 39

If you repeat\savepic with the same(picname, the old contents are replaced with the next
picture.

\usepic copies the picture that had been saved in the named box. This may be repeated as
often as liked to create multiple copies of one picture.

3.9 Picture frames.

When EX is run but beforeMETAFONT or METAPOST has been run on the output filgFrPiC
detects that thet fm file is missing or that the firsueTaposT figure file (file). 1 is missing. In
these cases, thefpic environment draws only a rectangular frame with dimensions equal to the
nominal size of the picture, containing the figure name and number (andgXniaBels). The
command(s) used internally to do this are made available to the user.

\mfpframe [(fsep] (material-to-be-framed\endmfpframe
\mfpframed[(fsep] { (material-to-be-frameg}

These surround their contents with a rectangular frame consisting of lines with thickness
\mfpframethickness separated from the contents by t{feep if specified, otherwise by the
value of the dimensionmfpframesep. The default value of thegK dimensions\mfpframesep
and\mfpframethickness are2pt ando0.4pt, respectively. Themfpframe ... \endnfpframe
version is preferred arountktpic environments or verbatim material since it avoids reading the
enclosed material before appropriateaat code changes go into effect. IATEX, one can also use
the\begin{mfpframe} ... \end{mfpframe} Syntax.

An alternative way to framefpic pictures is to save them wittsavepic (see previous sec-
tion) and issue a correspondifgsepic command inside any framing environment/command of
the user’s choice or devising.

3.10 Affine Transforms.

Coordinate transformations that keep parallel lines in parallel are cafflie@ transformsThese
include translation, rotation, reflection, scaling and skewing (slanting). FOMHTRFONT co-
ordinate system only—that is, for paths, but not fatabel’s (let alone\tcaption’s)—MFPIC
provides the ability to applyETAFONT affine transforms.

3.10.1 AFFINE TRANSFORMS OF THE METAFONTCOORDINATE SYSTEM.

\coords ... \endcoords

All affine transforms are restricted to the innermost enclositwgprds. . .\endcoords pair. If
there isno such enclosure, then the transforms will apply to the rest ofifipec environment
Note In IATEX, acoords environment may be used.

Transforms provided byiFpPIC.

\rotate{(0)} Rotates around origin b{f) degrees
\rotatearound{{point)} {(8)} Rotates around poirpoint) by (6) degrees
\turn[(point)] {(6)} Rotates around poirfpoint) (origin is default) by(8)
\mirror{(p1)}{{p2)} Same asreflectabout

\reflectabout{{p1)}{(p1)} Reflect about the linéps)--(p2)
\shift{{pair)} Shifts origin by the vectofpair)

3.10 AFFINE TRANSFORMS 40

\scale{(s)} Scales uniformly by a factor df)

\xscale{(s)} Scales only the X coordinates by a factor(sf

\yscale{(s)} Scales only the Y coordinates by a factor(sf

\zscale{(pair)} Scales uniformly by magnitude dpair), and rotates by angle dpair)
\xslant{(s)} Skew inX direction by the multiplds) of Y

\yslant{(s)} Skew inY direction by the multiples) of X

\zslant {(pair)} Seezslanted in grafdoc.tex

\boost {{(X)} Special relativity boost by, seeboost in grafdoc.tex

\xyswap Exchanges the values pfandy.

An arbitraryMETAFONT transformation can be implemented with

\applyT{(transformeb}

This is mainly for METAFONT hackers. This applies theeTAFONT (transforme} to the
current coordinate system. For example, tieric TeX macro \zslant#1 is implemented as
\applyT{zslanted #1} where the argumentl is a METAFONT pair, such agx,y). Any code
that satisfiesETAFONT's syntax for a(transformel (see D. E. Knuth, “The1nETAFONTboOK”)
is permitted, although no effort is made to correctly wrigX Bpecial characters nor to preserve
linebreaks in the code.

When any of these commands is issued, the effect is to transform all subsequent figures (within
the enclosingcoords or mfpic environment). In particular, attention may need to be paid to
whether these transformations move (part of) the figure outside the space allotted\bythe
command parameters.

A not-so-obvious point is that if several of these transformations are applied in succession,
then the most recent is applied first, so that figures are transformed as if the transformations were
applied in the reverse order of their occurrence. This is similar to the application of prefix macros
(as well as application of transformations in mathemalfig$;z usually means to appli; to the
result ofT,2).

3.10.2 TRANSFORMATION OFPATHS.

In the previous section we discussed transformations ofitilAFONT coordinate system. Those
macros affect therawing of paths and other figures, but do not change the actual paths. We will
explain the distinction after introducing two macros for storing and reusing figures.

\store{(path variable} { (path) }
\store{(path variable } (path)

This stores the followingpath) in the specifiedMETAFONT (path variable. Any valid META-
FONT symbolic token will do, in particular, any sequence of letters or underscores. You should be
careful to make the name distinctive to avoid overwriting the definition of some internal variable.
The stored path may later be used as a figure macro us'mgaj (below). The(path) may be any
of the figure macros (such asurve{ (0,0), (1,0),) }) or the result of modifying it. For
example.

\store{pth}\lclosed\reverse\curve{ (0,0), (1,0), (1,1)})

In fact, \store is a prefix macro that does nothing to the following curve except store it. It acts
as a rendering macro with a null rendering, so the curve is not made visible unless other rendering

3.10 AFFINE TRANSFORMS 41

macros appear before or after it. It is special in that it is the only prefix macro that allows the
following path to be an argument, that is, enclosed in braces. This is solely to supponrpast
versions in which\store wasnotdefined as a prefix macro.

\mfob7{(path expression
\mpob i { {path expression

The (path expressionis a previously stored path variable, or a valie TAFONT (or META-
POST) expression combining such variables and/or constant paths. This allows the use of path
variables or expressions as figure macros, permitting all prefix operations, etc.. Here’s some over-
simplified uses of store and\mfob7j:

o

Store a circle.
Now draw it dotted,
and hatch its interior

\store{my_f}{\circle{...}}
\dotted\mfobj{my_f}
\hatch\mfobj{my_f}
% Store two curves:
\store{my_f}{\curve{...}}
\store{my_g}{\curve{...}}
% Store two combinations of them:
\store{my_h}{\mfobj{my_f--my_g--cycle}} % a MF path expression
\store{my_k}{$%
\lclosed\connect
\mfobj{my_£f}\mfobj{my_g}
\endconnect}
\dotted\mfobj{my_f}
\dotted\mfobj{my_g}
\shade\mfobj{my_h}
\hatch\mfobj{my_k}

o o

o\

a combination path created from
mfpic commands.

o\

Draw the first dotted,
then the second.

Now shade one combination.
and hatch the other

o o

o\

o\

The two forms\mfobj and\mpobj are absolutely equivalent.

It should be noted that evemnyrpric figure is implicitly stored in the objecturpath. So you
can use\mfobj{curpath} and get the path defined by the most recent sequence of prefix macros
and figure.

Getting back to coordinate transforms, if one changes the coordinate system and then stores
and draws a curve, say by

\coords
\rotate{45 deg}
\store{xx}{\rect{(0,0), (1,1)}}
\dashed\mfobj{xx}

\endcoords

one will get a transformed picture, but the objertobj{xx} will contain the simple, unrotated
rectangular path and drawing it later (outside therds environment) will prove that. This is
because theoords environment works at the drawing level, not at the definition level. In oversim-
plified terms,\dashed invokes the transformation, but nottore. More preciselymFPIC prefix
macros have an input and an output and a side effect. The input is the output of whatever follows

3.10 AFFINE TRANSFORMS 42

it, the output can be the same as the input (the case for rendering prefixes) or modified version of
that (the closure prefixes). The side effect is the drawing (dashing, filling) of the path, appending of
an arrowhead, etc.. These side effects have to know where to place their marks, so a computation
is invoked that converts the user’s graph coordinatesMHEOAFONT's drawing coordinates. The
previous transformation macros work by modifying the parameters used in this computation.

The following transformation prefixes provide a means of actually creating and storing a trans-
formed path. In the terms just discussed, their input is a path, their output is the transformed path,
and they have no side effects (other than invoking the default rendering if no rendering prefix was
previously provided).

