The arydshln package*

Hiroshi Nakashima
(Toyohashi Univ. of Tech.)

2004,/08/31

Abstract

This file gives ITEX’s array and tabular environments the capability to draw

horizontal/vertical dash-lines.

Contents

1 Introduction 3

2 Usage 3
2.1 Loading Package 3
2.2 BasicUsage e 4
2.3 Style Parameters 4
2.4 Fine Tuning e 4
2.5 Finer Tuning e)
2.6 Performance Tuning e 6
2.7 Compatibility with Other Packages 6

3 Known Problems 8

4 Implementation 9
4.1 Problems and Solutions 9
4.2 Another Problem and Imperfect Solutions 12
4.3 Register Declaration L L o 12
4.4 Imitialization L 16
4.5 Making Preamble oo 19
4.6 Building Columns Lo 25
4.7 Multi-columns 27
48 Endof Rows e 28
4.9 Horizontal Lines oo 30
4.10 End of Environment oL Lo oo 33
4.11 Drawing Vertical Lineso oo 34
4.12 Drawing Dash-lines o 39
4.13 Shorthand Activation 41
4.14 Compatibility with colortab oo 43
4.15 Compatibility with longtable 0o, 44

*This file has version number v1.71, last revised 2004/08/31.

4.16

4.15.1 Initialization e 44

4.15.2 Ending Chunks oL o 45
4.15.3 Horizontal Lines and p-Boxes 47
4.15.4 First Chunk 49
4.15.5 Output Routine L o 50
Compatibility with colortbl 54
4.16.1 Initialization, Cell Coloring and Finalization 55
4.16.2 Horizontal Line Coloring 57
4.16.3 Vertical Line Coloring 58
4.16.4 Compatibility with longtable 60

1 Introduction

In January 1993, Weimin Zhang kindly posted a style hvdashin written by the author,
which draws horizontal /vertical dash-lines in ¥TEX’s array and tabular environments, to
the news group comp.text.tex. The style, unfortunately, has a known problem that vertical
lines are broken when an array contains tall rows.

In March of the year, Monty Hayes complained of this problem encouraging the author
to make a new version arydshin to solve the problem. The new style also has new features,
such as allowing ‘:’ to specify vertical dash-line in preamble, and \cdashline being a
counterpart of \cline.

In March 1999, Sebastian Rahtz kindly invited the style, which had been improved
following the bug report from Takahiro Kubota, to be included in TEX CTAN and also
in the online catalogue compiled by Graham Williams. This invitation gave the style new
users including Peter Ehrbar who wished to use it with array style in Standard ETEX Tools
Bundle and had trouble because these styles were incompatible with each other. Therefore,
the style became compatible with array and got additional new features.

In February 2000, Zsuzsanna Nagy reported that arydshln is not compatible with colortab
style to let the author work on the compatibility issue again.

In Feburary 2001, Craig Leech reported another compatibility problem with longtable.
Although the author promised that the problem would be attacked some day, the issue had
left long time' until three other complaints. Then the author attacked the problem hoping
it is the last compatibility issue?.

In May 2004, Klaus Dalinghaus found another incompatibility with colortbl. Although
he was satisfied by a quick hack for cell painting, the author attacked a harder problem for
line coloring to solve the problem?.

2 Usage

2.1 Loading Package

The package is usable to both BTEX 2¢ and IMTEX-2.09 users with their standard package
loading declaration. If you use INTEX 2¢, simply do the following.

\usepackage{arydshln}
If you still love KTEX-2.09, the following is what you have to do.
\documentstylel..,arydshln,...]1{(style)}

Only one caution given to users of array (v2.3m or later) and longtable (v4.10 or later)
packages, included in Standard ITEX Tools Bundle, and colortab and colortbl package is
that arydshln has to be loaded after array, longtable, colortab and/or colortbl done. That is,
the following is correct but reversing the order of \usepackage will cause some mysterious
error.

\usepackage{array} % and/or
\usepackage{longtable} % and/or
\usepackage{colortab} Y or
\usepackage{colortbl}
\usepackage{arydshln}

ITwo years and a half! Sorry Craig.
2But his hope was dashed as described below.
3Without dreaming it is the last compatibility issue.

array
tabular

\hdashline
\cdashline

\firsthdashline
\lasthdashline

\dashlinedash
\dashlinegap

\hdashline
\cdashline

2.2 Basic Usage

You can simply use array or tabular (*) environments with standard preamble, such as
{rlcl1l}, and standard commands \\, \hline, \cline and \multicolumn.

Drawing a vertical dash-line is quite simple. Use ‘:’ in the preamble as the separator
of columns separated by the dash-line, just like using ‘|’ to draw a vertical solid-line.
The preamble means not only that of the environment, but also the first argument of
\multicolumn.

It is also simple to draw a horizontal dash-line. Use \hdashline and \cdashline as
the counterparts of \hline and \cline.

For example;

\begin{tabular}{|1l::c:r|}\hline
A&B&C\\\hdashline

AAAEBBB&CCC\\\cdashline{1-2}
\multicolumn{2}{|1:}{AB}&C\\\hdashline\hdashline
\end{tabular}

will produce the following result.

A _uw B, C
AAA ' BBB 1 CCC
A" «C

If you use array, the dashed version of \firsthline and \lasthline named \first
hdashline and \lasthdashline are available.

2.3 Style Parameters

You have two style parameters to control the shape of dash-lines: \dashlinedash is for the
length of each dash segment in a dash line; \dashlinegap controls the amount of each gap
between dash segments. Both parameters have a common default value, 4 pt.

2.4 Fine Tuning

Although you can control the shape of dash-lines in an array/tabular environment as
described in §2.3, you might want to draw a dash-line of a shape different from others. To
specify the shape of a vertical dash-line explicitly, you may use;

;{{dash)/{gap)}

instead of ordinary ‘:’ and will have a dash-line with dash segments of (dash) long separated
by spaces of {gap).

As for horizontal dash-lines, explicit shape specifications may be given through optional
arguments of \hdashline and \cdashline as follows.

\hdashline [{dash)/{gap)]
\cdashline{(coll)-(col2)} [{dash)/{gap)]

For example;

\begin{tabular}{|1l::c;{2pt/2pt}r|}\hline
A&B&C\\\hdashline[1pt/1pt]
AAA&BBB&CCC\\\cdashline{1-2}[.4pt/1pt]
\multicolumn{2}{|1;{2pt/2pt}}{AB}&C\\\hdashline\hdashline
\end{tabular}

\ADLnullwide
\ADLsomewide

\ADLdrawingmode

will produce the following result.

A w B o C
AAA "BBB | CCC
;;; AB_____i_.C]

The vertical solid and dashed lines are drawn as if their width is zero, as standard
ETEX’s array and tabular do, if you don’t use array package. Otherwise, they have real
width of \arrayrulewidth as the authors of array prefers. However, you may explicitly
tell arydshin to follow your own preference by \ADLnullwide if you love BXTEX standard, or
\ADLsomewide if you second the preference of array authors.

2.5 Finer Tuning

To draw dash-lines, we use a powerful primitive of TEX called \xleaders. It replicates a
segment that consist of a dash and gap so that a dash-line has as many segments as pos-
sible and distributes remainder space to make the spaces between adjacent dash segments
(almost) equal to each other. Therefore, you will have dash-lines with consistent steps of
gaps and spaces as the left and upper lines in Figure 1(1) are.

However, because of a bug (or buggy feature) of \xleaders, there is a small possibil-
ity that a dash segment near the right/bottom end drops as right and lower lines in (1)
of the figure shows. To cope with this problem, you may change the drawing mode by
\ADLdrawingmode{(m)} as follows.

em=1
As shown in Figure 1(1), most beautiful in almost all cases as the left /upper lines, but
has a small possibility to produce an ugly result as right/lower lines. This is default.

e m=2
As shown in (2) of the figure, beautiful if dash-lines are not so sparse as right /lower
lines, but dash segments near the both ends may be a little bit too long as left /upper
lines.

em=3
As shown in (3) of the figure, beautiful if dash-lines are not so sparse as right/lower
lines, but gaps near the both ends may be considerably too large as left/upper lines.

It is recommended to use default mode 1 unless you have an ugly result in the final version
of your manuscript, because the correctness of mode 1 is very sensitive to the length of
dash-lines.

ALALA ALALA ATALA
BB B BB B B!B !B
cicic cicic cicic

Figure 1: Drawing mode controlled by \ADLdrawingmode

\ADLinactivate

\ADLactivate

Array
Tabular

\ADLnoshorthanded

2.6 Performance Tuning

Since drawing dash-lines is a hard job, you have to be patient with the fact that the
performance of typesetting array/tabular with dash-lines is poorer than that of ordinary
ones. In fact, according to author’s small performance evaluation with a tabular having
nine vertical and ten horizontal dash-lines, typesetting the tabular is approximately ten
times as slow as its ordinary counterpart with solid lines.

However, this is not a really bad news, unfortunately. The real one is that loading
arydshln makes typesetting array/tabular slower even if they only have solid lines which
the package treats as special ones of dash-lines. The evaluation result shows the degradation
factor is about nine. Therefore, if your document has many array/tabular with solid lines,
KTEX will run slowly even with quite few (or no) array/tabular with dash-lines,

To cope with this problem, you may inactivate dash-line functions by the command
\ADLinactivate that replaces dash-lines with solid lines drawn by a faster (i.e. ordinary)
mechanism. Although the inactivation does not completely solve the performance problem,
the degradation factor will become much smaller and acceptable, approximately 1.5 in
the author’s evaluation. For example, the draft version of your document will have the
command in its preamble, which you will remove from your final version.

Alternatively, you may do \ADLinactivate in the preamble, switch on by \ADLactivate
before you really need dash-lines, and switch off again afterword. A wiser way could be
surrounding array/tabular by \begin{ADLactivate} and \end{ADLactivate}.

If you feel it tiresome to type the long command/environment name for the activation,
you may use Array and Tabular (*) environment in which dash-line functions are always
active. Note that, however, since these environment names are too natural to keep them
from being used by authors of other packages or yourself, name conflict could occur. If
Array and/or Tabular have already been defined when arydshin is loaded, you will get a
warning to show you have to define new environments, say dlarray and dltabular, as
follows.

\newenvironment{dlarray}{\ADLactivate\begin{array}}’
{\end{array}}
\newenvironment{dltabular}{\ADLactivate\begin{tabular}}’%
{\end{tabular}?}
\newenvironment{dltabular*}{\ADLactivate\begin{tabular*}}y
{\end{tabular*}}

On the other hand, if they are defined after arydshin is loaded, their definitions are
silently replaced or BTEX complains of multiple definitions. The error in the latter case
will be avoided by putting \ADLnoshorthanded just after \usepackage{arydshln}.

2.7 Compatibility with Other Packages

Users of array package may use all of newly introduced preamble characters, such as >’, ‘<’;
‘m’, ‘b’, and all the commands such as \extrarowheight, \firsthilne and \lasthline.
The preamble characters given by arydshin may be included in the second argument of
\newcolumntype.

Also users of colortab package may use \LCC/\ECC construct to color columns. A hori-
zontal solid/dash line may be colored by, e.g. \NAC\hdashline\ENAC. The pair of \AC and
\EAC may be used to color everything between them but, unfortunately, vertical lines are
not. There are no ways to color vertical lines in a table having dash lines. You may color
vertical lines of a ordinary table inactivating dash line functions by \ADLinactivate.

\ADLnullwidehline
\ADLsomewidehline

\dashgapcolor
\nodashgapcolor

longtable
Longtable

Another (and more convenient) table coloring tool colortbl may be also used simply by
loading it before arydshin. Not only the painting commands \rowcolor, \columncolor and
\cellcolor work well, but both solid and dash lines are also colored by the command
\arrayrulecolor of colortbl*. One caution is that \arrayrulecolor defines the color of
the dash-part of dash lines and thus gap-part has no color (i.e. color of the paper on which
the line drawn). Therefore, if you have a tabular like;

\begin{tabular}{|>{\columncolor{red}}1:>{\colomncolor{green}}r|}
\end{tabular}

you will find the vertical dash line is a sequence of black (or the color of \arrayrulecolor)
and white segments. This problem is partly solved by declaring \ADLnullwide® to conjunct
the red and blue columns and to draw the dash line on their border.

Unfortunately, however, \ADLnullwide does not affect the real width of horizontal
(dash) lines and thus you will still see white gaps in \hdashline and \cdashline. A
solution is to put \ADLnullwidehline before you start a array/tabular®. With this
command, a horizontal (dash) line is drawn adjusting its bottom edge to that of the row
above. The command \ADLsomewidehline turns the switch to default and the top edge of
a horizontal (dash) line will be adjusted to the bottom edge of the row above.

Another method to avoid white gaps is to give a color to gaps by \dashgapcolor with
arguments same as \color. For example;

\arrayrulecolor{green}\dashgapcolor[rgb]l{1,1,0}

makes colorful dash lines with green dashes and yellow gaps. The command can be placed
outside of array/tabular for dash lines in the environment, in the argument of pream-
ble character > for vertical dash lines following them, or at the beginning of a row for
horizontal dash lines following the command. The commmand \nodashgapcolor (no argu-
ments) nullifies the effect of \dashgapcolor. Note that \nodashgapcolor is different from
\dashgapcolor{white} because the former makes gaps transparent while the later whiten
them.

Usage of longtable with arydshln is quite simple. Just loading arydshln after longtable is
enough to make the longtable environment able to draw dash-lines. A shorthand activation
of dash-line functions is also available by Longtable environment. One caution to longtable
users is that the temporary results before the convergence of the column widths may be
different from those without arydshin. For example, the following is the first pass result of
the example shown in Table 3 of the longtable manual.

11213

wide multicolumn spanning 1-3 ‘

multicolumn 1-2 ‘ 3 ‘
wide 1 | 2 | 3 \

Since LTchunksize is one in the example, columns of each row has their own widths and
thus has vertical lines drawn at the edges of the columns. On the other hand, you will have
the following as the first pass result with arydshin.

4The colortbl manual says \arrayrulecolor and \doublerulesepcolor may be in >{...} in a preamble
but they cause an error with the original implementation. This bug is fixed in arydshln and they are now
usable to specify the color of the vertical (dash) lines whose specifications occur after the commands.

5Since colortbl automatically loads array, the default is \ADLsomewide

6This command also makes \cline and \cdashline visisble even if the row below is painted.

1 2 B |
wide multicolumn spanning 1-3
multicolumn 1-2 3

wide 1 | 2 3

As you see, the vertical lines are drawn at the column edges of the last row” because arydshin
draws them when it see the last row. Anyway, you may ignore temporary results and will
have a compatible result when the column widths are converged like the following.

] 2] 3
wide multicolumn spanning 1-3
multicolumn 1-2 3
wide 1 | 2 3

3 Known Problems

There are following known problems.

1.

The new preamble specifiers ‘:” and ¢; {{dash)/(gap)}’ cannot be followed or preceded
by ‘@{(text)}’, or you will have an ugly result. More specifically, a specifier to draw
a dash-line at the left edge of a column cannot be preceded by ‘@{(text)}’, while that
to draw at the right edge cannot be followed by ‘@{(text)} .

If you use array package, the restriction of ‘@ shown above is also applied to ‘!’.

In order to make it sure that a dash-line always touches its both end, i.e. a dash-line
always begins and ends with a dash segment, the amount of a gap will slightly vary
depending on the dash-line length.

As described in §2.5, dash-lines drawn in the default mode 1 may lack a dash segment
near its right /bottom end.

If a dash-line is too short, you will have an ugly result without overfull message. More
specifically, in mode 1 or 3, a line will look to protrude beyond its column/row borders
if it is shorter than a half of \dashlinedash. In mode 2, the minimum length to avoid
the protrusion is 1.5 x \dashlinedash + \dashlinegap.

As described in §2.6, the processing speed for array and tabular environment will
become slower even if dash-lines are not included.

As described in §2.7, \AC and \EAC pair of colortab such as \AC&\EAC cannot color
the vertical line at & Use \ADLinactivate if you want to have a ordinary table with
colored vertical lines. Note that you may color vertical lines with colortbl package.

"More precisely, drawn according to the column widths established by all the chunks preceding page
output.

4 Implementation

4.1 Problems and Solutions

We have two different problems to solve; how to draw horizontal dash-lines and how to
draw vertical dash-lines. The former problem is relatively easy because the technique for
drawing \cline-s can be used. That is, if we know the number of columns, we can draw a
dash-line across the \multispan-ed columns by \xleaders of dash. Modifying a preamble
of array/tabular to count the number of columns is not hard. Since \cdashline is given
beginning and ending columns, its implementation is also easy.

The latter problem, however, is much harder. Remember that array/tabular draws
vertical solid lines by \vrule-s in each row without height/depth specification exploiting
TEX’s sophisticated mechanism of the rule extension in the surrounding box. Since TEX
does not have such a mechanism for \xleaders unfortunately, we at least have to know
the height and depth of a row which includes vertical dash-lines. Although the height and
depth are often same as those of \@arstrutbox, we will have an exceptionally tall and/or
deep row that makes dash-lines broken if we assume every row has the standard height and
depth.

Moreover, even if we can measure the height/depth of each row (in fact we will do as
describe later), drawing dash-lines in each row will not produce a good result. Look at the
following two examples closely.

A B AB
A's A B

In the left example, two dash-lines are individually drawn in two rows. Since the first row
is not so tall and deep (8.4 pt/3.6 pt) as to contain enough number of default dash segments
(4pt dash and 4pt gap) to keep \xleaders from inserting a large space, the dash-line in
the first row is sparse. On the other hand, the second row is enough tall and deep (16.8 pt/
7.2pt) and thus the dash-line in the row looks better. Thus the resulting dash-line is awful
because it does not have a continuous dash/gap sequence.

The right example, which we wish to produce, is much better than the left. In this
example, the dash line is draw across two rows keeping continuous steps of dashes and
gaps. In order to have this result, we have to draw the dash-line after two rows are built
because it is necessary to know the total hight and depth of two rows. In general, if we
know the total hight and depth of rows and whether a column has a dash-line, we can draw
dash-lines by adding an extra row containing dash-lines. For example, the result shown
above is obtained by the following row.

\omit\hss(dash-line of 36 pt high)&\omit\cr

Note that (dash-line of 36 pt high) have to be \smash-ed.
In addition to this basic scheme, we have to take the following points into account.

e A dash-line drawn by the preamble character *;’ will have non-default dash/gap spec-
ification.

e A column may have two or more dash-lines separated by spaces of \doublerulesep.
Mixed sequence of solid- and dash-lines also have to be allowed.

e The first column may have dash-lines at both ends, while those of others will appear
at right ends only. An exception of this rule is brought by \multicolumn that may
have leading sequence of solid- and/or dash-line specifiers in its preamble.

e A \multicolumn may break or add a dash-line, or may change the dash/gap specifi-
cation of a dash-line. A sequence of \h(dash)1line-s also break dash-lines.

e If colortbl is in use, coloring dash/gap by \arrayrulecolor and \dashgapcolor gives
another possibility of the variation of dash/gap specification.

In order to cope with them, the following data structure is constructed during rows are
built.

1. The list of row information R = (ry,r2,...,7N).
2. The i** element of R, r;, is one of the following®.

(a) A triple (CEF,CE h;), where CE and CF are the lists of solid- or dash-line seg-
ments drawn at the left and right edge of columns respectively, and h; is the
height plus depth of the i row.

(b) connect(h;) for a \h(dash)line of h; wide meaning that r; is an empty pseudo
row of h; high and dash-lines are not broken at the row.

(¢) In longtable environment, discard(h;) for a negative vertical space inserted by
\\ [{h;)] or \h(dash)line meaning r; is an empty pseudo row of h; high and
dash-lines are not broken but may be discarded by the page break at the row.

(d) disconnect(h;) for a vertical gap generated by a sequence of \h(dash)line mean-

ing that r; is an empty pseudo row of h; high and dash-lines are broken at the
Trow.

3. CF = (e}, €, ... eh,) where e} corresponds to the j* (leftmost is first) solid- or dash-

line segment. CF is similar but its elements are ordered in reverse, i.e. the rightmost
segment is the first element.

4. The j* element of CF or CE, eév, is a triple (cé—, d;,g;) where cé is the column number
in which the segment appears, and d;- and gj— are dash/gap specification, length and
color, of the segment. For a solid line segment, the length attributes of both dj and
g; are 0.

Then this data structure is processed‘to draw solid- and dash-lines at the end of the
array/tabular as follows. Let ¢} = (c},d’, g%) be the j* element of C} of r;. The position

pj» of 63‘ in the column cé is defined as follows.

(U =l
J pj_1+1 otherwise ’
i ol

. ; ;!
The following defines whether two elements €} and e, are connected, or € ~ eZ,.

e§~e§»2<—>i<i’/\
i d i i’ i 4 i i
cjfcj,/\dj—dj/Agj—gj//\pj—pj,/\
Yk(i < k < i — 1 = connect(hy,)).

8In the real implementation, the structure of r; is slightly different.

10

With these definitions, we can classify all eé into ordered sets Si,Ss,....S, as follows.

k#k/HSkﬂSkIZQ)

. -/ . -/ . -/
el ~ €j Hk(eg,e;/ €Sk ANSp={...,¢e,¢e ...}

v

Now we can draw a dash-line Ly = (yk, T, O, &k, Tk, Ok) corresponding to Sy = {ej», cee e;,}
as follows.
e Lj is /" line in the v/ column where v;, = c; =...= cz-l, and m, = pz- =...= pé-l,.
e [, has the dash specification (size and color) &, = d; =...= d?, and gap specification
é‘k:g; :...:g;-/.

e The top and bottom ends of Ly are at 7, and [above the bottom of the array/
tabular, where;
N N
TR = th, Br = Z hy.
=i I=i'+1
The row to draw Lq,..., L, is;
O'1L10'2L2 . Ln_lanLnan_H\cr
where;

o1 = \omit[\hss&\omit]”* !

\null if Yyeo1 =9 A Tp—1 = Tk
Oi<k<n = { \hskip\doublerulesep if Yx—1 =Yk A Tr—1 7 Tk
[\hss&\omit]|7s~7k-1 if Ye_1 # V&

Ont1 = [\hss&\omit]r_'“'_l\hss_

Note that [z]™ means m-times iteration of x, and I" is the number of columns specified in
the preamble.

Dash-lines at the right edges of columns are similarly drawn by processing CF with the
following modifications.

k<k Ve e S’;C,Ve?, € Sw((c) < c;,,) %

(¢; =cj Npj >Dpi)V

o A

(c; =cj Npj=py Ni<i'))

o1 = \omit\hss[&\omit\hss]”’f1

\null if Yp—1 =7 A Tp—1 = Tk
or>1 = { \hskip\doublerulesep if yx_1 =& A Tp—1 7# Tk
[&\omit\hss|Tk k-1 if Y1 # Yk
Ops1 = [&\omit\hss]/ ~7~!

11

4.2 Another Problem and Imperfect Solutions

In the default mode 1, we draw a dash line of dash size d and gap size g as follows. Let
W be the length of the line plus 10 sp?, which is unknown for us if horizontal but known
for TEX, and assume W > d/2 (or the line protrude to the column/row boarder.) At the
both ends of the columns, dashes of d/2 long are drawn to make the dash-line touched to
the ends. Then n = [(W —d — g)/(d + g)] dashes are equally distributed in the remaining
space. Thus we will have;

Do(d/2)Go(g + €)D1(d)G1(g+€) ... Gn_1(9+€)Dp(d)Gr (g + €)Dpy1(d/2)

where D;(l) and G;(l) are dash and gap of [long, e = (W — (n+ 1)(d + g))/(n + 1)
(rounded), and ¢’ = (W — (n+ 1)(d + g) — (n — 1)¢)/2 to compensate the rounding error
on the calculation of €. For a horizontal line, this result will be obtained by \xleaders as
follows where GI"(¢) and GT*(¢’) are the spaces inserted by \xleaders.

Do(d/2)Gh(g/2)\x1eaders\hbox{G" (g/2)D(d)G"'(3/2)N\hss G (g)Dy+1(d/2)
= Do(d/2)G(9/2)G7' (') (Gi(9/2)D1(d)G1(9/2)) GT'(e)
(Gi(9/2)D2(d)G3(9/2)) G5'(e)

no1(e) (G _1(9/2) Du(d) G (9/2)) G ()G (9/2) Duga (d/2)
= Do(d/2)Go(g + &) D1(d)G1(g +€) ... Gn-1(g + €) Dn(d)Gn(g + €') Dy (d/2)

The problem is that ¢’ could be negative and TEX mistakingly ignores this possibility. That
is, since TEX does not put \hbox beyond the right edge of \xleaders, the rightmost \hbox
is omitted if €’ is negative as described in §2.5.

