The Changebar package *

Michael Fine
Distributed Systems Architecture

Johannes Braams

Kersengaarde 33

2723 BP Zoetermeer

The Netherlands

texniek at braams.cistron.nl

Printed September 19, 2005

Contents
1 Introduction
2 The user interface

1

21

2.2

The package options

2.1.1 Specifying the
printer driver . . .
2.1.2 Specifying the
bar position
2.1.3 Color
2.1.4 Tracing

Macros defined by the
package

2.3 Changebar parameters . .

Deficiencies and bugs

The basic algorithm

5 The implementation

5.1
1
9 5.2
9 5.3
9 5.4
3 5.5
3
3 5.6
3 5.7
3
4 5.8
5

Abstract

Declarations And Initial-
izations
Option Processing

User Level Commands
And Parameters
Macros for beginning and
ending bars
Macros for Making It
Work Across Page Breaks
Macros For Managing
The Stacks of Bar points .
Macros For Checking
That The .aux File Is
Stable
Macros For Making
It Work With Nested
Floats/Footnotes

This package implements a way to indicate modifications in a ITEX-
document by putting bars in the margin. It realizes this by making use of
the \special commands supported by ‘dvi drivers’. Currently six different
drivers are supported, plus pdftex support. More can easily be added.

Introduction

26

31

Important note Just as with cross references and labels, you usually need to pro-
cess the document twice (and sometimes three times) to ensure that the changebars

*This file has version number v3.5¢, last revised 2005/09/18.

come out correctly. However, a warning will be given if another pass is required.
Features

e Changebars may be nested within each other. Each level of nesting can be

given a different thickness bar.

e Changebars may be nested in other environments including floats and foot-
notes.

e Changebars are applied to all the material within the “barred” environment,
including floating bodies regardless of where the floats float to. An exception
to this is margin floats.

e Changebars may cross page boundaries.
e Changebars can appear on the outside of the columns of twocolumn text.

e The colour of the changebars can be changed. This has sofar been tested
with the dvips, pdftex and vtex drivers, but it may also work with other
PostScript based drivers. It will not work for the DVItoLNO3 and emTgEX
drivers. For colored changebars to work, make sure that you specify the
option color or xcolor.

2 The user interface

This package has options to specify some details of its operation, and also defines
several macros.

2.1 The package options

2.1.1 Specifying the printer driver
One set of package options' specify the driver that will be used to print the

document can be indicated. The driver may be one of:

e DVItoLNO3
DVItoPS
DVlIps

o emTEX
o TEXtures
e VIEX

e PDFTEX

The drivers are represented in the normal typewriter method of typing these
names, or by the same entirely in lower case. Since version 3.4d the driver can
be specified in a configuration file, not surprisingly called changebar.cfg. If it
contains the command \ExecuteOption{textures} the textures option will be
used for all documents that are processed while the configuration file is in TEX’s
search path.

IFor older documents the command \driver is available in the preamble of the document. It
takes the options as defined for INTEX 2¢ as argument.

\cbstart
\cbend

changebar

\cbdelete

\nochangebars
\cbcolor

\changebarwidth

2.1.2 Specifying the bar position

The position of the bars may either be on the inner edge of the page (the left
column on a recto or single-sided page, the right column of a verso page) by use
of the innerbars package option (the default), or on the outer edge of the page by
use of the outerbars package option.

Another set of options gives the user the possibility of specifying that the bars
should always come out on the left side of the text (leftbars) or on the right side
of the text (rightbars).

Note that these options only work for onecolumn documents and will be ignored
for a twocolumn document.

2.1.3 Color

For people who want their changebars to be colourfull the options color and xcolor
are available. They define the user command \cbcolor and load either the color
or the xcolor package.

If a configuration file specifies the color option and you want to override it for
a certain document you can use the grey option.

2.1.4 Tracing

The package also implements tracing for its own debugging. The package options
traceon and traceoff control tracing. An additional option tracestacks is available
for the die hard who wants to know what goes on in the internal stacks maintained
by this package.

2.2 Macros defined by the package

All material between the macros \cbstart and \cbend is barred. The nesting of
multiple changebars is allowed. The macro \cbstart has an optional parameter
that specifies the width of the bar. The syntax is \cbstart [{dimension)]. If no
width is specified, the current value of the parameter \changebarwidth is used.
Note that \cbstart and \cbend can be used anywhere but must be correctly
nested with floats and footnotes. That is, one cannot have one end of the bar
inside a floating insertion and the other outside, but that would be a meaningless
thing to do anyhow.

Apart from the macros \cbstart and \cbend a proper ITEX environment is
defined. The advantage of using the environment whenever possible is that ITEX
will do all the work of checking the correct nesting of different environments.

The macro \cbdelete puts a square bar in the margin to indicate that some
text was removed from the document. The macro has an optional argument to
specify the width of the bar. When no argument is specified the current value of
the parameter \deletebarwidth will be used.

The macro \nochangebars disables the changebar commands.

This macro is defined when the color option is selected. It’s syntax is the same
as the \color command from the color package.

2.3 Changebar parameters

The width of the changebars is controlled with the ITEX length parameter

\deletebarwidth

\changebarsep

changebargrey

outerbars

\changebarwidth. Its value can be changed with the \setlength command.
Changing the value of \changebarwidth affects all subsequent changebars sub-
ject to the scoping rules of \setlength.

The width of the deletebars is controlled with the ITEX length parameter
\deletebarwidth. Its value can be changed with the \setlength command.
Changing the value of \deletebarwidth affects all subsequent deletebars subject
to the scoping rules of \setlength.

The separation between the text and the changebars is determined by the value
of the IATEX length parameter \changebarsep.

When one of the supported dvi to PostScript translators is used the ‘blackness’
of the bars can be controlled. The ITEX counter changebargrey is used for this
purpose. Its value can be changed with a command like:

\setcounter{changebargrey}{85}

The value of the counter is a percentage, where the value 0 yields black bars, the
value 100 yields white bars.

The changebars will be printed in the ‘inside’ margin of your document. This
means they appear on the left side of the page. When twoside is in effect the bars
will be printed on the right side of even pages. This behaviour can be changed by
including the command \outerbarstrue in your document.

3 Deficiencies and bugs

e The macros blindly use special points \cb@minpoint through \cb@maxpoint.
If this conflicts with another set of macros, the results will be unpredictable.
(What is really needed is a \newspecialpoint, analogous to \newcount
etc. — it’s not provided because the use of the points is rather rare.)

e There is a limit of (\cb@maxpoint — \cb@minpoint +1)/4 bars per page (four
special points per bar). Using more than this number yields unpredictable
results (but that could be called a feature for a page with so many bars).
This limitation could be increased if desired. There is no such limit with

PDFTEX.

e Internal macro names are all of the form \cb@xxxx. No checking for conflicts
with other macros is done.

e This implementation does not work with the multicolumn package.

e The algorithms may fail if a floating insertion is split over multiple pages. In
ITEX floats are not split but footnotes may be. The simplest fix to this is
to prevent footnotes from being split but this may make TEX very unhappy.

e The \cbend normally gets “attached” to the token after it rather than the
one before it. This may lead to a longer bar than intended. For example,
consider the sequence ‘word1l \cbend word2’. If there is a line break between
‘wordl’ and ‘word2’ the bar will incorrectly be extended an extra line. This
particular case can be fixed with the incantation ‘word1\cbend{} word2’.

e The colour support has only been tested with the dvips and pdftex drivers.

4 The basic algorithm

The changebars are implemented using the \specials of various dvi interpreting
programs like DVItoLNO3 or DVIps. In essence, the start of a changebar defines
two \special points in the margins at the current vertical position on the page.
The end of a changebar defines another set of two points and then joins (using
the “connect” \special) either the two points to the left or the two points to the
right of the text, depending on the setting of innerbars, outerbars, leftbars, rightbars
and/or twoside.

This works fine as long as the two points being connected lie on the same page.
However, if they don’t, the bar must be artificially terminated at the page break
and restarted at the top of the next page. The only way to do this (that I can
think of) is to modify the output routine so that it checks if any bar is in progress
when it ships out a page and, if so, adds the necessary artificial end and begin.

The obvious way to indicate to the output routine that a bar is in progress is to
set a flag when the bar is begun and to unset this flag when the bar is ended. This
works most of the time but, because of the asynchronous behavior of the output
routine, errors occur if the bar begins or ends near a page break. To illustrate,
consider the following scenario.

blah blah blah % page n
blah blah blah
\cbstart % this does its thing and set the flag
more blah
Kmmmmmmmm pagebreak occurs here
more blah
\cbend % does its thing and unsets flag

blah blah

Since TEX processes ahead of the page break before invoking the output rou-
tine, it is possible that the \cbend is processed, and the flag unset, before the
output routine is called. If this happens, special action is required to generate an
artificial end and begin to be added to page n and n + 1 respectively, as it is not
possible to use a flag to signal the output routine that a bar crosses a page break.