\rotatepath{ ({X), (y))
\shiftpath({ X), (dy)
\scalepath{ ({X),

(<9>
((d }e.
L0
\xscalepath{(X), (
¥ (
Y

)
y)) <S>
)}
A9}
(s)).
()}
()}

\yscalepath{
\slantpath{(.
\xslantpath{({y), (S)}...
\yslantpath{(X),(S)}
\reflectpath{(p1), (P)
\xyswappath..

\transformpath{ (transformetb}. ..

\rotatepath rotates the following path b{8) degrees about pointx), (y)) . After the com-
mands:

\store{xx}{\rotatepath{ (0,0), 45}\rect{(0,0), (1,1)}}

the object\mfob7j{xx} contains an actual rotated rectangle, as drawing it will prove. The above
macro, and the five that follow are extremely useful (and better thands environments) if one
needs to draw a figure, together with many slightly different versions of it.

\shiftpath shifts the following path by the horizontal amoujaix) and the vertical amount
(dy).

\scalepath scales (magnifies or shrinks) the following path by the fa¢sbrin such a way
that the point((x), (y)) is kept fixed. That is

\scalepath{ (0,0),2}\rect{(0,0), (1,1)}
is essentially the same asect{ (0,0), (2,2) }, while
\scalepath{(1,1),2}\rect{(0,0), (1,1)}

is the same asrect{ (-1,-1), (1, 1) }. In both cases the rectangle is doubled in size. In the first
case the lower left corner stays the same, while in the second case the the upper right corner stays
the same.
\xscalepath is similar to\scalepath, but only thex-direction is scaled, and all points with
first coordinate equal t¢x) remain fixed\yscalepath is similar, except thg-direction is affected.
\slantpath applies a slant transformation to the following path, keeping points with second
coordinate equal t¢y) fixed. Thatis, a poinp on the path is moved right by an amount proportional
to the height ofp above the liney = (y), with s being the proportionality factor. Vertical lines in
the path will acquire a slope of/§, while horizontal lines stay horizontal.

y)
Y,
y)
X

3.11 RRAMETERS. 43

\xslantpath is an alias fonslantpath

\yslantpath is similar to\xslantpath, but exchanges the rolesandy coordinates.

\reflectpath returns the mirror image of the following path, where the line determined by
the points(p;1) and(py) is the mirror.

\xyswappath returns the path with the roles gfandy exchanged. This is similar in some
respects tdreflectpath{ (0,0), (1,1) }, and produces the same result if thandy scales of
the picture are the same. Howevetreflectpath compensates for such different scales (so the
path shape remains the same), white swappath does not (so that after a swap, verticals become
horizontal and horizontals become vertical). One cannot have both when the scales are different.

For METAFONT or METAPOSTpower users\transformpath can take any ‘transformer’ and
transform the following path with it. Here, teansformeris anything that can follow a path and
create a new path. Examples ar&led, shifted (1,1), androtatedabout (0,1).

All these prefixes change only the path that follows, not any rendering of it that follows. For
example:

\gfill\rotatepath{ (0,0),90}\dashed\rect{(0,0), (1,1)}

will not produce a rotated dashed rectangle. Rather the original rectangle will be dashed, and the
rotated rectangle will be filled.

3.11 Parameters.

There are many parametersniFPIC which the user can modify to obtain different effects, such
as different arrowhead size or shape. Most of these parameters have been described already in the
context of macros they modify, but they are all described together here.

Many of the parameters are stored lpXTas dimensions, and so are available even if there is
no METAFONT file open; changes to them are not subject to the ugdéldles of scope however:
they are local togX groups only if set inside anfpic environment otherwise they are global. This
is for consistency: other parameters are storetlbyAFONT (so the macros to change them will
have no effect unless\eTAFONT file is open) and the changes are subjeGtEgAFONT'’s rules of
scope—to the1FPIC user, this means that changes inside\thgpic ... \endmfpic environment
are local to that environment, but othggXTgroupings have no effect on scope. Some commands
(notably those that set the axismargins &ntlabe1 parameters) change botpXIparameters and
METAFONT parameters, and it is important to keep then consistent.

\mfpicunit

This TeX dimension stores the basic unit length ferpic pictures—thex andy scales in the
\mfpic macro are multiples of this unit. The default value js .
\pointsize

This TeX dimension stores the diameter of the circle drawn by theint macro and the
diameter of the symbols drawn bylotsymbol and by\plot. The default value igpt.
\pointfilltrue and\pointfillfalse

This TeX boolean switch determines whether the circle drawngayint will be filled or open
(outline drawn, inside erased). The defaultisie: filled. This value is local to anygX group
inside amfpic environment. Outside such it is global.

3.11 RRAMETERS. 44

\pen{(drawpensizg}
\drawpen { (drawpensizg}
\penwd { (drawpensizg}

Establishes the width of the normal drawing pen. The defaultigt. This width is stored by
METAFONT. The shading dots and hatching pen are unaffected by this. There exist three aliases for
this command, the first two to maintain backward compatibility, the last one for consistency with
other dimension changing commands. Publishers generally recommended authors to use at least a
width of one-half point for drawings submitted for publication.

\shadewd { (dotdian} }

Sets the diameter of the dots used in the shading macro. The drawing and hatching pens are
unaffected by this. The default is 5pt, and the value is stored byETAFONT.
\hatchwd{ (hatchpensizg

Sets the line thickness used in the hatching macros. The drawing pen and shading dots are
unaffected by this. The default is 5pt, and the value is stored byETAFONT.
\polkadotwd{(polkadotdiam}

Sets the diameter of the dots used in thelkadot macro. The default iSpt, and the value
is stored byMETAFONT.
\headlen

This TeX dimension stores the length of the arrowhead drawn bydtieow macro. The default
value is3pt.
\axisheadlen

This TeX dimension stores the length of the arrowhead drawn by\the:s, \xaxis and
\yaxis macros, and by the macrosxis and\doaxes when applied to the parametetsand

y.
\sideheadlen

This TeX dimension stores the length of the arrowhead drawn by\the s and \doaxes
macros when applied tg b, r or t. The default value ispt.

\headshape { (hdwdn) } { (hdten } { {hfilled) }

Establishes the shape of the arrowhead drawn bydheow and\axes macros. The value of
(hdwd?) is the ratio of the width of the arrowhead to its lengfiiter) is the tension of the &zier
curves; andhfilled) is aMETAFONT boolean value indicating whether the arrowheads are to be
filled (if true) or open. The default values are 1£4]se, respectively. Théhdwdr), (hdter} and
(hfilled) values are stored byETAFONT. Setting(hdter) to ‘infinity’ will make the sides of the
arrowheads straight lines. These values are all storetHIAFONT.

\dashlen, \dashspace

These EX dimensions store, respectively, the length of dashes and the length of spaces between
dashes, for lines drawn by théashed macro. The\dashed macro may adjust the dashes and the

3.11 RRAMETERS. 45

spaces between by as muchﬁ]aef their value, wheren is the number of spaces appearing in the
curve, in order not to have partial dashes at the ends. The default values atetofhe dashes

will actually be longer (and the spaces shorter) by the thickness of the pen used when they are
drawn.

\dashlineset, \dotlineset

These macros provide convenient standard settings fordixenlen and\dashspace dimen-
sions. The macradashlineset sets both values topt; the macro\dot lineset sets\dashlen
to 1pt and\dashspace to 2pt.

\hashlen

This TeX dimension stores the length of the axis hash marks drawn by therks and
\ymarks macros. The default value ist.
\shadespace

This TeX dimension establishes the spacing between dots drawn bystteele macro. The
default value islpt.
\darkershade, \lightershade

These macros both multiply theshadespace dimension by constant factors/&= .833333
and §5 = 1.2 respectively, to provide convenient standard settings for several levels of shading.
\polkadotspace

This TeX dimension establishes the spacing between the centers of the dots used in the macro
\polkadot. The default isl Opt.
\dotsize, \dotspace

These EX dimensions establishes the size and spacing between the centers of the dots used in
the\dotted macro. The defaults ate 5pt and3pt.
\symbolspace

Similar to \dot space, this TeX dimension establishes the space between symbols placed by
the macro\plot {(symbo}}.... Its default is5pt.
\hatchspace

This TeX dimension establishes the spacing between lines drawn bynttte-h macro. The
default value isspt.
\tlabelsep{(separation}

This macro establishes the separation between a label and its nominal position. It affects
text written with any of the commandstlabel, \tlabels, \axislabels Or \plottext. It
also sets the separation between the text and the curve defined by the commiangs rect,
\tlabelovalor\tlabelellipse. The defaulti®pt. The value is stored by botlEX andMETA-
FONT.