Since it is (almost) impossible to know the length of a horizontal line, we cannot cope
with this problem by adding or subtracting its length. Thus we introduced drawing mode
to have imperfect solutions. In the mode 2, we draw a line by the following sequence.

Do(d/2)Gy(9/2)Giy (9/2) D1 (d) G (9/2)G(~d — g)
\xleaders\hbox{G"(g/2)D(d)G'(g/2)}\hss
G(=d — 9)G,/(9/2) D (d) G, (9/2)G1(9) Drtr (d/2)
That is, n*” \hbox that could be disappeared is put twice and the first one is also overlaid
for symmetrization. Therefore the length of the first and n'* dashes is d + |¢’| and thus
could be a little bit longer than others.

On the other hand, we replace \xleaders of mode 1 with \cleaders for the drawing
in mode 3. The result will be;

Do(d/2)Go(g + R)D1(d)G1(g) - - - Gn-1(9) Dn(d)Gn(g + R)Dny1(d/2)

where R = (W — (n+1)(d+ g¢))/2 to make the first and last gaps considerably wider than
others.

4.3 Register Declaration

Here registers and switches are declared.

9This small amount is added by \xleaders in order to, according to the comment in tex.web, compensate
floating point rounding error.

12

\dashlinedash
\dashlinegap
\hdashlinewidth
\hdashlinegap

\ifadl@leftrule

\ifadl@connected

\ifadl@doublerule

\ifadl@zwvrule

\ifadl@zwhrule

\ifadl@usingarypkg

\ifadl@inactive

\ADLnullwide
\ADLsomewide

First of all, two \dimen registers \dashlinedash and \dashlinegap to control the shape
of dash-lines are declared, and their default values, 4 pt for both, are assigned to them.
They have aliases, \hdashlinewidth and \hdashlinegap respectively, for the backward
compatibility.

1 %% Register Declaration

2

3 \newdimen\dashlinedash \dashlinedash4pt
4 \newdimen\dashlinegap \dashlinegap4pt 7%

5 \let\hdashlinewidth\dashlinedash

6 \let\hdashlinegap\dashlinegap

7

Next, the following six switches are declared.

\ifadl@leftrule is used in the preamble analysis macro \@mkpream and is true

during it processes leading characters for solid- and dash-lines, i.e. ‘|7, *:’, and ;.

. . . . ; -/ o
\ifadl@connected is used to indicate the connection e; ~ e},. When we process e;-,,

b 3 (i o
the switch is true iff e’ (e} ~ e},).

\ifadl@doublerule is used to make 0. When we are to make oLy, it is true iff
Ve—1 = Vb N Th—1 # Tk-

\ifadl@zwvrule controls the real width of vertical lines. If it is true, lines are
drawn as if their width is zero following IXTEX’s standard. Otherwise, their width
\arrayrulewidth contribute to the width of columns as array does.

\ifadl@zwhrule controls the real width of horizontal lines. If it is true, a line is drawn
as if its width is zero and its bottom edge is adjusted to that of the row above by
inserting \vskip-\arrayulewidth before the drawing. Thus a horizontal dash line
is included in the row above and its gaps look colored properly if the row is painted.
If it is false, the width \arrayrulewidth contribute to the height of array/tabular
as usual.

\ifadl@usingarypkg is true iff array has been loaded prior to arydshin. This switch
shows us which definitions, by IATEX or array, we have to modify. Its value is set by
examining if \extrarowheight, which is introduced by array, is defined.

\ifadl@inactive inactivates dash-line functions if it is true. Its default value is false.

We also use a working switch \@tempswa.

8 \newif\ifadl@leftrule

9 \newif\ifadl@connected

10 \newif\ifadl@doublerule

11 \newif\ifadl@zwvrule

12 \newif\ifadl@zwhrule

13 \newif\ifadl@usingarypkg

14 \ifx\extrarowheight\undefined \adl@usingarypkgfalse

15 \else \adl@usingarypkgtrue \fi
16 \newif\ifadl@inactive \adl@inactivefalse

17

The switch \ifadl@hwvrule is turned on/off by user interface macros \ADLnullwide and
\ADLsomewide. Its initial value is the complement of \adl@usingarypkg.

13

\ADLnullwidehline
\ADLsomewidehline

\ADLactivate
\ADLinactivate

\adl@box

\adl@height
\adl@depth

\adl@heightsave
\adl@depthsave

\adl@finaldepth

\adl@columns
\adl@ncol

The switch \ifadl@zwvrule is turned on/off by user interface macros \ADLnullwidehline
and \ADLsomewidehline. Its initial value is false.

The switch \ifadl@inactive is also turned on/off by user interface macros \ADL
inactivate and \ADLactivate.

18 \def\ADLnullwide{\adl@zwvruletrue}

19 \def\ADLsomewide{\adl@zwvrulefalse}

20 \ifadlQusingarypkg \ADLsomewide \else \ADLnullwide \fi
21 \def\ADLnullwidehline{\adl@zwhruletrue}

22 \def\ADLsomewidehline{\adl@zwhrulefalse}

23 \ADLsomewidehline

24

25 \def\ADLactivate{\adl@inactivefalse}

26 \def\ADLinactivate{\adl@inactivetrue}

27

The following \box register and three \dimen registers are used to measure the height
and depth of a row.

e The contents of a column is packed into the \box register \ad1@box to measure its
height and depth.

e The \dimen registers \ad1@height and \adl@depth contain the height/depth of the
tallest /deepest column in a row. When a column is processed, they are compared to
the height and depth of \ad1@box and are updated if they are less.

Since we have to update these register \global-ly to pass their value across &
and we may have a column containing array/tabular, they are saved into \adl@
heightsave/\adl@depthsave at the beginning of the environment and are restored
at its end.

The other \dimen register \adl@finaldepth is set to the depth of the last row, or
zero if the last vertical item is a horizontal line. This value is used to shift array/
tabular down because we add extra two \smash-ed rows which make the depth of
array/tabular zero.

We also use working \dimen registers \@tempdima and \@tempdimb.
28 \newbox\adl@box
29 \newdimen\adl@height \newdimen\adl@heightsave
30 \newdimen\adl@depth \newdimen\adl@depthsave
31 \newdimen\adl@finaldepth
Then the following \count registers are declared. Note that some of them contain
dimensions measured by the unit sp.

e \adl@columns has the number of columns specified in the preamble of the environ-
ment. Because of a complicated reason related to the compatibility with array, we
cannot count up \adl@columns directly but increment \adl@ncol when each col-
umn of preamble is built and move its value to \adl@columns after the preamble is
constructed.

14

\adl@currentcolumn
\adl@currentcolumnsave

\adl@totalheight

\adl@totalheightsave

\adl@dash
\adl@gap

\adl@cla
\adl@clb

\adl@everyvbox

\adl@org@arrayclassz
\adl@org@tabclassz
\adlQorg@classz
\adl@org@@startpbox
\adl@org@@endpbox
\adl@org@endpbox
\adl@org@cline

e To process \multicolumn, we have to know the column number where it appears.
Thus we have a column counter \adl@currentcolumn which is \global-ly incre-
mented when each column is built. Because of the \global assignment, the counter
has to be saved/restored into/from \adl@currentcolumnsave.

e In the real implementation, 7, and (are calculated by the following equations rather
than those shown in §4.1.

N i—1 i
H:thl7 Tk:H—thl7 ,Bk:Tk—thl.
=1 =1 =i’

\adl@totalheight contains Y ,_, h; when the it" row is built and thus its final value
is H. Since the data structure R are represented by a text, we have to pay attention
to the precision of its dimensional elements, such as h;. That is, if we append h; to
R by expanding \the\dimenn which has the height plus depth of i** row, h; will be
an approximation of \dimenn represented by a decimal fraction with pt. Although
the error of the approximation is quite small and may be negligible, the error must
be avoided because it is avoidable by simply using \number\dimenn. Therefore, h; is
an integer and thus \adl@totalheight is too.

Because of the \global assignment to \adl@totalheight to pass its value across
rows, it has to be saved/restored into/from \adl@totalheightsave.

e In order to check eé. ~ e?l,, the size attributes of dé. and g§ are kept in the registers

\adl@dash and \adl@gap when we process eél,. As explained above, d and g are
integers and thus \adl@dash and \adl@gap are \count registers.

e The coding of \cdashline is similar to that of \cline in KTEX-2.09 which uses two
global \count registers \@cla and \@clb. These registers are omitted from IKTEX 2¢
because its \cline is completely recoded. We could adopt new coding but it requires
some other macro definitions that KTEX-2.09 does not have. Thus we simply intro-

duce new global counters \adl@cla and \adl@clb for \cdashline in order to make
\cdashline work in both I¥TEX-2.09 and XTEX 2¢.

We also use working \count registers \@tempcnta and \@tempcntb.
32 \newcount\adl@columns \newcount\adl@ncol

33 \newcount\adl@currentcolumn \newcount\adl@currentcolumnsave
34 \newcount\adl@totalheight \newcount\adl@totalheightsave

35 \newcount\adl@dash \newcount\adl@gap

36 \newcount\adl@cla \newcount\adl@clb

The last register declaration is for a \toks register named \adl@everyvbox. In order to
minimize the copy-and-modify of the codes in IXTEX and array, we need to use \everyvbox
in our own definition of \@array. The register is used to save the contents of \everyvbox.

37 \newtoks\adl@everyvbox
38

The other declarative stuffs are the sequence of \let to capture the original definitions
of macros that we will modify afterword. The main purpose of them is to nullify the
modification when dash-line functions are inactive, while \ad1@org@cline is also referred
in its modified version.

15

\adl@array
\@array
\adl@noalign

\@@array

39 \let\adl@org@arrayclassz\Qarrayclassz
40 \let\adl@org@tabclassz\@tabclassz

41 \let\adl@org@classz\Qclassz

42 \let\adl@org@@startpbox\@@startpbox
43 \let\adl@org@@endpbox\@@endpbox

44 \1let\adl@org@endpbox\Q@endpbox

45 \let\adl@org@cline\cline

46

47 hh°L

4.4 Initialization

ETEX’s macro \@array is modified to save and initialize registers and data structures
which are \global-ly updated in order to allow nested array/tabular. This saving and
initializing are performed by \adl@arrayinit as explained below. The problem in the
modification is that the code of \@array in array is completely different from that of BTEX
original.

The main difference is that ITEX builds \@preamble locally, while array does globally
exploiting the fact that the lifetime of \@preamble ends before another array/tabular
appears in a column. The latter implementation will work well unless the building process
in \@mkpream produces something referred after \@preamble is thrown into TEX’s stom-
ach. In our implementation, unfortunately, the number of columns has to be counted in
\@mkpream and will be referred by \hdashline and the vertical line drawing procedure.

Thus we have to change the column counting mechanism depending on whether or not
array is in use. The simplest way could be to copy the codes of INTEX and array and modify
them appropriately examining the value of \ifadl@usingarypkg. However this solution is
vulnerable to the modification of the original version and thus we wish to refuse it as far
as possible.

Therefore, we use a trick with \everyvbox in which \adl@arrayinit is temporarily
included to initialize registers and locally set \adl@columns to the number of columns
\global-ly counted by \adl@ncol. This trick work well so far because;

e the first \vbox, \vtop or \vcenter made by \@array is the vertical box surrounding
\halign, and;

e in \Qarray of array the box is opened after the preamble is constructed;

and will hopefully work in future.

Next, if \ifadl@inactive is true, \adl@inactivate is invoked to inactivate dash-line
functions. Otherwise, \adl@activate is invoked to activate them because an inactivated
array/tabular may have active children in it. Finally, \adl@noalign is made \let-equal
to \noalign so that \arrayrulecolor, \doublerulesepcolor and \dashgapcolor are
expanded with \noalign in the environment.

Another stuff for the compatibility with array is to \let a control sequence \@@array be
equal to \@array because it is referred in \@tabarray in array.

48

49 %% Initialization

50

51 \let\adl@array\@array

52 \def\Q@array{\adl@everyvbox\everyvbox

53 \everyvbox{\adl@arrayinit \the\adl@everyvbox \everyvbox\adl@everyvbox}’

16

\adl@arrayinit
\adl@arraysave

\adl@rowsL
\adl@rowsR
\adl@rowsLsave
\adl@rowsRsave
\adl@colsL
\adl@colsR
\adl@colsLsave
\adl@colsRsave

\adl@connect
\adl@discard

54 \ifadl@inactive \adl@inactivate \else \adl@activate \fi

55 \let\adl@noalign\noalign
56 \adl@array}

57 \let\@@array\Qarray

58

As described in §4.3, registers updated \global-ly, which are \adl@height, \adl@depth,
\adl@currentcolumn and \adl@totalheight, are saved in \adl@arrayinit by calling
\adl@arraysave, and also given initial values. The macro also saves the following data
structures and initializes them to empty lists.

e In the real implementation, the data structure R is split into two lists;

\adl@rowsL = RY = ((CE hy),...)
\adl@rowskR = R® = ((CF, hy),...)

and they are saved into \adl@rowsLsave and \adl@rowsRsave.

e When the i*" row is building, C£ and CF are constructed in the macros \ad1l@colsL

and \adl@colsR. They are saved into \adl@colsLsave and \adl@colsRsave.
In the real implementation, eé is represented by a control sequence \@elt, and connect(i) by
\adl@connect. They are made \let-equal to \relax to keep them from expansion during R
is constructed. In longtable environment, connect(i) for negative vertical space inserted
by \\[{(h)] or a horizontal line has another representation \adl@discard to indicate it
corresponds to a discardable item of page breaking. Since this representation, however,
is nonsense in usural array/tabular even if they are included in \longtable, we define
\adl@discard as \adl@connect so that it transforms itself into \adl@connect when it is
added to \adl@rowsL/R by \xdef. Note that \adl@discard is made \let-equal to \relax
to inhibit the transformation at the beginning of longtable environment.

Then, we set to \adl@columns to the value of \adl@ncol locally. As explained above,
this has an effect with array because \adl@arrayinit is called after the preamble is gener-
ated. Without array, on the other hand, this assignment has no effect but safe because it is
included in a group of \vbox etc.

59 \def\adl@arrayinit{%

60 \adl@arraysave

61 \globalladl@height\z@ \globalladl@depth\z@

62 \globalladl@currentcolumn\@ne \globalladl@totalheight\z®@

63 \gdef\adl@rowsL{}\gdef\adl@rowsR{}\gdef\adl@colsL{}\gdef\adl@colsR{}/
64 \let\@elt\relax \let\adl@connect\relax \def\adl@discard{\adl@connect}/,
65 \adl@columns\adl@ncol}

66 \def\adl@arraysave{Y

67 \adl@heightsave\adl@height

68 \adl@depthsave\adl@depth

69 \adl@currentcolumnsave\adl@currentcolumn

70 \adl@totalheightsave\adl@totalheight

71 \let\adl@rowsLsave\adl@rowsL

72 \let\adl@rowsRsave\adl@rowsR

73 \let\adl@colsLsave\adl@colsL

74 \let\adl@colsRsave\adl@colsR}

75

17

\adl@inactivate

\adl@activate

If \ADLinactivate has effect and thus \ifadl@inactive is true, the macro \adl@
inactivate is called from \@array'®. This \let-s the following control sequences be equal
to their counterparts in BTEX and/or array package.

\Qarrayclassz \@tabclassz \Q@classz \@@startpbox \@Qendpbox
\@endpbox \adl@cr \adl@argcr \adl@endarray

Note that we have to inactivate both \@@endpbox for KTEX and \@endpbox for array,
while \@startpbox for array is not necessary because it is unmodified. Also note that
\@classz has to be \let-equal to \adl@org@classz only if array is in use, because IWTEX
does not define \@classz but refers it which is either \@arrayclassz or \@tabclassz.
Yet another remark is that we have to conceal \cr for \adl@cr/\adl@argcr and \crcr
for \adl@endarray by bracing them from TEX’s \halign mechanism that searches them
when an array/tabular has an nested array/tabular. This could be done by a tricky
\let-assignment such as;

\iffalse{\let\adl@cr\cr \iffalse}\fi

but we simply use \def instead of \let because of clarity.
We also \let the following be no-operation or their inactive versions.

\adl@hline \adl@ihdashline \adl@cdline \adl@@vlinel \adl@@vlineR
\adl@vlinel. \adl@vlineR

Note that we have to inactivate both \ad1@@vlinel and \adl@vlineL, because the latter
is referred when array is in use while the former is referred otherwise. Their R relatives are
also inactivated by the same reason.

76 \def\adl@inactivate{%

7 \let\@arrayclassz\adl@org@arrayclassz
78 \let\@tabclassz\adl@org@tabclassz

79 \ifadl@usingarypkg \let\@classz\adl@org@classz \fi
80 \let\@@startpbox\adl@org@@startpbox
81 \let\@@endpbox\adl@org@@endpbox

82 \let\@endpbox\adl@org@endpbox

83 \def\adl@cr{\cr}/

84 \def\adl@argcr##1{\cr}’

85 \def\adl@endarray{\crcr}i

86 \let\adl@hline\@gobbletwo

87 \let\adl@ihdashline\adl@inactivehdl
88 \let\adl@cdline\adl@inactivecdl

89 \let\adl@@vlineL\adl@inactivevl

90 \let\adl@@vlineR\adl@inactivevl

91 \let\adl@vlineL\adl@inactivevl

92 \let\adl@vlineR\adl@inactivevl}

On the other hand, if \ifadl@inactive is false, the macro \adl@activate is called from
\@array to make inactivated macros active again in order to cope with the case in which
an inactive array/tabular has active children in it!!. To do that, \adl@activate makes
\Q@arrayclassz etc. \let-equal to their active version \adl@act@arrayclassz etc. which
will be defined (\let-equal to) as our own \@arrayclassz etc. in §4.13.

10Before v1.53, \adl@inactivate was called from \adl@arrayinit and thus invokded after the preamble
of array is built. This was incorrect of course and made inactive version of p, m and b produce nothing.
HBefore v1.54, an active array/tabular in an inactive parent was not activated.

18

Table 1: Active and Inactive Operations

command H active \ inactive
lcr
with array \adl@act@classz \adl@org@classz
without array || \adl@act@tabclassz \adl@org@tabclassz
\adl@act@arrayclassz | \adl@org@arrayclassz
p m b (open)
with array \adl@act@classz \adl@org@classz
without array || \adl@act@@startpbox \adl@org@@startpbox
p m b (close) \adl@act@@endpbox \adl@org@@endpbox
| /:/; \adl@act@@vlineLl/R \adl@inactivevl
A\ —\adl@act@(arg)cr —\cr
\hline —\adl@act@hline —\@gobbletwo
\hdashline —\adlOact@ihdashline | —\adl@inactivehdl
\cdashline —\adl@act@cdline —\adl@inactivecdl

93 \def\adl@activate{%

94 \let\@arrayclassz\adl@act@arrayclassz
95 \let\@tabclassz\adl@act@tabclassz

96 \ifadl@usingarypkg \let\@classz\adl@act@classz \fi
97 \let\@@startpbox\adl@act@@startpbox

98 \let\@@endpbox\adl@act@@endpbox

99 \let\@endpbox\adl@act@endpbox

100 \let\adl@cr\adl@act@cr

101 \let\adl@argcr\adl@act@argcr

102 \let\adl@endarray\adl@act@endarray

103 \let\adl@hline\adl@act@hline

104 \let\adl@ihdashline\adl@act@ihdashline
105 \let\adl@cdline\adl@act@cdline

106 \let\adl@@vlineL\adl@act@@vlineL

107 \let\adl@@vlineR\adl@act@@vlineR

108 \let\adl@vlineL\adl@act@@vlineL

109 \let\adl@vlineR\adl@act@@vlineR}

110

111 %%"L

The summary of the activation and inactivation is shown in Table 1.

4.5 Making Preamble

Each preamble character is converted to a part of \halign’s preamble as follows.

\adl@colhtdp e ‘1, ‘r’ and ‘c’ are converted to the following (lrc).

(Irc) -:= [\h£il]{put-lrc)[\hfil]
(put-lrc) ::= \setbox\adl@box\hbox{(lrc-contents)}
\adl@colhtdp \unhbox\adl@box
(Irc-contents) := $\relax#$ |
#\unskip

19

\adl@vlinelL
\adl@vlineR

\adl@mkpream
\@mkpream

That is, the content of a column is at first packed into the \box register \adl@box,
then its height and depth are compared to \adl@height and \adl@depth by the
macro \adl@colhtdp, and finally the box is put with leading and/or trailing \hfil.

e ‘|7, ‘27 and ;{(dash)/(gap)} are converted to the following (vline).
(vline) ::= [\hskip\doublerulesep|(vline-LR)

(vline-LR) ::= \adl@vlineL{(Iq)H(Iy)IMetac{{d)/(g)} |
\adl@vlineR{(Iy)H(Iy)IMetac{(d)/(g)}

(d) ==0 | ... for ‘P’
\dashlinedash | ... for ¢’
(dash) ... for ¢y’
(g) ==0] ... for ‘P
\dashlinegap | ... for ¢
(gap) ... for ¢y’

Note that (c) is the column number (leftmost is 1) where the character appears,
and (I'y) and (Iy) is the color of dashs and gaps specified in \CT@arc@ and \adl@
dashgapcolor.

Additionally, each column except for the last one has;
\global\advance\adl@currentcolumn\@ne

just before & to increment \adl@currentcolumn. Other features, such as inserting spaces
of \arraycolsep/\tabcolsep, are as same as original scheme. This means that @{(text)}
and !'{(text)} of array are not handled specially although it could interfere with drawing
vertical lines. Therefore, we have the problem 1 shown in §3, which is very hard to solve.
Note that the measurement of the column of ‘p’ of INTEX original is done by (modified)
\@@startpbox and \@Gendpbox and thus the preamble for ‘p’ is not modified. In case with
array, however, the preambles for ‘p’ and its relatives ‘m” and ‘b’ are modified to set \adl@
box to the box for them.

To make the preamble shown above, \@mkpream is modified to \let control sequences
\adl@colhtpd, \adl@vlineL and \adl@vlineR be \relax in order to keep them from
being expanded by \edef/\xdef for the preamble construction. The control sequences
\adl@startmbox and \adl@endmbox for m-columns of array are also made \let-equal to
\relax.

Giving them their own definition is done by \adl@preaminit that is called using
\afterassignment after \@preamble is made by \adl@mkpream, the original version of
\@mkpream. If array is not in use, \@mkpream is followed by an \edef of \@preamble to
add \ialign etc. and thus \adl@preaminit is properly called after this final assignment
to make \@preamble.

With array, on the other hand, calling \adl@preaminit is safe because \@mkpream is
followed by \xdef for \@preamble too, but has no effect because it is in the group for
\@mkpream. This grouping, however, gives us an easier way to give those control sequences
their own definition. That is, we simply initiate them with the definitions that will be
regained when the group is closed.

20

\@addamp

\@testpach

The modified \@mkpream also initializes \adl@ncol and \ifadl@leftrule, and set
\adl@columns to the value of \adl@ncol locally after the preamble is made. This has
an effect in case without array because the body of array/tabular is in the same grouping
context of \@mkpream. With array, on the other hand, this assignment has no effect but
safe because it is included in a group of \@mkpream’s own.

112

113 %% Making Preamble

114

115 \let\adl@mkpream\@mkpream

116 \def\@mkpream#1{\let\adl@colhtdp\relax

117 \let\adl@vlineL\relax \let\adl@vlineR\relax

118 \let\adl@startmbox\relax \let\adl@endmbox\relax

119 \globalladl@ncol\@ne \adl@leftruletrue

120 \adl@mkpream{#1}\adl@columns\adl@ncol \afterassignment\adl@preaminit}
121

The macro \@addamp is also modified to add the code for incrementing the counter \adl@
currentcolumn to \@preamble with & The counter \adl@ncol is also incremented by
\@addamp so that we can refer its value as (c) of \adl@vlineL/R. This increment is done
\global-ly in order that we locally set \adl@columns to the counting result outside of the
group for \@mkpream of array. Therefore, whether or not array is in use, \adl@columns
will have a correct value and will be correctly referred by \hdashline to know how many
columns are specified in the preamble. Note that this \global assignment is safe because
the life time of \adl@ncol is same as that of \@preamble.

122 \def\@addamp{\if@firstamp\@firstampfalse \else

123 \@addtopreamble{\global\advance\adl@currentcolumn\@ne &3}
124 \global\advance\adl@ncol\@ne \fi}
125

Since the implementation of \@testpach and macros for class-0 characters (i.e. 1, r and
c) is completely different between TEX and array, we have to have two versions switched
by \adl@usingarypkg.

With array

Although we introduced two preamble characters ‘:” and ‘;’, we did not introduce new
character class because we want to minimize the modification of original codes. Therefore,
‘.7 and ¢;’ is classified into class-1 together with ‘|’. Since these characters obviously have

their own appropriate operations, \@testpach is modified so that \@arrayrule, which
is invoked from \@mkpream in the case of class-1 character, is \let-equal to the macro
corresponding to each character.