The method used by these macros is to create a stack of the beginning and end
points of each bar in the document together with the page number corresponding
to each point. Then, as a page is completed, a modified output routine checks the
stack to determine if any bars begun on or before the current page are terminated
on subsequent pages, and handles those bars appropriately. To build the stack,
information about each changebar is written to the .aux file as bars are processed.
This information is re-read when the document is next processed. Thus, to ensure
that changebars are correct, the document must be processed twice. Luckily, this
is generally required for IWTEX anyway. With PDFIATEX generally three (or even
ImMore) runs are necessary.

This approach is sufficiently general to allow nested bars, bars in floating in-
sertions, and bars around floating insertions. Bars inside floats and footnotes are
handled in the same way as bars in regular text. Bars that encompass floats or
footnotes are handled by creating an additional bar that floats with the floating
material. Modifications to the appropriate ITEX macros check for this condition
and add the extra bar.

\cb@maxpoint

\cb@minpoint

\cb@nil

\cb@nextpoint

\cb@topleft
\cb@topright
\cb@botleft
\cb@botright

\cb@cnta
\cb@cntb
\cb@dima

\cb@curbarwd

\cb@page
\cb@pagecount

5 The implementation

5.1 Declarations And Initializations

The original version of changebar.sty only supported the DVItoLNO3 specials.
The LNO3 printer has a maximum number of points that can be defined on a page.
Also for some PostScript printers the number of points that can be defined can
be limited by the amount of memory used. Therefore, the consecutive numbering
of points has to be reset when the maximum is reached. This maximum can be
adapted to the printers needs.
1 (xpackage)
2 \def\cb@maxpoint{80}

When resetting the point number we need to know what to reset it to, this is
minimum number is stored in \cb@minpoint. This number has to be odd
because the algorithm that decides whether a bar has to be continued on the next
page depends on this.

3 \def\cb@minpoint{1}

Sometimes a void value for a point has to be returned by one of the macros. For
this purpose \cb@nil is used.

4 \def\cb@nil{0}

The number of the next special point is stored in the count register \cb@nextpoint
and initially equal to \cb@minpoint.

5 \newcount\cb@nextpoint
6 \cb@nextpoint=\cb@minpoint

These four counters are used to identify the four special points that specify a
changebar. The point defined by \cb@topleft is the one used to identify the
changebar; the values of the other points are derived from it.

7 \newcount\cb@topleft

8 \newcount\cb@topright

9 \newcount\cb@botleft

10 \newcount\cb@botright

Sometimes we need temporarily store a value. For this purpose two count registers
and a dimension register are allocated.

11 \newcount\cb@cnta

12 \newcount\cb@cntb

13 \newdimen\cb@dima

The dimension register \cb@curbarwd is used to store the width of the current
bar.

14 \newdimen\cb@curbarwd

The macros need to keep track of the number of pages/columns output so far. To
this end the counter \cb@pagecount is used. When a pagenumber is read from the
history stack, it is stored in the counter \cb@page. The counter \cb@pagecount
is initially 0; it gets incremented during the call to \@makebox (see section 5.5).
15 \newcount\cb@page

16 \newcount\cb@pagecount

17 \cb@pagecount=0

\cb@barsplace

Qcb@trace

QcbQ@firstcolumn

\cb@pdfxy

\cb@positions

\cb@odd@left
\cb@odd@right
\cb@even@left

\cb@even@right

A switch is provided to control where the changebars will be printed. The value
depends on the options given:

0 for innerbars (default),
1 for outerbars,

2 gices leftbars,

3 gives rightbars.

18 \def\cb@barsplace{0}

A switch to enable tracing of the actions of this package
19 \newif\if@cb@trace

A switch to find out if a point is in the left column of a twocolumn page.
20 \newif\if@cb@firstcolumn

The macro \cb@pdfxy populates the pdf x,y coordinates file. In pdftex mode it
writes one line to .cb2 file which is equivalent to one bar point. The default
implementation is a noop. If the pdftex option is given it is redefined.

21 \def\cbOpdfxy#1#2#3#4#5{}

This macro calculates the (horizontal) positions of the changebars.

Because the margins can differ for even and odd pages and because changebars
are sometimes on different sides of the paper we need four dimensions to store the
result.

22 \newdimen\cbQodd@left

23 \newdimen\cb@odd@right
24 \newdimen\cb@even@left
25 \newdimen\cbQeven@right

Since the changebars are drawn with the POSTSCRIPT command lineto and
not as TgX-like rules the reference points lie on the center of the changebar,
therefore the calculation has to add or subtract half of the width of the bar to
keep \changebarsep whitespace between the bar and the body text.

First the position for odd pages is calculated.

26 \def\cb@positions{’

27 \globall\cb@odd@left=\hoffset

28 \global\cb@even@left\cbQ@odd@left

29 \globalladvance\cb@odd@left by \oddsidemargin

30 \globall\cb@odd@right\cbQ@odd@left

31 \globalladvance\cb@odd@right by \textwidth

32 \globalladvance\cb@odd@right by \changebarsep

33 \globalladvance\cb@odd@right by 0.5\changebarwidth
34 \globalladvance\cb@odd@left by -\changebarsep

35 \globalladvance\cb@odd@left by -0.5\changebarwidth

\cb@removedim

On even sided pages we need to use \evensidemargin in the calculations when
twoside is in effect.

36 \if@twoside

37 \global\advance\cb@even@left by \evensidemargin

38 \global\cb@even@right\cbQeven@left

39 \global\advance\cb@even@left by -\changebarsep

40 \global\advance\cbQeven@left by -0.5\changebarwidth
41 \global\advance\cb@even@right by \textwidth

42 \global\advance\cb@even@right by \changebarsep

43 \global\advance\cb@even@right by 0.5\changebarwidth
44 \else

Otherwise just copy the result for odd pages.

45 \global\let\cb@even@left\cb@odd@left
46 \global\let\cb@even@right\cbQ@odd@right
47 \fi

48}

In PostScript code, length specifications are without dimensions. Therefore
we need a way to remove the letters ‘pt’ from the result of the operation
\the\(dimen). This can be done by defining a command that has a delimited
argument like:

\def\cb@removedim#ipt{#1}

We encounter one problem though, the category code of the letters ‘pt’ is 12 when
produced as the output from \the\(dimen). Thus the characters that delimit
the argument of \cb@removedim also have to have category code 12. To keep the
changes local the macro \cb@removedim is defined in a group.

49 {\catcode ‘\p=12\catcode ‘\t=12 \gdef\cb@removedim#ipt{#1}}

5.2 Option Processing

The user should select the specials that should be used by specifying the driver
name as an option to the \usepackage call. Possible choices are:

e DVItoLNO3
e DVItoPS

e DVIps

e emTEX

e Textures

o VIEX

e PDFTEX

The intent is that the driver names should be case-insensitive, but the following
code doesn’t achieve this: it only permits the forms given above and their lower-
case equivalents.

50 \DeclareOption{DVItoLNO3}{\global\chardef\cb@driver@setup=0\relax}

51 \DeclareOption{dvitoln03}{\global\chardef\cb@driver@setup=0\relax}
52 \DeclareOption{DVItoPS}{\global\chardef\cb@driver@setup=1\relax}
53 \DeclareOption{dvitops}{\global\chardef\cb@driver@setup=1\relax}
54 \DeclareOption{DVIps}{\global\chardef\cb@driver@setup=2\relax}

55 \DeclareOption{dvips}{\global\chardef\cb@driver@setup=2\relax}

56 \DeclareOption{emTeX}{\global\chardef\cb@driver@setup=3\relax}

57 \DeclareOption{emtex}{\global\chardef\cb@driver@setup=3\relax}

58 \DeclareOption{textures}{\global\chardef\cb@driver@setup=4\relax}
59 \DeclareOption{Textures}{\global\chardef\cb@driver@setup=4\relax}
60 \DeclareOption{VTeX}{\global\chardef\cb@driver@setup=5\relax}

61 \DeclareOption{vtex}{\global\chardef\cb@driver@setup=5\relax}

62 \DeclareOption{PDFTeX}{\cb@pdftexcheck}
63 \DeclareOption{pdftex}{\cb@pdftexcheck}

For the pdftex option we have to check that the current BTEX run is using PDFTEX
and that PDF output is selected. If it is, we initialize the option and open an
additional output file. If not, we ignore the option and issue a warning.

