
pst-slpe package

version 1.1

Martin Giese∗

2005/10/05

1 Introduction

As of the 97 release, PSTricks contains the pst-grad package, which provides a
gradient fill style for arbitrary shapes. Although it often produces nice results, it
has a number of deficiencies:

1. It is not possible to go from a colour A to B to C, etc. The most evident
application of such a multi-colour gradient are of course rainbow effects.
But they can also be useful in informative contexts, eg to identify modes of
operation in a scale of values (normal/danger/overload).

2. Colours are interpolated linearly in the RGB space. This is often OK, but
when you want to go from red (1, 0, 0) to green (0, 1, 0), it looks much better
to get there via yellow (1, 1, 0) than via brown (0.5, 0.5, 0). The point is, that
to get from one saturated colour to another, the colours on the way should
also be saturated to produce an optically pleasing result.

3. pst-grad is limited to linear gradients, ie there is a (possibly rotated) rec-
tilinear coordinate system, such that the colour at every point depends only
on the x coordinate of the point. In particular, there is no way to get circular
patterns.

pst-slpe solves all of the mentioned problems in one package.
Problems 1. is addressed by permitting the user to specify an arbitrary number

of colours, along with the points at which these are to be reached. A special form
of each of the fill styles is provided, which just needs two colours as parameters,
and goes from one to the other. This makes the fill styles easier to use in that
simple case.

Problem 2. is solved by interpolating in the hue-saturation-value colour space.
Conversion between RGB and HSV is done behind the scenes. The user specifies
colours in RGB.

∗email:giese@ira.uka.de

1

Finally, pst-slpe provides concentric and radial gradients. What these mean
is best explained with a polar coordinate system: In a concentric pattern, the
colour of a point depends on the radius coordinate, while in a radial pattern, it
depends on the angle coordinate.

As a special bonus, the PostScript part of pst-slpe is somewhat optimized
for speed. In ghostscript, rendering is about 30% faster than with pst-grad.

For most of these problems, solutions have been posted in the appropriate
TEX newsgroup over the years. pst-slpe has however been developed indepen-
dently from these proposals. It is based on the original PSTricks 0.93 gradient

code, most of which has been changed or replaced. The author is indebted to De-
nis Girou, whose encouragement triggered the process of making this a shipable
package instead of a private experiment.

The new fill styles and the graphics parameters provided to use them are
described in section 2 of this document. Section 3, if present, documents the
implementation consisting of a generic TEX file and a PostScript header for the
dvi-to-PostScript converter. You can get section 3 by calling LATEX as follows on
most relevant systems:

latex ’\AtBeginDocument{\AlsoImplementation}\input{pst-slpe.dtx}’

2 Package Usage

To use pst-slpe, you have to say

\usepackage{pst-slpe}

in the document prologue for LATEX, and

\input pst-slpe.tex

in “plain” TEX.
pst-slpe provides six new fill styles called slope, slopes, ccslope, ccslopes,slope

slopes

ccslope

ccslopes

radslope

radslopes

radslope and radslopes. These obviously come in pairs: The . . .slope-styles
are simplified versions of the general . . .slopes-styles.1 The cc. . . styles paint
concentric patterns, and the rad. . . styles do radial ones. Here is a little overview
of what they look like:

1By the way, I use slope as a synonym for gradient. It sounds less pretentious and avoids

name clashes.

2

slope slopes

ccslope ccslopes

radslope radslopes

These examples were produced by saying simply

\psframebox[fillstyle=slope]{...}

etc. without setting any further graphics parameters. The package provides a
number of parameters that can be used to control the way these patterns are
painted.

The graphics parameters slopebegin and slopeend set the colours betweenslopebegin

slopeend which the three . . .slope styles should interpolate. Eg,

\psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{...}

produces:

slopes!

The same settings of slopebegin and slopeend for the ccslope and radslope

fillstyles produce

slopes! resp. slopes!

The default settings go from a greenish yellow to pure blue.