126 \ifadl@usingarypkg

127 \def\@testpach{\@chclass

128 \ifnum \@lastchclass=6 \@ne \@chnum \@ne \else
129 \ifnum \@lastchclass=7 5 \else

130 \ifnum \@lastchclass=8 \tw@ \else

131 \ifnum \@lastchclass=9 \thr@e@

132 \else \z@

133 \ifnum \@lastchclass = 10 \else

134 \edef\@nextchar{\expandafter\string\Onextcharlj,
135 \@chnum

21

\@classz

\adl@class@start
\adl@class@iiiorvii

\@testpach

136 \if \@nextchar c\z@ \else

137 \if \@nextchar 1\@ne \else

138 \if \@nextchar r\tw@ \else

139 \z@ \@chclass

140 \if\@nextchar |\@ne \let\@arrayrule\adl@arrayrule \else

141 \if\@nextchar :\@ne \let\@arrayrule\adl@arraydashrule \else
142 \if\@nextchar ;\@ne \let\@arrayrule\adl@argarraydashrule \else
143 \if \@nextchar !6 \else

144 \if \@nextchar @7 \else
145 \if \@nextchar <8 \else
146 \if \G@nextchar >9 \else
147 10

148 \@chnum

149 \if \@nextchar m\thr@@\else

150 \if \@nextchar p4 \else

151 \if \@nextchar b5 \else

152 \z@ \@chclass \z@ \@preamerr \z@ \fi \fi \fi \fi \fi \fi
153 \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi}
154

In array, array and tabular share common macro for class-0 named \@classz, which also
generates the preamble for ‘p’, ‘m’ and ‘b’. Thus we modify it to measure the height and
depth of the class-0 column by the macro \adl@putlrc, and to set \adl@box to the box
for ‘p” and its relatives. Note that m-type preambles (@chnum = 3) have to be generated by
\adl@startmbox and \adl@endmbox because a \vcenter construct cannot be assigned by
to \adl@box by \setbox directly.

155 \def\@classz{\@classx

156 \@tempcnta \count@

157 \prepnext@tok

158 \@addtopreamble{\ifcase \@chnum

159 \hfil

160 \adl@putlrc{\d@llarbegin \insert@column \d@llarend}\hfil \or

161 \hskiplsp\adl@putlrc{\d@llarbegin \insert@column \d@llarend}\hfil \or
162 \hfil\hskipisp\adl@putlrc{\d@llarbegin \insert@column \d@llarend}\or

163 \setbox\adl@box\hbox \adl@startmbox{\@nextchar}\insert@column

164 \adl@endmbox\or

165 \setbox\adl@box\vtop \@startpbox{\@nextchar}\insert@column \@endpbox \or
166 \setbox\adl@box\vbox \@startpbox{\@nextchar}\insert@column \Q@endpbox

167 \fi}\prepnext@tok}

Another stuffs for compatibility are to refer the class number of the beginning of preamble
which is different between I¥TEX and array, and that of ‘p’ or ‘@’ to get the argument of ;’
as explained later. In case with array, the former is class-4 and we use ‘@’ (class-7) for the
latter.

168 \def\adl@class@start{4}
169 \def\adl@class@iiiorvii{7}
170

Without array

The reason why and how we modify \@testpach of IXTEX is same as those of array.

22

\@arrayclassz
\@tabclassz

\adl@class@start
\adl@class@iiiorvii

\adl@putlrc

\adl@arrayrule
\adl@arraydashrule
\adl@argarraydashrule
\adl@xarraydashrule

171 \else
172 \def\@testpach#1{\@chclass \ifnum \@lastchclass=\tw@ 4\relax \else

173 \ifnum \@lastchclass=\thr@@ 5\relax \else

174 \z@ \if #1lc\@chnum \z@ \else

175 \if #11\@chnum \@ne \else

176 \if #ir\@chnum \tw@ \else

177 \@chclass

178 \if #1|\@ne \let\Q@arrayrule\adl@arrayrule \else

179 \if #1:\One \let\@arrayrule\adl@arraydashrule \else
180 \if #1;\@ne \let\Q@arrayrule\adl@argarraydashrule \else
181 \if #1@\tw@ \else

182 \if #1p\thr@@ \else \z@ \@preamerr O\fi

183 \fi \fi \fi \fi \fi \fi \fi \fi \fi}

184

Since BTEX has two macros for class-0, one for array and the other for tabular, we have
to modify both. Since the box for ‘p’ is opened by \@@startpbox, however, we may not
worry about it.

185 \def\Q@arrayclassz{\ifcase \@lastchclass \@acolampacol \or \@ampacol \or

186 \or \or \@addamp \or

187 \@acolampacol \or \@firstampfalse \@acol \fi

188 \edef\@preamble{\@preamble

189 \ifcase \@chnum

190 \hfil\adl@putlrc{$\relax\@sharp$}\hfil

191 \or \adl@putlrc{$\relax\@sharp$}\hfil

192 \or \hfilladl@putlrc{$\relax\@sharp$}\fi}}

193 \def\@tabclassz{\ifcase \@lastchclass \@acolampacol \or \@ampacol \or
194 \or \or \@addamp \or

195 \@acolampacol \or \@firstampfalse \Qacol \fi

196 \edef\@preamble{\@preamble

197 \ifcase \@chnum

198 \hfil\adl@putlrc{\@sharp\unskip}\hfil

199 \or \adl@putlrc{\@sharp\unskip}\hfil

200 \or \hfil\hskip\z@ \adl@putlrc{\@sharp\unskip}\fi}}

In IWTEX, the beginning of preamble is class-6 and we use ‘p’ (class-3) to get the argument
of ;.

201 \def\adl@class@start{6}

202 \def\adl@class@iiiorvii{3}

203 \fi
204

Hereafter, codes for I’ TEX and array are common again.
The macro \adl@putlrc is for class-0 preamble characters to set \ad1@box to the contents

of a column, measure its height/depth by \adl@colhtdp and put the box by \unhbox (not
by \box) in order to make the glues in the contents effective.

205 \def\adl@putlrc#i{\setbox\adl@box\hbox{#1}\adl@colhtdp \unhbox\adl@box}
206

The preamble parts for vertical solid- and dash-lines are constructed by the macros \ad1@
arrayrule for ‘|’, \adl@arraydashrule for ‘:’, and \adl@argarraydashrule for ‘;’. The
macro;

23

\adl@classv
\adl@classvfordash

\adl@xarraydashrule{(c’)}{(cF)}{(d)/(g)}

is invoked by them to perform common operations. It at first checks the preamble char-
acter is the first element of the preamble (\@lastchclass = \adl@class@start) or it
follows another character for vertical line (\@lastchclass = 1). If this is not satisfied,
the vertical line is put at the right edge of a column and thus \ifadl@leftrule is set
to false. Then it adds \adl@vlineL{(I)} (I,)}{(c")}{(d)/(g)} if \ifadl@leftrule is
true indicating the vertical line will appear at the left edge of the column (c), or \adle
vlineR{(Iy)H(I,)} {(c®)}{(d)/{g)} otherwise. Note that (c) is always 1 for main pream-
ble while (cf) is the column number given by \adl@ncol, but {cZ) may not be 1 for the
preamble of \multicolumn as described in §4.7. Also note that Iy and I'y are \CT@arc@ and
\adl@dashgapcolor respectively whose bodies are \color for dashes and gaps specified by
\arrayrulecolor and \dashgapcolor, or \relax if they are not colored.

In addition, an invisible \vrule of \arrayrulewidth wide is added if both \ADLsome
wide and \ADLactivate are in effect, i.e. both \ifadl@zwrule and \ifadl@inactive are
false, to keep a space for the vertical line having real width.

The argument of ‘;’ is not provided by \adl@argarraydashrule but is directly passed from
the preamble text through \@nextchar. This direct passing is implemented by the following
trick. The macro \adl@argarraydashrule set \@chclass to \adl@class@iiiorvii to
pretend it is for ‘p’ if array is not in use, or ‘@ otherwise. Then it temporally changes
the definition of \@classv, which is incidentally for the argument of ‘p’ and ‘@ in case
without/with array respectively, to \adl@classvfordash to process the argument of *;’
rather than that of ‘p’ or ‘@. Then \adl@classvfordash is invoked by \@mkpream and it
adds the argument to \@preamble. Finally, it restores the definition of \@classv and set
\@chclass to 1 to indicate that the last item is a vertical line specification.

207 \def\adl@arrayrule{

208 \adl@xarraydashrule

209 {\ene}{\adlencol}{{\z@/\z@}}}

210 \def\adl@arraydashrule{’

211 \adl@xarraydashrule

212 {\@ne}{\adl@ncol}’

213 {{\dashlinedash/\dashlinegap}}}

214 \def\adl®@argarraydashrule{’

215 \adl@xarraydashrule

216 {\@ne}{\adl@ncol}{}%

217 \@chclass\adl@class@iiiorvii \let\@classv\adl@classvfordash}
218 \def\adl@xarraydashrule#1#2#3{J

219 \ifnum\@lastchclass=\adl@class@start\else

220 \ifnum\@lastchclass=\@ne\else

221 \adl@leftrulefalse \fi\fi

222 \ifadl@zwvrule\else \ifadl@inactive\else

223 \@addtopreamble{\vrule\@width\arrayrulewidth

224 \@height\z@ \@depth\z@}\fi \fi

225 \ifadl@leftrule

226 \@addtopreamble{\adl@vlineL{\CT@arc@}{\adl@dashgapcolor}’
227 {\number#1}#3}%

228 \else \@addtopreamble{\adl@vlineR{\CT@arc@}{\adl@dashgapcolor}y,
229 {\number#2}#3}\fi}

230 \let\adl@classv\@classv
231 \def\adl@classvfordash{\Q@addtopreamble{{\@nextchar}}\let\Qclassv\adl@classv
232 \@chclass\@ne}

24

\adl@preaminit
\adl@colhtdp
\adl@vlineL
\adl@vlineR

\ad1@@colhtdp

\adl@@vlineL
\adl@@vlineR
\adl@@ivline
\adl@setcolor
\adl@nocolor
\adl@dashcolor
\adl@gapcolor

233
234 %4°L

4.6 Building Columns

If array is not in use, after the \@preamble is completed, the control sequences for macros in
it should regain their own definition. The macro \adl@preaminit performs this operation
for macros we introduced, \adl@colhtdp, \adl@vlinel and \adl@vlineR. For the case
with array, we will call \ad1@preaminit in arydshln to initiate them with the definitions as
described later.

235

236 %% Building Columns

237

238 \def\adl@preaminit{\let\adl@colhtdp\adl@@colhtdp

239 \let\adl@vlinelL\adl@@vlineL \let\adl@vlineR\adl@@vlineR}

240

For the measurement of the height and depth of a row, \ad1@@colhtdp compares \adl@

height and \ad1@depth to the height and depth of \ad1@box which contains the main part
of the column to be built, and \global-ly updates the registers if they are less.

241 \def\ad1@@colhtdp{%

242 \ifdim\adl@height<\ht\adl@box \globalladl@height\ht\adl@box \fi

243 \ifdim\adl@depth<\dp\adl@box \globalladl@depth\dp\adl@box\fi}

244

The macro \ad1@@vlineL(Is)(I,)(c){(d)/(g)} adds the element e = (c,d, g) = \@elt{(c)}

{Ud)H(9)H(va) 3 (74)} to the tail of the list \adl@colsL to construct C}, where v, and
4 are the color specifications given by \color macros in Iy and I;. The macro \add@@
vlineR performs similar operation but the element is added to the head of \adl@colsR for
CE because it is processed right-to-left manner. The argument (d) and (g) are extracted
by the macro \adl@ivline which converts given dimensional values of them to integers. It
also set (d) and (g) to 0 (i.e. solid-line) if one of given values are not positive, in order to
make it sure that one dash segment has positive length. Then it invokes \adl@setcolor
to define \adl@dashcolor and \adl@gapcolor with the color specification of I'y and I5.
Since \adl@setcolor locally expands \color macro in I'g and Iy to define \currnet@color
that becomes the body of \adl@dashcolor (v4) and \adl@gapcolor (v,) with expansion,
different \color specifications of a color, such as \color{red} and \color[rgb]{1,0,0},
will produce a unified result such as {rgb 1 0 0}. If I'; or Iy is \relax which is the body
of \adl@nocolor, 4 or v, is also \relax to indicate dashes are colored (or not colored) as
done in outer world and gaps are transparent.

245 \def\adl@@vlinelL#1#2#3#4{\ad1@ivline#4\@nil{#1}{#2}%

246 \xdef\adl@colsL{\adl@colsL

247 \@elt{#3}{\number\@tempcnta}{\number\@tempcntbl}%
248 {\adledashcolor}{\adl@gapcolor}}}

249 \def\adl@@vlineR#1#2#3#4{\adl@ivline#4\Cnil{#1}{#2})

250 \xdef\adl@colsR{/

251 \@elt{#3}{\number\@tempcnta}{\number\@tempcntb}y
252 {\adl@dashcolor}{\adl@gapcolor}y,

253 \adl@colsR}}

254 \def\ad1l@ivline#1/#2\@nil#3#4{%

25

\adl@colhtdp
\adl@vlineL
\adl@vlineR

\adl@inactivevl

\@@startpbox
\@@endpbox
\@endpbox
\adl@startmbox
\adl@endmbox

255 \@tempdima#i\relax \@tempcnta\@tempdima

256 \@tempdima#2\relax \@tempcntb\@tempdima

257 \ifnum\@tempcnta>\z@ \else \@tempcnta\z@ \Q@tempcntb\z@ \fi

258 \ifnum\@tempcntb>\z@ \else \@tempcnta\z@ \@tempcntb\z@ \fi

259 \adl@setcolor\adl@dashcolor{#3}\adl@setcolor\adl@gapcolor{#4}}

260 \def\adl@setcolor#1#2{\def\Q@tempa{#2}\ifx\Q@tempaladl@nocolor \def#1{\relax}y,
261 \else{#2\xdef#1{\current@color}}\fi}

262 \def\adl@nocolor{\relax}

After \adl@@colhtdp, \adl@@vlineL and \adl@@vlineR are defined, we call \adl@
preaminit to \let their single @ counterparts be equal to them. Therefore, in case with ar-
ray, \ad1l@colhtdp etc. are temporarily \relax when \@preamble is being generated in the
group of \@mkpream, and regain their own definition outside the group where the completed
\@preamble is referred.

263 \adl@preaminit
264

If \ADLinactivate is in effect, \adl@vlinelL/R and \adl@@vlineL/R are \let-equal to
\adl@inactivevl. This macro simply put a \vrule by \vline with \color (or \relax)
in its first argument and with/without negative \hskip of a half of \arrayrulewidth wide
depending on \ifadl@zwvrule, discarding other arguments.

265 \def\adl@inactivevl#1#2#3#4{\ifadl@zwvrule \hskip-.5\arrayrulewidth \fi
266 {#1\vline}\ifadl@zwvrule \hskip-.5\arrayrulewidth \fi}
267

The macros to make \parbox for ‘p’ (and ‘b’ of array), \@@startpbox and \@Qendpbox,
are modified for height/depth measurement. The code for \@@endpbox is based on that
of BTEX 2¢ to fix the bug of \strut-ing in KTEX-2.09, but \@finalstrut is manually
expanded because it is not available in EXTEX-2.09.

In array, \@@endpbox is not used but \@endpbox is. Therefore, we \let them be
equal. As for \@startpbox, however, we may not worry about it because we have modified
\@classz in §4.5 for the measurement. However, we have to take care of m-type columns
specially because its body \vcenter cannot be assigned directly to \ad1@box by \setbox'2.
Thus we enclose a $\vcenter{...}$ construct in a \hbox and assign it to \adl@box. The
macro \adl@startmbox opens the construct with array’s \@startpbox, while \adl@endmbox
closes it calling \ad1@org@endpbox which is the unmodified \@endpbox of array and mea-
sures the height and depth of the \hbox by \adl@colhtdp.

268 \def\@@startpbox#1{\setbox\adl@box\vtop\bgroup \hsize#1\Qarrayparboxrestore}
269 \def\@@endpbox{\unskip \ifhmode \nobreak

270 \vrule\@width\z@\@height\z0\@depth\dp\Qarstrutbox \fi

271 \par \egroup \adl@colhtdp \box\adl@box \hfil}

272 \1let\@endpbox\@@endpbox

273 \def\adl@startmbox{\bgroup $\vcenter\@startpbox}

274 \def\adl@endmbox{\adl@org@endpbox $\egroup \adl@colhtdp \box\adl@box \hfill}
275

276 %h"L

12The author had forgotten this fact until Morten Hggholm pointed out it. Thanks Morten.

26

\multicolumn
\adl@preamble
\adl@mcaddamp

\adl@activatepbox

4.7 Multi-columns

The macro \multicolumn is modified for the followings.

The macros to construct the parts of \@preamble for vertical lines, \adl@arrayrule,
\adl@arraydashrule and \adl@argarraydashrule, have to perform operations
slightly different from those for main preamble. Thus they are \def-ined to multi-
column version \adl@mcarrayrule, etc. These \def-initions are enclosed in a group
so that they are not affected to array or tabular which may occur in the third argu-
ment of \multicolumn. In order to make \@preamble work well outside of the group
containing \@makepream, \adl@preamble is \global-ly \let-equal to \@preamble
just after \@makepream in the group and then reverse \let-assignment is performed
just after the group is closed. These global assignment is unnecessary with array
because \@preamlbe is constructed \global-ly, but safe.

Since this grouping nullifies the effect of \adl@preaminit called in \@mkpream, we
call \adl@preaminit again after the group closing.

In array, \@addamp to make \@preamble for \multicolumn has a different definition
from that for main one. Thus it is \let-equal to \adl@mcaddamp whose definition is
switched by \ifadl@usingarypkg.

If array is in use, \@preamble has to be \xdef-ed once again by \@addpreamble with
an \@empty argument after \@mkpreamble to expand the contents of \toks registers.
This is performed whether or not with array because it is safe.

As done in \@array, \set@typeset@protect is replaced with direct \let.

If without array, \@startpbox and \@endpbox should be \1let-equal to their @@ coun-
terparts, while should not with array. Thus we define \adl@activatepbox to do or
not to do so depending on \ifadl@usingarypkg.

The counter \adl@currentcolumn is \global-ly incremented by the first argument
of \multicolumn (number of columns to be \span-ned).

Note that \ad1@columns is modified by \@mkpream, but it is not referred \adl@mcarrayrule
etc., and its value is restored before referred by \hdashline, etc.

277

278 %% Multi-Columns

279

280 \def\multicolumn#1#2#3{\multispan{#1}\begingroup \begingroup

281
282
283
284
285
286
287
288
289
290
291
292

\def\adl@arrayrule{\adl@mcarrayrule{#1}}/,
\def\adl@arraydashrule{\adl@mcarraydashrule{#1}}/
\def\adl@argarraydashrule{\adl@mcargarraydashrule{#1}}/
\let\@addamp\adl@mcaddamp
\@mkpream{#2}\@addtopreamble\@empty
\global\let\adl@preamble\@preamble \endgroup
\let\@preamble\adl@preamble
\def\@sharp{#3}\let\protect\relax
\adl@activatepbox

\adl@preaminit

\@arstrut \@preamble\hbox{}\endgroup
\globalladvance\adl@currentcolumn#l\ignorespaces}

293 \ifadl@usingarypkg

27

\adl@mcarrayrule
\adl@mcarraydashrule
\adl@mcargarraydashrule

\@xarraycr
\@xtabularcr
\@xargarraycr
\@yargarraycr

294 \def\adl@mcaddamp{\if@firstamp\@firstampfalse \else\@preamerror5\fi}

295 \let\adl@activatepbox\relax

296 \else

297 \let\adl@mcaddamp\@addamp

298 \def\adl@activatepbox{\let\@startpbox\@@startpbox

299 \let\@endpbox\@Q@endpbox}

300 \fi

301

The preamble parts for vertical lines are constructed by the macros \adl@mcarrayrule,

\adl@mcarraydashrule and \adl@mcargarraydashrule which are passed the first argu-
ment (n) of \multicolumn to know the number of columns to be \span-ned. They are
similar to their relatives for main preamble, \adl@arrayrule, etc., but the arguments (c*)
and (c?) passed to \adl@xarraydashrule are;

k=g, t=c+n—-1

where ¢ = \adl@currentcolumn. This makes leading vertical lines drawn at the left edge of
the leftmost \span-ned column and trailing ones at the right edge of the rightmost column.

302 \def\adl@mcarrayrule#1{\@tempcnta#1i\advance\@tempcnta\adl@currentcolumn

303 \advance\@tempcnta\m@ne

304 \adl@xarraydashrule

305 {\adl@currentcolumn}{\@tempcnta}{{\z@/\z@}}}

306 \def\adl@mcarraydashrule#1{\@tempcnta#l\advance\@tempcnta\adl@currentcolumn
307 \advance\@tempcnta\m@ne

308 \adl@xarraydashrule

309 {\adl@currentcolumn}{\@tempcntal

310 {{\dashlinedash/\dashlinegap}}}

311 \def\adl@mcargarraydashrule#1{\@tempcnta#i\advance\@tempcnta\adl@currentcolumn
312 \advance\@tempcnta\m@ne

313 \adl@xarraydashrule

314 {\adl@currentcolumn}{\@tempcnta}{}’

315 \@chclass\adl@class@iiiorvii \let\@classv\adl@classvfordash}

316

317 %%"L

4.8 End of Rows

At the end of the i** row, we have to calculate h; which is the height plus depth of the
row, and add elements (CF, h;) and (Cf, h;) to RY and RT. To do this, \cr-s in the
macros \@xarraycr, \@xtabularcr, \@xargarraycr are replaced with our own \adl@cr.
The macro \@yargarraycr(dimen) is also modified but its \cr is replaced with \adl@
arger(dimen) to add (negative) \dimen to h;. Note that \@xargarraycr(dimen) uses
ordinary \adl@cr because the extra vertical space of (dimen) is inserted to the last column.

Note that the implementation of \@xarraycr is slightly different between KTEX and
array, we have to have two versions and choose one.

318

319 %% End of row

320

321 \ifadl@usingarypkg

322 \def\@xarraycr{\@ifnextchar [{\Q@argarraycr}{\ifnum0O="‘{}\fi\adl@cr}}

28

\adl@cr
\adl@argcr

\adl@@cr

323 \else

324 \def\@xarraycr{\@ifnextchar [{\Q@argarraycr}{\ifnum0O=‘{\fi}${}\adl@cr}}
325 \fi

326 \def\@xtabularcr{\@ifnextchar [{\@argtabularcr}{\ifnum0=‘{\fi}\adl@cr}}
327 \def\@xargarraycr#1{\Q@tempdima#1\advance\@tempdima\dp\@arstrutbox

328 \vrule\@height\z0\@depth\@tempdima\Qwidth\z@

329 \adl@cr}

330 \def\@yargarraycr#i{\adl@argcr{#1}\noalign{\vskip #1}}

331

The macro \adl@cr and \adl@argcr perform \cr and then invoke the common macro
\adl@@cr(z). The argument (z) is the extra (negative) vertical space for \adl@argcr,
while it is 0 for \adl@cr.

The macro \adl@@cr(z) at first calculate h; as follows. The registers \adl@height = 7 and
\adl@depth = § have the maximum height and depth of the columns in the row. However,
they could be smaller than the height and/or depth of \@arstrutbox, ns and ds. If so, the
height and/or depth of the row are 7, and . Therefore, h; is caluclated by;

h; = max(n, ns) + max(d, ds).

Additionally, if the extra space (x) is negative, a vertical space of x is inserted below
the row!®. Thus the integer value of h; + = is \global-ly added to \adl@totalheight,
and the elements (C*=\adl@colsL, h;) and (CF=\adl@colsR, h;) are added to the tail of
RY =\adl@rowsL and R = \adl@rowsR. If z is not 0 (negative), discard(z) or connect(x)
is also added after (CZL /B h;) according to the current environment (longtable or not). In
the real implementation, R” and R has the following format of (rows).

(rows) ::= [(row);]*

(row) == ((cols)/{h;))

(cols) ::= N\elt{(c)H(d)H{(g)}" | ... Clor OF
\adl@connect | ... for connect(h;)
\adl@discard | ... for discard(h;)
\relax ... for disconnect(h;)

Since \adl@discard is \def-ined as \adl@connect by \adl@arrayinit, added \adl@
discard transforms itself into \adl@connect if current envrionment is not longtable.
Otherwise, as we make \adl@discard \let-equal to \relax when a longtable environ-
ment starts, it keeps its own form.