64 \def\cb@pdftexcheck{)

65 \ifx\pdfsavepos\@undefined\cb@pdftexerror

66 \else\ifx\pdfoutput\@undefined\cb@pdftexerror

67 \else\ifnum\pdfoutput>0

68 \global\chardef\cb@driver@setup=6\relax

69 \ifx\cb@uritexy\@undefined

70 \newwrite\cbQ@uritexy

71 \newread\cb@readxy

72 \immediate\openout\cb@uritexy=\jobname.cb2\relax
73 \fi

Redefine the \cb@pdfxy macro to write point coordinates to the .cb2 file.

74 \gdef\cbOpdfxy##1##2##3 #1415 (),

75 \immediate\write\cb@uritexy{##1.##2p##3,##4,##5})

76 \expandafter\gdef\csname cbQ##1l.##2\endcsname{##3,##4,##5}}
77 \else\cb@pdftexerror\fi\fi\fi}

Give a warning if we cannot support the pdftex option.
78 \def\cb@pdftexerror{\PackageError

79 {changebar}/

80 {PDFTeX option cannot be used}}

81 {You are using a LaTeX run which does not generate PDF\MessageBreak
82 or you are using a very old version of PDFTeX}}

The new features of IATEX 2¢ make it possible to implement the outerbars
option.

83 \DeclareOption{outerbars}{\def\cb@barsplace{1}}
84 \DeclareOption{innerbars}{\def\cb@barsplace{0}}

It is also possible to specify that the change bars should always be printed on
either the left or the right side of the text. For this we have the options leftbars
and rightbars. Specifying either of these options will overrule a possible twoside
option at the document level.

85 \DeclareOption{leftbars}{\def\cb@barsplace{2}}
86 \DeclareOption{rightbars}{\def\cb@barsplace{3}}
A set of options to control tracing.

87 \DeclareOption{traceon}{\@cb@tracetrue}

88 \DeclareOption{traceoff}{\@cb@tracefalse}
89 \DeclareOption{tracestacks}{/

90 \let\cb@trace@stack\cb@@show@stack

91 \def\cb@trace@push#1{\cbO@trace{}

92 Pushed point \the\cb@topleft\space on \noexpand#l: #1}}J
93 \def\cb@trace@pop#1{\cb@trace{/

94 Popped point \the\cb@topleft\space from \noexpand#l: #1}1}/
95 }

Three options are introduced for colour support. The first one, grey, is activated
by default.

96 \DeclareOption{grey}{/%
97 \def\cb@ps@color{\thechangebargrey\space 100 div setgray}}

The second option activates support for the color package.

98 \DeclareOption{color}{/%
99 \def\cb@ps@color{\expandafter\c@lor@to@ps\cb@current@color\Qe}
100 \def\cb@color@pkg{color}}

The third option adds support for the xcolor package.

101 \DeclareOption{xcolor}{’
102 \def\cb@ps@color{\expandafter\c@lor@to@ps\cb@current@color\Q@Q}/
103 \def\cb@color@pkg{xcolor}}

Signal an error if an unknown option was specified.
104 \DeclareOption*{\OptionNotUsed\PackageError

105 {changebarl}

106 {Unrecognised option ‘\CurrentOption’\MessageBreak

107 known options are dvitoln03, dvitops, dvips,\MessageBreak
108 emtex, textures, pdftex and vtex,

109 grey, color, xcolor,\MessageBreak

110 outerbars, innerbars, leftbars and rightbars}}

The default is to have grey change bars on the left side of the text on odd
pages. When VTEX is used the option dvips is not the right one, so in that case
we have vtex as the default driver. When PDFTEX is producing PDF output, the
pdftex option is selected.

111 \ifx\VTeXversion\@undefined
112 \ifx\pdfoutput\@undefined

113 \ExecuteOptions{innerbars,traceoff,dvips,grey’}
114 \else

115 \ifnum\pdfoutput>0

116 \ExecuteOptions{innerbars,traceoff,pdftex,grey}
117 \else

118 \ExecuteOptions{innerbars,traceoff,dvips,grey}
119 \fi

120 \fi

121 \else

122 \ExecuteOptions{innerbars,traceoff,vtex,grey}

123 \fi

A local configuration file may be used to define a site wide default for the driver,
by calling \ExecuteOptions with the appropriate option. This will override the
default specified above.

124 \InputIfFileExists{changebar.cfg}{}{}

10

\cb@@show@stack When the stack tracing facility is turned on this command is executed. It needs to
be defined before we call \ProcessOptions. This command shows the contents of
the stack with currently ‘open’ bars, the stack with pending ends and the history
stack. It does mot show the temporary stack.

125 \def\cb@@show@stack#1{%
126 \cb@trace{%

127 stack status at #1:\MessageBreak

128 current stack: \cbQcurrentstack\MessageBreak

129 \@spaces end stack: \cb@endstack\MessageBreak

130 \space\space begin stack: \cb@beginstack\MessageBreak
131 history stack: \cb@historystack

132 1}

The default is to not trace the stacks. This is achieved by \letting \cb@trace@stack
to \@gobble.

133 \let\cb@trace@stack\@gobble

\cb@trace@push When stack tracing is turned on, these macros are used to display the push and
\cb@trace@pop pop operations that go on. They are defined when the package option tracestacks
is selected.
The default is to not trace the stacks.

134 \let\cb@trace@push\Qgobble
135 \let\cb@trace@pop\@gobble

Now make all the selected options active, but...
136 \ProcessOptions\relax

We have to make sure that when the document is being processed by pdfIATEX,
while also creating pdf as output, the driver to be used is the pdf driver. Therefore
we add an extra check, possibly overriding a dvips option that might still have been
in the doucment.

137 \ifx\pdfsavepos\Qundefined

138 \else

139 \ifx\pdfoutput\@undefined

140 \else

141 \ifnum\pdfoutput>0

142 \global\chardef\cb@driver@setup=6\relax
143 \fi

144 \fi

145 \fi

\cb@trace A macro that formats the tracing messages.

146 \newcommand{\cb@trace} [1]1{%
147 \if@cb@trace

148 \GenericWarning

149 {(changebar) \@spaces\@spaces}
150 {Package changebar: #1\@gobblel}},
151 \fi

152}

11

\driver

\cb@setup@specials

5.3 User Level Commands And Parameters

The user can select the specials that should be used by calling the command
\driver{(drivername)}. Possible choices are:

DVItoLNO3

DVItoPS

DVlIps
o emTEX
o TEXtures
o VIEX
e PDFTEX

This command can only be used in the preamble of the document.

The argument should be case-insensitive, so it is turned into a string containing
all uppercase characters. To keep some definitions local, everything is done within
a group.

153 \if@compatibility
154 \def\driver#1{J,
155 \bgroup\edef\next{\def\noexpand\tempa{#1}}/

156 \uppercase\expandafter{\next}/
157 \def\LN{DVITOLNO3}7

158 \def\DVItoPS{DVITOPS}’

159 \def\DVIPS{DVIPS}/

160 \def\emTeX{EMTEX}

161 \def\Textures{TEXTURES},

162 \def\VTeX{VTEX}/

163 \def\pdfTeX{PDFTEX}

The choice has to be communicated to the macro \cb@setup@specials that
will be called from within \document. For this purpose the control sequence
\cb@driver@setup is used. It receives a numeric value using \chardef.

164 \global\chardef\cb@driver@setup=0\relax

165 \ifx\tempa\LN \global\chardef\cb@driver@setup=0\fi
166 \ifx\tempa\DVItoPS \globallchardef\cb@driver@setup=1\fi
167 \ifx\tempa\DVIPS \global\chardef\cb@driver@setup=2\fi
168 \ifx\tempa\emTeX \global\chardef\cb@driver@setup=3\fi
169 \ifx\tempa\Textures \global\chardef\cb@driver@setup=4\fi
170 \ifx\tempa\VTeX \global\chardef\cb@driver@setup=5\fi
171 \ifx\tempa\pdfTeX \cb@pdftexcheck\fi

172 \egroup}

We add \driver to \@preamblecmds, which is a list of commands to be used only
in the preamble of a document.

173 {\def\do{\noexpand\do\noexpand}

174 \xdef\@preamblecmds{\@preamblecmds \do\driver}
175 }
176 \fi

The macro \cb@setup@specials defines macros containing the driver specific
\special macros. It will be called from within the \begin{document} command.

12

\cb@trace@defpoint

\cb@trace@connect

\cb@defpoint

\cb@resetpoints

\cb@connect

When tracing is on, write information about the point being defined to the log
file.

177 \def\cbQ@trace@defpoint#1#2{%
178 \cb@trace{%

179 defining point \the#1 at position \the#2
180 \MessageBreak
181 cb@pagecount: \the\cb@pagecount; page \thepagel}}

When tracing is on, write information about the points being connected to the log
file.