If you want to interpolate between more than two colours, you have to use theslopecolors

. . .slopes styles, which are controlled by the slopecolors parameter instead of
slopebegin and slopeend. The idea is to specify the colour to use at certain
points ‘on the way’. To fill a shape with slopes, imagine a linear scale from its
left edge to its right edge. The left edge must lie at coordinate 0. Pick an arbitrary
value for the right edge, say 23. Now you want to get light yellow at the left edge,
a pastel green at 17/23 of the way and dark cyan at the right edge, like this:

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

The RGB values for the three colours are (1, 1, 0.9), (0.5, 1, 0.5) and (0, 0.5, 0.5).
The value for the slopecolors parameter is a list of ‘colour infos’ followed by the
number of ‘colour infos’. Each ‘colour info’ consists of the coordinate value where
a colour is to be specified, followed by the RGB values of that colour. All these
values are separated by white space. The correct setting for the example is thus:

slopecolors=0 1 1 .9 17 .5 1 .5 23 0 .5 .5 3

For ccslopes, specify the colours from the center outward. For radslopes (with
no rotation specified), 0 represents the ray going ‘eastward’. Specify the colours
anti-clockwise. If you want a smooth gradient at the beginning and starting ray
of radslopes, you should pick the first and last colours identical.

Please note, that the slopecolors parameter is not subject to any parsing on
the TEX side. If you forget a number or specify the wrong number of segments,
the PostScript interpreter will probably crash.

The default value for slopecolors specifies a rainbow.

The parameter slopesteps controls the number of distinct colour steps ren-slopesteps

dered. Higher values for this parameter result in better quality but proportionally
slower rendering. Eg, setting slopesteps to 5 with the slope fill style results in

slopes!

The default value is 100, which suffices for most purposes. Remember that
the number of distinct colours reproducible by a given device is limited. Pushing
slopesteps to high will result only in loss of performance at no gain in quality.

The slope(s) and radslope(s) patterns may be rotated. As usual, the anglesslopeangle

are given anti-clockwise. Eg, an angle of 30 degrees gives

slopes! and slopes!

with the slope and radslope fillstyles.

For the cc. . . and rad. . . styles, it is possible to set the center of the pattern.slopecenter

The slopecenter parameter is set to the coordinates of that center relative to the
bounding box of the current path. The following effect:

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2
0.4
0.6
0.8
1.0

was achieved with

fillstyle=radslope,slopecenter=0.2 0.4

The default value for slopecenter is 0.5 0.5, which is the center for symmetrical
shapes. Note that this parameter is not parsed by TEX, so setting it to anything
else than two numbers between 0 and 1 might crash the PostScript interpreter.

Normally, the cc. . . and rad. . . styles distribute the given colours so that thesloperadius

center is painted in the first colour given, and the points of the shape furthest from
the center are painted in the last colour. In other words the maximum radius to
which the slopecolors parameter refers is the maximum distance from the center
(defined by slopecenter) to any point on the periphery of the shape. This radius
can be explicitly set with sloperadius. Eg, setting sloperadius=0.5cm gives

slopes!

Any point further from the center than the given sloperadius is painted with the
last colour in slopeclours, resp. slopeend.

The default value for sloperadius is 0, which invokes the default behaviour
of automatically calculating the radius.

3 The Code

3.1 Producing the documentation

A short driver is provided that can be extracted if necessary by the docstrip

program provided with LATEX2ε.

1 〈∗driver〉
2 \NeedsTeXFormat{LaTeX2e}

3 \documentclass{ltxdoc}

4 \usepackage{pst-slpe}

5 \usepackage{pst-plot}

6 \DisableCrossrefs

7 \MakeShortVerb{\|}

8 \newcommand\Lopt[1]{\textsf{#1}}

9 \newcommand\file[1]{\texttt{#1}}

10 \AtEndDocument{

5

11 \PrintChanges

12 %\PrintIndex

13 }

14 %\OnlyDescription

15 \begin{document}

16 \DocInput{pst-slpe.dtx}

17 \end{document}

18 〈/driver〉

3.2 The pst-slpe.sty file

The pst-slpe.sty file is very simple. It just loads the generic pst-slpe.tex file.