3.12 FORADVANCED USERS 46

\tlabeloffset{(hlen}{(vlen}

This macro establishes a uniform offset that applies to all labels. It affects text written with any
of the commandstlabel, \tlabels, \axislabels or \plottext. The default is to have both
horizontal and vertical offsets obt. The values are stored by botBXTand METAFONT.

\mfpdataperline

WhenwmFPIC is reading data from files and writing it to the output file, this macro stores the
maximum number of points that will be written on a single line in the output file. Its default is
defined by\def\mfpdataperline{5}.

\mfpicheight, \mfpicwidth

These EX dimensions store the height and width of the figure created by the most recently
completednfpic environment. This might perhaps be of interest to hackers or to aid in precise
positioning of the graphics. They are meant to be read-only\ #hemfpic command globally
sets them equal to the height and width of the picture .NBtriC does not otherwise make any use
of them.

3.12 For Advanced Users.
3.12.1 PWERUSERS

\gspline{(list)}
\closedgspline{(list)}
\cspline{(list)}
\closedcspline{(list)}

These are alternate ways of defining curves. In each ¢bsig,is a comma separated list of
points. These represent not the points the curve passes through, omtioe points The first two
produce quadratic B-splines and the last two produce cubic B-splines. If you don’t know what B-
splines are, or don't know what control points are, it is recommended you not use these commands.

\cbclosed...
\gbclosed...

These are prefix macros for closing curves. The first closes with a cubic B-spline, the second
with a quadratic B-spline. They will close any given curve, but the commahdlosed is meant
to close a cubic B-spline (see above). That\ighclosed\cspline should produce the same
result as\closedcspline with the same argument. The corresponding statements are true of
\gbclosed: itis meant to close a quadratic B-spline argbclosed\gspline should produce the
same result asclosedgspline with the same argument.

The power user, having noticed thaturve and\cyclic insert some direction modifiers into
the path created, may have decided that there i8frraC command to create a SIMpETAFONT
default style path, for examplel, 1) .. (0,1)..(0,0)..cycle. If so, he or she has forgotten
about\mfob1j: the command

\mfobj{(1,1)..(0,1)..(0,0)..cycle}

3.12 FORADVANCED USERS 47

will produce, in the.nf file, exactly this path, but surround it with theX wrapping needed to
makeMFPIC's prefix macro system work. However, the syntax of more complicated paths can be
extremely lengthy, so we offer this interface:

\mfbezier[(teng] {(list)}
\closedmfbezier[(teng] {(list)}

This connects the points in the list with the path join operatarension (teng... If the
tension option (teng] is omitted, the value set bysettension (initially 1) is used. One can get
a cyclic path by prependingoclosed (with matching tension option), but it will not produce the
same result asclosedmfbezier. These are cubic &ier's (but you know that if you are a power
user). Quadratic &ziers (as inAIpX’s picture environment) can be obtained with the following:

\gbeziers[(teng] {(list)}
\closedgbeziers[(teng] {(list)}

Note the plural, to indicate that they will draw a series of quadraézi®&s. In thelist), the
first, third, fifth, etc., are the points to connect, while the second, fourth, etc., are the control points.
The open version requires an ending point, and so needs an odd number of points in the list. The
closed version assumes the first point is the ending, and so requires an even number in the list. The
curve will not automatically be smooth. That depends on the choice of the control points.

\mfsrc{{metafont codg
\mfcmd { {metafont codg
\mflist{({metafont codg

These all write thémetafont codedirectly to theMETAFONT file, using a EX \write com-
mand. Line breaks withigmetafont codeare preserved.Almost all themFpPic drawing macros
invoke one of these. Because of the wgd(Teads and processes macro arguments, not all drawing
macros preserve line breaks (nor do they all need to). However, the ones that operate on long lists
of pair or numeric data (for examplegpoint, \curve, etc.), do preserve line breaks in that data.
The difference in these is minokmfsrc writes its argument without changenfcmd appends
a semicolon (}") to the code, while\mf1list surrounds its argument with parentheses and then
appends a semicolon.

Using these can have some rather bizarre consequences, though, so it is not recommended to
the unwary. It is, however, currently the only way to make ussBfAFONT'S equation solving
ability. Here’s an oversimplified example:

\mfpic[20]{-0.5}{1.5}{0}{1.5}
\mfsrc{z1=(0,0);

z2-23=(1,2);

224223=(1,-1) ; } $ 22=(1,1), 2z3=(0,-1)
\arc[t]{zl,z2,2z3}
\endmfpic

Check out the sampleorfun. tex for a more realistic example.

9Under most circumstances, but not if the command (plus its argument) is part of another macro

3.12 FORADVANCED USERS 48

\setmfvariable{(type}{{name}{(value}
\setmpvariable{(type}{(name}{(value }

These formerly internaiFPIC macros can be use to define symbolic names fone&mAFONT
or METAPOSTVariable type. They are interchangeable; you can use either one with or without the
metapost option. As an example of their use, since dimensions are numeric data tyResAn
FONT, the command

\setmfvariable{numeric}{my_dim}{7pt}

would set theMETAFONT variablemy_dim to the valueipt. After that,my_dim can be used in any
drawingcommand where a dimension is required:

\plotsymbol [my_dim] {Triangle}\rect{(0,0), (1,1)}

will plot the rectangle with small triangles spaceet apart.

You can define paths this waydetmfvariable{path} {X}{(0,0)..(1,1)..(0,1)}), but
the (value has to be validMETAFONT path construction syntaxot something like\rect{...}.
You need\store if you want to set a variable to amFpic path. However, defined either way, they
can be used imfob.

A variable defined this way is local to th€pic environment it is contained in. It is in fact local
to anyMETAFONT group. INMFPIC, only \connect ... \endconnect and\mfpic ... \endmfpic
createMETAFONT groups in the graph file.

\noship
\stopshipping
\resumeshipping

\stopshipping turns off character shipping (byETAFONT to the TFM and GF files, or by
METAPOSTto appropriate EPS output file) untitesumeshipping occurs. If you want just one
character not shipped, just useoship inside the mfpic environment. This is useful if all one
wishes to do in the currenttpic environment is to maksles (see below).

\patharr{{(pV)}...\endpatharr

This pair of macros, acting as an environment, accumulate all enclosing paths, in order, into a
path array name(pv). A path array is a collection of paths with a common base name indexed by
integers from 1 to the number of paths. Any path in the array can be accessed by meaius ¢of
For example, after

\patharr{pa}
\rect{(0,0), (1,1)} \circle{(.5,.5), .5}
\endpatharr

then\mfobj{pal[1]} refers to the rectangle anchifobj{pal2]} refers to the circle. In case ex-
plicit numbers are usedjETAFONT allowspal as an abbreviation fasa[1]. However, if a nu-
meric variable or some expression is used (@gtn+1]) the square brackets are required.

This command can only be used inafpic environment. The definitions it makes are, how-
ever, global.

3.12 FORADVANCED USERS 49

Note In IATEX, this pair of macros can be used in the form ofBeK-style environment called
patharr—as in\begin{patharr}...\end{patharr}.

\pairarray{(var)}(list-of-pointg
\numericarray{(var)}(list-of-numbers

These enable the simultaneous definition of pair and numeric variables. For example, after
\pairarray{X}{(0,1), (1,1),(0,0), (1,0)}
the variablest1, x2, X3, andx4 are equal to the given points in that order. And then
\polyline{X1,X2,X3,X4}

will draw the lines connecting these four points. The index may optionally be put in square brackets
and may be separated from the name by any number of spaces. If a numeric expression is used
instead of an explicit number, square brackatsstsurround it:x[1+1], X[2], X2 andX 2 are all
the same. The arrays are defined locally if these commands occumnitp anenvironment, global
otherwise. In all arrays, the variabeitself (not followed by any digit or brackets) is a number
equal to the number of elements in the array.

Array variables may be used only where the values are processed antyyONT or META-
POST, they are unknown togX. In particular, they cannot be used in commands that position text
unlessmplabels is in effect.

