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Enumerability in Recursion and Automata Theory

Motivation of Enumerability

Problem
Many functions are not computable or not efficiently
computable.

Example

#SAT:
How many satisfying assignments does a formula have?
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Enumerability in Recursion and Automata Theory

Motivation of Enumerability

Problem
Many functions are not computable or not efficiently
computable.

Example

For difficult languages A:

Cardinality function #n
A :

How many input words are in A?

Characteristic function χn
A:

Which input words are in A?

(w1, w2, w3, w4, w5)

in A

2 01001

#5
A χ5

A
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Enumerability in Recursion and Automata Theory

Motivation of Enumerability

Problem
Many functions are not computable or not efficiently
computable.

Solutions
Difficult functions can be

computed using probabilistic algorithms,

computed efficiently on average,

approximated, or

enumerated.
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Enumerability in Recursion and Automata Theory

Enumerators Output Sets of Possible Function
Values

output tape

input tapes

...

w1

wn

input tapes

...

w1

wn Definition (1987, 1989, 1994, 2001)

An m-enumerator for a function f
1 reads n input words w1, . . . , wn,
2 does a computation,
3 outputs at most m values,
4 one of which is f (w1, . . . , wn).
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Enumerability in Recursion and Automata Theory

Enumerators Output Sets of Possible Function
Values

output tape

input tapes

...

w1
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input tapes

...

w1

wn

u1

Definition (1987, 1989, 1994, 2001)

An m-enumerator for a function f
1 reads n input words w1, . . . , wn,
2 does a computation,
3 outputs at most m values,
4 one of which is f (w1, . . . , wn).
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Known Weak Cardinality Theorem

How Well Can the Cardinality Function Be
Enumerated?

Observation

For fixed n, the cardinality function #n
A

can be 1-enumerated by Turing machines only for
recursive A, but

can be (n + 1)-enumerated for every language A.

Question
What about 2-, 3-, 4-, . . . , n-enumerability?
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Known Weak Cardinality Theorem

How Well Can the Cardinality Function
Be Enumerated by Turing Machines?

Cardinality Theorem (Kummer, 1992)

If #n
A is n-enumerable by a Turing machine, then A is recursive.

Weak Cardinality Theorems ( 1987, 1989, 1992)
1 If χn

A is n-enumerable by a Turing machine, then A is
recursive.

2 If #2
A is 2-enumerable by a Turing machine, then A is

recursive.
3 If #n

A is n-enumerable by a Turing machine that never
enumerates both 0 and n, then A is recursive.
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Known Weak Cardinality Theorem

How Well Can the Cardinality Function
Be Enumerated by Finite Automata?

Conjecture

If #n
A is n-enumerable by a finite automaton, then A is regular.

Weak Cardinality Theorems (2001, 2002)
1 If χn

A is n-enumerable by a finite automaton, then A is
regular.

2 If #2
A is 2-enumerable by a finite automaton, then A is

regular.
3 If #n

A is n-enumerable by a finite automaton that never
enumerates both 0 and n, then A is regular.
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Why Do Cardinality Theorems Hold Only for Certain Models?

Cardinality Theorems Do Not Hold for All Models

Turing machines

finite
automata

Weak cardinality theorems hold.

Weak cardinality theorems hold.
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Why Do Cardinality Theorems Hold Only for Certain Models?

Cardinality Theorems Do Not Hold for All Models

Turing machines

resource-bounded
machines

Weak cardinality theorems do not hold.

finite
automata

Weak cardinality theorems hold.

Weak cardinality theorems hold.
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Why Do Cardinality Theorems Hold Only for Certain Models?

Why?

First Explanation

The weak cardinality theorems hold both for recursion and
automata theory by coincidence.

Second Explanation

The weak cardinality theorems hold both for recursion and
automata theory, because they are instantiations of
single, unifying theorems.

The second explanation is correct.
The theorems can (almost) be unified using first-order logic.
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Elementary Definitions

What Are Elementary Definitions?

Definition
A relation R is elementarily definable in a logical structure S if

1 there exists a first-order formula φ,
2 that is true exactly for the elements of R.

Example

The set of even numbers is elementarily definable in (N,+) via
the formula φ(x) ≡ ∃z � z + z = x .