19 〈∗stylefile〉
20 \RequirePackage{pstricks}

21 \ProvidesPackage{pst-slpe}[2005/03/05 package wrapper for ‘pst-slpe.tex’]

22 \input{pst-slpe.tex}

23 \ProvidesFile{pst-slpe.tex}

24 [\pstslpefiledate\space v\pstslpefileversion\space ‘pst-slpe’ (Martin Giese)]

25 〈/stylefile〉

3.3 The pst-slpe.tex file

pst-slpe.tex contains the TEX-side of things. We begin by identifying ourselves
and setting things up, the same as in other PSTricks packages.

26 〈∗texfile〉
27 \message{ v\pstslpefileversion, \pstslpefiledate}

28 \csname PstSlopeLoaded\endcsname

29 \let\PstSlopeLoaded\endinput

30 \ifx\PSTricksLoaded\endinput\else

31 \def\next{\input pstricks.tex }\expandafter\next

32 \fi

33 \ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % --> hv

34 \edef\TheAtCode{\the\catcode‘\@}

35 \catcode‘\@=11

36 \pst@addfams{pst-slpe} % --> hv

37 \pstheader{pst-slpe.pro}

slopebegin

slopeend

slopesteps

slopeangle

3.3.1 New graphics parameters

We now define the various new parameters needed by the slope fill styles and
install default values. First come the colours, ie graphics parameters slopebegin
and slopeend, followed by the number of steps, slopesteps, and the rotation
angle, slopeangle.

38 \newrgbcolor{slopebegin}{0.9 1 0}

39 \define@key[psset]{pst-slpe}{slopebegin}{\pst@getcolor{#1}\psslopebegin}% --> hv

40 \psset[pst-slpe]{slopebegin=slopebegin} % --> hv

41

6

42 \newrgbcolor{slopeend}{0 0 1}

43 \define@key[psset]{pst-slpe}{slopeend}{\pst@getcolor{#1}\psslopeend}% --> hv

44 \psset[pst-slpe]{slopeend=slopeend}% --> hv

45

46 \define@key[psset]{pst-slpe}{slopesteps}{\pst@getint{#1}\psslopesteps}% --> hv

47 \psset[pst-slpe]{slopesteps=100}% --> hv

48

49 \define@key[psset]{pst-slpe}{slopeangle}{\pst@getangle{#1}\psx@slopeangle}% --> hv

50 \psset[pst-slpe]{slopeangle=0}% --> hv

slopecolors The value for slopecolors is not parsed. It is directly copied to the PostScript
output. This is certainly not the way it should be, but it’s simple. The default
value is a rainbow from red to magenta.

51 \define@key[psset]{pst-slpe}{slopecolors}{\def\psx@slopecolors{#1}}% --> hv

52 \psset[pst-slpe]{slopecolors={% --> hv

53 0.0 1 0 0

54 0.4 0 1 0

55 0.8 0 0 1

56 1.0 1 0 1

57 4}}

slopecenter The argument to slopecenter isn’t parsed either. But there’s probably not much
that can go wrong with two decimal numbers.

58 \define@key[psset]{pst-slpe}{slopecenter}{\def\psx@slopecenter{#1}}% --> hv

59 \psset[pst-slpe]{slopecenter={0.5 0.5}}% --> hv

sloperadius The default value for sloperadius is 0, which makes the PostScript procedure
PatchRadius determine a value for the radius.

60 \define@key[psset]{pst-slpe}{sloperadius}{\pst@getlength{#1}\psx@sloperadius}% --> hv

61 \psset[pst-slpe]{sloperadius=0}% --> hv

3.3.2 Fill style macros

Now come the fill style definitions that use these parameters. There is one macro
for each fill style named \psfs@style. PSTricks calls this macro whenever the
current path needs to be filled in that style. The current path should not be
clobbered by the PostScript code output by the macro.

slopes For the slopes fill style we produce PostScript code that first puts the slopecolors
parameter onto the stack. Note that the number of colours listed, which comes
last in slopecolors is now on the top of the stack. Next come the slopesteps

and slopeangle parameters. We switch to the dictionary established by the
pst-slop.pro Prolog and call SlopesFill, which does the artwork and takes
care to leave the path alone.