Then, \ad1@finaldepth is set to \ad1@depth if z is zero, or to zero otherwise (negative),
in order to make the depth array/tabular equal to that of the last row. Finally, \adl@
colsL, \adl@colsR, \adl@currentcolumn, \adl@height and \adl@depth are reinitialized
to process the next row.

332 \def\adl@cr{\cr\noalign{\adl@@cr\z@}}

333 \def\adl@argcr#1{\cr\noalign{\adl@Qcr{#1}}}

334 \def\adl@@cr#1{

335 \ifdim\adl@height<\ht\@arstrutbox \adl@height\ht\@arstrutbox\fi

I3Before v1.54, negative (x) shrinks the hight of the row by |z|. Although the former result may be more
appropriate if the row has vertical lines than the current because lines extrude to the next row now, new
feature is considered compatible with original array/tabular.

29

\hline
\cline

\hdashline
\adl@hdashline
\adl@ihdashline

336 \ifdim\adl@depth<\dp\@arstrutbox \adl@depth\dp\@arstrutbox\fi

337 \advance\adl@height\adl@depth

338 \globalladvance\adl@totalheight\adl@height

339 \@tempdima#i\relax \globalladvance\adl@totalheight\@tempdima

340 \xdef\adl@rowsL{\adl@rowsL

341 (\adl@colsL/\number\adl@height) ;7%

342 \ifdim#1=\z@\else (\adl@discard/\number\Q@tempdima) ;\fil}},
343 \xdef\adl@rowsR{\adl@rowsR

344 (\adl@colsR/\number\adl@height) ;7%

345 \ifdim#1=\z@\else (\adl@discard/\number\@tempdima) ;\fil}},
346 \gdef\adl@colsL{}\gdef\adl@colsR{}

347 \globalladl@currentcolumn\@ne

348 \ifdim#1=\z@ \global\adl@finaldepth\adl@depth

349 \else \globalladl@finaldepth\z@\fi

350 \globalladl@height\z@ \globalladl@depth\z@}

351

352 %% L

4.9 Horizontal Lines

The macro \hline is modified to insert \vskip-\arrayrulewidth before drawing if
\ADLnullwidehline is in effect, or to add the element connect(w) = (\adl@connect/
\number\arrayrulewidth) to the end of R* and R by \ad1@hline otherwise. The other
modifications are to set \ad1@finaldepth to zero for the case that the last vertical item
is \hline, and to check if it is followed by not only \hline but also \hdashline by \adl@
xhline.

The macro \cline is also modified to set \ad1l@finaldepth to zero. As for the feature of
\ADLnullwidehline, it inserts \vskip-\arrayrulewidth to shift the line up befor drawing,
and \vskip\arrayrulewidth after drawing to cancel the negative skip inserted by \adl@
org@cline.

353

354 %% Horizontal Lines

355

356 \def\hline{\noalign{\ifnumO=‘}\fi

357 \ifadl@zwhrule \vskip-\arrayrulewidth

358 \else \adl@hline\adl@connect\arrayrulewidth \fi
359 \hrule\@height\arrayrulewidth

360 \globalladl@finaldepth\z@

361 \futurelet\@tempa\adl@xhline}

362 \def\cline#1{\noalign{\global\adl@finaldepth\z@

363 \ifadl@zwhrule \vskip-\arrayrulewidth\fi}
364 \adl@org@cline{#1}/

365 \noalign{\ifadl@zwhrule \vskip\arrayrulewidth\fil}}
366

The macro \hdashline calls \adl@hdashline to open the \noalign construct by the
well-known trick {\ifnumO=‘}\fi and then to invoke \adl@ihdashline checking the
existence of its optional argument [(dash)/{gap)]l. Before the invocation, it inserts
\vskip-\arrayrulewidth if \ADLnullwidehline is in effect, or adds connect(w) to the
end of R and RT. Then \adl@ihdashline closes the \noalign by \ifnum0=‘{\fi} to
start the pseudo row for the horizontal dash-line. Before the dash-line is drawn by \adl@
hcline which is also used for \cdashline, all the columns are \span-ned by giving \ad1@

30

\adl@inactivehdl

\adl@xhline

\adl@hline

\cdashline
\adl@cdline
\adl@cdlinea
\adl@cdlineb

columns to \multispan. Finally, the \noalign is opened again and \ad1@xhline is invoked
to check whether \h(dash)line is followed.

If \ADLinactivate is in effect, \adl@ihdashline is \let-equal to \adl@inactivehdl.
This macro simply puts a \hrule discarding its arguments after inserting \vskip
-\arrayrulewidth if \ADLnullwidehline is in effect.

367 \def\hdashline{\adl@hdashline\adl@ihdashline}
368 \def\adl@hdashline#1{\noalign{\ifnum0=‘}\fi

369 \ifadl@zwhrule \vskip-\arrayrulewidth

370 \else \adl@hline\adl@connect\arrayrulewidth \fi

371 \@ifnextchar [%]

372 {#1}%

373 {#1[\dashlinedash/\dashlinegap]}}

374 \def\adl@ihdashline [#1/#2]{\ifnum0=‘{\£i}%

375 \multispan{\adl@columns}\unskip \adl@hcline\z@[#1/#2]7
376 \noalign{\ifnumO=‘}\fi

377 \futurelet\@tempa\adl@xhline}

378 \def\adl@inactivehdl [#1/#2] {\ifadl@zwhrule \vskip-\arrayrulewidth \fi
379 \hrule\@height\arrayrulewidth

380 \futurelet\@tempa\adl@xhline}

381

The macro \adl@xhline is the counterpart of the original \@xhline. This is intro-
duced to check the mixed sequence of \hline and \hdashline, and to add the element
disconnect(s) = (\relax/\doublerulesep) to the end of R* and R by \adl@hline if a
pair of \h(dash)line is found.

382 \def\adl@xhline{\ifx\@tempa\hline \adl@ixhline\fi

383 \ifx\@tempa\hdashline \adl@ixhline\fi

384 \ifnumO=‘{\£fi}}

385 \def\adl@ixhline{\vskip\doublerulesep \adl®@hline\relax\doublerulesep}
386

The macro \adl@hline(cs)(dimen) \global-ly adds the integer value of (dimen) to
\adl@totalheight and adds the element ({cs)/\number(dimen)) to the tail of RY and
RE. The arguments (cs)(dimen) are \adl@connect\arrayrulewidth for connect(w) or
\relax\doublerulesep for disconnect(s).

387 \def\adl@hline#1#2{\Q@tempcnta#2

388 \globalladvance\adl@totalheight\@tempcnta
389 \xdef\adl@rowsL{\adl@rowsL

390 (#1/\number\@tempcnta) ; }%

391 \xdef\adl@rowsR{\adl@rowsR

392 (#1/\number\@tempcnta) ; }}

393

The macro \cdashline at first opens \noalign and then invokes \adl@cdline checking the
existence of its optional argument [{dash)/{gap)]. The macro \adl@cdline first inserts
\vskip-\arrayrulewidth if \ADLnullwidehline is in effect. Then it performs column
\span-ing by the code based on that of \@cline in KTEX-2.09 because ITEX 2¢’s version
will not work with IXTEX-2.09. The main job is done by \adl@hcline after the target
columns are \span-ned by \adl@cdlinea or \adl@cdlineb.

31

\adl@inactivecdl

\adl@hcline

\firsthdashline
\lasthdashline

\adl@defflhdl
\adl@idefflhdl
\adl@firsthdashline
\adl@lasthdashline

If \ADLinactivate is in effect, \adl@cdline is \let-equal to \adl@inactivecdl. This
macro simply calls our own \cline, after closing the \noalign opened by \cdashline.

394 \def\cdashline#1{\noalign{\ifnum0="‘}\fi

395 \@ifnextchar [%]

396 {\adl@cdline [#1]1}%

397 {\adl@cdline[#1] [\dashlinedash/\dashlinegap]}}
398 \def\adl@cdline [#1-#2]{\ifadl@zwhrule \vskip-\arrayrulewidth \fi
399 \globalladl@cla#l\relax

400 \globalladvance\adl@cla\m@ne

401 \ifnum\adl@cla>\z@ \globalllet\@gtempa\adl@cdlinea

402 \else \global\let\@gtempa\adl@cdlineb\fi
403 \globalladl@clb#2\relax

404 \globalladvance\adl@clb-\adl@cla \ifnumO=‘{\fi}

405 \@gtempa{-\arrayrulewidth}}

406 \def\adl@cdlinea{\multispan\adl@cla &\multispan\adl@clb \unskip \adl@hcline}
407 \def\adl@cdlineb{\multispan\adl@clb \unskip \adl@hcline}

408

409 \def\adl@inactivecdl [#1-#2] [#3]{\ifnum0=‘{\fit\cline{#1-#2}}

410

The macro \adl@hcline(w)[(d)/(g)] draws a horizontal dash-line of dash size d and gap
size g for \hdashline and \cdashline in the \span-ned columns by \adl@draw. As we
will discussed in §4.12, the macro requires d and g are passed through \@tempdima and
\@tempdimb, and control sequences (rule), (skip) and (boz) are passed through its argu-
ments to make it usable for both horizontal and vertical lines. Then the vertical space
of w, —\arrayrulewidth for \cdashline, is inserted if it is not 0 (for \hdashline) and
\ADLnullwidehline is not in effect.

411 \def\adl@hcline#1 [#2/#3] {\@tempdima#2\relax \@tempdimb#3\relax

412 \adl@draw\adl@vrule\hskip\hbox \cr
413 \noalign{\globalladl@finaldepth\z@ \ifdim#1=\z0@\else
414 \ifadl@zwhrule\else \vskip#1\fi\fil}}

415

If array is in use, we wish to have dashed counterparts of \first/lasthline named \first/
lasthdashline, which simply call \adl@hdashline with an argument to call \adl@first/
lasthdashline after closing \noalign opened by \adl®@hdashline.

The macros \adl@first/lasthdashline, however, are defined in a tricky manner to replace
\hline in \first/lasthline with;

\adl@hdashline\adl@ihdashline [{dash)/{gap)]

in order to avoid copy-and-replace. To do that, we define \adl@defflhdl and \adl®@
idefflhdl in which the body of \first/lasthline is expanded by \exapndafter and
the parts preceding and following \hline are extracted. Then the preceding part (p), the
calling sequence of \adl@hdashline, and the following part (f) are connected to be the
body of \adl@first/lasthdashline. Thus we define \adl@firsthdashline as follows.

\def\adl@firsthdashline [#1/#2]{}

(p)

\adl@hdashline\adl@ihdashline [#1/#2]

()3

32

\endarray
\endtabular
\endtabular*

\adl@endarray
\adl@rows
\adl@addvl
\adl@vlrowL
\adl@vlrowR
\adl@vlrow

416 \ifadl@usingarypkg

417 \def\firsthdashline{\adl@hdashline{\ifnumO=‘{\fi}\adl@firsthdashlinel}}
418 \def\lasthdashline{\adl@hdashline{\ifnumO=‘{\fi}\adl@lasthdashlinel}}
419

420 \def\adl@defflhd1#1{\def\Qtempa{#1}

421 \expandafter\adl@idefflhdl}
422 \def\adl@ideff1lhd1#1\hline#2\@nil{},
423 \@namedef\Qtempa [##1/##2] {#1\adl@hdashline\adl@ihdashline [##1/##2]#2}}

424 \adl@defflhdl{adl@firsthdashline}\firsthline\@nil
425 \adl@defflhdl{adl@lasthdashline}\lasthline\@nil
426 \fi

427

428 %h"L

4.10 End of Environment

The macros to close the array/tabular environment, \endarray and \endtabular (*),
are modified so that they invoke \adl@endarray to draw vertical lines just before clos-
ing \halign, and \adl@arrayrestore to restore registers and data structures \global-ly
modified in the environment.

429

430 %% End of Environment

431

432 \def\endarray{\adl@endarray \egroup \adl@arrayrestore \egroup}
433 \def\endtabular{\endarray $\egroup}

434 \expandafter\let\csname endtabular*\endcsname\endtabular

435

The macro \adl@endarray at first closes the last row by \crcr. If this \crcr has real

effect, we have to invoke \ad1@@cr to perfrom our own end-of-row operations. We assume

that the \crcr is effective if either \ad1@height or \adl@depth has a non-zero value'“.
Then the rows to draw vertical lines Ly, ..., Ly;

0'1L10'2L2 e Lnflo'nLnO'n+1

are created in \adl@vlrowL and \adl@vlrowR by \adl@makevlrL and \adl@makevlrR. In
the real implementation, Ly = (v, 7k, Ok, &k, Tk, Ok) 1S represented as;

\adlevl{Fy e — Bp 3o &}

Thus \adl@vl is made \let-equal to \relax when the rows are constructed and to
\adl@e@vl when the rows are put.

Since \adl@makevlrL and \adl@makevlrR shares common macros, they conceptually
have the following interface.

\adl@vlrow = \adl@makevlrL/R(\adl@rows: (R or R®),
\adl@currentcolumn: (start column),
\adl@addvl : (macro to add an element))

Thus they are invoked as;

14The author confesses that this rule is not strict and the introduction of a switch could improve the
strictness.

33

\adl@arrayrestore

\adl@vlrowL = \adl@makevrL(\adl@rowsL, 1, \ad1@addvlL)
\adl@vlrowR = \adl@makevrR(\adl@rowsR, \adl@columns, \adl@addvlR)

Finally, after constructed rows for vertical lines are put by \adl@drawvl, a vertical skip
of —\adl@finaldepth is inserted to move back to the last baseline, and then an invisible
\vrule of \adl@finaldepth deep is put to make array/tabular has the depth of the last
real row or zero if it ends with a horizontal line.

436 \def\adl@endarray{\crcr \noalign{

437 \ifdim\adl@height=\z@

438 \ifdim\adl@depth=\z@ \else \adl@@cr\z@ \fi

439 \else \adl@@cr\z@ \fi

440 \let\adl@vl\relax

441 \def\adl@vlrow{}\adl@currentcolumn\@ne

442 \let\adl@rows\adl@rowsL

443 \let\adl@addvl\adl@addvlL

444 \adl@makevlrL \globall\let\adl@vlrowL\adl@vlrow

445 \def\adl@vlrow{}\adl@currentcolumn\adl@columns

446 \let\adl@rows\adl@rowsR

447 \let\adl@addvl\adl@addvlR

448 \adl@makevlrR \globall\let\adl@vlrowR\adl@vlrow

449 \globalllet\adl@vl\adleevl}y

450 \adl@drawvl

451 \noalign{\vskip-\adl@finaldepthl}’

452 \omit\vrule\@width\z@\Gheight\z0\@depth\adl@finaldepth\cr}
453

The macro \adl@arrayrestore restores the values of registers and data structures,

\adl@height, \adl@depth, \adl@currentcolumn, \adl@totalheight, \adl@rowsL, \adl@
rowsR, \adl@colsL and \adl@colsR, saved by \adl@arrayinit.

454 \def\adl@arrayrestore{,

455 \globalladl@height\adl@heightsave

456 \global\adl@depth\adl@depthsave

457 \globalladl@currentcolumn\adl@currentcolumnsave
458 \globalladl@totalheight\adl@totalheightsave

459 \globalllet\adl@rowsL\adl@rowsLsave

460 \global\let\adl@rowsR\adl@rowsRsave

461 \globalllet\adl@colsL\adl@colsLsave

462 \globalllet\adl@colsR\adl@colsRsave}

463

464 %4"L

4.11 Drawing Vertical Lines

Figure 2 shows the conceptual code of \adl@makevlrL. The correspondance of variables in
the code and control sequences in the real implementation is as follows.

R : \adl@rowsL R : \adl@rows R’ : \@tempb A :\adl@vlrowL
I' : \adl@columns < :\adl@currentcolumn
7 : \@tempcnta 0 : \@tempcntb 0 : \adl@dash/\adl@dashcolor
¢ : \adl@gap/\adl@gapcolor H :\adl@totalheight
conn : \ifadl@connected double : \ifadl@doublerule

34

BW W W W W W W W W W NDNDNDNDNNDNNDNR E R 2R R R N N N N N~~~
O © 00 N O U i W NN~ O © 000 O UL W KN O O© W O Uk W O © 0 J O Ot b W N =

—_
NN NG END N NS NS NG NN NN AN N NN SN N G SN N S NN N NI N N N N N NN

R e e e e e e e e e N i e e e e e e e e e e e e e e e e N e e

W~
S

A () R—=RMy—1
while v < I' do begin
T H; B H; 6 (=1, 1); £ (=1, 1);
conn «— false; double — false;; R’ — ()
while R # () do begin
(r,R) «— R
(C,h) —r;
if C = () then
add(r, 8,6,);
elseif C # (connect) begin
<67 C/> =C; <Ca d, g> =6
if ¢ = v then begin
ifd=6 A g =¢ then begin
if =conn then begin
T «— [3; conn < true;
end;
end;
else begin
add(7, 3,5,€);
0 — d; & — g; T — [B; conn +— true;
end;
if C" = ((7,7,7),7) then double < true;
C+—C
end;
else add(r,f,6,¢);
end;
B« B—h; R« (R,{(C,h))
end;
add(r, 3,6,8); R« R;
if double then A «— (A, \hskip\doublerulesep);
else begin

Y+ L

if v > I' then A« (A,\hfil);

else A — (A, \hfil&\omit);
end;

end;

procedure add(T,(3,9,£) begin
if conn then begin
A— (A (B, T —B,0,£)); conn — false;
end;
end;

Figure 2: Conceptual Code of \adl@makevlrL

35

\adl@makevlrL The macro \adl@makevlrL corresponds to the line (2) and (30)—(36). Its right-edge coun-
\adl@makevlrR terpart \adl@makevlrR has the same correspondance but the lines (1)—(2) are;

(1) A (); R RNy I
(2) while v > 0 do begin

and (30)—(35) are;

(30) if double then A < (\hskip\doublerulesep, A);
(31) else begin

(32) Y- 1L

(33) if y=0then A« (\hss, A);

(34) else A — (&\omit\hss, A);

(35) end;

465
466 %% Drawing Vertical Lines

467

468 \def\adl@makevlrL{\adl@makevlr

469 \ifadl@doublerule

470 \edef\adl@vlrow{\adl@vlrow \hskip\doublerulesep}’
471 \let\next\adl@makevlrL

472 \else

473 \advance\adl@currentcolumn\@ne

474 \ifnum\adl@currentcolumn>\adl@columns \let\next\relax
475 \edef\adl@vlrow{\adl@vlrow \hssl}’

476 \else \let\next\adl@makevlrL

477 \edef\adl@vlrow{\adl@vlrow \hss &\omitl}}
478 \fi\fi\next}

479 \def\adl@makevlrR{\adl@makevlr

480 \ifadl@doublerule

481 \edef\adl@vlrow{\hskip\doublerulesep \adl@vlrowl}/,
482 \let\next\adl@makevlrR

483 \else

484 \advance\adl@currentcolumn\m@ne

485 \ifnum\adl@currentcolumn=\z@ \let\next\relax

486 \edef\adl@vlrow{\hss \adl@vlrowl},

487 \else \let\next\adl@makevlrR

488 \edef\adl@vlrow{&\omit \hss \adl@vlrowl}
489 \fi\fi\next}

490

\adl@makevlr The macro \adl@makevlr corresponds to the lines (3)-(4) and (29).

491 \def\adl@makevlr{\@tempcnta\adl@totalheight \@tempcntbl\adl@totalheight

492 \adl@dash\m@ne \adl@gap\m@ne

493 \let\adl@dashcolor\relax \let\adl@gapcolor\relax

494 \adl@connectedfalse \adl@doublerulefalse \def\@tempb{}/
495 \expandafter\adl@imakevlr\adl@rows\@nil;?Y

496 \adl®@addvl

497 \edef\adl@rows{\Q@tempbl}}

498

\adl@imakevlr The macro \adl@imakevlr(r); corresponds to the lines (5)—(6), and the macro \adl@
\adl@iimakevlir iimakevlr({C)/(h)) to (7) and (27).
\adl@endmakevlr

36

\adl@iiimakevlr
\adl@ivmakevlr
\adl@vmakevlr
\adl@endmakevlrcut
\adl@endmakevlrconn
\adl@@connect

499 \def\adl@imakevlr#1;{\def\@tempa{#1}\ifx\@tempa\@nnil \let\next\relax

500

\else \adl@iimakevlr#1\let\next\adl@imakevlr \fi \next}

501 \def\adl@iimakevlr (#1/#2){\let\@elt\adl@iiimakevlr

502
503
504
505
506
507

\let\adl@connect\adl@@connect
\let\adl@endmakevlr\adl@endmakevlrcut

#1\adl@endmakevlr

\let\@elt\relax \let\adl@connect\relax
\advance\@tempcntb-#2\edef \@tempb{\@tempb (\@tempc/#2) ;}}

The correspondance of the lines (8)—(29) is a little bit complicated. As shown above, \ad1@
iimakevlr expands C' attaching the sentinel \adl@endmakevlr.

1. If C # () and C # (connect), C has at least one \@elt(c)(d)(g) which is made \let-
equal to \adl@iiimakevlr by \adl@iimakevlr. Thus the lines (10)—(21) and (25)
are performed by \adl@iiimakevlr.

Then;

(a) if ¢ = v, \@elt becomes \let-equal to \adl@ivmakevlr which corresponds to
(22) in the case of C’ # (). Then \adl@vmakevlr is invoked for (23) and to
eat the sentinel \adl@endmakevlr. If C' = (), \adl@endmakevlrconn is in-
voked, because the sentinel \adl@endmakevlr is made \let-equal to it by \adl@
iiimakevlr, for (23) (i.e. C « ()).

(b) if ¢ # 7y, \adl@vmakevlr is invoked to perform implicit C' < C operation and to
eat the sentinel.

2. If C = (connect), i.e. it has only one element \adl@connect, the macro \adlQ@
connect is invoked because it is \let-equal to \adl@connect. The macro do nothing
but implict C' « C (= (connect)) and eating the sentinel.

3. If C = (), \adl@endmakevlrcut that is \let-equal to the sentinel \adl@endmakevlr
is invoked to perform (8)—(9) and implicit C' «— C (= ()).

508 \def\adl@iiimakevlr#1#2#3#4#5{\1let\C@elt\adl@ivmakevlr \let\next\relax

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

\ifnum#i=\adl@currentcolumn\relax
\let\adl@endmakevlr\adl@endmakevlrconn
\@tempswafalse
\ifnum#2=\adl@dash\relax
\ifnum#3=\adl@gap\relax
\def\@tempa{#4}\ifx\Q@tempa\adl@dashcolor
\def\@tempa{#5}\ifx\@tempa\adl@gapcolor

\@tempswatrue
\fi\fi\fi\fi
\if@tempswa
\ifadl@connected\else
\@tempcnta\@tempcntb \adl@connectedtrue \fi
\else
\adl@addvl
\adl@dash#2\relax \adl@gap#3\relax
\def\adl@dashcolor{#4}\def\adl@gapcolor{#5}%
\@tempcnta\@tempcntb \adl@connectedtrue
\fi

\else

37

\adl@addvlL
\adl@addvlR

\adl@drawvl
\adleevl
\adl@vl@leftskip
\adl@vl@rightskip

528 \adl@addvl

529 \def\next{\adl@vmakevlr\Qelt{#1}{#2}{#3}{#4}{#5}}%
530 \fi\next}

531 \def\adl@ivmakevlr#1{/

532 \ifnum#1=\adl@currentcolumn \adl@doubleruletrue \fi

533 \adl@vmakevlr\@elt{#1}}

534 \def\adl@vmakevlr#1l\adl@endmakevlr{\def\Q@tempc{#1}}

535 \def\adl@endmakevlrcut{\adl@addvl \def\@tempc{}}

536 \def\adl@endmakevlrconn{\def\Q@tempc{}}

537 \def\ad1l@@connect\adl@endmakevlr{\def\@tempc{\adl@connect}}
538

The macro \adl@addvlL corresonds to the lines (38)—(42), i.e. the procedure add. The
macro \adl@addvlR performs simlar operations, but its conceptual code is the following.

(38) procedure add(T,[3,0,£) begin
(39) if conn then begin
(10) A {(B,7 — B,8,€), A); conn — false;
(41) end;
(42) end;
539 \def\adl@addvlL{\ifadl@connected
540 \advance\@tempcnta-\@tempcntb
541 \edef\adl@vlrow{\adl@vlrow
542 \adlevl{\number\@tempcntb}{\number\@tempcntaly,
543 {\number\adl@dash}{\number\adl@gap}%
544 {\adle@dashcolor}{\adl@gapcolor}}/
545 \adl@connectedfalse \fi}
546 \def\adl@addvlR{\ifadl@connected
547 \advance\@tempcnta-\@tempcntb
548 \edef\adl@vlrow{\adl@vl{\number\@tempcntb}{\number\@tempcntaly,
549 {\number\adl@dash}{\number\adl@gap}’
550 {\adle@dashcolor}{\adl@gapcolor}\adl@vlrowl}’
551 \adl@connectedfalse \fi}
552

After the the macros \adl@vlrowL and \adl@vlrowR are constructed, they are expanded to
draw vertical lines by \adl@drawvl. Prior to the expansion, the macro \adl@drawvl glob-
ally defines \ad1@v1@leftskip and \ad1@v1@rightskip, which are the amount of negative
spaces inserted to the left/right of a vertical line, as follows.