Several commands imFPiIC define arrays of objects that can be used in other commands.
The main ones argpiechart and\barchart. These arrays are always global. Usiid echart
causes the following arrays to become defined:

e piewedge, a path array describing the wedges of the chart. The commargidge { (num }
(without optional argument) is almost exactly the sameng®bj{piewedge [(nUM1}.

e pieangle, a numeric array, the starting angle of each wedge.

e piedirection, a pair array, the unit vectors pointing in the directions of the centers of
the wedges. If\pieanglel is 0 andpieangle2 is 90 degrees, thepiedirectionl is
(cos45sin45).

Using \barchart causes the following arrays to become defined. The exact meaning depends
on whether bars are horizontal or vertical. The following describes horizontal bars; interchange the
roles ofx andy if they are vertical:

e barstart, the position on thg-axis of the leading edge of the bars.
e barbegin, thex-coordinate of the leftmost end of the bars.
e barend, thex-coordinate of the rightmost end of the bars.

e chartbar, the rectangular path of the bathartbarl is the rectangle with corners at
(barbeginl, barstartl) and (barendl,barstart+barwd), wherebarwd is the width
(thickness) of the bar.

3.12 FORADVANCED USERS 50

e barlength, the same asarend. This is for backward compatibility; the was name chosen
at a time when all the bars had one side on an axis fizehegin[n] = 0).

\tile{(tilename, (unit), (wd), (ht), (clip)}

\endtile

In this environment, all drawing commands contribute tdea A tile is a rectangular picture
which may be used to fill the interior of closed paths. The units of drawing are givenrity,
which should be a dimension (likept or 2in). The tile’s horizontal dimensions are O ¢avd) -
(unit) and its vertical dimensions 0 tdt) - (unit), so (wd) and (ht) should be pure numbers. If
(clip) is true then all drawing is clipped to be within the tile’s boundary.

By using this macro, you can design your own fill patterns (to use them, séedhe macro
below), but please take some care with the gestheticskflleaame is globally defined by this
command.

\tess{(tilenameé}...

Tile the interior of a closed path with a tessellation comprised of copies adil¢hepecified by
(tlename. There is no defaulitiename; you must make all your own tiles. Tiling an open curve
is technically an error, but theETAFONT code responds by drawing the path and not doing any
tiling.

Tiling large regions with complicated tiles can exceed the capacity of some versiviEs of
POST. There is less of a problem withETAFONT. This is not becaus®lETAFONT has greater
capacity, but because of the natural difference between bitmaps and vector graphics.

In METAPOST, the tiles are copied with whatever color they are given when they are defined.
They can be multicolored.

\cutoffafter{(obj)}...
\cutoffbefore{(obj)}...
\trimpath{{dim), (dimp)}...
\trimpath{{dimg)}...

These are prefix macros. The first two take an ‘object’ (a variable in which a path was previ-
ously stored usingstore) and uses it to trim one end off the following pathutoffbefore cuts
off the part of the path before its first intersection with the object, whilecof fafter cuts off
the part after the last intersection. If the path does not intersect the object, nothing is cut off. If the
object and the path intersect in more than one point, as little as possible (&3ualbut off. This
is completely reliably only when there is only one point of intersection.

The\trimpath macro takes two dimensions separated by commas and trims those lengths off
the initial and terminal ends of the path. If only one dimension is given, that is used at both ends.
This macro is essentially equivalent to applyingitoffafter and then\cutoffbefore where
the objects are circles which have radii equal to the given dimensions and which are centered at the
endpoints of the path. Consequently, if the path is shorter than either dimension, it will not intersect
either circle and nothing will be trimmed. Similarly, if the result\efutoffafter is shorter than
the first dimension, thehcutoffbefore will not trim any more off. The first two macros can be

10METAFONT's methods for finding the ‘first’ point of intersection do not always find the actual first one.

3.12 FORADVANCED USERS 51

used to create a curve that starts or ends right at another figure without having to find the point
where the two curves intersect. The third one can be used on the result to produce a curve that
stops just short of the point of intersection.

\mftitle{(title)}

Write the string(title) to the METAFONT file, and use it as METAFONT message. (SeEhe
METAFONTbOOK chapter 22, page 187, for two uses of this.)

\tmtitle{(title)}

Write the text(title) to the BX document, and to the log file, and use it implicitly\inftitle.
This macro forms a local group around its argument.

Since EX is limited to 256 dimension registers, and since dimensions are so important to type-
setting and drawing, it is common to use up all 256 when drawing packages are loaded. Therefore
MFPIC uses font dimensions to store dimension values. The following is the command that handles
the allocation of these dimensions.

\newfdim{ (fdim)}

This create a new global font dimension nangfetim), which is a BX control sequence (with
backslash). It can be used almost like an ordinady dimension. One exception is that thgXT
commands.advance, \multiply and\divide cannot be applied directly to font dimensions (nor
IATEX's \addtolength); however, the font dimension can be copied to a temponaXydimension
register, which can then be manipulated and copied back (4sig ength in IATEX, if desired).
Another exception is that all changes to a font dimension are global in scope. Also beware that
\newfdim uses font dimensions from a single font, themy font, which most EX systems ought
to have. (You'll know if yours doesn'’t, becauseeric will fail upon loading!) Also, implemen-
tations of X differ in the number of font dimensions allowed per font. Hopefullgpic won't
exceed your localgX’s limit.

All of MFPIC's basic dimension parameters are font dimensions. We have lied slightly when we
called them “EX dimensions’. We arrange for them to be locakttpic environments by saving
their values at the start and restoring them at the end.

\setmfpicgraphic{(filename}

This is the command that is invoked to place the graphic created. See apgendifor a
discussion of its use and its default definition. It is a user-level macro so that it can be redefined in
unusual cases. It operates on the output of the following macro:

\setfilename{(file)} {(num}

MFPIC's figure inclusion code ultimately executesetmfpicgraphic on the result of apply-
ing \setfilename to two arguments: the file name specified in theengraphsfile command
and the number of the current picture. Normaligt £i1lename just puts them together with the'*
separator (because that is usually the wa&rAPOST hames its output), but this can be redefined
if the METAPOST output undergoes further processing or conversion to another format in which
the name is changed. Any redefinition\efet f i 1ename must come beforgopengraphsfile be-
cause that command tests for the existence of the first figure. After any redefinitier,i 1enane

3.12 FORADVANCED USERS 52

must be a macro with two arguments that creates the actual flename from the above two parts. It
should also be completely expandable. See the appendices, subdeetidor further dicussion.

\preparemfpicgraphic{({filename}

This command is automatically invoked beforeetmfpicgraphic to make any preparations
needed. The default definition is to do nothing except wherGtherHICspackage is used. That
package provides no clean way to determine the bounding box of the graphic after it is included.
SinceMFPIC needs this information, this command redefines an internal command of the graphics
package to make the data available\dttmfpicgraphic is redefined then this may also have to
be redefined.

\getmfpicoffset {(flename}

This command is automatically invoked aftefetmfpicgraphic to store the offset of the
lower left corner of the figure in the macrasfpicllx and\mfpiclly. If \setmfpicgraphicis
redefined then this may also have to be redefined.

\ifmfpmpost

Users wishing to write code that adjusts its behavior to the graph file processor can use this
to test which option is in effect. The mackasemetapost sets it true andusemetafont sets it
false. There are no commandsfpmposttrue nor \mfpmpostfalse, since the user should not be
changing the setting once it is set: a great deahefiC internal code depends on them, and on
keeping them consistent with thepengraphsfile commands reading of these booleans.

\mfpicversion

This expands to the curremtrpPiC version multiplied by 100. At this writing, it produce3(”’
because the version is 0.7. It can be used to test for the current version:

\ifx\mfpicversion\undefined \def\mfpicversion{0}\fi
\ifnum\mfpicversion>70 ... \else ... \fi

\mfpicversion was added in version 0.7.

3.12.2 HACKERS.

MFPicemploys a modified version ofTgX’s \@ifnextchar that not only skips over spaces when
seeking the next character, but also skips Owerlax or tokens that have beeriet equal to it.

This is because, in contexts where we try to preserve lines, we make the end-of-line character
active and set it equal torelax. Since it is hard to predict in what context a macro will be used,
this gives code like

\function
[s1.21{0,2,.1}{x**2 }

the same behavior in both.One consequence is that puttingelax to stop a command from
seeing a !’ as the start of an optional argument will not work fiarFPic commands. The same
holds for the ' in those few commands that have a star-form, and also for other commands that
look ahead\t1abel looks for a ‘(’ starting off the location, and macros that operate on lists of data

Actually, because of a bug in previous versions, this was not true, but it is now. | hope.