62 \def\psfs@slopes{%

63 \addto@pscode{

64 \psx@slopecolors\space

65 \psslopesteps

7

66 \psx@slopeangle

67 tx@PstSlopeDict begin SlopesFill end}}

slope The slope style uses parameters slopebegin and slopeend instead of slopecolors.
So the produced PostScript uses these parameters to build a stack in slopecolors

format. The \pst@usecolor generates PostScript to set the current colour. We
can query the RGB values with currentrgbcolor. A gsave/grestore pair is
used to avoid changing the PostScript graphics state. Once the stack is set up,
SlopesFill is called as before.

68 \def\psfs@slope{%

69 \addto@pscode{%

70 gsave

71 0 \pst@usecolor\psslopebegin currentrgbcolor

72 1 \pst@usecolor\psslopeend currentrgbcolor

73 2

74 grestore

75 \psslopesteps \psx@slopeangle tx@PstSlopeDict begin SlopesFill end}}

ccslopes

ccslope

radslopes

The code for the other fill styles is about the same, except for a few parameters
more or less and different PostScript procedures called to do the work.

76 \def\psfs@ccslopes{%

77 \addto@pscode{%

78 \psx@slopecolors\space

79 \psslopesteps \psx@slopecenter\space \psx@sloperadius\space

80 tx@PstSlopeDict begin CcSlopesFill end}}

81 \def\psfs@ccslope{%

82 \addto@pscode{%

83 gsave 0 \pst@usecolor\psslopebegin currentrgbcolor

84 1 \pst@usecolor\psslopeend currentrgbcolor

85 2 grestore

86 \psslopesteps \psx@slopecenter\space \psx@sloperadius\space

87 tx@PstSlopeDict begin CcSlopesFill end}}

88 \def\psfs@radslopes{%

89 \addto@pscode{%

90 \psx@slopecolors\space

91 \psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle

92 tx@PstSlopeDict begin RadSlopesFill end}}

radslope radslope is slightly different: Just going from one colour to another in 360 degrees
is usually not what is wanted. radslope just does something pretty with the
colours provided.

93 \def\psfs@radslope{%

94 \addto@pscode{%

95 gsave 0 \pst@usecolor\psslopebegin currentrgbcolor

96 1 \pst@usecolor\psslopeend currentrgbcolor

97 2 \pst@usecolor\psslopebegin currentrgbcolor

98 3 \pst@usecolor\psslopeend currentrgbcolor

99 4 \pst@usecolor\psslopebegin currentrgbcolor

100 5 grestore

8

101 \psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle

102 tx@PstSlopeDict begin RadSlopesFill end}}

103

104 \catcode‘\@=\TheAtCode\relax

105 〈/texfile〉

3.4 The pst-slpe.pro file

The file pst-slpe.pro contains PostScript definitions to be included in the
PostScript output by the dvi-to-PostScript converter, eg dvips. First thing is
to define a dictionary to keep definitions local.

106 〈∗prolog〉
107 /tx@PstSlopeDict 60 dict def tx@PstSlopeDict begin

max x1 x2 max max
max is a utility function that calculates the maximum of two numbers.

108 /max {2 copy lt {exch} if pop} bind def

Iterate p1 r1 g1 b1 . . . pn rn gn bn n Iterate −

This is the actual iteration, which goes through the colour information and plots
the segments. It uses the value of NumSteps which is set by the wrapper proce-
dures. DrawStep is called all of NumSteps times, so it had better be fast.

First, the number of colour infos is read from the top of the stack and decre-
mented, to get the number of segments.

109 /Iterate {

110 1 sub /NumSegs ED

Now we get the first colour. This is really the last colour given in the slopecolors
argument. We have to work down the stack, so we shall be careful to plot the
segments in reverse order. The dup mul stuff squares the RGB components. This
does a kind-of-gamma correction, without which primary colours tend to take
up too much space in the slope. This is nothing deep, it just looks better in
my opinion. The following lines convert RGB to HSB and store the resulting
components, as well as the Pt coordinate in four variables.