\arrayrulewidth/2 if \ifadl@zwrule
\adl@vl@leftskip = ¢ 0 else if leftside
\arrayrulewidth otherwise

\arrayrulewidth/2 if \ifadl@zwrule
\adl@vl@rightskip = ¢ 0 else if rightside
\arrayrulewidth otherwise

That is, if \ADLnulwide is in effect, a vertical line is surrounded by horizontal spaces of
—\arrayrulewidth/2 to adjust the center of the line to the left or right edge of its column.
Otherwise, a horizontal space —\arrayrulewidth is inserted after (before) the line is drawn
to adjust its left (right) edge to the left (right) edge of the column!®.

15Before v1.54, the horizontal spaces was not inserted if \ADLsomewide and thus disconnected lines were
not aligned vertically.

38

\adl@vrule
\adl@hrule

Then the macros \adl@vlrowL and \adl@vlrowR are expanded. These macros will have
\adl@vl, which is made \1let-equal to \ad1@@vl prior to the expansion, to draw a vertical
line. The macro \ad1@@vL(5) (A {(d;) (i) {0c)(Ve) (x; and z. are length and color) draws a
sloid line if 4; = 0 or a dash-line otherwise in a \vbox of A = 7 — (3 high and \raise-s it
by (. The method to draw a dash line in the \vbox is analogous to that for holizontal line
shown in §4.9, except that a line is surrounded by horizontal spaces of \ad1@vl@leftskip
and \adl@vl@rightskip. Coloring gaps is done by draw a vertical rule setting 7. by \set@
color prior to dash line drawing if 7. is not \relax. To color dashes or solid line, \set@
color with ¢, is done if it is not \relax before line drawing.

553 \def\adl@drawvl{}

554 \omit \relax \ifadl@zwvrule

555 \gdef\adl@vl@leftskip{.5\arrayrulewidthl}/,
556 \globalllet\adl@vl@rightskip\adl@vl@leftskip
557 \else \globalllet\adl@vl@leftskip\z®@

558 \globalllet\adl@vl@rightskip\arrayrulewidth
559 \fi \adl@vlrowL \cr

560 \omit \relax \ifadl@zwvrule

561 \gdef\adl@vl@leftskip{.5\arrayrulewidthl}/,
562 \global\let\adl@vl@rightskip\adl@vl@leftskip
563 \else \globalllet\adl@vl@leftskip\arrayrulewidth
564 \globalllet\adl@vl@rightskip\z@

565 \fi \adl@vlrowR \cr}

566

567 \def\ad1@Ov1#1#2#3#4#5#6{\vbox to\z@{\vss\hbox{%

568 \hskip-\adl@vl@leftskip

569 \ifnum#3=\z0\else \def\Q@tempa{#6}\ifx\O@tempa\adl@nocolor\else
570 \raise#1sp\hbox{\let\current@color\@tempa \set@color
571 \vrule height#2sp width\arrayrulewidthl},

572 \hskip-\arrayrulewidth \fi \fi

573 \raise#1sp\vbox to#2sp{

574 \def\@tempa{#5}\ifx\@tempa\adl@ocolor\else

575 \let\current@color\@tempa \set@color \fi

576 \ifnum#3=\z@

577 \hrule height#2sp depth\z@ width\arrayrulewidth
578 \else \Q@tempdima#3sp \Q@tempdimb#4sp

579 \adl@draw\adl@hrule\vskip\vbox

580 \fil}}

581 \hskip-\adl@vl@rightskip}}}

582

583 %L

4.12 Drawing Dash-lines

As explained later, horizontal and vertical lines are drawn by a common macro \adl@draw
to which the length of a dash segment, d, is passed through \@tempdima. The macro also
has an argument that is either \adl@vrule to draw a dash for horizontal lines or \adl@
hrule for vertical. These two macros commonly have one argument (f) to draw a dash of
f x dlong and of \arrayrulewidth wide.

584
585 %% Draw Dash Lines (\adl@vrule/\adl@hrule, \hskip/\vskip, \hbox/\vbox)
586

39

\adl@drawi
\adl@drawii
\adl@drawiii
\adl@draw

\ADLdrawingmode

587 \def\adl@vrule#1{\vrule\@uidth#1\Q@tempdima\@height\arrayrulewidth\relax}
588 \def\adl@hrule#1{\hrule\Gheight#1\@tempdima\@width\arrayrulewidth\relax}

The macro \adl@draw is to draw a horizontal or vertical line. It is \let-equal to one
of \adl@drawi, \adl@drawii and \adl@drawiii according to the drawing mode speci-
fied by \ADLdrawingmode. These three macros have common interface, \@tempdima and
\@tempdimb for the length of dash and gap, d and g, and three arguments (rule), (skip)
and (boz) with which \adl@draw is called in the following manner.

\adl@draw\adl@vrule\hskip\hbox ... horizontal
\adl@draw\adl@hrule\vskip\vbox ... vertical

The drawing methods in three modes have been explained in §4.2. More specifically, \ad1@
drawi for mode 1, to which \adl@draw is \let-equal by default, conceptually performs the
following operations.

(rule){1/2} (skip)(g/2)
\xlearders({boz){(skip)(g/2) (rule){1} (skip)(g/2)}
(skip)(0 plus 1£fil minus 1£il)

(skip)(g/2) (rule){1/2}

The conceptual operations of \adl@drawii for mode 2 are as follows.

(rule){1/2} (skip)(g/2)

(box){(skip)(g/2) (rule){1} (skip)(g/2)} (skip)(—d — g)

\xlearders(box){(skip)(g/2) (rule){1} (skip)(g/2)}
(skip)(0 plus 1fil minus 1£il)

(skip)(—d — g) {bow){{skip)(9/2) (rule} 1} (skip)(g/2)}

(skip)(g/2) (rule){1/2}

The macro \adl@drawiii for mode 3 is quite similar to \adl@drawi except that \xleaders
is replaced by \cleaders. This replacement is done by temporarily \let-ing \xleaders
be equal to \cleaders.

589 \def\adl@drawi#1#2#3{%

590 #1{.5}#2.5\Qtempdimb

591 \xleaders#3{#2.5\Q@tempdimb #1{1}#2.5\@tempdimbl}%

592 #2\z@ plusifil minusifillrelax

593 #2.5\0tempdimb #1{.5}}

594 \def\adl@drawii#1#2#3{}

595 \setbox\adl@box#3{#2.5\0tempdimb #1{1}#2.5\0@tempdimb}’
596 #1{.5}#2.5\Ctempdimb

597 \copy\adl@box #2-\@tempdima #2-\@tempdimb

598 \xleaders\copy\adl@box#2\z@ plusifil minusifillrelax
599 #2-\0tempdima #2-\Q@tempdimb \copy\adl@box

600 #2.5\@tempdimb #1{.5}}

601 \def\adl@drawiii#1#2#3{{\1let\xleaders\cleaders \adl@drawi#1#2#3}}
602 \let\adl@draw\adl@drawi
603

The macro \ADLdrawingmode{(m)} defines the drawing mode by \let-ing \adl@draw be
equal to \adl@drawi if m = 1, and so on. If (m) is neither 1, 2 nor 3, it is assumed as 1.

40

\adl@Array
\adl@Tabular
\adl@Tabularstar
\adl@Longtable

\@notdefinable
\adl@notdefinable

\Array
\Tabular
\Tabular*
\Longtable
\endArray
\endTabular
\endTabular*
\endLongtable

604 \def\ADLdrawingmode#1{\ifcase #17%

605 \let\adl@draw\adl@drawi \or

606 \let\adl@draw\adl@drawi \or

607 \let\adl@draw\adl@drawii \or
608 \let\adl@draw\adl@drawiii \else
609 \let\adl@draw\adl@drawi \fi}
610

611 %%"L

4.13 Shorthand Activation

The macros\adl@Array, \adl@Tabular, \adl@Tabular* and \adl@Longtable start en-
vironments array, tabular, tabular* and longtable respectively, turning \ifadl®@
inactive false to activate dash-line functions. We will \let macros \Array etc. be equal
to them for shorthand activation.

612

613 %% Shorthand Activation

614

615 \def\adl@Array{\adl@inactivefalse \array}

616 \def\adl@Tabular{\adl@inactivefalse \tabular}

617 \def\adl@Tabularstar{\adl@inactivefalse \@nameuse{tabular*}}
618 \def\adl@Longtable{\adl@inactivefalse \longtable}

619

Before making \Array etc. \let-equal to \ad1@Array etc., we have to check if these macros
having too natural names have already used. This check is done by \@ifdefinable that
will call \@notdefinable for the complaint if undefinable. Since we want to complain
with our own warning message, \@notdefinable is temporarily \def-ined so that it simply
\def-ines a macro \adl@notdefinable as empty. Therefore, \adl@notdefinebale will
have some definition if one of \Array, \Tabular, \Tabular* and \Longtable (if longtable
is loaded) cannot be defined, while it will stay undefined otherwise.

620 \begingroup

621 \def\@notdefinable{\gdef\adl@notdefinable{}}

622 \@ifdefinable\Array\relax

623 \@ifdefinable\Tabular\relax

624 \expandafter\@ifdefinable\csname Tabular*\endcsname\relax

625 \ifx\longtable\undefined\else \@ifdefinable\Longtable\relax \fi
626 \endgroup

627

If \adl@notdefinable is \undefined indicating that all \Array etc. are definable, we \let
them be equal to \adl@Array etc. We also \let ending macros \endArray etc. be equal to
\endarray etc. Note that \Longtable and \endLongtable are defined only when longtable
is loaded, and \endLongtable is \def-ined as (not being \let-equal to) \endlongtable
because its definition of our own is not given yet.

Otherwise, we complain with a warning message put by \PackageWarning if it is defined
(i.e. BTEX 2¢) or \@warning otherwise (i.e. ¥TEX-2.09).

628 \ifx\adl@notdefinable\undefined

629 \let\Array\adl@Array
630 \let\Tabular\adl@Tabular

41

\ADLnoshorthanded

\adl@act@arrayclassz
\adl@act@tabclassz
\adl@act@classz
\adl@act@@startpbox
\adl@act@@endpbox
\adl@act@endpbox
\adl@act@cr
\adl@act@argcr
\adl@act@cline
\adl@act@endarray
\adl@act@hline
\adl@act@ihdashline
\adl@act@cdline
\adl@act@@vlineL
\adl@act@@vlineR

631 \expandafter\let\csname Tabular*\endcsname\adl@Tabularstar
632 \let\endArray\endarray

633 \let\endTabular\endtabular

634 \expandafter\let\csname endTabular*\endcsname\endtabular
635 \ifx\longtable\undefined\else

636 \let\Longtable\adl@Longtable

637 \def\endLongtable{\endlongtable}

638 \fi

639 \else

640 \begingroup

641 \ifx\longtable\undefined

642 \def\@tempa{Array and Tabular are not defined because one of them\MessageBreak
643 has been defined}

644 \else

645 \def\@tempa{Array/Tabular/Longtable are not defined because \MessageBreak

646 one of them has been defined}

647 \fi

648 \ifx\PackageWarning\undefined

649 \def\MessageBreak{~"J}

650 \@warning\@tempa

651 \else

652 \let\on@line\empty

653 \PackageWarning{arydshln}\@tempa
654 \fi

655 \endgroup

656 \fi

657

If a user wishes to define an environment named Array or Tabular(*) (or Longtable if
longtable is in use) by him/herself or by loading other packages after arydshin is loaded,
\newenvironment for Array etc. will fail because they have already been undefinable. The
macro \ADLnoshorthanded makes them definable again by \let-ing them and their ending
counterparts be equal to \relax.

658 \def\ADLnoshorthanded{’

659 \let\Array\relax

660 \let\Tabular\relax

661 \expandafter\let\csname Tabular*\endcsname\relax
662 \let\endArray\relax

663 \let\endTabular\relax

664 \expandafter\let\csname endTabular*\endcsname\relax
665 \ifx\longtable\undefined\else

666 \let\Longtable\relax

667 \let\endLongtable\relax \fi}

668

Finally here we define active version of \@arrayclassz named \adl@act@arrayclassz
etc. for \adl@activate (see §4.4). The definitions are simply done by \let-ing \ad1@act@
arrayclassz equal to \@arrayclassz etclS.

669 \let\adlOact@arrayclassz\Qarrayclassz

16 Alternatively, we may define \adl@act@arrayclassz in place of \@arrayclassz but the author chose
this way to minimize the possiblity of enbug.

42

670 \let\adl@act@tabclassz\@tabclassz

671 \ifadl@usingarypkg \let\adl@act@classz\@classz \fi
672 \let\adl@act@@startpbox\@@startpbox
673 \let\adl@act@@endpbox\@@endpbox

674 \let\adl@act@endpbox\@endpbox

675 \let\adl@act@cr\adlQcr

676 \let\adl@act@argcr\adl@argcr

677 \let\adl@act@endarray\adl@endarray

678 \let\adl@act@hline\adl@hline

679 \let\adl@act@ihdashline\adl@ihdashline
680 \let\adl@act@cdline\adl@cdline

681 \let\adl@act@@vlineL\ad1@@vlinelL

682 \let\adl@act@@vlineR\adl@@vlineR

683

684 %h"L

4.14 Compatibility with colortab

\adlecce The package colortab has a macro;

\cce
\LCC(colorspec)\\(rows)\ECC

to color (rows) referring (colorspec). The macro \CC@, the heart of the coloring function,
first makes a box with (rows) using \@preamble to measure the height of (rows), then
makes a row putting a heavy rule of the height in each column with a color command for
the column specified by (colorspec), and finally puts (rows) overlaying them on the colored
rule. Therefore (rows) is processed twice by \CC@ to update \global registers/structures
incorrectly.

Thus we modify \CC@, if the package colortab is provided, to save \global stuffs by
\adl@arraysave before the height measurement and restore them by \adl@arrayrestore
after that.

685

686 %% Compatibility with colortab
687

688 \def\adl@CCe#1#2#3{%

689 \ifcolortab

690 \noalign{/

691 \adl@arraysave

692 \setbox\CT@box=\vbox{#1#3\crcr\egroupl}/,
693 \adl@arrayrestore

694 \CT@dim=\ht\CT@box

695 \global\advance\CT@dim by \dp\CT@box
696 \def\CT@next{}%

697 \futurelet\next\CT@columncolor#2&\@nil}y,
698 \CT@next\cr

699 \noalign{\vskip-\CT@dim}%

700 \fi

701 #3}

702 \ifx\ColortabLoaded\undefined\else
703 \1et\CCO\ad1@CCQ

704 \fi

705

706 %h"L

43

\ifadl@LTfirstpage

\adl@LTpagetotal

\adl@LT@array
\LT@array
\adl@discard

\adl@LTinactivate

4.15 Compatibility with longtable

Making arydshin compatible with longtable is a hard job because a longtable consists of
multiple chunks and each chunk is a distinct \halign. We could draw vertical lines in each
chunks as we do with ordinary array/table. However this straightforward solution should
break dash-lines at invisible borders of chunks and produce awful results.

Therefore, this implementation draws dash-lines in \output routine in which we have
all the rows to be put in a page. The hard part is to know which rows are being put in
\output. This problem is solved by extracting the leading part of R” (\adl@rowsL) and
R (\adl@rowsR) by the height/depth of the table fraction to be put and removing the
part from RE/E,

4.15.1 Initialization
First of all, the following switch and \dimen register are declared.

e \ifadl@LTfirstpage is tested in \output routine to examine if the page being put
has the first fraction of a longtable.

e \adl@LTpagetotal is set to \pagetotal just before the first portion of a longtable is
added to the main vertical list. Since the \box255 has items preceding the \longtable
and its first fraction, we can obtain the height of the first fraction by subtracting \ad1@
LTpagetotal from the height plus depth of \box255.

707

708 %/ Compatibility with longtable: initialization
709

710 \newif\ifadl@LTfirstpage

711 \newdimen\adl@LTpagetotal

712

Next, we skip everything if longtable is not in use, or we have undefined-error when we
refer the definitions in it. Note that since \newif cannot be in the \ifx/\fi construct, the
declarations above are excluded.

713 \ifx\longtable\undefined\else
714

Then we redefine the macro \LT@array, which is the heart of \longtable, saving its orig-
inal definition in \adl@LT@array. The modified \LT@array first calls \adl@arrayinit
to initialize the global data structures, and sets \ifadl@LTfirstpage to true. Then
\adl@idashline and \adl@discard are made \let-equal to its longtable version \adl®@
LTidashline and \relax (to inhibit expansion) respectively. Then the macro calls \adl@
LTinactivate if \adl@inactive is true, and finally calls its original version \adl@LT®
array. Note that since longtable cannot be nested;

e \adl@arraysave in \adl@arrayinit is unnecessary but safe, and thus its invocation
timing is not so sensitive; and

e activator is not required.

Also note that the assignment \adl@ncol to \adl@columns in \adl@arrayinit is void and
thus we will do it afterward.

The macro \adl@LTinactivate first calls \adl@inactivate to do basic inactivation and
then \let-s the following control sequences be equal to their counterparts in longtable.

44

\adlQorg@LT@makeQrow
\LT@make@row

\adl@org@endlongtable
\endlongtable
\adl@org@LT@echunk
\LT@echunk
\adl@LTlastrow

\endlongtable \LT@make@row \LT@echunk \LT@end@hd@ft \LTO@kill
\LT@output

It also make \adl@idashline \let-equal to its inactive version because we need the macro
to find mixed \hline and \hdasnline sequence.

715 \let\adl@LTQarray\LT@array
716 \def\LT@array{\adl@arrayinit \adl@LTfirstpagetrue

717 \let\adl@discard\relax \let\adl@ihdashline\adl@LTihdashline
718 \ifadl@inactive \adl@LTinactivate \fi
719 \adl@LT@array}

720 \def\adl@LTinactivate{\adl@inactivate

721 \let\endlongtable\adl@org@endlongtable
722 \let\LT@make@row\adl@org@LTCmake@row
723 \let\LT@echunk\adl@org@LT@echunk

724 \let\LT@end@hd@ft\adl@org@LT@end@hd@ft
725 \let\LT@kill\adl@org@LT@kill

726 \let\LT@output\adl@org@LT@output

727 \let\adl@ihdashline\adl@LTinactivehdl}
728

The macro \LT@make®@row is redefined for additional initialization which must be done after
the original \LT@array performs its own initialization. First, \LT@make®@row itself is reset
to its original version \adl@org@LT@make@row to initialize stuffs only once, since \LT@make®
row is called repeatedly at each chunk. Next \adl@ncol is assigned to \adl@columns to
give its value calculated in \@mkpream. Then macros to begin/end p-boxes are made \let-
equal to our own version because the original \LT@array has done it with its own version.
Note that \@@startpbox and \@statpbox are \let-equal to our own \adl@LTstartpbox if
array is not in use because with array opening a p-box is not done by \@startpbox but is
embedded in \@preamble. Finally, the original version \ad1@org@LT@make@row is called.

729 \let\adl@org@LT@make@row\LTO@make@row
730 \def\LT@make@row{\let\LT@make@row\adl@org@LT@make@row

731 \adl@columns\adl@ncol

732 \ifadl@usingarypkg\else

733 \let\@@startpbox\adl@LTstartpbox
734 \let\@startpbox\adl@LTstartpbox \fi
735 \let\@Qendpbox\adl@LTendpbox

736 \let\@endpbox\adl@LTendpbox

737 \adl@org@LTOmake@row}

738

739 %% L

The summary of the activation and inactivation specific to longtable is shown in Table 2.

4.15.2 Ending Chunks

When a chunk is closed with \crcr, we have to add the information of the last row to
RE/E = \adl@rowsL/R if the row is not finished by an explicit \\. This is done by
\adl@LTlastrow as we did at the first job of \adl@endarray. Two chunk closing macros,
\endlongtable and \LT@echunk, are modified to call \adl@LTlastrow before its origi-
nal job done by \adl@org@endlongtable and \adl@org@LT@echunk respectively. Note
that \adl@LTlastrow only has \crcr and \noalign and thus another \crcr in origi-
nal \endlongtable and \LT@echunk is no-operation as desired. Also note that \adl@

45

\ad1@org@LT@end@hd@ft
\LT@end@hdoft
\adl@LThfsave

\adl@LTth
\\ad1lOLTth\LT@firsthead
\\adl@LTth\LTGhead
\\ad1l@LTth\LT@lastfoot
\\adl@LTth\LT@foot
\\adl@rowsL\LT@firsthead
\\adl@rowsL\LT@head
\\adl@rowsL\LT@lastfoot
\\adl@rowsL\LT@foot
\\adl@rowsR\LT@firsthead
\\adl@rowsR\LT@head
\\adl@rowsR\LT@lastfoot
\\adl@rowsR\LT@foot

Table 2: Active and Inactive longtable Operations

’ command H active \ inactive
p m b (open)
with array \adl@act@classz \adl@org@classz
—\LT@startpbox —\LT@startpbox
without array || \adl@LTstartpbox \LT@startpbox
p m b (close) \adl@LTendpbox \LT@endpbox
\hline —\adl@act@hline —\@gobbletwo
\hdashline —\adl@LTihdashline | —\adl@LTinactivehdl
—\adl@act@hline —\@gobbletwo
\endlongtable modified version \adl@org@endlongtable
\LT@make@row \adl@org@LT@make@row
\LT@echunk \ad1l@org@LT@echunk
\LT@end@hd@ft \ad1l@org@LT@end0hd@ft
\LT@kill \adl@org@LTGkill
\LTQoutput \adl@org@LT@output

LTlastrow is called twice from \endlongtable, once from \LT@echunk in the original ver-
sion, but it is safe because the first call makes \ad1@height and \adl@depth zero and thus
the second become no-operation.

740

741 %} Compatibility with longtable: end chunk

742

743 \let\adl@org@endlongtable\endlongtable

744 \def\endlongtable{\adl@LTlastrow \adl@org@endlongtable}
745

746 \let\adl@org@LT@echunk\LT@echunk

747 \def\LTQechunk{\adl@LTlastrow \adl@org@LT@echunk}

748

749 \def\adl@LTlastrow{\crcr \noalign{

750 \ifdim\adl@height=\z0@

751 \ifdim\adl@depth=\z@ \else \adl@@cr\z@ \fi
752 \else \adl@@cr\z@ \fi}}
753

Another chunk ending macro is \LT@end@hd@ft(box) to close a header/footer called by
\endfirsthead, \endhead, \endlastfoot and \endfoot with an argument (boz) being
\LT@firsthead, \LT@head, \LT@lastfoot and \LT@foot respectively. In order to maintain
the information of rows RY/f = \adl@rowsL/R of headers/footers separately from the main
one, the modified \LT@end@hd@ft saves them together with \adl@totalheight to weirdly
named macros;

\\ad1@LTth(boz)
\\adl@rowsL({bozx)
\\adl@rowsR(box)

after closing the last row by \adl@LTlastrow. The \string representation of the macros
looks like;

\\adl@LTth\LT@firsthead

46

\adl@org@LTekill
\LT@kill
\adl1@LTkill
\ad1@LTkillend

\LT@hline
\adl@hdashline
\adl@LTihdashline
\adl@LTinactivehdl
\adl@LThdlrow

and so on. The saving operation is done by the macro \adl@LThfsave(box){info) and is
equivalent to;

\global\let\(info){box)={info)

After the saving, three global variables are reinitialized. Calling \ad1@LTlastrow twice,
once from the original version through \LT@echunk is safe as described above.

754 \let\ad1@org@LT@end@hd@f t\LT@end@hdOft
755 \def\LT@end@hd@ft#1{\adl@LTlastrow

756 \noalign{\edef\adl@LTth{\number\adl@totalheight}y,

757 \adl@LThfsave#1\adl@LTth \globalladl@totalheight\z@
758 \adl@LThfsave#1\adl@rowsL\gdef\adl@rowsL{}%

759 \adl@LThfsave#1\adl@rowsR\gdef\adl@rowsR{}}

760 \adl@org@LTO@endChdeft#1}

761 \def\adl@LThfsave#1#2{\expandafter\global\expandafter\let

762 \csname\string#2\string#1\endcsname#2}

763

The additional job for yet another chunk closer \LT@kill to kill a template row is a little
bit harder. Since the row information might have been added by an explicit \\ preceding
\kill, we have to remove it from the tail of \adl@rowsL/R, and subtract its h; from \adl@
totalheight because \kill-ed row may be in header/footer definition. To do that, mod-
ified \LT@kill first ensures the information addition by \adl@LTlastrow, then traverses
\adl@rowsL/R adding its non-last elements to \@tempb by the loop of \ad1@LTkill, and
assigns \@tempb to \adl@rowsL/R globally by \ad1@LTkillend when \ad1@LTkill find the
tail. The macro \ad1@LTkillend also sets the h; of the last element to \@tempcnta, which
is subtracted from \adl@totalheight globally. Finally, the original version \ad1@org@LT®@
kill is called.