Example

The set of powers of 2 is not elementarily definable in (N,+).
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Elementary Definitions

Characterisation of Classes by Elementary
Definitions

Theorem (Büchi, 1960)

There exists a logical structure (N,+, e2) such that a set A ⊆ N
is
regular iff it is elementarily definable in (N,+, e2).

Theorem
There exists a logical structure R such that a set A ⊆ N is
recursively enumerable iff it is positively elementarily definable
in R.
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Elementary Definitions

Characterisation of Classes by Elementary
Definitions

regular sets (N,+, e2)

resource-bounded classes none

recursively enumerable sets positively in R
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Elementary Definitions

Characterisation of Classes by Elementary
Definitions

Presburger arithmetic (N,+)

regular sets (N,+, e2)

resource-bounded classes none

recursively enumerable sets positively in R

arithmetic hierarchy (N,+, ·)

ordinal number arithmetic (On,+, ·)
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Enumerability for First-Order Logic

Elementary Enumerability is a Generalisation of
Elementary Definability

R

x

f (x)

f

Definition
A function f is
elementarily m-enumerable in a structure S
if

1 its graph is contained in an
elementarily definable relation R,

2 which is m-bounded, i.e., for each x
there are at most m different y with
(x , y) ∈ R.
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Enumerability for First-Order Logic

The Original Notions of Enumerability are
Instantiations

Theorem
A function is m-enumerable by a finite automaton iff
it is elementarily m-enumerable in (N,+, e2).

Theorem
A function is m-enumerable by a Turing machine iff
it is positively elementarily m-enumerable in R.
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Weak Cardinality Theorems for First-Order Logic

The First Weak Cardinality Theorem

Theorem
Let S be a logical structure with universe U and let A ⊆ U. If

1 S is well-orderable and
2 χn

A is elementarily n-enumerable in S,

then A is elementarily definable in S.
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The First Weak Cardinality Theorem

Theorem
Let S be a logical structure with universe U and let A ⊆ U. If

1 S is well-orderable and
2 χn

A is elementarily n-enumerable in S,

then A is elementarily definable in S.

Corollary

If χn
A is n-enumerable by a finite automaton, then A is regular.
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Weak Cardinality Theorems for First-Order Logic

The First Weak Cardinality Theorem

Theorem
Let S be a logical structure with universe U and let A ⊆ U. If

1 S is well-orderable and
2 χn

A is elementarily n-enumerable in S,

then A is elementarily definable in S.

Corollary (with more effort)

If χn
A is n-enumerable by a Turing machine, then A is recursive.
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Weak Cardinality Theorems for First-Order Logic

The Second Weak Cardinality Theorem

Theorem
Let S be a logical structure with universe U and let A ⊆ U. If

1 S is well-orderable,
2 every finite relation on U is elementarily definable in S, and
3 #2

A is elementarily 2-enumerable in S,

then A is elementarily definable in S.
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Weak Cardinality Theorems for First-Order Logic

The Third Weak Cardinality Theorem

Theorem
Let S be a logical structure with universe U and let A ⊆ U. If

1 S is well-orderable,
2 every finite relation on U is elementarily definable in S, and
3 #n

A is elementarily n-enumerable in S via a relation that
never ‘enumerates’ both 0 and n,

then A is elementarily definable in S.
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Weak Cardinality Theorems for First-Order Logic

Relationships Between Cardinality Theorems (CT)

1st Weak CT

2nd Weak CT

3rd Weak CT

1st Weak CT

2nd Weak CT

3rd Weak CT

CT

1st Weak CT

2nd Weak CT

3rd Weak CT

automata theory
first-order logic

recursion theory
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A Separability Result for First-Order Logic

A× Ā

A× A Ā× Ā

Theorem
Let S be a well-orderable logical
structure in which all finite relations are
elementarily definable.

If there exist elementarily definable
supersets of A× A, A× Ā, and Ā× Ā
whose intersection is empty,
then A is elementarily definable in S.

Note
The theorem is no longer true
if we add Ā× A to the list.
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Summary

Summary

The weak cardinality theorems for first-order logic unify
the weak cardinality theorems of automata and recursion
theory.

The logical approach yields weak cardinality theorems for
other computational models.

Cardinality theorems are separability theorems in disguise.

Open Problems

Does a cardinality theorem for first-order logic hold?

What about non-well-orderable structures like (R,+, ·)?
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