182 \def\cb@trace@connect#1#2#3{Y
183 \cb@trace{’

184 connecting points \the#1 and \the#2; barwidth: \the#3
185 \MessageBreak
186 cb@pagecount: \the\cb@pagecount; page \thepagel}}

The macro \cb@defpoint is used to define one of the two points of a bar. It has
two arguments, the number of the point and the distance from the left side of the
paper. Its syntax is: \cb@defpoint{(number)}{(length)}.

The macro \cb@resetpoints can be used to instruct the printer driver that it
should send a corresponding instruction to the printer. This is really only used
for the LNO3 printer.

The macro \cb@connect is used to instruct the printer driver to connect two
points with a bar. The syntax is \cb@connect{{number)}{(number)}{(length)}
The two (number)s indicate the two points to be connected; the (length) is the
width of the bar.

187 \def\cb@setup@specials{}

The control sequence \cb@driver@setup expands to a number which indicates
the driver that will be used. The original changebar.sty was written with only
the \special syntax of the program DVItoLNO3 (actually one of its predecessors,
1n03dvi). Therefore this syntax is defined first.

188 \ifcase\cb@driver@setup

189 \def\cb@defpoint##1##2{}

190 \special{ln03:defpoint \the##1 (\the##2,)}/

191 \cb@trace@defpoint##1##2}

192 \def\cbQconnect##1##2##3{}

193 \special{ln03:connect \the##1\space\space \the##2\space \the##3}/
194 \cb@trace@connect##1##2##3}

195 \def\cb@resetpoints{/

196 \special{ln03:resetpoints \cb@minpoint \space\cb@maxpoint}}

The first extension to the changebar option was for the \special syntax of the
program DVItoPS by James Clark.

197 \or

198 \def\cb@defpoint##1##2{%

199 \special{dvitops: inline

200 \expandafter\cb@removedim\the##2\space 6.5536 mul\space
201 /CBarX\the##1\space exch def currentpoint exch pop

202 /CBarY\the##1\space exch defl}),

203 \cb@trace@defpoint##1##2}

13

204 \def\cb@connecti##1##2##3{%

205 \special{dvitops: inline

206 gsave \cb@ps@color\space

207 \expandafter\cb@removedim\the##3\space 6.5536 mul\space
208 CBarX\the##1\space\space CBarY\the##1\space\space moveto
209 CBarX\the##2\space\space CBarY\the##2\space\space lineto
210 stroke grestorely

211 \cb@trace@connect##1##2##3}

212 \let\cb@resetpoints\relax

The program DVIps by Thomas Rokicki is also supported. The PostScript code is
nearly the same as for DVItoPS, but the coordinate space has a different dimen-
sion. Also this code has been made resolution independent, whereas the code for
DVItoPS might still be resolution dependent.

So far all the positions have been calculated in pt units. DVIps uses pixels
internally, so we have to convert pts into pixels which of course is done by dividing
by 72.27 (pts per inch) and multiplying by Resolution giving the resolution of
the POSTSCRIPT device in use as a POSTSCRIPT variable.

213 \or

214 \def\cb@defpoint##1##2{}

215 \special{ps:

216 \expandafter\cb@removedim\the##2\space

217 Resolution\space mul\space 72.27\space div\space

218 /CBarX\the##1\space exch def currentpoint exch pop

219 /CBarY\the##1\space exch defl}),

220 \cb@trace@defpoint##1##2}

221 \def\cb@connect##1##2##3{J

222 \special{ps:

223 gsave \cb@ps@color\space

224 \expandafter\cb@removedim\the##3\space

225 Resolution\space mul\space 72.27\space div\space

226 setlinewidth

227 CBarX\the##1\space\space CBarY\the##1\space\space moveto
228 CBarX\the##2\space\space CBarY\the##2\space\space lineto
229 stroke grestorel}y

230 \cb@traceQconnect##1##2##3}

231 \let\cb@resetpoints\relax

The following addition is for the drivers written by Eberhard Mattes. The
\special syntax used here is supported since version 1.5 of his driver programs.

232 \or

233 \def\cb@defpoint##1##2{}

234 \special{em:point \the##1,\the##2}),

235 \cb@trace@defpoint##1##2}

236 \def\cb@connecti##t1##2##3{%

237 \special{em:1line \the##1,\the##2, \the##3}Y
238 \cb@trace@connect##1##2##3}

239 \let\cb@resetpoints\relax

The following definitions are validated with TEXtures version 1.7.7, but will
very likely also work with later releases of TEXtures.

The \cbdelete command seemed to create degenerate lines (i.e., lines of 0
length). PostScript will not render such lines unless the linecap is set to 1, (semi-
circular ends) in which case a filled circle is shown for such lines.

14

\cb@pdfpoints
\cb@pdfpagenr

240 \or
241 \def\cb@defpoint##1##2{}

242 \special{postscript 0 O transform}’ leave [x,y] on the stack

243 \special{rawpostscript

244 \expandafter\cb@removedim\the##2\space

245 /CBarX\the##1\space exch def

246 itransform exch pop

247 /CBarY\the##1\space exch defl}),

248 \if@cb@trace\cbQ@trace@defpoint##1##2\fi}

249 \def\cb@connect##1##2##3{)

250 \special{rawpostscript

251 gsave 1 setlinecap \cb@ps@color\space

252 \expandafter\cb@removedim\the##3\space

253 setlinewidth

254 CBarX\the##1\space\space CBarY\the##1\space\space moveto
255 CBarX\the##2\space\space CBarY\the##2\space\space lineto
256 stroke grestorely

257 \if@cb@trace\cb@traceQconnect##1##2##3\fi}

258 \let\cb@resetpoints\relax

The following definitions were kindly provided by Michael Vulis.

259 \or
260 \def\cb@defpoint##1##2{Y
261 \special{pS:

262 \expandafter\cb@removedim\the##2\space

263 Resolution\space mul\space 72.27\space div\space
264 /CBarX\the##1\space exch def currentpoint exch pop
265 /CBarY\the##1\space exch defl}}

266 \cb@trace@defpoint##1##2}

267 \def\cb@connect##1##2##3{%
268 \special{pS:

269 gsave \cb@ps@color\space

270 \expandafter\cb@removedim\the##3\space

271 Resolution\space mul\space 72.27\space div\space

272 setlinewidth

273 CBarX\the##1\space\space CBarY\the##1\space\space moveto
274 CBarX\the##2\space\space CBarY\the##2\space\space lineto
275 stroke grestorely

276 \cb@trace@connect##1##2##3}

277 \let\cb@resetpoints\relax

The code for PDFTEX is more elaborate as the calculations have to be done in
TEX. \cb@defpoint will write information about the coordinates of the point
to the .aux file, from where it will be picked up in the next run. Then we will
construct the PDF code necessary to draw the changebars.

278 \or

279 \immediate\closeout\cb@uritexy

280 \immediate\openin\cb@readxy=\jobname.cb2\relax

The \cb@pdfpoints macro contains the list of coordinates of points that have
been read in memory from the .cb2 file. The \cb@pdfpagenr macro contains the
next pagecount to be read in.

281 \def\cb@pdfpoints{}

15

\cb@findpdfpoint

\cb@@findpdfpoint

\cb@pdffind

282 \def\cb@pdfpagenr{0}

The \cbefindpdfpoint macro finds the coordinates of point #1 on pagecount
#2. First we expand the arguments to get the real values.

283 \def\cb@findpdfpoint##1##2{}

284 \edef\cb@temp

285 {\noexpand\cb@@findpdfpoint{\the##1}{\the##2}}/
286 \cb@temp

287}

The \cb@efindpdfpoint macro finds the coordinates of point #1 on pagecount
#2. If the information is not yet in memory is it read from the .cb2 file. The
coordinates of the current point in the text will be delivered in \cb@pdfx and
\cb@pdfy, and \cb@pdfz will get the x coordinate of the changebar. If the point
is unknown, \cb@pdfx will be set to \relax.

288 \def\cb@@findpdfpointi#l##2{Y

289 \ifnum##2<\cb@pdfpagenr\relax\else
290 \cb@pdfreadxy{##2}/

291 \fi

292 \let\cb@pdfx\relax

293 \ifx\cb@pdfpoints\Qempty\else

294 \ifnum##2<0\relax

295 \else

296 \edef\cb@temp{\noexpand\cb@pdffind{##1}{##2}\cbOpdfpoints\relax{}}/
297 \cb@temp

298 \fi

299 \fi

300

The \cb@pdffind recursively searches through \cb@pdfpoints to find point #1 on
pagecount #2. \cb@pdfpoints contains entries of the form (pointnr).(pagecount)p(z),(y)
When the point is found it is removed from \cb@pdfpoints. #9 contains the cu-
mulative head of the list to construct the new list with the entry removed. #3—#8
are for pattern matching.