764 \let\ad1l@org@LT@kil1l\LT@kill
765 \def\LT@kill{\ad1l@LTlastrow \noalign{

766 \def\@tempb{}\expandafter\adl@LTkill\adl@rowsL\@nil\adl@rowsL
767 \def\@tempb{}\expandafter\adl@LTkill\adl@rowsR\@nil\adl@rowsR
768 \global\advance\adl@totalheight-\@tempcntaly,

769 \adl@org@LTOkill}

770 \def\adl@LTkill#1;#2{\def\@tempa{#21}/,

771 \ifx\@tempa\@nnil\def\next{\ad1OLTkillend#1}%

772 \else\edef\@tempb{\@tempb#1;}\def\next{\adl@LTkill#2}\fi

773 \next}

774 \def\ad1@LTkillend (#1/#2)#3{\global\let#3\Qtempb \@tempcnta#2\relax}
775
776 %h"L

4.15.3 Horizontal Lines and p-Boxes

The macro \LT@hline, longtable version of \hline, is redefined to add pseudo row in-
formation to RY/® and to check mixed sequence of \hline and \hdashline!”. We also
define the macro \adl@LTihdashline [(dash)/(gap)] and its inactive counterpart \adl@
LTinactivehdl as the longtable version of \adl@ihdashline and \adl@inactivehdl.

7In the original longtable, a sequence of three \hline-s are not recognized. This buggy feature is fixed
in this implementation.

47

\adl@LThdline
\adl@LTxhline
\adl@LTixhline

These two macros, the main part of \hdashline, are redefined to make it possible that
\hdashline can be broken into two part by TEX’s page breaker.

These three macros call a common routine \ad1@LThdline after defining \ad1@LThd1lrow
which makes a row of horizontal (dash) line drawn by \multispan and \leaders\hrule or
\adl@hcline[(dash)/{gap)].

Note that \adl@hdashline is redefined here because its version without longtable per-
forms a part of the job done by \adl@LThdline as shown soon.

T

778 %% Compatibility with longtable: horizontal lines and p-boxes
779

780 \def\LT@hline{\noalign{\ifnumO0=‘}\fi

781 \gdef\ad1l@LThdlrow{\multispan{\LT@cols}\unskip

782 \leaders\hrule\@height\arrayrulewidth\hfill\cr}’%
783 \adl@LThdline}

784 \def\adl@hdashline#1{\noalign{\ifnum0=‘}\fi

785 \@ifnextchar [%]

786 {#1}%

787 {#1[\dashlinedash/\dashlinegap] }}

788 \def\adl@LTihdashline [#1/#2]{/

789 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip

790 \adl@hcline\z@ [#1/#2]1}%

791 \adl@LThdline}

792 \def\adl@LTinactivehdl [#1/#2]1{%

793 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip

794 \leaders\hrule\@height\arrayrulewidth\hfill\cr}’
795 \adl@LThdline}

796

The macro \adl@LThdline called by above three macros first inserts a vertical penalty
10000 to inhibit page break between the horizontal line and preceding row. Then it inserts
\vskip-\arrayrulewidth with another break inhibitor if \ADLnullwidehline is in effect,
or adds the pseudo row information connect(\arrayrulewidth) to R%/# by \ad1@hline'®.
Next, it draw a horizontal (dash) line by \ad1@LThdlrow and checks if the following con-
trol sequence is \hline or \hdashline by \futurelet and \adl@LTxhline. If \hline
or \hdashline is the next token, \adl@LTixhline is called to insert a vertical penalty
of —\@medpenalty and a vertical space of \doublerulesep. The macro \ad1@LTixhline
also adds disconnect(\doublerulesep) to R%/f and makes \ad1@LThdlrow void. Other-
wise, \ad1@LThdline inserts a vertical penalty of —\@lowpanalty and a vertical space of
—\arrayrulewidth and draws the horizontal (dash) line again by \adl@LThdlrow. Thus
a page can be broken between two overlaid horizontal (dash) lines'®. Two pseudo row
information, discard(—\arrayrulewidth) for the negative vertical space which may be dis-

carded and connect(\arrayrulewidth) for the second horizontal line, are also added to
RE/R,

797 \def\ad1@LThdline{\penalty\eM

798 \ifadl@zwhrule \vskip-\arrayrulewidth \penalty\@M

799 \else \adl@hline\adl@connect\arrayrulewidth \fi
800 \ifnumO=‘{\fil}}

801 \ad1l@LThdlrow

80r do noting if inactive and thus it is \let-equal to \@gobbletwo.
191f the page is broken, the horizontal line at the beginning of the succeeding page has a width even if
\ADLnullwidehline is in effect.

48

\adl@LTstartpbox
\adl@LTendpbox

\LT@start

802 \noalign{\ifnum0=‘}\fi

803 \futurelet\@tempa\adl@LTxhline}

804 \def\adl@LTxhline{\ifx\@tempa\hline \adl@LTixhline

805 \else\ifx\@tempa\hdashline \adl@LTixhline

806 \else \penalty-\@lowpenalty \vskip-\arrayrulewidth
807 \adl@hline\adl@discard{-\arrayrulewidth}/,

808 \adl@hline\adl@connect\arrayrulewidth

809 \fi\fi \ifnumO=‘{\fi}}

810 \adl@LThdlrow \noalign{\penalty\@M}}

811 \def\adl@LTixhline{\penalty-\@medpenalty \vskip\doublerulesep
812 \adl@hline\relax\doublerulesep \globalllet\adl@LThdlrow\@empty}
813

Macros for opening/closing p-boxes are fairly simple. The macros \ad1@LTstartpbox{(w)}
and \adl@LTendpbox are \let-assigned to \@@startpbox and \@@endpbox by \LTOmake®
row. The former opens a p-box of w wide by our own \adl@act@@startpbox and performs
a footnote related operation introduced by longtable. The latter closes the p-box by our
own \adl@act@@endpbox and also performs the footnote stuffs. Note that if array is in
use, a p-box is opened by codes embedded in \@preamble and its initialization is done by
\@startpbox = \LT@startpbox.

814 \def\adl@LTstartpbox#1{%

815 \adl@act@@startpbox{#1}\let\@footnotetext\LTOp@ftntext}

816 \def\ad1@LTendpbox{\adl@act@@endpbox \the\LT@p@ftn \global\LT@p@ftn{}}
817

818 %4"L

4.15.4 First Chunk

The macro \LT@start which puts (first) head and controls the page break of the first page
is modified for the followings.

e After it inserts a vertical skip \LTpre, \endgraf is performed so that the skip con-
tributes to \pagetotal?’.

o When the \box2 is \vsplit to get first item of the first chunk, \vbadness is saved into
\@tempcnta, set to 10000 to avoid unnecessary underfull message?!, and restored
from \@tempcnta.

e The \dimen register \ad1@LTpagetotal is set to \pagetotal to know the total height
of the items preceding longtable. Since the assignment is performed after the in-
serted \endgraf and the intentional page break, it should have real total height.

e The box \LT@firsthead is put by \copy rather than \box because it is referred in
the \output routine.

This macro does not have inactive counterpart because the modification shown above is
desirable (first two) or not-harmful®? (last two) to the original version.

20This modification is necessary for the original longtable, or it underestimates the room of the first page
and leaves head and foot only.

21This is also necessary for the original version.

22Logically, at least.

49

\adl@org@LT@output
\LT@output

819

820 %% Compatibility with longtable: first chunk

821

822 \def\LT@start{¥

823 \let\LT@start\endgraf

824 \endgraf \penalty\z@ \vskip\LTpre \endgraf

825 \dimen@\pagetotal

826 \advance\dimen@ \ht\ifvoid\LT@firsthead\LT@head\else\LT@firsthead\fi
827 \advance\dimen@ \dp\ifvoid\LT@firsthead\LT@head\else\LT@firsthead\fi
828 \advance\dimen@ \ht\LT@foot

829 \dimen@ii\vfuzz \@tempcnta\vbadness

830 \vfuzz\maxdimen \vbadness\@M

831 \setbox\tw@\copy\z@

832 \setbox\tw@\vsplit\tw@ to \ht\Qarstrutbox

833 \setbox\tw@\vbox{\unvbox\twe}y,

834 \vfuzz\dimen@ii \vbadness\@tempcnta

835 \advance\dimen@\ht

836 \ifdim\ht\Q@arstrutbox>\ht\tw@\Q@arstrutbox\else\two\fi

837 \advance\dimen®@\dp

838 \ifdim\dp\@arstrutbox>\dp\tw@\@arstrutbox\else\tw@\fi

839 \advance\dimen@ -\pagegoal

840 \ifdim \dimen@>\z@\vfil\break \fi

841 \globalladl@LTpagetotal\pagetotal

842 \global\@colroom\@colht

843 \ifvoid\LT@foot\else

844 \advance\vsize-\ht\LT@foot

845 \global\advance\@colroom-\ht\LT@foot

846 \dimen@\pagegoal\advance\dimen@-\ht\LT@foot\pagegoal\dimen@
847 \maxdepth\z@

848 \fi

849 \copy\ifvoid\LT@firsthead \LT@head \else \LT@firsthead \fi

850 \output{\LT@output}}

851

852 %% L

4.15.5 Owutput Routine

The output routine is the heart of the longtable compatible implementation. The macro
\LT@output which is set to \output by \LT@start is modified from its original (and thus
inactive) version \adl@org@LT@output as follows.

853

e Three fractions of the original version to compile the final output image of the table
portion into \box255 or the main vertical list are modified to set the image into
\box255 unconditionally and to call \ad1@LTdraw(foot)(tail) which is the real heart
of the compatible implementation. The argument (foot) is \LT@foot or \LT@lastfoot
according to the portion of the longtable to be output. The argument (tail) is \vss
if the last item is it which is not included in \box255 yet, or \@empty otherwise. Since
\adl@LTdraw builds final output image drawing vertical (dash) lines in \box255, it is
put to the main vertical list if the longtable portion is the last one.

e Since the boxes \LT@head, \LT@foot and \LT@lastfoot are referred in \ad1@LTdraw,
they are put by \copy rather than \box.

50

\adl@LTdraw
\adl@LTinit
\adl@LTheadL
\adl@LTheadR
\adl@LTfootL
\adl@LTfootR

854 %% Compatibility with longtable: output routine
855

856 \let\adl@org@LT@output\LT@output

857 \def \LT@output{%

858 \ifnum\outputpenalty <-\@Mi

859 \ifnum\outputpenalty > -\LT@end@pen

860 \LT@err{floats and marginpars not allowed in a longtable}\@ehc
861 \else

862 \setbox\z@\vbox{\unvbox\@cclv}y,

863 \ifdim \ht\LT@lastfoot>\ht\LT@foot

864 \dimen®@\pagegoal

865 \advance\dimen@-\ht\LT@lastfoot

866 \ifdim\dimen@<\ht\z@

867 \setbox\@cclv\vbox{\unvbox\z@\copy\LT@foot1}/,
868 \adl@LTdraw\LT@foot\vss

869 \@makecol

870 \@outputpage

871 \setbox\z@\vbox{\copy\LT@head}%

872 \fi

873 \fi

874 \global\@colroom\@colht

875 \global\vsize\@colht

876 \setbox\@cclv\vbox{\unvbox\z@

877 \copy\ifvoid\LT@lastfoot\LT@foot\else\LT@lastfoot\fi}},
878 \adl@LTdraw\LT@lastfoot\@empty \box\@cclv
879 \fi

880 \else

881 \setbox\@cclv\vbox{\unvbox\@cclv\copy\LT@foot}/,
882 \adl@LTdraw\LT@foot\vss

883 \@makecol

884 \@outputpage

885 \global\vsize\@colroom

886 \copy\LTG@head

887 \fi}

888

The macro \ad1@LTdraw(foot)(tail) draws vertical (dash) lines onto the image in \box255.
First it measures the total height H (\adl@totalheight) of longtable rows in \box255
and the total height H, (\@tempdima) of its body which consists of the rows without the
header and footer, as follows where Hoss, Hy, and H; are the height plus depth of \box255
and the effective header and footer of the page respectively.

T — { \adl@LTpagetotal if \ifadl@LTfirstpage
0 otherwise
\topskip glue if longtable is the first item of the page
t= { (~(\ifadlefirstpage A T>0))
0 otherwise
H=Hy;—t—T

H,=H - H), — H,
The hard part is to measure ¢ because it is not \topskip but that minus the first box of
\box255. Thus we do not measure ¢ but remove it from the box by the following tricky

way. First we copy \box255 items into \box0 adding a \hrule of 1sp high as its first item.
Then \boxO0 is \vsplit to 1sp setting \splittopskip to 0. Since the \topskip glue is the

o1

first item of \box255 and the \vsplit discards it at the breakpoint, \box0 must have all
the items in \box255 lead by 0 (\splittopskip) glue rather than \topskip glue. Thus
the height of \box0 is Has5 — t.

Subtraction of Hj, and H; is done by the macro \ad1@LTinit{(hf)}(bozx), where (hf)
is head or foot and (boz) is one of \LT@firsthead, \LT@head and (foot) (\LT@lastfoot
or \LT@foot). This macro also copies the contents of weirdly named structure such as
\\adl@rowsL\LT@head into \adl@LTheadL and so on?? if (boz) is not void. Otherwise,
\adl@LTheadL etc. is kept to their initial value, \@empty.

Next, we make rows for vertical lines by \adl@makevlrL/R after extracting the leading

part of RE/® corresponding to the body by the macro \adl@LTsplit(RL/RMR{:/R) <RJLC/R>,

where Ri/ R and RJE/ R are \ad1l@LTheadL and so on. Since the macro defines \adl@rows

given to \adl@makevlL /R to the sequence of RS/R, the extracted part of RL/F and RL/R,
the rows for vertical lines for all the rows including header and footer are build in \adl@
vlrowL and \adl@vlrowR as in the ordinary case without longtable.

Then the rows are put into \box0 by calling \LT@bchunk with \adl@drawvl (line draw-
ing) and \LT@save@row (column widths adjustment), saving/restoring counters \LT@rows
and \c@LT@chunks which \LT@bchunk globally updates. Since we refer potentially imma-
ture \LT@save@row here, some weird looking vertical lines could be drawn but the result
after convergence should be correct. Finally, the contents of \box255 followed by the ver-
tical lines in \box0 are put back into \box255 keeping its original depth and adding (tail)

(\vss or nothing) to its end.

889 \def\adl@LTdraw#1#2{/

890 \@tempswatrue

891 \ifadl@LTfirstpage\ifdim\adl@LTpagetotal>\z@\Q@tempswafalse \fi\fi
892 \if@tempswa

893 \setbox\z@\vbox{\hrule heightisp\unvcopy\@cclv}
894 \splittopskip\z@

895 \setbox\@ne\vsplit\z@ tolsp\relax

896 \@tempdima\ht\z®@

897 \else \@tempdima\ht\@cclv \fi

898 \advance\@tempdima\dp\@cclv

899 \adl@totalheight\@tempdima

900 \let\adl@LTheadL\@empty \let\adl@LTheadR\Qempty

901 \let\adl@LTfootL\@empty \let\adl@LTfootR\Qempty

902 \ifadl@LTfirstpage

903 \global\adl@LTfirstpagefalse

904 \advance\@tempdima-\adl@LTpagetotal

905 \adl@totalheight\@tempdima

906 \ifvoid\LT@firsthead

907 \adl@LTinit{head}\LT@head

908 \else \adl@LTinit{head}\LT@firsthead

909 \fi

910 \else \adl@LTinit{head}\LT@head \fi

911 \ifvoid#17

912 \adl@LTinit{foot}\LT@foot

913 \else \adl@LTinit{foot}#1\fi

914 \let\adl@vl\relax \def\adl@discard{\adl@connectl}/,

915 \def\adl@vlrow{}\adl@currentcolumn\@ne

916 \adl@LTsplit\adl@rowsL\adl@LTheadL\ad1@LTfootL

23Copying by \edef can be replaced by \let with many \expandafter but it is not comprehensible.

52

\adl@LTsplit
\adl@LTxsplit
\adl@LTrowrelax
\adl@LTrowdiscard
\adl@LTysplit
\adl@LTisplit
\adl@LTiisplit
\adl@LTsplitend

917 \let\adl@addvl\adl@addvlL

918 \adl@makevlrL \let\adl@vlrowL\adl@vlrow

919 \def\adl@vlrow{}\adl@currentcolumn\adl@columns

920 \adl@LTsplit\adl@rowsR\adl@LTheadR\ad1l@LTfootR

921 \let\adl@addvl\adl@addvlR

922 \adl@makevlrR \let\adl@vlrowR\adl@vlrow

923 \let\adl@vl\adleevl

924 \@tempcnta\LT@rows

925 \LT@bchunk \adl@drawvl

926 \LT@save@row\cr \egroup \setbox\@ne\lastbox \unskip \egroup
927 \global\advance\c@LT@chunks\m@ne

928 \global\LT@rows\@tempcnta

929 \@tempdima\dp\@cclv

930 \setbox\@cclv\vbox{\unvbox\@cclv \box\z@ \vskip-\@tempdima
931 \hrule\@width\z@\@height\z@\@depth\@tempdima#2}}
932 \def\adlO@LTinit#1#2{\ifvoid#2\else

933 \advance\@tempdima-\csname\string\ad1@LTth\string#2\endcsname sp/
934 \expandafter\edef\csname adlOLT#1L\endcsname{7

935 \csname\string\adl@rowsL\string#2\endcsnamel}/,

936 \expandafter\edef\csname adl@LT#1R\endcsname{

937 \csname\string\adl@rowsR\string#2\endcsname}\fi}
938

The macro \adl@LTsplit(RL/R><R,Ll/R><RJE/R> moves leading elements in RY/% into R’

(\adl@rows) until total heights of the elements summed in h (\@tempdimb) reaches to Hj
(\@tempdima)?* by a straightforward loop with the macros \ad1@LTisplit to fetch the
i-th element and \adl@LTiisplit to get h;. Before moving, however, we have to remove
discardable item(s)?® from the top of RY/E. Since an element for a discardable item is
disconnect (\relax) or discard (\adl@discard), we check the first part of the element by
\ifx-comparison with \ad1@LTrowrelax and \ad1@LTrowdiscard whose bodies are \relax
and \adl@discard if the longtable portion does not have a header (R,f/R is \@empty).
Otherwise, the discardable item was not discarded because the first item of the page is not
it but the header.

Note that since moving from RY/% to R’ is done by \edef and \adl@discard is \def-
ined as \adl@connect in \adl@LTdraw, non-discarded discard transforms into connect in
R’. Also note that since the remaining part of R*/% is \def-ined as the body of \@tempb
which is globally \let-assigned to RY/F again, \adl@discard survives in the new RF/%,

939 \def\adlO@LTsplit#1#2#3{\def\adl@rows{}\@tempdimb\z@

940 \expandafter\adl@LTxsplit#1\@nil;?

941 \edef\adl@rows{#2\adl@rows#3}/

942 \global\let#1\@tempb}

943 \def\ad1@LTxsplit#1;{\def\Ctempa{#1}/

944 \ifx\@tempa\@nnil \def\@tempb{}\let\next\relax

945 \else\ifx\adl@LTheadL\@empty \def\next{\adl@LTysplit#11}7,
946 \else \def\next{\adl@LTisplit#1;}\fi \fi

947 \next}

948 \def\adl@LTrowrelax{\relax}
949 \def\adl@LTrowdiscard{\adl@discard}
950 \def\ad1@LTysplit (#1/#2){\def\Ctempa{#1}’

24 Although h must become Hj, exactly in usual case, we stop the loop when h > H to avoid accidental
overrun in unusual cases.
25Must be only one but the implementation allows two or more.

93

951
952
953
954

\ifx\@tempa\adl@LTrowrelax \let\next\adl@LTxsplit
\else\ifx\@tempa\adl@LTrowdiscard \let\next\adl@LTxsplit
\else \def\next{\adl@LTisplit (#1/#2);}\fi \fi

\next}

955 \def\ad1@LTisplit#1;{\def\@tempa{#1}/

956
957
958
959
960

\ifx\@tempa\@nnil \def\@tempb{}\let\next\relax
\else\ifdim\@tempdimb<\@tempdima

\adl@LTiisplit#1\let\next\adl@LTisplit
\else \def\next{\adl@LTsplitend#1;}\fi \fi
\next}

961 \def\adl@LTiisplit (#1/#2){\edef\adl@rows{\adl@rows (#1/#2);1}/

962 \advance\Q@tempdimb#2sp}

963 \def\ad1l@LTsplitend#1;\@nil;{\def\Qtempb{#1;}}
964 \fi

965

966 %% L

4.16 Compatibility with colortbl

The implementation to make arydshin compatible with colortbl consists of the following
three (almost independent) issues.

Cell coloring is the easiest part because it does not affect dash line drawing. Another

reason of the easiness is that colortbl packs each cell in a box to measure its height for
painting in the modified version of \@classz. Thus we do not need to code \@classz
for both of colortbl and arydshin, but may sneak our own height/depth measurement
into \@classz of colortbl. Almost everything we have to pay attention to is the
compatibility of the initialization and finalization of colortbl and arydshln.

Horizontal line coloring is relatively easy because it is almost enough to insert coloring

macro \CT@arc@ before the line drawing. A little bit complicated part is the gap
coloring which is done by drawing a solid line of gap color before dash line is drawn.

Vertical line coloring is the hardest part but almost everything is done in previous sec-

tions to attach dash/gap color to each vertical line segment e} in the list C* and Cf?
of the i-th row information r;. What we do here is to fix the bugs of \arrayrulecolor
and \doublerulesepcolor in colortbl implementation and to add \dashgapcolor. If
you put \arrayrulecolor in >{...} construct to specify the color of the vertical
lines following the construct as the manual of colortbl says, you will have an error
message “Misplaced \noalign” because the macro is expanded with \noalign in a
column body. Even if you somehow remove \noalign to avoid the error, you will
have a mysterious line coloring as follows:

e If you have \arrayrulecolor before the \array/\tabular starts, \arrayrule
color in the preamble has no effect to vertical lines but decides the color of
horizontal lines except for those at the top of the environment. Additional
\arrayrulecolor at the beginning of a row has no effect to vertical lines (as
expected) but decides horizontal lines following it (also as expected). The effect
of \doublerulesepcolor is same as \arrayrulecolor.

e Otherwise, i.e. without \arrayrulecolor outside the environment, \arrayrule
color in the preamble decides the color of vertical and horizontal lines ex-
cept for verticals preceding columns in the first row and horizontals at the top

o4

\CTQarc@
\adl@dashgapcolor

\adl@org@inactivate
\adl@org@activate
\adl@inactivate
\adl@activate
\CT@setup

\@endpbox

of the environment. Additional \arrayrulecolor at the beginning of a row
decides all the vertical and horizontal lines following it. On the other hand,
\doublerulesepcolor acts as if \doublerulesepcolor{white} is done outside
the environment.

The reason of the mysterious behavior is as follows. An \arrayrulecolor, which
globally \def-ines a macro \CT@arc@ with a body containing \color, in the preamble
is not expanded nor evaluated in the preamble construction phase but done when the
first (and succeeding) row is build. On the other hand, \CT@arc@ attached to vertical
line drawing is expanded in the preamble construction phase. Thus if \CT@arc@ has
been defined before the environment starts, vertical lines are colored following the
outside definition. Otherwise, since \CT@arc@ is \let-equal to \relax, it remains
unchanged in the preamble construction phase and expanded when each row is build
referring its definition that \arrayrulecolor modifies in the row building phase.
Since the macro \CT@drsc@ defined by \doublerulesepcolor is examined if it is
\relax or not in the preamble construction phase, \doublerulesepcolor in the
preamble has no effect regardless the existence of the outside definition.

Thus we have to expand and evaluate \arrayrulecolor and \doublerulecolor in
the preamble construction phase to define \CT@arc@ and \CT@drsc@. We also have
to initialize \CT@arc@ as an expandable but non-operative token (e.g. a macro with a
body of \relax as we do) to make it is expanded in the preamble construction phase
rather than the row building.