3.12 FORADVANCED USERS 53

look ahead for\datafile’). This is not a serious problem, because there is only one command
(\smoothdata) that takes an optional arguments but doesn’t have mandatory arguments after that.
If a‘\relax’ appeared after any otherFPiCc command, it would be taken as an argument and an
error would result. In any casgenpty will stop the looking ahead if it should ever be necessary.
Most of MFPIC's commands have arguments with parts delimited by commas and parentheses.
In most cases this is ho problem because they are written unchanged .tefthed there they
are parsed just fine. Some commands’ arguments, however, have to be parsed ygXbartia T
METAFONT. Examples ar@tlabel (sometimes, undanplabels), and\pointdef. One might be
tempted to us@IETAPOST expressions there and that works fine as long as they do not contain
commas or parentheses. In such cases, they can sometimes be enclosed in braces tgerevent T
seeing these elements as delimiters, but sometimes these braces might get writtemfo(the
.mp) output and cause RETAFONT (METAPOST) error. In such cases the following work-around
might be possible:

\def\identity#1{#1}
\pointdef{A} (\identity{angle (1,2)},3)
\rect{(0,0),\A}

The braces preven{=X's argument parsing from seeing the first comma as a delimiter, but
upon writing to the.nf, the\identity commands are expanded and only the contents appear in
the output. (X parses the argument to assign meaningsitoand\2y.)

4 Appendices

4.1 Acknowledgements.

Tom would like to thank all of the people at Dartmouth as well as out in the network world for
testingMFPIC and sending him back comments. He would particularly like to thank:

Geoffrey Tobin for his many suggestions, especially about cleaning upgheFONT code,
enforcing dimensions, fixing the dotted line computations, and speeding up the shading routines
(through this process, Geoffrey and Tom managed to teach each other many of the subtleties of
METAFONT), and for keeping track afirpic for nearly a year while Tom finished his thesis;

Bryan Green for his many suggestions, some of which (including his rewritingtthpt ion
macro) ultimately led to the current version’s ability to put graphs in-line or side-by-side; and

Uwe Bonnes and JardmKuben, who worked out rewrites @irPic during Tom’s working
hiatus and who each contributed several valuable ideas.

Some credit also belongs to Anthony Stark, whose work on a FNEEttAFONT converter has
had a serious impact on the development of manyr#i1C's capabilities.

Finally, Tom would like to thank Alan Vlach, the otheggXnician at Berry College, for helping
him decide on the format of many of the macros, and for helping with testing.

Dan Luecking would like to echo Tom'’s thanks to all of the above, especially Geoffrey Tobin
and Jarorir Kuben. And to add the names Taco Hoekwater, for comments, advice and suggestions,
and Zaimi Sami Alex for suggestions.

But mostly, he'd like to thank Tom Leathrum for starting it all.

4.2 Changes History.

See the fileehanges. txt for a somewhat sporadic and rambling history of changes®ic. See
the filereadme. txt for a list of any known problems.

4.3 Summary of Options

Unless otherwise stated, any of the command forms will be local to the curffieht environment
if used inside. Otherwise it will affect all later environments.

OPTION: COMMAND FORM(S): RESTRICTIONS

metapost \usemetapost Command must come before
\opengraphsfile. Incompatible with
metafont option.

metafont \usemetafont The default. Command must come before
\opengraphsfile. Incompatible with
metapost option.

mplabels \usemplabels, Requiresnetapost. If command is used
\nomplabels inside amfpic environment, it should
come before t1abel commands to be

affected.

54

4 APPENDICES 55

overlaylabels \overlaylabels, Has no effect withoutnetapost.
\nooverlaylabels
truebbox \usetruebbox, Has no effect withoutnetapost.
\notruebbox
clip \clipmfpic, No restrictions.
\noclipmfpic
clearsymbols \clearsymbols, No restrictions.
\noclearsymbols
centeredcaptions \usecenteredcaptions, No restrictions.
\nocenteredcaptions
debug \mfpicdebugtrue, To turn on debugging whilgfpic.tex is
\mfpicdebugfalse loading, issué def\mfpicdebug{true}.
draft \mfpicdraft Should not be used together. Command
final \mfpicfinal forms should come before
nowrite \mfpicnowrite \opengraphsfile

4.4 Plotting styles for\plotdata

When\plotdata passes from one curve to the next, it increments a counter and uses that counter
to select a dash pattern, color, or symbol. It uses predefined dash patterrdaamgse0 through
dashtype5, or predefined color nameslortype0 throughcolortype’, or predefined symbols
pointtype0 throughpointtypes. Here follows a description of each of these variables. These
variables must not be used in the second argumentefonfigureplot, whose purpose is to
redefine these variables.

Under\dashedlines, we have the following dash patterns:

NAME PATTERN MEANING
dashtype0 Obp solid line
dashtypel 3bp, 4bp dashes
dashtype?2 0bp, 4bp dots
dashtype3 0bp, 4bp, 3bp, 4bp dot-dash

dashtype4 0bp, 4bp, 3bp, 4bp, Obp, 4bp dot-dash-dot
dashtype5 0bp, 4bp, 3bp, 4bp, 3bp, 4bp dot-dash-dash

Under\coloredlines, we have the following colors. Except fot ack andred, each color is
altered as indicated. This is an attempt to make the colors more equal in visibility against a white
background. (The success of this attempt varies greatly with the output or display device.)

4 APPENDICES 56

NAME CoLorR (R,G,B)
0,0,0)

colortypel black (
colortypel red (1,0,0)
colortype?2 blue (.2,.2,1)
colortype3 orange (.66,.34,0)
colortyped green (0,.8,0)
colortypeb magenta (.85,0,.85)

(0,.85,.85)

(.85,.85,0)

Under \pointedlines and \datapointsonly, the following symbols are used. Internally

each is referred to by the numeric name, but they are identical to the more descriptive hame.

Syntactically, all areMETAFONT path variables. (The order changed between versions 0.6 and
0.7.)

NAME DESCRIPTION

colortypeb6 cyan
colortype? yellow

pointtypel Circle
pointtypel Cross
pointtype2 SolidDiamond
pointtype3 Square
pointtyped Plus
pointtypeb Triangle
pointtype6 SolidCircle
pointtype’ Star
pointtypes8 SolidTriangle

4.5 Special considerations when USINgETAFONT

The most important restriction METAFONT is on the size of a picture. CoordinateiBTAFONT
ultimately refer to pixel units in the font that is output. These are required to be less than 4096,
so an absolute limit on the size of a picture is whatever length a row of 4096 pixels is. In fonts
prepared for a LaserJet4 (600 DPI), this means about 6.8 inches. For a 1200 DPI pronter, the limit
is about 3.4 inches.

A similar limit holds for numbers input, and the values of variablesTAFONT will return an
error forsin 4096. Intermediate values can be greater{ (2*2048) will cause no error), but
final, stored results are subject to the limit. AFPIC example that generated an error recently
was:

\mfpicunit lmm
\mfpic[10]{-3}{7}{-3.5}{5}

\function{-4.5,4, .1} {x*x)}
\endmfpic

The problem was the value ¢f-4.5)? = 20.25 in pixel units (after multiplying by thémfpic
scaling factor themfpicunit in inches and the DPI value): ZZ5x 10x 0.03937x 600> 4783.

The error did not occur at the point of creating the font, but merely at the point of storing the path
in an internal variable for manipulation and drawing.

4 APPENDICES 57

4.6 Special considerations when USInGETAPOST
4.6.1 REQUIRED SUPPORT

To useMFPIC with METAPOST, the following support is needed (besides a workirgrTAPOST
installation):

Under plain X The fileepsf.tex

Under BTpX209 The fileepsf.tex Orepsf.sty

Under BTpX 2¢ The packag&RAPHICSOr GRAPHICX

Under pdfETX The packagesRAPHICSOr GRAPHICX with option pdftex

Under plain pdffX The filessupp-pdf . tex andsupp-mis.tex

In all cases The filegrafbase.mp anddvipsnam.mp plus, of coursepfpic.tex (and

mfpic.sty for IATEX)

The filesgrafbase.mp anddvipsnam.mp should be in a directory searched RgTAPOST.
The remaining files should be in directories searched by the appropgéteafiant. If META-
posTcannot find the filggrafbase .mp, then by default it will try to inputyratbase.mf, which is
generally futile (or fatal).