301 \def\cb@pdffind##1##2##3 . ##4p##5,##6, ##7pt##8\relax##9{)

302 \def\cb@next{\cb@pdffind{##1} {##2}##8\relax{##O##3. ##4pHH, ##6,##7pt}}Y
303 \ifnum ##1=##3

304 \ifnum ##2=##4

305 \def\cb@pdfx{##5sp}’
306 \def\cb@pdfy{##6sp}V
307 \def\cb@pdfz{##7pt}V
308 \let\cb@next\relax
309 \gdef\cb@pdfpoints{##9##8}Y,
310 \fi

311 \fi

312 \ifx\relax##8\relax

313 \let\cb@next\relax

314 \fi

315 \cb@next

316 Yh

16

\cb@pdfreadxy The \cb@pdfreadxy macro reads lines from the .cb2 file in \cb@pdfpoints until
the pagecount is greater than #1 or the end of the file is reached. This ensures
that all entries belonging to the current column are in memory.

317 \def\cbQ@pdfreadxy##1{%

318 \let\cb@next\relax

319 \ifeof\cb@readxy

320 \global\let\cb@pdfpagenr\cb@maxpoint

321 \else

322 {\endlinechar=-1\read\cb@readxy to\cb@temp

323 \ifx\cb@temp\Qempty\else

324 \expandafter\cb@pdfparsexy\cb@temp

325 \ifnum\cb@pdfpg<O\else

326 \xdef\cb@pdfpoints{\cb@pdfpoints\cb@temp}’,
327 \cb@trace{PDFpoints=\cb@pdfpoints}

328 \global\let\cb@pdfpagenr\cb@pdfpg

329 \fi

330 \ifnum\cb@pdfpg>##1\else

331 \global\def\cb@next{\cb@pdfreadxy{##1}}/
332 \fi

333 \fi

334 Y

335 \fi

336 \cb@next

337 Yh

\cb@pdfparsexy The \cb@pdfparsexy macro extracts the pagecount from an entry read in from
the .cb2 file.

338 \def\cb@pdfparsexy##1.##2p##3,##4,##5pt{l
339 \def\cbepdfpg{##2}}

As PDF is not a programming language it does not have any variables to
remember the coordinates of the current point. Therefore we write the information
to the .aux file and read it in in the next run. We write the x,y coordinates of the
current point in the text and the x coordinate of the change bar. We also need
the value of \cb@pagecount here, not during the write.

340 \def\cb@defpoint##1##2{/

341 \if@filesw

342 \begingroup

343 \edef\point{{\the##1}{\the\cbOpagecountl}}
344 \let\the=\z@

345 \pdfsavepos

346 \edef\cb@temp{\write\Q@auxout

347 {\string\cb@pdfxy\point

348 {\the\pdflastxpos}{\the\pdflastypos}{\the##2}}}%
349 \cb@temp

350 \endgroup

351 \fi

352 \cb@trace@defpoint##1##2J

353 Yh

\cb@cvtpct The macro \cb@cvtpct converts a percentage between 0 and 100 to a decimal
fraction.

17

354 \def\cb@cvtpct##1{}

355 \ifnum##1<0 O\else
356 \ifnum##1>99 1\else
357 \ifnum##1<10 0.0\the#tt#tl\else

358 0.\the##1\fi\fi\fi}

The \cb@connect finds the coordinates of the begin and end points, converts
them to PDF units and draws the bar with \pdfliteral. It also sets the color
or gray level, if necessary. When any of the points is unknown the bar is skipped
and a rerun is signalled.

359 \def\cb@connecti##1##2##3{%

360 \cb@findpdfpoint{##1}\cb@pagecount
361 \ifx\cb@pdfx\relax\cb@rerun

362 \else

363 \let\cb@pdftopy\cb@pdfy

364 \cb@findpdfpoint{##2}\cb@pagecount
365 \ifx\cb@pdfx\relax\cb@rerun

366 \else

We do everything in a group, so that we can freely use all kinds of registers.

367 \begingroup

368 \cb@dima=\cb@pdfz

369 \advance\cb@dima by-\cb@pdfx

370 \advance\cb@dima bylin

371 \cb@dima=0.996264009963\cb@dima\relax

First we let PDF save the graphics state. Then we generate the color selection
code followed by the code to draw the changebar. Finally the graphics state is
restored. We cannot use the color commands from the color package here, as the
generated PDF code may be moved to the next line.

372 \ifx\cb@current@color\Qundefined

373 \def\cb@temp{\cb@cvtpct\c@changebargreyl}i

374 \pdfliteral{q \cb@temp\space g \cb@temp\space G}/

375 \else

376 \pdfliteral{q \cb@current@color},

377 \fi

378 \edef\cb@temp{\expandafter\cb@removedim\the\cb@dima\spacel/,
379 \cb@dima=\cb@pdftopy

380 \advance\cb@dima-\cb@pdfy\relax

381 \cb@dima=0.996264009963\cb@dima\relax

382 ##3=0.996264009963##3\relax

383 \pdfliteral direct{\expandafter\cb@removedim\the##3 w

384 \cb@temp 0 m

385 \cb@temp \expandafter\cb@removedim\the\cb@dima\space 1 S Q}%
386 \endgroup

We look up the two unused points to get them removed from \cb@pdfpoints.
387 \cb@cntb=##1\relax

388 \ifodd\cb@cntb\advance\cb@cntb 1\else\advance\cb@cntb -1\fi
389 \cb@findpdfpoint\cb@cntb\cb@pagecount

390 \cb@cntb=##2\relax

391 \ifodd\cb@cntb\advance\cb@cntb 1\else\advance\cb@cntb -1\fi
392 \cb@findpdfpoint\cb@cntb\cb@pagecount

393 \fi

394 \fi

18

\cb@checkPdfxy

\cbstart

\cbend

\cbdelete

395 \cb@trace@connect##1##2##37%
396 Y

The macro \cb@checkPdfxy checks if the coordinates of a point have changed
during the current run. If so, we need to rerun IATEX.

397 \gdef\cb@checkPdfxy##1##2##3##44#5{)
398 \cb@@findpdfpoint{##1}{##2}/

399 \ifnum##3=\cb@pdfx\relax
400 \ifnum##4=\cb@pdfy\relax
401 \ifdim##5=\cb@pdfz\relax
402 \else

403 \cb@error

404 \fi

405 \else

406 \cb@error

407 \fi

408 \else

409 \cb@error

410 \fi

411}

For PDFTEX we don’t need a limit on the number of bar points.

412 \def\cb@maxpoint{9999999}
413 \let\cb@resetpoints\relax

When code for other drivers should be added it can be inserted here. When
someone makes a mistake and somehow selects an unknown driver a warning is
issued and the macros are defined to be no-ops.

414 \or

415 \else

416 \PackageWarning{Changebar}{changebars not supported in unknown setup}
417 \def\cb@defpoint##1##2{\cb@trace@defpoint##1##2}

418 \def\cb@connect##1##2##3{\cb@trace@connect##1##2##3}

419 \let\cb@resetpoints\relax

420 \fi

The last thing to do is to forget about \cb@setup@specials.
421 \global\let\cb@setup@specials\relax}

The macro \cbstart starts a new changebar. It has an (optional) argument
that will be used to determine the width of the bar. The default width is
\changebarwidth.

422 \newcommand*{\cbstart}{\@ifnextchar [%]
423 {\cb@start}/
424 {\cb@start[\changebarwidth]}}

The macro \cbend (surprisingly) ends a changebar. The macros \cbstart and
\cbend can be used when the use of a proper A TEX environment is not possible.

425 \newcommand*{\cbend}{\cb@end}

The macro \cbdelete inserts a ‘deletebar’ in the margin. It too has an optional
argument to determine the width of the bar. The default width (and length) of it
are stored in \deletebarwidth.

19

\cb@delete

\changebar
\endchangebar

\nochangebars

\changebarwidth

\deletebarwidth

\changebarsep

changebargrey

426 \newcommand*{\cbdelete}{\@ifnextchar [%]
427 {\cb@deletel}’
428 {\cb@delete[\deletebarwidth]}}

Deletebars are implemented as a special ‘change bar’. The bar is started and
immediately ended. It is as long as it is wide.

429 \def\cb@delete[#1]1{\vbox to \z@{\vss\cb@start[#1]\vskip #1\cbQend}}

The macros \changebar and \endchangebar have the same function as \cbstart
and \cbend but they can be used as a ETgX environment to enforce correct
nesting. They can not be used in the tabular and tabbing environments.