4.16.1 Initialization, Cell Coloring and Finalization

First of all, we initialize the macro \CT@arc@, which will be \def-ined as \color to specify
the color of solid lines and dash segments by \arrayrulecolor, with a body of \relax
because it will be referred by the vertical line drawing process even if colortbl is not in use.
We also initialize the macro \ad1@dashgapcolor for the color of gaps of dash lines similarly.
Note that these macros are not \let-equal to \relax but have bodies of \relax so that
they are replaced with \relax in the preamble construction phase rather than surviving
with their own name.

967

968 %% Compatibility with colortbl
969

970 \def\CT@arc@{\relax}

971 \def\adl@dashgapcolor{\relax}

Next we examine if colortbl is in use by \@ifpackageloaded, and skip everything if not, or
we have some errors especially when array is not in use.

972 \@ifpackageloaded{colortbl}\@tempswatrue\@tempswafalse
973 \if@tempswa

Then we redefine \adl@inactivate and \adl@activate referring their original version
\adl@org@inactivate and \adl@org@activate so that they make \CT@setup \let-equal
to its original version \adl@CT@setup if \ADLinactivate is in effect, or to our own ver-
sion \adl@act@CT@setup which will be defined soon. New \adl@activate also inactivates
\@endpbox because our own one for column height /depth measuremnt is inappropriate with
colortbl as explained soon.

95

\ad1l@CT@setup
\CT@setup
\adl@act@CT@setup

\adl@activatepbox

\adl@CT@start
\CT@start
\adl@dashgapcolor@save
\ad1@CT@end

\CT@end

\endarray

\endArray

974 \let\adl@org@inactivate\adl@inactivate

975 \let\adl@org@activate\adl@activate

976 \def\adl@inactivate{\adl@org@inactivate \let\CT@setup\adl@CT@setup}
977 \def\adl@activate{\adl@org@activate \let\CT@setup\adl@act@CT@setup
978 \let\@endpbox\adl@org@endpbox}

979

Cell coloring is done by \@classz preamble of colortbl in which a column is packed in
\box0. On the other hand, our own \@classz one with array packs the column in \adl@
box so that we measure its height and depth. Thus we have choices; to insert height/depth
measurement into colrotbl’s version; or to insert coloring into our own version. Since the
code of height/depth measurement is much simpler than the coloring, we choose the first
way. Thus the macro \ad1@act@CT@setup, which is \1let-equal to \CT@setup and is invoked
from \@classz preamble after the column is packed into \box0O, measures the height and
depth of \box0 and sets \ad1@height and/or \adl@depth to them if they break the records
as \ad1@@colhtdp does with \adl@box, after it invokes its original version \ad1@CT@setup.
Note that we compare \adl@height with the height of \box0 plus \minrowclearance
because it is the real height. Also note that we could insert the measurement code into
the modified version of colortbls’s \@classz placing it just before the \box0 is put where
\htO plus \minrowclearance is caluculated, but did not because the author wished to
make it clear that \@classz is modified only for the bug fix of \arrayrulecolor and
\doublerulesepcolor (and to introduce \dashgapcolor).

980 \1let\ad1@CTOsetup\CT@setup
981 \def\CT@setup{\adl@CT@setup

982 \@tempdima\ht\z@ \advance\@tempdima\minrowclearance

983 \ifdim\adl@height<\@tempdima \globalladl@height\@tempdima \fi
984 \ifdim\adl@depth<\dp\z@ \globalladl@depth\dp\z@\fi}

985 \let\adl@act@CT@setup\CT@setup

986

Another job for cell coloring is to make \CT@z@color (x € {cell, column,do}) \let-equal
to \relax before the body of \multicolumn is put so that the \columncolor in the envi-
ronment preamble does not affect the \span-ned column. Note that resetting \CT@cell®@
color will be unnecessary (but safe) because it is always reset after its invocation. Also
note that resetting \CT@row@color in colortbl’s \multicolumn is a buggy feature because
it should be effective, and thus we remove it. Although we have our own \multicolumn
for dash lines, we keep it unchanged. Instead we redefine \adl@activatepbox, which is
usually \relax with array, to do the color resetting to minimize recoding.

987 \def\adl@activatepbox{\let\CT@cell@color\relax

988 \let\CT@column@color\relax
989 \let\CT@do@color\relax}
990

Yet another job is the save/restore of color information at the beginning and end of the
environment. Since this is done by \CT@start and \CT@end, we modify them to save/
restore \adl@dashgapcolor to/from \adl@dashgapcolor@save referring their original ver-
sion \adl@CT@start and \adl@CT@end. We also modify our own \endarray and its short-
hand active version \endArray so that \CT@end is invoked at the end of environment. Note
that we may not modify \endtabular because it refers \endarray. Also note that \CT®@
start is invoked from \@tabarray which we keep unchanged.

o6

\hline
\adl@inactivehdl
\adl@ixhline

\adl@ihdashline
\adl@act@ihdashline
\adl@cdline
\adl@act@cdline

\adl@hclinesetup
\adl@cdlinea
\adl@cdlineb

991 \let\adl@CT@start\CT@start

992 \def\CT@start{\ad1@CT@start \let\adl@dashgapcolor@save\adl@dashgapcolor}
993 \1et\ad1@CT@end\CT@end

994 \def\CT@end{\ad1l@CT@end \globall\let\adl@dashgapcolor\adl@dashgapcolor@save}
995 \def\endarray{\adl@endarray \egroup \adl@arrayrestore \CT@end \egroup}

996 \ifx\adl@notdefinable\undefined \let\endArray\endarray \fi

997

4.16.2 Horizontal Line Coloring

To color \hline and inactivated \hdashline, we modify our own \hline and \adl@
inactivehdl inserting the line coloring macro \CT@arc®@ before drawing by \hrule and
pushing the coloring/drawing into a group. We also modify \adl@ixhline to draw a col-
ored horizontal rule of \doublerulesep wide with the color defined in \CT@drsc@ if it is
not \relax, rather than to insert a vertical skip. Note that the \cline coloring is done by
colortbl’s \cline renamed as \adl@org@cline and invoked from our own one.

998 \def\hline{\noalign{\ifnumO="‘}\fi

999 \ifadl@zwhrule \vskip-\arrayrulewidth

1000 \else \adl@hline\adl@connect\arrayrulewidth \fi

1001 {\CT@arc@ \hrule\@height\arrayrulewidthl}y,

1002 \globalladl@finaldepth\z@

1003 \futurelet\@tempa\adl@xhline}

1004 \def\adl@inactivehdl [#1/#2] {\ifadl@zwhrule \vskip-\arrayrulewidth \fi

1005 {\CT@arc@ \hrule\Gheight\arrayrulewidth}/

1006 \futurelet\@tempa\adl@xhline}

1007 \def\adl@ixhline{{\ifx\CT@drsc@\relax \vskip \else

1008 \CT@drsc@\hrule\@height \fi \doublerulesepl/

1009 \adl@hline\relax\doublerulesep}
To draw a horizontal dash line with colored dashes and also colored gaps, we drastically
modified \adl@ihdashline for \hdashline and \adl@cdline for \cdashline. First, they
invoke \adl@hclinesetup that makes the prefix of a \multispan-ned row from the first
to last columns for \hdashline or given columns for \cdashline. Then the line is drawn

by the modified version of \adl@hcline. We have to declare these macros are active ones
again.

1010 \def\adl@ihdashline [#1/#2]{\adl@hclinesetup\@ne\adl@columns

1011 \adl@hcline\z@[#1/#21%
1012 \noalign{\ifnum0="‘}\fi
1013 \futurelet\@tempa\adl@xhline}

1014 \let\adl@act@ihdashline\adl@ihdashline

1015 \def\adl@cdline [#1-#2] {\ifadl@zwhrule \vskip-\arrayrulewidth \fi
1016 \adl@hclinesetup{#1}{#2}%

1017 \adl@hcline{-\arrayrulewidthl}}

1018 \let\adl@act@cdline\adl@cdline

The macro \adl@hclinesetup(f)(t) makes the prefix of a \multispan-ned row from the
column f to t and \global-ly defines it as \@gtempa. This is done by a code very similar to
original \adl@cdline (and thus IATEX-2.09’s \cline) but the invocation of \adl@hcline
is removed form \adl@cdliena and \adl@cdlineb, one of which is \@gtempa.

1019 \def\adl@hclinesetup#1#2{\global\adl@cla#l\relax
1020 \globalladvance\adl@cla\m@ne

o7

\adl@hcline
\adl@paintdashgap

\arrayrulecolor
\CT@arc®@
\doublerulesepcolor
\CT@drscQ@
\dashgapcolor
\adl@dashgapcolor
\adl@defcolor
\adl@idefcolor
\adl@noalign
\nodashgapcolor

1021 \ifnum\adl@cla>\z@ \global\let\@gtempa\adl@cdlinea

1022 \else \global\let\@gtempa\adl@cdlineb\fi
1023 \globalladl@clb#2\relax
1024 \globalladvance\adl@clb-\adl@cla \ifnumO=‘{\fi}}

1025 \def\adl@cdlinea{\multispan\adl@cla &\multispan\adl@clb \unskip}
1026 \def\adl@cdlineb{\multispan\adl@clb \unskip}

The modified version of \ad1@hcline({w)[{d)/{g)] draws a colored horizontal dash line of
dash size d and gap size g and insert vertical skip of w. First it \span-s columns by \@
gtempa and checks if the body of \adl@dashgapcolor is something other than \relax. If
S0, i.e. it has \color, \adl@paintdashgap is invoked to draw a horizontal rule of \color by
\leaders as the background of the dash line, to insert \nobreak (for longtable) a negative
space for canceling the width of the rule, and to \span the columns again. Then \adl®@
hcline draws the colored dash line, over the background if the gaps are colored, by inserting
\CT@arc@ before the invocation of \adl@draw.

1027 \def\adl@hcline#1 [#2/#3]{\@gtempa

1028 \ifx\adl@dashgapcolor\adl@nocolor \else \adl@paintdashgap \fi
1029 {\@tempdima#2\relax \Q@tempdimb#3\relax

1030 \CT@arc@ \adl@draw\adl@vrule\hskip\hbox}\cr

1031 \noalign{\globalladl@finaldepth\z@ \ifdim#1=\z@\else

1032 \ifadl@zwhrule\else \vskip#1\fi\fi}}

1033 \def\adl@paintdashgap{{\adl@dashgapcolor

1034 \leaders\hrule\@height\arrayrulewidth\hfill}\cr

1035 \noalign{\penalty\@M \vskip-\arrayrulewidth}\@gtempa}

1036

4.16.3 Vertical Line Coloring

A bug of colortbl’s \arrayrulecolor and \doublerulesepcolor is that they are defined
like;

\ifdim\baselineskip=\z@ \noalign \fi{\gdef\CT@arc@{\color...}}

This aims to do \noalign{\gdef...} in array/tabular and do {\gdef. ..} outside but has
two problems: First, if they are in >{...} construct, they are expanded with \noalign
inappropriately when the argument of > is expanded. Second, they may appear at
a place where \baselineskip is 0 but is outside of array/tabular and will cause the
misplaced \noalign error. To solve the second problem, we introduced \adl@noalign
which is set to \noalign in the environment by our own \@array, and \relax out-
side. We also introduced \adl@defcolor(cs)(opt) for the common job to define (cs) as
\color with (opt), in \noalign if necessary, by \adl@idefcolor. Thus \arrayrulecolor
and \doublerulesepcolor are modified to define \CT@arc@ and \CT@drsc@ using \adl@
defcolor, and our own \dashgapcolor is defined similarly to define \adl@dashgapcolor.
Another macro \nodashgapcolor to nullify \dashgapcolor is also defined with \adl@
noalign to reset \adl@dashgapcolor to \relax

1037 \def\arrayrulecolor{\adl@defcolor\CT@arc@}

1038 \def\doublerulesepcolor{\adl@defcolor\CT@drsc@}

1039 \def\dashgapcolor{\adl@defcolor\adl@dashgapcolor}

1040 \def\adl@defcolor#1#2#{\adl@idefcolor{#1}{#2}}

1041 \def\adl@idefcolor#1#2#3{\adl@noalign{\gdef#1{\color#2{#3}}}}
1042 \let\adl@noalign\relax

o8

\@classz
\adl@act@classz
\adl@org@classz

\adl@def@extract
\adl@extract@arc
\adl@extract@arc@b
\CT@arc@
\adl@extract@drsc
\adl@extract@drsc@b
\CT@drsc@
\adl@extract@dgc
\adl@extract@dgc@b
\adl@dashgapcolor

1043 \def\nodashgapcolor{\adl@noalign{\gdef\adl@dashgapcolor{\relax}}}
1044

The tougher bug of colortbl is the expansion timing of \arrayrulecolor and \dobulerule
sepcolor in a >-argument. We have to modify \@classz to extract them from \toks
\@tempcnta as its original version does for \columncolor. Thus we inserted the invoca-
tion of \adl@extract@arc for \arrayrulecolor, \adl@extract@drsc for \doublerulesep
color, and \adl@extract@dgc for \dashgapcolor just after the invocation of \CT@
extract. Note that the other part of \@classz is not modified logically, but done for
author’s preference of indentation. Also note that both \adl@act@classz and \adl@org®@
classz are \let-equal to the modified \@classz because we have to be bug free even if
\ADLinactive is in effect.

1045 \def\@classz{\@classx

1046 \@tempcnta\count@ \prepnext@tok

1047 \expandafter\CTQ@extract\the\toks\@tempcnta\columncolor!\@nil

1048 \expandafter\adl@extract@arc\the\toks\@tempcntalarrayrulecolor!\@nil
1049 \expandafter\adl@extract@drsc

1050 \the\toks\@tempcnta\doublerulesepcolor!\@nil

1051 \expandafter\adl@extract@dgc\the\toks\@tempcnta\dashgapcolor!\@nil
1052 \@addtopreamble{’,

1053 \setbox\z@\hbox\bgroup\bgroup

1054 \ifcase \@chnum

1055 \hskip\stretch{.5}\kern\z@

1056 \d@llarbegin

1057 \insert@column

1058 \d@llarend\hskip\stretch{.5}%

1059 \or \d@llarbegin \insert@column \d@llarend \hfill

1060 \or \hfill \kern\z@ \d@llarbegin \insert@column \d@llarend
1061 \or $\vcenter

1062 \@startpbox{\@nextchar}\insert@column \@endpbox $%
1063 \or \vtop \@startpbox{\@nextchar}\insert@column \@endpbox
1064 \or \vbox \@startpbox{\@nextchar}\insert@column \@endpbox
1065 \fi

1066 \egroup\egroup

1067 \begingroup

1068 \CT@setup

1069 \CT@column@color

1070 \CT@row@color

1071 \CT@cell@color

1072 \CT@do@color

1073 \endgroup

1074 \@tempdima\ht\z@

1075 \advance\@tempdima\minrowclearance

1076 \vrule\@height\@tempdima\@width\z@

1077 \unhbox\z@},

1078 \prepnext@tok}

1079 \let\adl@act@classz\@classz
1080 \let\adl@org@classz\@classz
1081

The definitions of \adl@extract@r (z € {arc,drsc,dgc}) are quite similar to each other.
For example \adl@extract®@arc is defined as follows.

99

\LT@hline
\adl@LTihdashline
\adl@LTinactivehdl
\adl@LTixhline

\def\adl@extract@arc#l\arrayrulecolor#2#3\0nil{%
\if '#2\toks\@tempcnta{#1}\let\@tempa\relaxy,
\else\if [#2%]
\def\@tempa{\adl@extract@arc@b{#1}#3\0@nill}},
\else \def\CT@arc@{\color{#2}}%
\def\@tempa{\adl@extract@arc#1#3\0nil}j,
\fi\fi \@tempal}
\def\adl@extract@arc@b#1#2]#3{%
\def\CT@arc@{\color [#2]{#3}}%
\adl@extract@arc#1}

This code extracts all the occurrences of \arrayrulecolor [{m)]1{(c)} from the token reg-
ister and \def-ines \CT@arc@ as \color [{m)]1{(c)}. Note that \CT@extract does a similar
job for \columncolor but it mistakingly ignores the possibility that the token register has
two or more \columncolor?®. Anyway, if we copy the code above and replace ‘@arc’ with
‘@drsc’, \arrayrulecolor with \doublerulesepcolor, and \CT@arc@ with \CT@drsc@, we
will have \ad1l@extract@drsc(@b) for \doublerulesepcolor. The code for \ad1l@extract@
dgc(@b) will be also obtained similarly. However, having three relatives for a almost com-
mon job is too awful. Thus we introduce;

\adle@def@extract(key)(umac)(cmac)

to define the macros \adl@extract@key and \adl@extract@key@b for the user interface
macro (umac) in which a color macro (c¢mac) is defined with \color. For example, we will
obtain \adl@extract@arc(@b) shown above by;

\adl@def@extract{arc}\arrayrulecolor\CTQarc@

Note that \color is made \relax in the preamble construction phase by colortbl’s
\@mkpream and regain its proper meaning after the phase.

1082 \def\adl@def@extract#1#2#3{/,

1083 \expandafter\def\csname adl@extract@#1\endcsname##1#2##2##3\0nil{Y
1084 \if ! ##2\toks\@tempcnta{##1}\let\Qtempa\relax

1085 \else\if [##2}]

1086 \def\@tempa{\Onameuse{adl@extract@#10b}{##1}##3\0nill}},
1087 \else \def#3{\color{##2}1}/

1088 \def\@tempa{\OGnameuse{adl@extract@#1}##1##3\0nil}y,
1089 \fi\fi \@tempa}

1090 \expandafter\def\csname adl@extract@#1@b\endcsname##1##2]##3{J

1091 \def#3{\color [##2] {##3}}%

1092 \@nameuse{adl@extract@#1}##1}}

1093 \adl@def@extract{arc}\arrayrulecolor\CT@arc@

1094 \adl@def@extract{drsc}\doublerulesepcolor\CT@drsc®@
1095 \adl@def@extract{dgc}\dashgapcolor\adl@dashgapcolor
1096

4.16.4 Compatibility with longtable

Yet another compatiblity issue is to cope with both longtable and colortbl. We redefine
\LT@hline and \LT@inactivehdl in order to put \CT@arc®@ before line drawing and to
push them in a group. Modified \ad1@LTidashline first invokes \adl@hclinesetup and
open \noalign because it is closed by \adl@hclinesetup. The contents of \ad1@LThd1lrow

26Fixing this bug is not our business.

60

for \ad1@LTidashline is simply \adl@hcline because it does \multispan now. The macro
\adl@LTixhline is modified to paint the \doublerulesep gap by \leaders\hrule with
color of \CT@drsca if it is not \relax.

1097 \ifx\longtable\undefined\else
1098 \def\LT@hline{\noalign{\ifnumO=°}\fi

1099 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip{\CT@arc@
1100 \leaders\hrule\@height\arrayrulewidth\hfill}\crl}J,
1101 \adl@LThdline}
1102 \def\adl@LTihdashline [#1/#2]{\adl@hclinesetup\@ne\adl@columns
1103 \noalign{\ifnumO=‘}\fi
1104 \gdef\adl@LThdlrow{\adl@hcline\z@ [#1/#2]}7
1105 \ad1l@LThdline}
1106 \def\adl@LTinactivehdl [#1/#2]{%
1107 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip{\CTQarc@
1108 \leaders\hrule\@Gheight\arrayrulewidth\hfill}\cr}J
1109 \adl@LThdline}
1110 \def\adl@LTixhline{%
1111 \ifx\CT@drsc@\relax \gdef\adl@LThdlrow{\noalign{
1112 \penalty-\@medpenalty \vskip\doublerulesepl}}
1113 \else \gdef\adl@LThdlrow{\noalign{\penalty\@M}/,
1114 \multispan{\LT@cols}\unskip{\CT@drsc@
1115 \leaders\hrule\@height\doublerulesep\hfill}\cr}\fi
1116 \ifnumO=‘{\fi}\ad1l@LThdlrow \noalign{\ifnumO=‘}\fi
1117 \adl@hline\relax\doublerulesep \global\let\adl@LThdlrow\@empty}
1118 \fi
1119 \fi

Acknowledgments

The author thanks to Monty Hayes who gave the author the opportunity to make this style,
and Weimin Zhang and Takahiro Kubota who pointed out bugs in early versions. He also
thanks to the following people; Sebastian Rahtz and Graham Williams who kindly invited
the style to TEX CTAN and online catalogue compiled by Graham; Peter Ehrbar who
showed the style was incompatible with array and kindly accepted the offer to be an alpha-
user of v1.4 alone; Zsuzsanna Nagy who reported another incompatibility problem with
colortab; Ralf Heydenreich who reported the bug causing that glues in a column have no
effect; Yaxin Liu who reported the incompatibility bug of array and \ADLinactivate; Craig
Leech who reported the incompatibility problem with longtable, which was also reported
by Uwe Jehmlich, Torge Thielemann and Florian Weig, and have waited for two years and
a half (!) for the solution; and Klaus Dalinghaus who reported yet another incompatibility
with colortbl; Morten Hggholm who reported the bug of m-type columns of array which had
not manifested in five (I!) years since the author realesed the first array-compatible version.

The base implementation of array and tabular environments, part of which the author
gives new definitions referring original ones, are written by Leslie Lamport as a part of
KTEX-2.09 and BTEX 2¢ (1997/12/01) to which Johannes Braams and other authors also
contributed. The author also refers array package (v2.3m) written by Frank Mittelbach and
David Carlisle; colortab package (v0.9) written by Timothy van Zandt; and longtable (v4.10)
and colortbl (v0.1j) packages written by David Carlisle; to make the style compatible with
those packages.