In case pdATpX is used, the graphics package is given ghex option. This option requires
the filepdftex.def which currently inputs the filesupp-pdf.tex andsupp-mis.tex. The file
pdftex.def is supplied with thesRAPHICSpackage. The other two are usually supplied with a
pdfTeX distribution, and are definitely part of the C@iT distribution. Older versions had some
bugs in connection with theABEL package. One workaround was to load draPHICSpackage
andMFPIC beforeBABEL.

If the user loads one of the above required files or packages beforerthe macros are
loaded thermrpic will not reload them. If they have not been inputEPiC will load whichever
one it decides is required. In tTEX 2¢ case MFPIC will load the GRAPHICSpackage. If the user
wishesGRAPHICX, then that package must be loaded beforeiC.

4.6.2 METAPOST IS NOT METAFONT

POSTSCRIPTIs not a pixel oriented language and so neithew&APOST. The model for draw-
ing objects is completely different betweRETAFONT andMETAPOST, and so one cannot always
expect the same results.BvWlaPoSTsupport inMFPIC was carefully written so that files success-
fully printed withMFPIC usingMETAFONT would be just as successfully printed usmgTAPOST.
Nevertheless, it frequently choke on files that make use of#tlierc command for writing code
directly to the.nf file. While grafbase.mp is closely based ofgrafbase.mf, much of the code
had to be completely rewritten.

Pictures inMETAPOSTare stored as (possibly nested) sequences of objects, where objects are
things like points, paths, contours, other pictures, et EMAFONT, pictures are stored as a grid
of pixels. Pictures that are relatively simple in one program might be very complex in the other and
even exceed memory allocated for their storage. Two examples afg@dheadot and\hatch
commands. When the polkadot space and size are both too smadll ieadot-ed region has been
known to exceeMETAPOSTCcapacity, while being well withimETAFONT capacity. IMETAPOST
the memory consumed byiat ch goes up in direct proportion to the linear dimensions of the figure
being hatched, while iIMETAFONT it goes up in proportion to the area, and then the reverse can
happen, withMETAFONT’s capacity exeeded far sooner thve# TAPOST'S.

4 APPENDICES 58

In METAPOSTIt is important to note that each prefix modifies the result of the entire follow-
ing sequence. In essence prefixes can be viewed as being applied in the opposite order to their
occurrence. Example:

\dashed\gfill\rect{(0,0), (1,1)}

This adds the dashed outline to the filled rectangle. That is, first the rectangle is defined, then it is
filled, then the outline is drawn in dashed lines. This makes a difference when colors other than
black are used. Drawing is done with the center of the virtual pen stroked down the middle of the
boundary, so half of its width falls inside the rectangle. On the other hand, filling is done right up
to the boundary. In this example, the dashed lines are drawn on top of part of the fill. In the reverse
order, the fill would cover part of the outline.

4.6.3 RAPHIC INCLUSION

It may be impossible to completely cater to all possible methods of graphic inclusions with auto-
matic tests. The macro that is invoked to include tlossPSCRIPT graphic is\setmfpicgraphic

and the user may (carefully!) redefine this to suit special circumstances. ActuaHyc runs the
following sequence:

\preparemnfpicgraphic{({filename}
\setmfpicgraphic{(filename}
\getmfpicoffset {(flename}

The following are the default definitions fasetmfpicgraphic:

In plain TeX: \def\setmfpicgraphic#l{\epsfbox{#1}}

In IATEX209: \def\setmfpicgraphic#l{\epsfbox{#1}}

INIATEX 2¢: \def\setmfpicgraphic#l{\includegraphics{#1}}

In pdflIATpX: \def\setmfpicgraphic#1{\includegraphics{#1}}

In pdfTpX: \def\setmfpicgraphic#l{\convertMPtoPDF {#1}{1}{1}}

Moreover, sinceMETAPOST by default writes files with numeric extensions, we add code to
each figure, so that these graphics are correctly recognized as EPS or MPS. For example, to the
figure with extension 1, we add the equivalent of one of the following

\DeclareGraphicsRule{.1}{eps}{.1}{} in IATEX 2¢.
\DeclareGraphicsRule{.1}{mps}{.1}{} in pdfIATEX.

After running the commandsetmfpicgraphic, MFPIC runs\getmfpicoffset to store the
lower left corner of the bounding box of the figure in two mackespicllx and\mfpiclly.
All the above versions of setmfpicgraphic (except\includegraphics) make this informa-
tion available; the definition ofgetmfpicoffset merely copies it into these two macros. What
MFPIC does in the case Ofincludegraphics is to modify (locally) the definition of an inter-
nal command of the graphics package so that it copies the information to those macros, and
then\getmfpicoffset does nothing. This internal modification is accomplished by the macro
\preparemfpicgraphic. Changes tdsetmfpicgraphic might require changing either or both
of \preparemfpicgraphic and \getmfpicoffset. All three of these commands are fed the
graphic’s file name as the only argument, although orktmfpicgraphic currently does any-
thing with it.

4 APPENDICES 59

One possible reason for wanting to redefiretmfpicgraphic might be to rescale all pic-
tures. This isdefinitely nota good idea without the optiomplabels since themrpPIC code for
placing labels and captions and reserving space for the picture relies on the picture having the
dimensions given by the arguments to the&pic command. Withmplabels plustruebbox it will
probably work, but (i) it hasiot been considered in writing therpPiC code, (ii) it will then scale
all the text as well as the figure, and (iii) it will scale all line thickness, which should normally be
a design choice independent of the size of a picture. To rescale all pictures, one need only change
\mfpicunit and rerun X andMETAPOST.

A better reason might be to allow the conversion of ymBTAPOST figures to some other
format. Then redefining setmfpicgraphic could enable including the appropriate file in the
appropriate format.

The filename argument mentioned above is actually the result obtained by running the macro
\setfilename. The commandsetfilename gets two arguments: the name of thhieTAPOST
output file (set in the.opengraphsfile command) without extension, and the number of the pic-
ture. The default definition ofset fi1ename merely inserts a dot between the two arguments. That
is \setfilename{fig} {1} producesig.1. You can redefine this behavior also. Any changes to
\setfilename must come after th&FPIC macros are input and before thepengraphsfile
command. Any changes t@etmfpicgraphic must come after th®FPIC macros are input and
before any\mfpic commands, but it is best to place it before th@engraphsfile command.

As MFPICIs currently written,\set filename must becompletely expandahlerhich means it
should contain no definitions, no assignments suctsascounter, and no calculations. To test
whether a proposed definition is completely expandable, put

\message{***\setfilename{file}{1}***}

after the definition in atex file and view the result on the terminal or in thieog file. You should
see only your expected filename between the asterisks.

4.7 MFpPIcand the rest of the world
4.7.1 THE LITERATURE

There are at least two places whereric has garnered more than a cursory mention. The most
up-to-date is a section ifihe BIpX Graphics Companioiy Michel Goossens, Sebastian Rahtz
and Frank Mittelbach. It describes a version prior to the introductiomeafaPosTsupport, but it
correctly describes a subset of its current commands and abilities.

The other iSTeX Unboundby Alan Hoenig, which contains a chapterm@rapric. Unfortunately,
it describes a version that was replaced in 1996 with version 0.2.10.9. The following summarizes
the differences between the descriptiofound in Chapter 15 andrpic versions 0.2.10.9 through
the current one:

\wedge IS now renamedsector to avoid conflict with the X command of the same name.
The syntax is slightly different from that given fawedge:

\sector{ ({X), {y)), (radius), (anglel, (angle2}

12while I'm at it: TEX Unboundoccasionally refers teirpic using a logo-like formatting in which the ‘MF’ is in a
special font and the ‘I is lowered. This ‘logo’ may suggest a relationship betwsenc and RCTgX. There is no such
relationship, and there is no official logo-like designationNieric.

4 APPENDICES 60

The macro\plr{ ({ro), (6o)), ({r1),(61)),...} is used to convert polar coordinate pairs to
rectangular coordinates, so the commangsrcurve, \plrcyclic, \plrlines and\plrpoint
were dropped fronmFPIC. Now use

\curve{\plr{ ({ro), (6o)), ({r1),(61)),...}}
instead of

\plrcurve{ ({ro), (Bo)), ({r1),{61)),...}

and similarly for\cyclic, \lines and\point with respect to\plrcyclic, \plrlines and
\plrpoint.