111 dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll

112 setrgbcolor currenthsbcolor

113 /ThisB ED

114 /ThisS ED

115 /ThisH ED

116 /ThisPt ED

To avoid gaps, we fill the whole path in that first colour.

117 gsave fill grestore

The body of the following outer loop is executed once for each segment. It expects
a current colour and Pt coordinate in the This* variables and pops the next colour
and point from the stack. It then draws the single steps of that segment.

118 NumSegs {

119 dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll

9

120 setrgbcolor currenthsbcolor

121 /NextB ED

122 /NextS ED

123 /NextH ED

124 /NextPt ED

NumSteps always contains the remaining number of steps available. These are
evenly distributed between Pt coordinates ThisPt to 0, so for the current segment
we may use NumSteps ∗ (ThisPt− NextPt)/ThisPt steps.

125 ThisPt NextPt sub ThisPt div NumSteps mul cvi /SegSteps exch def

126 /NumSteps NumSteps SegSteps sub def

SegSteps may be zero. In that case there is nothing to do for this segment.

127 SegSteps 0 eq not {

If one of the colours is gray, ie 0 saturation, its hue is useless. In this case, instead
of starting of with a random hue, we take the hue of the other endpoint. (If both
have saturation 0, we have a pure gray scale and no harm is done)

128 ThisS 0 eq {/ThisH NextH def} if

129 NextS 0 eq {/NextH ThisH def} if

To interpolate between two colours of different hue, we want to go the shorter way
around the colour circle. The following code assures that this happens if we go
linearly from This* to Next* by conditionally adding 1.0 to one of the hue values.
The new hue values can lie between 0.0 and 2.0, so we will later have to subtract
1.0 from values greater than one.

130 ThisH NextH sub 0.5 gt

131 {/NextH NextH 1.0 add def}

132 { NextH ThisH sub 0.5 ge {/ThisH ThisH 1.0 add def} if }

133 ifelse

We define three variables to hold the current colour coordinates and calculate the
corresponding increments per step.

134 /B ThisB def

135 /S ThisS def

136 /H ThisH def

137 /BInc NextB ThisB sub SegSteps div def

138 /SInc NextS ThisS sub SegSteps div def

139 /HInc NextH ThisH sub SegSteps div def

The body of the following inner loop sets the current colour, according to H, S and
B and undoes the kind-of-gamma correction by converting to RGB colour. It then
calls DrawStep, which draws one step and maybe updates the current point or user
space, or variables of its own. Finally, it increments the three colour variables.

140 SegSteps {

141 H dup 1. gt {1. sub} if S B sethsbcolor

142 currentrgbcolor

143 sqrt 3 1 roll sqrt 3 1 roll sqrt 3 1 roll

144 setrgbcolor

145 DrawStep

146 /H H HInc add def

10

147 /S S SInc add def

148 /B B BInc add def

149 } bind repeat

The outer loop ends by moving on to the Next colour and point.

150 /ThisH NextH def

151 /ThisS NextS def

152 /ThisB NextB def

153 /ThisPt NextPt def

154 } if

155 } bind repeat

156 } def

PatchRadius − PatchRadius −

This macro inspects the value of the variable Radius. If it is 0, it is set to the
maximum distance of any point in the current path from the origin of user space.
This has the effect that the current path will be totally filled. To find the maximum
distance, we flatten the path and call UpdRR for each endpoint of the generated
polygon. The current maximum square distance is gathered in RR.

157 /PatchRadius {

158 Radius 0 eq {

159 /UpdRR { dup mul exch dup mul add RR max /RR ED } bind def

160 gsave

161 flattenpath

162 /RR 0 def

163 {UpdRR} {UpdRR} {} {} pathforall

164 grestore

165 /Radius RR sqrt def

166 } if

167 } def

SlopesFill p1 r1 g1 b1 . . . pn rn gn bn n s α SlopesFill −

Fill the current path with a slope described by p1, . . . , bn, n. Use a total of s single
steps. Rotate the slope by α degrees, 0 meaning r1, g1, b1 left to rn, gn, bn right.