61

Index

Ttalicized number refers to the page where the specification and usage of corresponding
entry is described, while underlined is for the implementation of the entry. To find a
control sequence, remove prefixes \@, \adl@ and \ifadl@ from its name if it has one of

them.
Symbols

............................... 4
O 4
\\adl@LTth\LT@firsthead 46, 52
\\adl@LTth\LT@foot 46, 52
\\adl@LTth\LT@head 46, 52
\\adl@LTth\LT@lastfoot 46, 52
\\adl@rowsL\LT@firsthead 46, 52
\\adl@rowsL\LT@foot 46, 52
\\adl@rowsL\LT@head 46, 52
\\adl@rowsL\LT@lastfoot 46, 52
\\adl@rowsR\LT@firsthead 46, 52
\\adl@rowsR\LT@foot 46, 52
\\adl@rowsR\LT@head 46, 52
\\adl@rowsR\LT@lastfoot 46, 52

A

NAC 6
\adl@act@@endpbox 19, 42, 49
\adl@act@@startpbox 19, 42, 49
\adl@act@@vlinelL 19, 42
\adl@act@@vlineR 19, 42
\adl@act@argcr 19, 42
\adl@act@arrayclassz 19, 42
\adl@act@cdline 19, 42, 57
\adl@act@classz 19, 42, 59
\adl@act@cline 19, 42
\adl@act@cr 19, 42
\adl@act@CT@setup 56
\adl@act@endarray 19, 42
\adl@act@endpbox 19, 42
\adl@act®@hline 19, 42
\adl@act@ihdashline 19, 42, 57
\adl@act@tabclassz 19, 42
\adl@activate 18, 55
\adl@activatepbox 27, 56
\@addampiii... 21
\adl@addvl 33, 36, 37, 52
\adl@addvlL 38, 52
\adl@addvlR 38, 52
\ADLactivate 6, 14
\ADLdrawingmode 5, 40
\ADLinactivate 6, 14
\ADLnoshorthanded 6, 42
\ADLnullwide 5,13
\ADLnullwidehline 7,14
\ADLsomewide 5,13

62

\ADLsomewidehline 7, 14
\afterassignment 20
\adl@argarraydashrule 21, 22, 23, 27, 28
\adl@argcr 18, 19, 29, 42
NATTAY .« . 41
Array (environment) 6
\array 41
array (environment) 4
array (package) 3,6
\@array 16, 58
\@RATTAYt 16
\adl@Arrayo... 41
\adl@array 16
\@arrayclassz 18, 19, 23, 42
\adl@arraydashrule 21, 22, 23, 27, 28
\adl@arrayinit 17, 44
\adl@arrayrestore 33, 34, 43
\@arrayrule 21, 22
\adl@arrayrule 21, 22, 23, 27, 28
\arrayrulecolor 6, 16, 58
\arrayrulewidth 5
\adl@arraysave 17, 43
\@arstrutbox 9, 29
B
\adl@box 14, 19, 22, 23, 26, 40
C
\c@LT@chunks 52
NCC@ . .\ o 43
\adl@CCO@c.viirern... 43
\cdashline 4, 31
\adl@cdlinea 31, 57
\adl@cdline 18, 19, 31, 42, 57
\adl@cdlineb 31, 57
\cellcolort 6
\@chclassviiii... 24
\N@Cla . .. 15
\adl@cla 15, 31
\adl@class@iiiorvii 22,23, 24
\adl@class@start 22, 23, 23
N@CLaASSV . oot i 24
\adl@classyiii 24
\adl@classvfordash 24
\@classz 18, 19, 22, 42, 59
\NOCIb .. 15
\adl@clb 15, 31

\cleadersouiiiiiii... 40
\cline 4, 30, 42, 57
\@cline 31
\adl@colhtdp 19, 20, 23, 25, 26, 26
\adl@@colhtdp 25, 56
\coloriii... 7,23, 25
colortab (package) 3,6
colortbl (package) 3,6
\adl@colsL 17, 29, 34
\adl@colsLsave 17, 34
\adl@colsR 17, 29, 34
\adl@colsRsave 17, 34
\columncolor 6
\adl@columns 14, 20, 34, 45
\adl@connect 17, 29, 30, 36, 48
\adl@@connect 37
\ifadl@connected 13, 34, 38
counters:

LTchunksize 7
\adl@cr 18, 19, 29, 42
\adl@@cr 29, 33, 45
\CT@arc@ 20, 23, 55, 57, 58, 59
\CT@cell@cOloTuuuuuunnn.. 56
\CT@column@color 56
\CT@Ao@COlOr, 56
\CT@Arsc@ 57, 58, 59
\CT@endc.iiiiuuinenn.. 56
\adl@CT@end0.... 56
\CT@row@coloroo... 56
\CT@setup 55, 56
\adl@CTO@Ssetupouvvuennn.. 56
\CT@startuuiiuuunnen.. 56
\adl@CT@start 56
\current@color 25
\adl@currentcolumn

..... 15, 17, 20, 21, 27-29, 33, 34, 52
\adl@currentcolumnsave 15,17, 34
D
\adl@dash 15, 34, 38
\adl@dashcolor 25
\dashgapcolor 7, 16, 58
\adl@dashgapcolor@save 56
\adl@dashgapcolor 20, 23, 55, 58, 59
\dashlinedash 4, 13, 30
\dashlinegap 4, 13, 30
\adl@def@extract 59
\adl@defcolor 58
\adl@defflhdl 32
\adl@depth 14, 17, 19, 29, 33, 34, 45
\adl@depthsave 14,17, 34
\adl@discard 17, 29, 44, 48, 53
\documentstyle 3
\ifadl@doublerule 13, 34

63

\doublerulesepcolor 6, 16, 58
\adl@draw 32, 38, 40, 58
\adl@drawi 40
\adl@drawii0.... 40
\adl@drawiii 40
\adl@drawvl 33, 38, 52
E
\EAC . . 6
N@elt . .o it 17, 36
\ENAC . .. 6
\endArray 41, 56
\endarray 33, 56
\adl@endarray 18, 19, 33, 42
\endfirsthead 46
\endfoot 46
\endhead 46
\endlastfoot 46
\endLongtable 41
\endlongtable 44, 45
\adl@endmakevlr 36
\adl@endmakevlrconn 37
\adl@endmakevlrcut 37
\adl@endmbox 20, 22, 26
\@endpbox 18, 19, 26, 42, 45, 55
\@@endpbox 18, 19, 26, 42, 45, 49
\endTabular 41
\endtabular 33
\endTabular* 41
\endtabular* 33
environments:
Array o 6
Longtable 7
Tabular 6
AYTAY o v e e e 4
longtable 7,17, 44
tabular 4
\everyvbox 16
\adl@everyvbox 15, 16
\adl@extract@arc@b 59
\adl@extract@arc 59
\adl@extract@dgc@b 59
\adl@extract@dgc 59
\adl@extract@drsc@b 59
\adl@extract@drsc 59
\extrarowheight 6
F
\adl@finaldepth 14, 29, 30, 32, 33
\@finalstrut 26
\firsthdashline 4, 32
\adl@firsthdashline 32
\firsthline 6, 32

\adl@gap 15, 34, 38
\adl@gapcolor 25
H
\adl@hcline 30, 31, 32, 47, 58
\adl@hclinesetup 57
\hdashline 4, 30
\adl@hdashline 30, 32, 47
\hdashlinegap 13
\hdashlinewidth 13
\adl@height 14, 17, 19, 29, 33, 34, 45
\adl@heightsave 14,17, 34
\hline 4, 30, 47, 57
\adlGhline 18, 19, 30, 31, 42, 48
\adl@hrule0.0.... 39
I
\adl@idefcolor 58
\adl@idefflhdl 32
\@ifdefinable 41
\@ifpackageloaded 55
\adl@ihdashline 18, 19, 30, 32, 42, 44, 47, 57
\adl@iiimakevlr 37
\adl@iimakevlr 36
\adl@imakevlr 36
\adl@inactivate 18, 44, 55
\adl@inactivecdl 18, 32
\adl@inactivehdl 18, 31, 47, 57
\ifadl@inactive 13, 44
\adl@inactivevl 18, 26
\adl@@ivline 25
\adl@ivmakevlr 37
\adl@ixhline 57
L
\@lastchclass 23
\lasthdashline 4, 32
\adl@lasthdashline 32
\lasthline 6, 32
ALCC .« ottt e 6, 43
\ifadl@leftrule 13, 20, 23
\Longtable 41
Longtable (environment) 7
\longtable 41
longtable (environment) 7,17, 44
longtable (package) 3,7, 44
\adl@Longtable 41
\@lowpenalty 48
ALT@ArTaY . . . e vvvte et 44
\adlOLTOarray 44
\LT@bchunk 52
\LT@echunk 44, 45
\LT@end@hd@ft 44, 46

64

\LTefirsthead 46, 49, 50, 52
\LT@foot 46, 50, 52
\LT@head 46, 50, 52
\LT@hline 47, 60
\LT@kill 44, 47
\LT@lastfoot 46, 50, 52
\LT@make@row 44, 45
\LTQOUtputc..vou... 44, 50
ALTOQTOWS . . v v oot ettt e e e 52
\LT@save@row 52
\LT@start0.0.... 49
\LT@startpbox 45, 49
LTchunksize (counter) 7
\adlOLTdrawouuuuinn.. 51
\adl@LTendpbox 45, 49
\ifadlOLTfirstpage 44, 51
\adl@LTfootL 51
\adl@LTfootR 51
\adl@LThdline 48
\adl@LThdlrow 47
\adl@LTheadL 51
\adl@LTheadR 51
\adl@LThfsave 46
\adl@LTihdashline 44, 47, 60
\adlOLTiisplit 53
\adl@LTinactivate 44
\adl@LTinactivehdl 44, 47, 60
\adlOLTinit 51
\adl@LTisplito v veeinen . 53
\adl@LTixhline 48, 60
\adlOLTkill 47
\adl@LTkillend 47
\adlOLT1astrow 45
\adl@LTpagetotal 44, 49, 51
\adl@LTrowdiscard 53
\adl@LTrowrelax 53
\adl@LTsplitvvvviinine . 53
\adl@LTsplitend 53
\adl@LTstartpbox 45, 49
\adl@LTthvoon... 46
\adl@LTxhline 48
\adl@LTxsplit v . 53
\adlOLTysplit 53
M
\adl@makevlr 36
\adl@makevlrL 33, 36, 52
\adl@makevlrR 33, 36
\adl@mcaddamp 27
\adl@mcargarraydashrule 27, 28
\adl@mcarraydashrule 27, 28
\adl@mcarrayrule 27, 28
\@medpenalty 48
\MessageBreak 41

\@mkpream 20
\adl@mkpream 20
\multicolumn 4, 27, 56
N
\NAC . ..o 6
\adl@ncol 14, 20, 21, 23, 45
\newcolumntype 6
\@nextchar 24
\adl@noalign 16, 58
\adl@nocoloru.o... 25
\nodashgapcolor 7, 58
\@notdefinable 41
\adl@notdefinable 41
(0}
\adl@org@@endpbox 15, 18
\adl@org@@startpbox 15, 18
\adl@org@activate 55
\adl@org@arrayclassz 15, 18
\adl@org@classz 15, 18, 59
\adl@org@cline 15, 18, 30, 31
\adl@org@endlongtable 44, 45
\adl@org@endpbox 15, 18
\adl@org@inactivate 55
\adl@org@LT@echunk 44, 45
\adl@org@LT@end@hd@ft 44, 46
\adl@org@LT@kill 44, 47
\adl@org@LT@make@row 44, 45
\adl@org@LT@output 44, 50
\adl@org@tabclassz 15, 18
\output, 44
P
packages:
AYTAY o ot e 3,6
colortab 3,6
colortbl 3,6
longtable 3,7, 44
\PackageWarning 41
\adl@paintdashgap 58
\adl@preamble 27
\adl@preaminit 20, 25, 26
\adl@putlrc 22,23, 23
R
\rowcolor 6
\adl@rows 33, 34, 52, 53
\adl@rowsL 17, 29, 31, 33, 34, 44, 46, 52
\adl@rowsLsave 17, 34
\adl@rowsR 17, 29, 31, 33, 34, 44, 46, 52
\adl@rowsRsave 17, 34
S
\Set@colori.ia... 38

65

\adl@setcolor 25
\adl@startmbox 20, 22, 26
\@startpbox 26, 45, 49
\@@startpbox 18, 19, 26, 42, 45, 49
T
\@tabarray 16
\@tabclassz 18, 19, 23, 42
\Tabularouuuuuenon.. 41
Tabular (environment) 6
\tabular 41
tabular (environment) 4
\Tabular*cuuuuiiine... 41
\tabular* 41
\adl@Tabular0.... 41
\adl@Tabularstar 41
\@tempcnta 15
\@tempdima 14
\@tempdimb 14
\@tempswa 13
\@testpach 21, 22
\adl@totalheight . 15,17, 29, 31, 34, 46
\adl@totalheightsave 15,17, 34
U
\usepackageciin.n 3
\ifadl@usingarypkg 13, 21, 27, 28
A%
\adl@vl@leftskip 38
\adl@vl@rightskip 38
\adl@vl 38, 52
\adl@evl 38, 52
\adl@vlinelL 18-20, 20, 23, 25, 26
\adl@@vlineL 18, 19, 25, 42
\adl@vlineR 18-20, 20, 23, 25, 26
\adl@@vlineR 18, 19, 25, 42
\adlOvlrow 33, 34, 38, 52
\adl@vlrowL 33, 34, 38, 52
\adl@vlrowR 33, 34, 52
\adl@vmakevlr 37
\adl@vrule 32, 39
W
\@warning 41
X
\@Xargarraycr 28
\@XArTayCr 28
\adl@xarraydashrule 23
\@xhlinet 31
\adl@xhline 30, 31
\xleadersoiiiiiiia... 40
\@xtabularcr 28

\@yargarraycr

\ifadl@zwhrule
28 \ifadl@zwvrule

66

Change History

v1.0
General: The style was bornonagoodday 1
v1.05
General: Cope with \\ with negative optional vertical space. 1
vl.l
General: Save and restore the \catcode for ‘@". 1
v1.2-1
General: Add this document. 1
v1.2-2
General: Cope with BXTEX 2e.o o 1
v1.2-3
General: Allow mixture of vertical solid- and dash-lines. 1
v1.2-4
General: Add the feature of explicit dash/gap specification. 1
v1.2-5
General: Fix some bugs and change codes. 1
v1.3
\adl@activatepbox: \def-s for \adl@mcarrayrule etc. are enclosed in a group. 27
v1.4-1
General: Make compatible with array package and add new features. 1
v1.4-2
General: The following are changes of this document. 1
General: The history on the compatibility with array package. 3
General: Explanation of package loading isadded. 3
General: Description of \first/lasthdashline isadded. 4
General: Description of the real width of vertical lines is added. 5
General: Description of drawing mode is added. 5
General: Description of (in)activation is added. 6
General: Description of characters and commands of array package is added. 6
General: Description about ‘!’ of array package is added. 8
General: Reference to the section for drawing mode is added. 8
General: Description on minimum length is added. 8
General: Reference to the performance tuning section is added. 8
General: The title of section 4.1 is changed. 9
General: \hfil is replaced with \hss taking the possibility of negative wide columns into
ACCOUNL. . . . 9
General: Section 4.12 isadded. 39
General: Section 4.13 is added. 41
General: Thank to more people. 61
v1.4-3-1
General: The following are for the general compatibility with array. 1
\ifadl@usingarypkg: Introduced to know if array is loaded. 13
\adl@ncol: Introduced for new column counting in preamble construction. 14
\adl@everyvbox: Introduced for a tricky modification of \@array. 15
\adl@array: Introduced to save original definition of \@array. 16
\@array: Drastically modified to avoid copy-and-modify. 16
\@Qarray: Introduced because array uses it. 16
\adl@arrayinit: Modified for new column counting in preamble construction. 17
\@mkpream: Modified for new column counting and control sequence redefinition. 20
\@addamp: Modified for new column counting in preamble construction. 21
\@testpach: The version for array is introduced. 21
\@classz: Introduced because array uses it. 22

67

\adl@class@start: Introduced for class number identification. 22

\adl@class@iiiorvii: Introduced for class number identification. 22
\adl@class@start: Introduced for class number identification. 23
\adl@class@iiiorvii: Introduced for class number identification. 23
\adl@arrayrule: Modified to replace \adl@columns with \adl@ncol. 23
\adl@arraydashrule: Modified to replace \adl@columns with \adl@ncol. 23
\adl@argarraydashrule: Modified to replace \adl@columns with \adl@ncol. 23
\adl@argarraydashrule: Modified to pretend p or @ depending on if array is in use. ... 23
\adl@xarraydashrule: Modified to refer \adl@class@start rather than BTEX’s 6. 23
\adl@colhtdp: Initialized by calling \adl@preaminit. 26
\adl@vlineL: Initialized by calling \adl@preaminit. 26
\adl@vlineR: Initialized by calling \adl@preaminit. 26
\@endpbox: Introduced because array uses it. 26
\multicolumn: Modified for several reason. 27
\adl@mcaddamp: Introduced for the complaint on multiple columns if with array. 27
\adl@activatepbox: Introduced to do nothing if with array. 27
\adl@mcargarraydashrule: Modified to pretend p or @ depending on if array is in use. . 28
\@xarraycr: The version for array is introduced. 28
v1.4-3-2
General: The following are to control the effective width of vertical lines. 1
\ifadl@zwvrule: Introduced to indicate vertical lines have null width. 13
\ADLnullwidehline: Introduced to make vertical lines null wide. 14
\ADLsomewidehline: Introduced to make vertical lines \arraydashline wide. 14
\adl@xarraydashrule: Modified to add invisible rule of \arrayrulewidth wide if \ADLsome
Wide. . 23
\adl@evl: Modified to make vertical line null wide only if \ADLnullwide. 38
v1.4-3-3
General: The following are for inactivation of dash-line functions. 1
\ifadl@inactive: Introduced to indicate dash-line functions are inactive. 13
\adl@org@arrayclassz: Introduced to restore \@arrayclassz. 15
\adl@org@tabclassz: Introduced to restore \@tabclassz. 15
\adl@org@classz: Introduced to restore \@classz. 15
\adl@org@@startpbox: Introduced to restore \@@startpbox. 15
\adl@org@@endpbox: Introduced to restore \@@endpbox. 15
\adl@org@endpbox: Introduced to restore \@endpbox. 15
\adl@org@cline: Introduced to restore \cline. 15
\adl@arrayinit: Modified to call \adl@inactivate. 17
\adl@inactivate: Introduced to inactivate \@arrayclassz etc. 18
\adl@inactivevl: Introduced to emulate ‘:” and ; by |., 26
\adl@inactivehdl: Introduced to emulate \hdashline by \hline. 31
\adl@inactivecdl: Introduced to emulate \cdashline by \cline. 32
\adl@Array: Introduced as the body of \Array. 41
\adl@Tabular: Introduced as the body of \Tabular. 41
\adl@Tabularstar: Introduced as the body of \Tabular*. 41
\adl@notdefinable: Introduced to check if \Array etc. are definable. 41
\Array: Introduced as the always-active \array. 41
\Tabular: Introduced as the always-active \tabular. 41
\Tabular*: Introduced as the always-active \tabular*. 41
\endArray: Introduced to \end the environment Array. 41
\endTabular: Introduced to \end the environment Tabular. 41
\endTabular*: Introduced to \end the environment Tabular*. 41
\ADLnoshorthanded: Introduced to nullify macros for shorthand activation. 42
v1.4-3-4
General: The following are for drawing mode to cope with the bug of \xlearders. 1

68

\adl@hcline: Modified to use \adl@draw. 32

\ad1l@@vl: Modified to use \adl@draw.ttt 38
\adl@vrule: Introduced to draw a dash for horizontal lines in \adl@draw. 39
\adl@hrule: Introduced to draw a dash for vertical lines in \adl@draw. 39
\adl@drawi: Introduced as \adl@draw in mode 1. 40
\adl@drawii: Introduced as \adl@draw in mode 2. 40
\adl@drawiii: Introduced as \adl@draw inmode 3. 40
\adl@draw: Introduced as the mode and axis independent line drawing macro. 40
\ADLdrawingmode: Introduced to specify drawing mode. 40
v1.4-3-5
General: The following are to implement dashed version of \firsthline and \lasthline
Of array. . . 1
\hdashline: Modified to make \adl@hdashline usable for \first/lasthdashline. 30
\adl@hdashline: Modified to be usable for \first/lasthdashline. 30
\adl@ihdashline: Introduced as the substitute of old \adl@hdashline. 30
\firsthdashline: Introduced as the dashed version of \firsthline. 32
\lasthdashline: Introduced as the dashed version of \lasthline. 32
\adl@defflhdl: Introduced for the tricky definition of \adl@first/lasthdashline. ... 32
\adl@ideff1lhdl: Introduced for the tricky definition of \adl@first/lasthdashline. .. 32
\adl@firsthdashline: Introduced as the body of \firsthdashline. 32
\adl@lasthdashline: Introduced as the body of \lasthdashline. 32
v1.4-3-6
General: The following are to fix the bug by which the depth of array/tabular was always
ZETO. © v v it e e e e 1
\adl@finaldepth: Introduced to measure the depth of the last row. 14
\adl@org@cline: Introduced to refer original version in modified \cline. 15
\adl@@cr: Modified to set \adl@finaldepth. 29
\hline: Modified to set \adl@finaldepth to zero. 30
\cline: Modified to set \adl@finaldepth to zero. 30
\adl@endarray: Modified to set the depth of array/tabular to \adl@finaldepth. 33
v1.4-3-7
General: The following are to rename macros for \cdashline. 1
\cdashline: Modified to call renamed \adl@cdline.c.0....... 31
\adl@cdline: Renamed and modified to call renamed \adl@cdlinea/b. 31
\adl@cdlinea: Renamed. 31
\adl@cdlineb: Renamed. e 31
v1.4-3-8
General: The following are to cope with very narrow or negative wide columns. 1
\adl@makevlrL: Modified to replace \hfil with \hss to prevent drawing vertical lines widen
COlUMNIS. . . . o 36
\adl@makevlrR: Modified to replace \hfil with \hss to prevent drawing vertical lines widen
COIUIMIS. . . . ot 36
v1.4-3-9
\adl@arrayinit: The bug of saving \adl@colsR is fixed. 17
v1.4-4
General: Released to CTAN. ... e 1
v1.5-1
General: The following are for the compatibility with colortab. 1
General: The history on the compatibility with colortab package. 3
General: Caution about loading order of colortab is added. 3
General: Section 2.7 isadded. 6
General: Description of colortab commands is added. 6
General: Caution about \AC/\EAC pair for vertical line coloring is added. 8
\adl@arrayinit: Use new macro \adl@arraysave to save registers/structures. 17

69

\adl@arraysave: Introduced to use in modified \CC@ of colortab.
\CC@: Modified to save/restore globals before/after height measurement.
v1.5-2
General: The following are for bug fix of \adl@putlrc.
\adl@colhtdp: The pseudo-formal description of (put-lrc) is modified.
\adl@putlrc: \adl@putlrc must do \unhbox\adl@box to make glues effective.
v1.5-3
General: The following are for bug fix of \adl@inactivate.
\adl@noalign: Move \adl@inactivate to \@array from \adl@arrayinit.
\adl@arrayinit: Move \adl@inactivate from \adl@arrayinit to \@array.
\adl@inactivate: Change \adl@inactivate caller to \@array.
General: Thank to Yaxin Liu.
v1.54-1
General: The following are for bug fix of \ad1@@v1.
\adl@vlrow: Rows for vertical lines are replaced by \adl@drawvl.
\adl@drawvl: Introduced to draw vertical lines correctly if \ADLsomewide.
\ad1eevl: Insert a negative skip to left/right of the line if \ADLsomewide.
v1.54-2
General: The following are for bug fix of activation.
\adl@noalign: Invoke \adl@activate if not \ifadl@inactive.
\adl@inactivate: Add \adl@argcr to inactivation.
\adl@activate: Introduced to activate \@arrayclassz etc. again.
\adl@act@arrayclassz: Introduced to activate \@arrayclassz etc. again.
v1.54-3
General: The following are miscellaneous modifications.
\adl@hcline: Omit \vskip if the space is 0.
v1.6-1
General: The following are for the compatibility with longtable.
General: The history on the compatibility with longtable package.
General: Caution about loading order of longtable is added.
General: Description of longtable isadded.
General: Description of discard isadded.
\adl@discard: Add initializetion of \adl@discard.
General: Add a summary of activation/inactivation.
\adl@@cr: Modified to insert \adl@discard.
\adl@Longtable: Introduced as the body of \Longtable.
\Longtable: Introduced as the always-active \longtable.
\endLongtable: Introduced to \end the environment Longtable.
\ADLnoshorthanded: \Longtable and \endLongtable are added.
General: §4.15 s added.
General: Thank to people for longtable.
v1.7
General: The following are for the compatibility with colortbl.
General: The history on the compatibility with colortbl package.
General: Caution about loading order of colortbl is added.
General: Description of colortbl and related commands is added.
General: Comment on vertical line coloring with colortbl is added.
General: Add notes for dash line coloring.
General: A dash/gap specification d; / g; now hascolor.
\endtabular: Modified to refer proper \endarray depending on the exsistance of colortbl.
General: Codes for longtable is surrounded by \ifx/\fi
General: §4.16 is added.
General: Thank to Klaus Dalinghaus and refer orignal colortbl.

70

v1.7-1
General: The following are for null-wide horizontal lines.
\ifadl@zwhrule: Introduced to indicate horizontal lines have null width.
\ADLnullwide: Introduced to make horizontal lines null wide.
\ADLsomewide: Introduced to make horizontal lines \arraydashline wide.
\adl@inactivate: Remove \cline because our own version is needed for null-wide.
\hline: Modified to shift up if null-wide.
\cline: Modified to shift up if null-wide.
\adl@hdashline: Modified for null-wide horizontal lines.
\adl@ihdashline: \adl@hline is moved to \adl@hdashline for null-wide lines.
\adl@inactivehdl: Modified to shift up if null-wide.
\adl@cdline: Modified to shift up if null-wide.
\adl@inactivecdl: Modified to invoke \cline rather than \adl@orgcline for null-wide.
\adl@hcline: Modified not to shift null-wide \cdashline down.
\adl@hdashline: Keep original without shift up because it is done by \adl1@LThdline.
\adl@LThdline: Modified to shift up if null-wide.
v1.7-2
General: The following are to fix the bug of \arrayrulecolor etc. in colortbl.
\adl@noalign: Introduced to fix a bug of colortbl.
\adl@noalign: Make \adl@noalign \let-equal to \moalign.
v1.7-3
General: The following are for vertical line coloring.
\adl@xarraydashrule: Modified to add color arguments to \adl@vlineL/R
\adl@@vlineL: Color arguments are added.
\adl@@vlineR: Color arguments are added.
\adle@ivline: Invocations of \adl@setcolor are added.
\adl@setcolor: Introduced to color vertical lines.
\adl@nocolor: Introduced to examine if coloring is specified.
\adl@dashcolor: Introduced as the temporary variable of color specification of dashes.
\adl@gapcolor: Introduced as the temporary variable of color specification of gaps.
\adl@inactivevl: Modified to color the \vline by the first argument.
\adl@makevlr: Modified to initialize \adl@dashcolor and \adl@gapcolor.
\adl@iiimakevlr: Modified to check color indentity.
\adl@ivmakevlr: Modified not to see d and g which now have colors.
\adl@addvlL: Modified to add colors tod and &.
\adl@addvlR: Modified to add colorsto d and &.
\adl@evl: Modified to color dashs and gaps.
v1.71-1
General: The following are for bug fix for array’s m-columns.
\@mkpream: Modified to nullify \adl@startmbox and \adl@endmbox for array’s m-columns.
\@classz: Modified to call \adl@startmbox and \adl@endmbox for array’s m-columns.
\adl@startmbox: Introduced to the bug fix of array’s m-columns.
\adl@endmbox: Introduced to the bug fix of array’s m-columns.
General: Thank to Morten Hggholm.

71