\fill is now renamedgfill to avoid conflict with theATEX command of the same name.

\rotate, which rotates a following figure about a point, is now renamedtatepath to
avoid confusion with a similar name for a transformation (see below).

\white is now renamedgclear becaus@white is too likely to be chosen for, or confused
with, a color command.

The following affine transform commands were changed from a third person indicative form
(which could be confused with a plural noun) to an imperative form:

Old name: New name:
\boosts \boost
\reflectsabout \reflectabout
\rotatesaround \rotatearound
\rotates \rotate
\scales \scale
\shifts \shift
\xscales \xscale
\xslants \xslant
\xyswaps \xyswap
\yscales \yscale
\yslants \yslant
\zscales \zscale
\zslants \zslant

\caption and\label are now renamedtcaption and\tlabel to avoid conflict with the
IATEX commands.

\mfcmd was renamedntsrc for clarity, and (in version 0.7) a newnfcmd was defined, which
is pretty much the same except it appends a semicolon to its argument.

There is a misprintiaxisheadlin should be\axisheadlen.
Finally, in the ETEX template on page 4961FPIC now supports th&usepackage method of
loading.

4.7.2 O'HER PROGRAMS

There exists a progranf|G2MFPIC that producesiFPIC code as output. The code produced (as

of this writing) is somewhat old and mostly incompatible with the description in this manual.
Fortunately, it is accompanied by the appropriate versions ofifdesc.tex andgrafbase.mf.
Unfortunately, the names conflict with the current filenames and so they should only be used in

4 APPENDICES 61

circumstances where no substitution will occur, say in a local directory with the other sources for
the document being produced. Moreover, the documentation in this manual may not apply to the
code produced. However the informationTgX Unboundmay apply.

There exist a packageJRCUIT_MACROS, that can produce a variety of output formats, one of
which ismFPiIC code. One writes afile (don't ask me what it consists of) and apparently processes it
with M4 and therppic to produce the output. TheFpPiC code produced appears to be compatible
with the currentirpIC.

4 APPENDICES

62

4.8 Index of commands, options and parameters by page

\applyT, 40
\arc, 17
\arrow, 24
Asterisk, 11
\axes, 12
\axis, 13
\axisheadlen, 44
\axislabels, 36
\axismargin, 13
\axismarks, 13

\backgroundcolor, 20
\barchart, 18
\bargraph, 18
\bclosed, 23
\begin{mfpic}, 9
\bmarks, 13
\boost, 40
\btwnfcn, 30

\cbclosed, 46
centeredcaptions, 5
\chartbar, 18
Circle, 11
\circle, 15,16
\clearsymbols, 6, 11
clearsymbols, 6
clip, 5
\clipmfpic, 5
\closedcspline, 46
\closedmfbezier, 47
\closedgbeziers, 47
\closedgspline, 46
\closegraphsfile, 8
cmyk (¢, m,y, k), 21
\coloredlines, 33
\connect, 23
\coords, 39
Cross, 11
\cspline, 46
\curve, 16
\cutoffafter, 50
\cutoffbefore, 50

\cyclic, 16

\darkershade, 45
\dashed, 24
\dashedlines, 33
\dashlen, 44
\dashlineset, 45
\dashpattern, 25
\datafile, 12, 30, 31
\datapointsonly, 33
debug, 6
\defaultplot, 33
Diamond, 11
\doaxes, 13
\dotlineset, 45
\dotsize, 45
\dotspace, 45
\dotted, 25

draft, 6

\draw, 24
\drawcolor, 20
\drawpen, 44

\ellipse, 16
\endconnect, 23
\endcoords, 39
\endmfpframe, 39
\endmfpic, 9
\endpatharr, 48
\endtile, 50
\everytlabel, 35

\fcncurve, 17
\fdef, 28
\fillcolor, 20
fillcolor, 26, 27
final, 6
\function, 29

\gclear, 26

\gclip, 26
\gendashed, 25
\getmfpicoffset, 52, 58

4 APPENDICES

\gfill, 26
\graphbar, 18
gray (@), 21
\grid, 15
\gridarcs, 15
\gridlines, 15
\gridpoints, 15
\gridrays, 15

\hashlen, 45
\hatch, 27
\hatchcolor, 20
\hatchspace, 45
\hatchwd, 44
\headcolor, 20
\headlen, 44
\headshape, 44
\hgridlines, 15
\histobar, 18
\histogram, 18

\ifmfpmpost, 52

\lattice, 15
\1lclosed, 23
\lhatch, 27
\lightershade, 45
\lines, 11
\1lmarks, 13

\makepercentcomment, 32
\makepercentother, 32
\makesector, 18
metapost, 4
\mfbezier, 47
\mfcmd, 47

\mflist, 47

\mfobj, 41
\mfpdatacomment, 31
\mfpdataperline, 46
\mfpdefinecolor, 22
\mfpframe, 39
\mfpframed, 39
\mfpic, 9
\mfpiccaptionskip, 37

\mfpicdebugfalse, 6
\mfpicdebugtrue, 6
\mfpicdraft, 6,7
\mfpicfinal, 6,7
\mfpicheight, 46
\mfpicnowrite, 6,7
\mfpicnumber, 9
\mfpicunit, 43
\mfpicversion, 52
\mfpicwidth, 46
\mfplinestyle, 33
\mfplinetype, 33
\mfpverbtex, 36
\mfsrc, 47
\mftitle, 51
\mirror, 39
mplabels, 4
\mpob7j, 41

named ((name), 21
\newfdim, 51
\newsavepic, 38
\nocenteredcaptions, 5
\noclearsymbols, 6,11
\noclipmfpic, 5
\nomplabels, 4
\nooverlaylabels, 5
\noship, 48
\notruebbox, 5

nowrite, 6
\numericarray, 49

\opengraphsfile, 8
\overlaylabels, 5
overlaylabels, 5

\pairarray, 49
\parafcn, 29
\partpath, 23
\patharr, 48
\pen, 44
\penwd, 44
\piechart, 19
\piewedge, 19
\plot, 25

63

4 APPENDICES

\plotdata, 32
\plotnodes, 25
\plotsymbol, 11
\plottext, 36
\plr, 20
\plrfecn, 30
\plrgrid, 15
\plrgridpoints, 15
\plrpatch, 15
\plrregion, 30
Plus, 11
\point, 10
\pointcolor, 20
\pointdef, 10
\pointedlines, 33
\pointfillfalse, 43
\pointfilltrue, 43
\pointsize, 43
\polkadot, 26
\polkadotspace, 45
\polkadotwd, 44
\polygon, 11
\polyline, 11
\preparemfpicgraphic, 52, 58

\gbclosed, 46
\gbeziers, 47
\gspline, 46

\reconfigureplot, 33
\rect, 11
\reflectabout, 39
\reflectpath, 42
\regpolygon, 12
\resumeshipping, 48
\reverse, 23

RGB (R, G, B), 21
rgb(r,g,b), 21
\rhatch, 27
\rmarks, 13
\rotate, 39
\rotatearound, 39
\rotatepath, 42

\savepic, 38

64

\scale, 40
\scalepath, 42
\sclosed, 23
\sector, 18
\sequence, 32
\setallaxismargins, 13
\setallbordermarks, 14
\setaxismargins, 13
\setaxismarks, 14
\setbordermarks, 14
\setfilename, 51, 59
\setmfpicgraphic, 51, 58
\setmfvariable, 48
\setmpvariable, 48
\setrender, 27
\settension, 16
\setxmarks, 14
\setymarks, 14
\shade, 26
\shadespace, 45
\shadewd, 44
\shift, 39
\shiftpath, 42
\sideheadlen, 44
\slantpath, 42
\smoothdata, 30
SolidCircle, 11
SolidDiamond, 11
SolidSquare, 11
SolidStar, 11
SolidTriangle, 11
Square, 11

Star, 11
\stopshipping, 48
\store, 40
\subpath, 23
\symbolspace, 45

\tcaption, 36
\tess, 50
\thatch, 27
\tile, 50
\tlabel, 34
\tlabelcircle, 38
\tlabelcolor, 20

4 APPENDICES

\tlabelellipse, 38
\tlabeljustify, 35
\tlabeloffset, 35 46
\tlabeloval, 38
\tlabelrect, 37
\tlabels, 34
\tlabelsep, 35,45
\tlpathjustify, 38
\tmarks, 13
\tmtitle, 51
\transformpath, 42
Triangle, 11
\trimpath, 50
truebbox, 5
\turn, 39
\turtle, 18