430 \newenvironment{changebar}/

431 {\@ifnextchar [{\cb@start}
432 {\cb@start[\changebarwidth]l}}/
433 {\cb@end}

To disable changebars altogether without having to remove them from the doc-
ument, the macro \nochangebars is provided. It makes no-ops of three internal
macros.

434 \newcommand*{\nochangebars}{/

435 \def\cb@start[##1]1{}%

436 \def\cb@delete [##1]1{}/,

437 \let\cb@end\relax}

The default width of the changebars is stored in the dimension register \changebarwidth.

438 \newlength{\changebarwidth}
439 \setlength{\changebarwidth}{2pt}

The default width of the deletebars is stored in the dimension register \deletebarwidth.

440 \newlength{\deletebarwidth}
441 \setlength{\deletebarwidth}{4pt}

The default separation between all bars and the text is stored in the dimen register
\changebarsep.

442 \newlength{\changebarsep}
443 \setlength{\changebarsep}{30pt}

When the document is printed using one of the PostScript drivers the bars do not
need to be black; with PostScript it is possible to have grey, and colored, bars. The
percentage of greyness of the bar is stored in the count register \changebargrey.
It can have values between 0 (meaning white) and 100 (meaning black).

444 \newcounter{changebargrey}
445 \setcounter{changebargrey}{65}

When one of the options color or xcolor was selected we need to load the ap-
propriate package. When we’re run by pdfI2TEX we need to pass that information
on to that package.

446 \Q@Qifpackagewith{changebar}{\csname cb@color@pkg\endcsname}{’

447 \RequirePackage{\cb@color@pkgl}/

Then we need to define the command \cbcolor which is a slightly modified copy
of the command \color from the color package.

20

\cbcolor

\@undeclaredcbcolor

\@declaredcbcolor

\cb@start

\cbcolor{declared-colour} switches the colour of the changebars to declared-
colour, which must previously have been defined using \definecolor. This colour
will stay in effect until the end of the current TEX group.

\cbcolor [modell{colour-specification} is similar to the above, but uses a
colour not declared by \definecolor. The allowed model’s vary depending on the
driver. The syntax of the colour-specification argument depends on the model.

448 \DeclareRobustCommand\cbcolor{’
449 \@ifnextchar[\Qundeclaredcbcolor\@declaredcbcolor}

Call the driver-dependent command \color@(model) to define \cb@current@color.

450 \def\@undeclaredcbcolor [#1]#2{%

451 \begingroup

452 \color [#11{#2}/

453 \global\let\cb@current@color\current@color
454 \endgroup

455 \ignorespaces

456 }

457 \def\@declaredcbcolor#1i{/

458 \begingroup

459 \color{#1}/

460 \globalllet\cb@current@color\current@color
461 \endgroup

462 \ignorespaces}

463 M

When the color option wasn’t specified the usage of the \cbcolor command results
in a warning message.

464 \def\cbcolor{\@ifnextchar[’]

465 \@@cbcolor\@cbcolorl},

466 \def\@@cbcolor [#1]#2{\cb@colwarn\def\@@cbcolor [##1]##2{}}%
467 \def\@cbcolor#1{\cb@colwarn\def\@cbcolor##1{}}%

468 \def\cb@colwarn{\PackageWarning{Changebar}/

469 {You didn’t specify the option ‘color’;\MessageBreak
470 your command \string\cbcolor\space will be ignored}}/
471}

5.4 Macros for beginning and ending bars

This macro starts a change bar. It assigns a new value to the current point and
advances the counter for the next point to be assigned. It pushes this info onto
\cb@currentstack and then sets the point by calling \cb@setBeginPoints with
the point number. Finally, it writes the .aux file.

472 \def\cb@start [#1]1{%
473 \cb@topleft=\cb@nextpoint

Store the width of thej current bar in \cb@curbarwd.

474 \cb@curbarwd#1\relax
475 \cb@push\cb@currentstack

21

\cb@advancePoint

\cb@end

Now find out on which page the start of this bar finaly ends up; due to the
asynchronous nature of the output routine it might be a different page. The
macro \cb@checkpage finds the page number on the history stack.

476 \cb@checkpage\z@
Temporarily assign the page number to \cb@pagecount as that register is used by
\cb@setBeginPoints. Note that it’s value is offset by one from the page counter.

477 \cb@cnta\cb@pagecount
478 \cb@pagecount\cb@page\advance\cb@pagecount\m@ne
479 \ifvmode

480 \cb@setBeginPoints
481 \else
482 \vbox to \z@{%

When we are in horizontal mode we jump up a line to set the starting point of the
changebar.

483 \vskip -\ht\strutbox
484 \cb@setBeginPoints
485 \vskip \ht\strutboxl}/
486 \fi

Restore \cb@pagecount.

487 \cb@pagecount\cb@cnta
488 \cb@advancePoint}

The macro \cb@advancePoint advances the count register \cb@nextpoint. When
the maximum number is reached, the numbering is reset.

489 \def\cb@advancePoint{%

490 \globalladvance\cb@nextpoint by 4\relax

491 \ifnum\cb@nextpoint>\cb@maxpoint

492 \global\cb@extpoint=\cb@minpoint\relax

493 \fi}

This macro ends a changebar. It pops the current point and nesting level off
\cb@currentstack and sets the end point by calling \cb@setEndPoints with the
parameter corresponding to the beginning point number. It writes the . aux file and
joins the points. When in horizontal mode we put the call to \cb@setEndPoints
inside a \vadjust. This ensures that things with a large depth, e.g. a parbox or
formula will be completely covered. By default these have their baseline centered,
and thus otherwise the changebar would stop there.

494 \def\cb@end{/

495 \cb@trace@stack{end of bar on page \the\c@pagel}/
496 \cb@pop\cb@currentstack

497 \ifnum\cb@topleft=\cb@nil

498 \PackageWarning{Changebar}/,
499 {Badly nested changebars; Expect erroneous results}y
500 \else

Call \cb@checkpage to find the page this point finally ends up on.
501 \cb@checkpage\threQ
Again, we need to temporarily overwrite \cb@pagecount.

502 \cb@cnta\cb@pagecount
503 \cb@pagecount\cb@page\advance\cb@pagecount\m@ne

22

\cb@checkpage

504 \ifvmode

505 \cb@setEndPoints

506 \else

507 \vadjust{\cb@setEndPoints}/
508 \fi

509 \cb@pagecount\cb@cnta

510 \fi

511 \ignorespaces}

The macro \cb@checkpage checks the history stack in order to find out on which
page a set of points finaly ends up.

We expect the identification of the points in \cb@topleft and \cb@page. The
resulting page will be stored in \cb@page. The parameter indicates whether we
are searching for a begin point (0) or end point (3).

512 \def\cb@checkpage#1{/
First store the identifiers in temporary registers.
513 \cb@cnta\cb@topleft\relax

514 \advance\cb@cnta by #1l\relax

515 \cb@cntb\cb@page\relax

516 \cb@dima\cb@curbarwd\relax

Then pop the history stack.

517 \cb@pop\cb@historystack

If it was empty there is nothing to check and we’re done.

518 \ifnum\cb@topleft=\cb@nil
519 \else

Now keep popping the stack until \cb@topleft is found. The values popped from
the stack are pushed on a temporary stack to be pushed back later. This could
perhaps be implemented more efficiently if the stacks had a different design.

520 \cb@FindPageNum

521 \ifnum\cb@topleft>\cb@maxpoint\else

Now that we’ve found it overwrite \cb@cntb with the \cb@page from the stack.

522 \cb@cntb\cb@page
523 \fi

Now we restore the history stack to it’s original state.

524 \@whilenum\cb@topleft>\cb@nil\do{}
525 \cb@push\cb@historystack

526 \cb@pop\cb@tempstack}

527 \fi

Finally return the correct values.
528 \advance\cb@cnta by -#1\relax
529 \cb@topleft\cb@cntal\relax
530 \cb@page\cb@cntb\relax

531 \cb@curbarwd\cb@dima\relax
532}

23

\cb@FindPageNum

\cb@setBeginPoints

\cb@setEndPoints

\cb@FindPageNum recursively searches through the history stack until an entry is
found that is equal to \cb@cnta.
533 \def\cb@FindPageNum{’
534 \ifnum\cb@topleft=\cb@cnta

We have found it, exit the macro, otherwise push the current entry on the tempo-
rary stack and pop a new one from the history stack.

535 \else
536 \cb@push\cb@tempstack
537 \cb@pop\cb@historystack

When the user adds changebars to his document we might run out of the history
stack before we find a match. This would send TEX into an endless loop if it
wasn’t detected and handled.