After saving the current path, we do the rotation and get the number of steps,
which is later needed by Iterate. Remember, that iterate calls DrawStep in the
reverse order, ie from right to left. We work around this by adding 180 degrees to
the rotation. Filling works by clipping to the path and painting an appropriate
sequence of rectangles. DrawStep is set up for Iterate to draw a rectangle of
width XInc high enough to cover the whole clippath (we use the Level 2 operator
rectfill for speed) and translate the user system by XInc.

168 /SlopesFill {

169 gsave

170 180 add rotate

171 /NumSteps ED

172 clip

173 pathbbox

174 /h ED /w ED

175 2 copy translate

11

176 h sub neg /h ED

177 w sub neg /w ED

178 /XInc w NumSteps div def

179 /DrawStep {

180 0 0 XInc h rectfill

181 XInc 0 translate

182 } bind def

183 Iterate

184 grestore

185 } def

CcSlopesFill p1 r1 g1 b1 . . . pn rn gn bn n cx cy r CcSlopesFill −

Fills the current path with a concentric pattern, ie in a polar coordinate system,
the colour depends on the radius and not on the angle. Centered around a point
with coordinates (cx, cy) relative to the bounding box of the path, ie for a rectangle,
(0, 0) will center the pattern around the lower left corner of the rectangle, (0.5, 0.5)
around its center. The largest circle has a radius of r. If r = 0, r is taken to be
the maximum distance of any point on the current path from the center defined
by (cx, cy). The colours are given from the center outwards, ie (r1, g1, b1) describe
the colour at the center.

The code is similar to that of SlopesFill. The main differences are the call
to PatchRadius, which catches the case that r = 0 and the different definition for
DrawStep, Which now fills a circle of radius Rad and decreases that Variable. Of
course, drawing starts on the outside, so we work down the stack and circles drawn
later partially cover those drawn first. Painting non-overlapping, ‘donut-shapes’
would be slower.

186 /CcSlopesFill {

187 gsave

188 /Radius ED

189 /CenterY ED

190 /CenterX ED

191 /NumSteps ED

192 clip

193 pathbbox

194 /h ED /w ED

195 2 copy translate

196 h sub neg /h ED

197 w sub neg /w ED

198 w CenterX mul h CenterY mul translate

199 PatchRadius

200 /RadPerStep Radius NumSteps div neg def

201 /Rad Radius def

202 /DrawStep {

203 0 0 Rad 0 360 arc

204 closepath fill

205 /Rad Rad RadPerStep add def

206 } bind def

207 Iterate

12

208 grestore

209 } def

RadSlopesFill p1 r1 g1 b1 . . . pn rn gn bn n cx cy r α CcSlopesFill −

This fills the current path with a radial pattern, ie in a polar coordinate system
the colour depends on the angle and not on the radius. All this is very similar to
CcSlopesFill. There is an extra parameter α, which rotates the pattern.

The only new thing in the code is the DrawStep procedure. This does not draw
a circular arc, but a triangle, which is considerably faster. One of the short sides
of the triangle is determined by Radius, the other one by dY, which is calculated
as dY := Radius× tan(AngleIncrement).

210 /RadSlopesFill {

211 gsave

212 rotate

213 /Radius ED

214 /CenterY ED

215 /CenterX ED

216 /NumSteps ED

217 clip

218 pathbbox

219 /h ED /w ED

220 2 copy translate

221 h sub neg /h ED

222 w sub neg /w ED

223 w CenterX mul h CenterY mul translate

224 PatchRadius

225 /AngleIncrement 360 NumSteps div neg def

226 /dY AngleIncrement sin AngleIncrement cos div Radius mul def

227 /DrawStep {

228 0 0 moveto

229 Radius 0 rlineto

230 0 dY rlineto

231 closepath fill

232 AngleIncrement rotate

233 } bind def

234 Iterate

235 grestore

236 } def

Last, but not least, we have to close the private dictionary.

237 end

238 〈/prolog〉

13

Change History

v1.0

General: More compatible to the
other PStricks packages. (RN) . 1

v1.1
General: using the extended pst-

xkey instead of the old pst-key
package; creating a dtx file (hv) 1

14