\unsmoothdata, 30

\usecenteredcaptions, 5

\usemetafont, 7
\usemetapost, 4, 7
\usemplabels, 4
\usepic, 38
\usetruebbox, 5
\using, 31

\usingnumericdefault, 32
\usingpairdefault, 32

\vgridlines, 15

\xaxis, 12
\xhatch, 27
\xmarks, 13
\xscale, 40
\xscalepath, 42
\xslant, 40
\xslantpath, 42
\xyswap, 40
\xyswappath, 42

\yaxis, 12
\ymarks, 13
\yscale, 40
\yscalepath, 42
\yslant, 40

\yslantpath, 42

\zscale, 40
\zslant, 40

65

4 APPENDICES

4.9 List of commands by type

4.9.1 HGURES

\arc

\axis

\btwnfcn
\chartbar
\circle
\closedcspline
\closedmfbezier
\closedgbeziers
\closedgspline
\cspline
\curve

\cyclic
\datafile
\ellipse
\fcncurve
\function
\graphbar
\histobar
\lines
\mfbezier
\mfobj
\parafcn
\piewedge
\plrfcn
\plrregion
\polygon
\polyline
\gbeziers
\gspline

\rect
\regpolygon
\sector
\tlabelcircle
\tlabelellipse
\tlabeloval
\tlabelrect
\turtle

4.9.2 HGURE MODIFIERS

\arrow
\bclosed
\cbclosed

\connect, \endconnect
\cutoffafter
\cutoffbefore
\lclosed
\makesector
\partpath
\gbclosed
\reflectpath
\reverse
\rotatepath
\scalepath
\sclosed
\shiftpath
\slantpath
\subpath
\transformpath
\trimpath
\xscalepath
\xslantpath
\xyswappath
\yscalepath
\yslantpath

4.9.3 HGURE RENDERERS

\dashed
\dotted
\draw
\gclear
\gclip
\gendashed
\gfill
\hatch
\lhatch
\plot
\plotdata (sort of)
\plotnodes
\polkadot
\rhatch
\shade
\tess
\thatch
\xhatch

66

4 APPENDICES

4.9.4 LENGTHS

\axisheadlen
\dashlen
\dotsize
\dotspace
\hashlen
\hatchspace
\headlen
\mfpiccaptionskip
\mfpicheight
\mfpicunit
\mfpicwidth
\pointsize
\polkadotspace
\shadespace
\sideheadlen
\symbolspace

4.9.5 (OOORDINATE TRANSFORMATION

\applyT
\boost
\coords, \endcoords
\mirror
\reflectabout
\rotate
\rotatearound
\scale

\shift

\turn

\xscale
\xslant
\xyswap
\yscale
\yslant
\zscale
\zslant

4.9.6 AXES, GRIDS, AND MARKS

\axes
\axis
\axismarks
\bmarks
\doaxes
\grid
\gridarcs

\gridlines
\gridpoints
\gridrays
\hgridlines
\lattice
\lmarks
\plotsymbol
\plrgrid
\plrgridpoints
\plrpatch
\point
\rmarks
\tmarks
\vgridlines
\xaxis
\xmarks
\yaxis
\ymarks

4.9.7 SETTING OPTIONS

\clearsymbols
\clipmfpic
\mfpicdebugfalse
\mfpicdebugtrue
\mfpicdraft
\mfpicfinal
\mfpicnowrite
\nocenteredcaptions
\noclearsymbols
\noclipmfpic
\nomplabels
\nooverlaylabels
\noship
\notruebbox
\overlaylabels
\resumeshipping
\stopshipping
\usecenteredcaptions
\usemetafont
\usemetapost
\usemplabels
\usetruebbox

4.9.8 HANGING VALUES

\axismargin

67

4 APPENDICES

\darkershade
\dashlineset
\dashpattern
\dotlineset
\drawpen
\hatchwd
\headshape
\lightershade
\mfpicnumber
\mfplinestyle
\mfplinetype
\pen

\penwd
\polkadotwd
\setallaxismargins
\setallbordermarks
\setaxismargins
\setaxismarks
\setbordermarks
\setmfvariable
\setmpvariable
\settension
\setxmarks
\setymarks
\shadewd

4.9.9 HANGING COLORS

\backgroundcolor
\drawcolor
\fillcolor
\hatchcolor
\headcolor
\mfpdefinecolor
\pointcolor
\tlabelcolor

4.9.10 [EFINING ARRAYS

\barchart

\bargraph

\histogram
\numericarray
\pairarray

\patharr, \endpatharr
\piechart

68

4.9.11 GANGING BEHAVIOR

\clearsymbols
\coloredlines
\dashedlines
\datapointsonly
\defaultplot
\everytlabel
\makepercentcomment
\makepercentother
\mfpdatacomment
\mfpdataperline
\mfpverbtex
\noclearsymbols
\pointedlines
\pointfillfalse
\pointfilltrue
\reconfigureplot
\setrender
\smoothdata
\tlabeljustify
\tlabeloffset
\tlabelsep
\tlpathjustify
\unsmoothdata
\using
\usingnumericdefault
\usingpairdefault

4,9.12 HLES AND ENVIRONMENTS

\closegraphsfile
\mfpframe, \endmfpframe
\mfpic, \endmfpic
\opengraphsfile

4.9.13 TEXT
\axislabels
\plottext
\tcaption
\tlabels
\tlabel

4.9.14 Msc

\fdef
\getmfpicoffset
\ifmfpmpost

4 APPENDICES

\mfcmd
\mflist
\mfpframed
\mfpicversion
\mfpverbtex
\mfsrc
\mftitle
\newfdim
\newsavepic
\plr
\pointdef

\preparemfpicgraphic

\savepic

\setmfpicgraphic

\setfilename
\sequence
\store

\tile, \endtile
\tmtitle
\usepic

69

	Introduction
	Why?
	Who?
	What?
	How?

	Options.
	metapost, usemetapost
	mplabels, usemplabels ,
omplabels
	overlaylabels, overlaylabels ,
ooverlaylabels
	truebbox, usetruebbox ,
otruebbox
	clip, clipmfpic ,
oclipmfpic
	centeredcaptions, usecenteredcaptions ,
ocenteredcaptions
	debug, mfpicdebugtrue , mfpicdebugfalse
	clearsymbols, clearsymbols ,
oclearsymbols
	draft, final, nowrite, mfpicdraft , mfpicfinal , mfpicnowrite
	Option Scoping Rules

	The Macros.
	Files and Environments.
	Figures.
	Metafont Pairs.
	Points, Lines, and Rectangles.
	A Word on List Arguments
	Axes, Axis Marks, and Grids.
	Circles and Ellipses.
	Curves.
	Circular Arcs.
	Other Figures.
	Bar Charts and Pie Charts.
	Polar Coordinates to Rectangular.

	Colors
	Setting the Default Colors.
	Metapost Colors.
	Color Models.
	Defining a Color Name.
	Color in Metafont

	Shape-Modifier Macros.
	Closure of Paths.
	Reversal, Connection and Subpaths.
	Arrows.

	Rendering macros
	Drawing.
	Shading, Filling, Erasing, Clipping, Hatching.
	Changing the Default Rendering.
	Examples.

	Functions and Plotting.
	Defining Functions
	Plotting Functions
	Plotting external data files

	Labels and Captions.
	Setting Text.
	Curves surrounding text

	Saving and Reusing an mfpic Picture.
	Picture frames.
	Affine Transforms.
	Affine Transforms of the Metafont Coordinate System.
	Transformation of Paths.

	Parameters.
	For Advanced Users.
	Power Users.
	Hackers.

	Appendices
	Acknowledgements.
	Changes History.
	Summary of Options
	Plotting styles for plotdata
	Special considerations when using Metafont
	Special considerations when using Metapost
	Required support
	Metapost is not Metafont
	Graphic inclusion

	Mfpic and the rest of the world
	The literature
	Other programs

	Index of commands, options and parameters by page
	List of commands by type
	Figures
	Figure modifiers
	Figure renderers
	Lengths
	Coordinate transformation
	Axes, grids, and marks
	Setting options
	Changing values
	Changing colors
	Defining arrays
	Changing behavior
	Files and environments
	Text
	Misc