538 \ifnum\cb@topleft=\cb@nil

539 \cb@trace{Ran out of history stack, new changebar?}},

In this case we give \cb@topleft an ‘impossible value’ to remember this special
situation.

540 \cb@topleft\cb@maxpoint\advance\cb@topleft\@ne

541 \else

Recursively call ourselves.

542 \expandafter\expandafter\expandafter\cb@FindPageNum
543 \fi

544 \fi

545 Yh

The macro \cb@setBeginPoints assigns a position to the top left and top right
points. It determines wether the point is on an even or an odd page and uses
the right dimension to position the point. Keep in mind that the value of
\cb@pagecount is one less than the value of \c@page unless the latter has been
reset by the user.

The top left point is used to write an entry on the .aux file to create the history
stack on the next run.

546 \def\cb@setBeginPoints{}
547 \cb@topright=\cb@topleft\advance\cb@topright by\@ne

548 \cb@cntb=\cb@pagecount
549 \divide\cb@cntb by\tw@
550 \ifodd\cb@cntb

551 \cb@defpoint\cb@topleft\cb@even@left
552 \cb@defpoint\cb@topright\cb@even@right
553 \else

554 \cb@defpoint\cb@topleft\cb@odd@left
555 \cb@defpoint\cb@topright\cb@odd@right
556 \fi

557 \cb@writeAux\cbQtopleft

558}

The macro \cb@setEndPoints assigns positions to the bottom points for a change
bar. It then instructs the driver to connect two points with a bar. The macro
assumes that the width of the bar is stored in \cb@curbarwd.

24

The bottom right point is used to write to the .aux file to signal the end of
the current bar on the history stack.

559 \def\cb@setEndPoints{}

560 \cb@topright=\cb@topleft\advance\cb@topright by\@ne
561 \cb@botleft=\cb@topleft\advance\cb@botleft by\tw@

562 \cb@botright=\cb@topleft\advance\cb@botright by\three

563 \cb@cntb=\cb@pagecount
564 \divide\cb@cntb by\tw@
565 \ifodd\cb@cntb

566 \cb@defpoint\cb@botleft\cb@even@left
567 \cb@defpoint\cb@botright\cb@even@right
568 \else

569 \cb@defpoint\cb@botleft\cb@odd@left
570 \cb@defpoint\cb@botright\cb@odd@right
571 \fi

572 \cb@uriteAux\cb@botright
573 \edef\cb@leftbar{%

574 \noexpand\cb@connect{\cb@topleft}{\cb@botleft}{\cb@curbarwd}}/
575 \edef\cb@rightbar{%
576 \noexpand\cb@connect{\cb@topright}{\cb@botright}{\cb@curbarwd}}/

In twocolumn pages always use outerbars
577 \if@twocolumn

578 \ifodd\cb@pagecount\cb@rightbar\else\cb@leftbar\fi
579 \else
580 \ifcase\cb@barsplace

O=innerbars

581 \ifodd\cb@cntb

582 \cb@rightbar

583 \else

584 \if@twoside\cb@leftbar\else\cb@rightbar\fi
585 \fi

586 \or

1=outerbars

587 \ifodd\cb@cntb
588 \cb@leftbar
589 \else
590 \if@twoside\cb@rightbar\else\cb@leftbar\fi
591 \fi
592 \or

2=leftbars
593 \cb@leftbar
594 \or

3=rightbars
595 \cb@rightbar
596 \fi
597 \fi
598 }h

25

\cb@uriteAux

Q@cb@page jump

\cb@page jumplist

\cb@nextpage jump

\cb@page jump

\cb@uritepagejump

\cb@poppage jump

The macro \cb@writeAux writes information about a changebar point to the aux-
iliary file. The number of the point, the pagenumber and the width of the bar are
written out as arguments to \cb@barpoint. This latter macro will be expanded
when the auxiliary file is read in. The macro assumes that the width of bar is
stored in \cb@curbarwd.

The code is only executed when auxiliary files are enabled, as there’s no sense
in trying to write to an unopened file.

599 \def\cbQuwriteAux#1{%
600 \if@filesw

601 \begingroup

602 \edef\point{\the#1}}

603 \edef\level{\the\cb@curbarwd}y,

604 \let\the=\z@

605 \edef\cbQ@temp{\write\Qauxout

606 {\string\cb@barpoint{\point}{\the\cb@pagecount}{\levell}}}/
607 \cb@temp

608 \endgroup

609 \fi}

5.5 Macros for Making It Work Across Page Breaks

A switch to indicate that we have made a page correction.
610 \newif\if@cb@page jump

The list of pagecounts to be corrected.
611 \def\cb@page jumplst{-1}

The next pagecount from the list.
612 \def\cb@nextpage jump{-1}

This macro is written to the .aux file when a pagecount in a lefthand column
should be corrected. The argument is the incorrect pagecount.

613 \def\cb@page jump#1{\xdef\cb@page jumplst{\cb@page jumplst,#1}}

This macro writes a \cb@pagejump entry to the .aux file. It does it by putting
the \write command in the \@leftcolumn so that it will be properly positioned
relative to the bar points.

614 \def\cb@uritepage jump#1{

615 \cb@cntb=\cb@pagecount

616 \advance\cb@cntb by#l\relax

617 \global\setbox\@leftcolumn\vbox to\@colht{}

618 \edef\cb@temp{\write\Qauxout{\string\cb@page jump{\the\cb@cntb}}}%
619 \cb@temp

620 \dimen@ \dp\@leftcolumn

621 \unvbox \@leftcolumn

622 \vskip -\dimen®@

623 }h

624

Pop an entry from pagejumplst. The entry is put in \cb@nextpagejump.
625 \def\cb@poppage jump#1, #2\relax{}

626 \gdef\cb@nextpagejump{#13}7

627 \gdef\cb@pagejumplst{#2}}

26

\cb@checkpagecount This macro checks that \cb@pagecount is correct at the beginning of a column
or page. First we ensure that \cb@pagecount has the proper parity: odd in
the righthand column of a twocolumn page, even in the lefthand column of a
twocolumn page and in onecolumn pages.
628 \def\cb@checkpagecount{},
629 \if@twocolumn

630 \if@firstcolumn

631 \ifodd\cb@pagecount\global\advance\cb@pagecount by\@ne\fi
632 \fi

633 \else

634 \ifodd\cb@pagecount\global\advance\cb@pagecount by\@ne\fi
635 \fi

Also, in twosided documents, \cb@pagecount/2 must be odd on even pages and
even on odd pages. If necessary, increase \cb@pagecount by 2. For onesided
documents, we don’t do this as it doesn’t matter (but it would be harmless). In
the righthand column in twoside documents we must check if \cb@pagecount/2
has the proper parity (see below). If it is incorrect, the page number has changed
after the lefthand column, so \cb@pagecount is incorrect there. Therefore we
write a command in the .aux file so that in the next run the lefthand column
will correct its \cb@pagecount. We also need to signal a rerun. If the correction
was made in the lefthand column, the flag @cb@pagejump is set, and we have to
be careful in the righthand column. If in the righthand column the flag is set
and \cb@pagecount is correct, the correction in the lefthand column worked, but
we still have to write into the .aux file for the next run. If on the other hand
\cb@pagecount is incorrect while the flag is set, apparently the correction in the
lefthand column should not have been done (probably because the document has
changed), so we do nothing.

636 \if@twoside

637 \cb@cntb=\cb@pagecount

638 \divide\cb@cntb by\tw@

639 \advance\cb@cntb by-\c@page

640 \ifodd\cb@cntb

Here \cb@pagecount seems correct. Check if there is a page jump.
641 \if@twocolumn

642 \if@firstcolumn

643 \@whilenum\cb@pagecount>\cb@nextpage jump\do{%

644 \expandafter\cb@poppage jump\cb@page jumplst\relax}
645 \ifnum\cb@pagecount=\cb@nextpage jump

646 \cb@trace{Page jump: \string\cb@pagecount=\the\cb@pagecount}
647 \global\advance\cb@pagecount by\tw@

648 \global\@cb@page jumptrue

649 \else

650 \global\@cb@page jumpfalse

651 \fi

652 \else

In the righthand column check the flag (see above). If set, write a pagejump, but
compensate for the increase done in the lefthand column.

653 \if@cb@page jump
654 \cb@uritepagejump{-3}/
655 \fi

27

\@makecol
\@vtryfc

656 \fi
657 \fi
658 \else

Here \cb@pagecount is incorrect.

659 \if@twocolumn

660 \if@firstcolumn

661 \global\advance\cb@pagecount by\tw@
662 \global\@cb@pagejumpfalse

663 \else

664 \if@cb@page jump

665 \cb@trace{Page jump annulled, %

666 \string\cb@pagecount=\the\cb@pagecount}
667 \else

668 \cb@uritepagejump{-1}/

669 \global\advance\cb@pagecount by\tw@
670 \cb@rerun

671 \fi

672 \fi

673 \else

674 \globalladvance\cb@pagecount by\tw@

675 \fi

676 \fi

677 \fi

678 }

These internal BXTEX macros are modified in order to end the changebars span-

ning the current page break (if any) and restart them on the next page. The
modifications are needed to reset the special points for this page and add begin
bars to top of box255. The bars carried over from the previous page, and hence
to be restarted on this page, have been saved on the stack \cb@beginstack. This
stack is used to define new starting points for the change bars, which are added
to thetop of box \@cclv. Then the stack \cb@endstack is built and processed by
\cb@processActive. Finally the original \@makecol (saved as \cb@makecol) is
executed.

679 \let\1ltx@makecol\@makecol
680 \def\cb@makecol{,
681 \if@twocolumn

682 \cb@trace{Twocolumn: \if@firstcolumn Left \else Right \fi column}},
683 \fi

684 \cb@trace@stack{before makecol, page \the\c@page,

685 \string\cb@pagecount=\the\cb@pagecount}y

686 \let\cb@uriteAux\@gobble

First make sure that \cb@pagecount is correct. Then add the necessary bar points
at beginning and end.

687 \cb@checkpagecount

688 \setbox\@cclv \vbox{%

689 \cb@resetpoints

690 \cb@startSpanBars

691 \unvbox\@cclv

692 \boxmaxdepth\maxdepthl}

693 \global\advance\cb@pagecount by\@ne

28

\cb@processhActive

694 \cb@buildstack\cb@processActive
695 \ltx@makecol

In twocolumn pages write information to the aux file to indicate which column we
are in. This write must precede the whole column, including floats. Therefore we
insert it in the front of \@outputbox.

696 \if@twocolumn

697 \global\setbox\@outputbox \vbox to\@colht {J

698 \if@firstcolumn\write\Q@auxout{\string\Q@cb@firstcolumntruel}y
699 \else\write\Q@auxout{\string\Q@cb@firstcolumnfalsel}}
700 \fi

701 \dimen@ \dp\@outputbox

702 \unvbox \@outputbox

703 \vskip -\dimen@

704 Y

705 \fi

706 \cb@trace@stack{after makecol, page \the\c@page,

707 \string\cb@pagecount=\the\cb@pagecount}y,
708}

709 \1let\@makecol\cb@makecol

When ITEX makes a page with only floats it doesn’t use \@makecol; instead it
calls \@vtryfc, so we have to modify this macro as well. In twocolumn mode
we must write either \@cb@firstcolumntrue or \@cb@firstcolumnfalse to the
.aux file.
710 \let\1ltx@vtryfc\Qvtryfc
711 \def\cb@vtryfc#1{}
712 \cb@trace{In vtryfc, page \the\cQpage,
713 \string\cb@pagecount=\the\cb@pagecountl}},
714 \let\cb@writeAux\@gobble

First make sure that \cb@pagecount is correct. Then generate a \@cb@f irstcolumntrue
or \@cbefirstcolumnfalse in twocolumn mode.
715 \cb@checkpagecount

716 \ltx@vtryfc{#1}Y
717 \if@twocolumn

718 \global\setbox\@outputbox \vbox to\@colht{}

719 \if@firstcolumn\write\@auxout{\string\@cbe@firstcolumntruel}
720 \else\write\Qauxout{\string\@cb@firstcolumnfalsel}/

721 \fi

722 \unvbox\@outputbox

723 \boxmaxdepth\maxdepth

724 Y

725 \fi

726 \globall\advance\cb@pagecount by \@ne

727 }

728 \let\@vtryfc\cb@vtryfc

This macro processes each element on span stack. Each element represents a bar
that crosses the page break. There could be more than one if bars are nested. It
works as follows:

pop top element of span stack
if point null (i.e., stack empty) then done

29

\cb@startSpanBars

\cb@buildstack
\cb@endstack

\cb@pushNextActive

else
do an end bar on box255
save start for new bar at top of next page in \cb@startSaves
push active point back onto history stack (need to reprocess
on next page).

729 \def\cb@processActive{
730 \cb@pop\cb@endstack
731 \ifnum\cb@topleft=\cb@nil

732 \else

733 \setbox\@cclv\vbox{}

734 \unvbox\@cclv

735 \boxmaxdepth\maxdepth

736 \advance\cb@pagecount by -1\relax
737 \cb@setEndPoints}y

738 \cb@push\cb@historystack

739 \cb@push\cb@beginstack

740 \expandafter\cb@processActive

741 \fi}

This macro defines new points for each bar that was pushed on the \cb@beginstack.
Afterwards \cb@beginstack is empty.

742 \def\cb@startSpanBars{/,

743 \cb@pop\cb@beginstack

744 \ifnum\cb@topleft=\cb@nil

745 \else

746 \cb@setBeginPoints

747 \cb@trace@stack{after StartSpanBars, page \the\c@pagel}/
748 \expandafter\cb@startSpanBars

749 \fi

750 }

The macro \cb@buildstack initializes the stack with open bars and starts popu-
lating it.

751 \def\cb@buildstack{%

752 \cb@initstack\cb@endstack

753 \cb@pushNextActive}

This macro pops the top element off the history stack (\cb@historystack). If
the top left point is on a future page, it is pushed back onto the history stack and
processing stops. If the point on the current or a previous page and it has an odd
number, the point is pushed on the stack with end points \cb@endstack); if the
point has an even number, it is popped off the stack with end points since the bar
to which it belongs has terminated on the current page.

754 \def\cb@pushNextActive{%

755 \cb@pop\cb@historystack

756 \ifnum\cb@topleft=\cb@nil

757 \else

758 \ifnum\cb@page>\cb@pagecount
759 \cb@push\cb@historystack
760 \else

761 \ifodd\cb@topleft

30

\cb@initstack

\cb@historystack
\cb@urite
\cb@read

\cb@endstack
\cb@beginstack

\cb@tempstack

762 \cb@push\cb@endstack

763 \else

764 \cb@pop\cb@endstack

765 \fi

766 \expandafter\expandafter\expandafter\cb@pushNextActive
767 \fi

768 \fi}

5.6 Macros For Managing The Stacks of Bar points

The macros make use of four stacks corresponding to \special defpoints. Each
stack takes the form <element> ... <element>

Each element is of the form xxxnyyypzzzl where xxx is the number of the
special point, yyy is the page on which this point is set, and zzz is the dimension
used when connecting this point.

The stack \cb@historystack is built from the log information and initially
lists all the points. As pages are processed, points are popped off the stack and
discarded.

The stack \cb@endstack and \cb@beginstack are two temporary stacks used
by the output routine and contain the stack with definitions for of all bars crossing
the current pagebreak (there may be more than one with nested bars). They are
built by popping elements off the history stack.

The stack \cb@currentstack contains all the current bars. A \cb@start
pushes an element onto this stack. A \cb@end pops the top element off the stack
and uses the info to terminate the bar.

For performance and memory reasons, the history stack, which can be very
long, is special cased and a file is used to store this stack rather than an internal
macro. The “external” interface to this stack is identical to what is described
above. However, when the history stack is popped, a line from the file is first read
and appended to the macro \cb@historystack.

A macro to (globally) initialize a stack.
769 \def\cbQ@initstack#1{\xdef#1{}}

We need to initialise a stack to store the entries read from the external history
file.

770 \cb@initstack\cbOhistorystack
We also need to allocate a read and a write stream for the history file.

771 \newwrite\cb@urite
772 \newread\cb@read

And we open the history file for writing (which is done when the .aux file is read
in).

773 \immediate\openout\cb@write=\jobname.cb\relax

Allocate two stacks for the bars that span the current page break.

774 \cb@initstack\cb@endstack
775 \cb@initstack\cb@beginstack

Allocate a stack for temporary storage
776 \cb@initstack\cb@tempstack

31

\cb@currentstack

\cb@pop

\cb@carcdr

\cb@push

\cb@barpoint

And we allocate an extra stack that is needed to implement nesting without having
to rely on TEX’s grouping mechanism.
777 \cb@initstack\cb@currentstack

This macro pops the top element off the named stack and puts the point value into
\cb@topleft, the page value into \cb@page and the bar width into \cb@curbarwd.
If the stack is empty, it returns a void value (\cb@nil) in \cb@topleft and sets
\cb@page=0.

778 \def\cb@thehistorystack{\cb@historystack}

779 \def\cb@pop#1{/

780 \ifx #1\Q@empty

781 \def\cb@temp{#1}%

782 \ifx\cb@temp\cb@thehistorystack

783 \ifeof\cb@read

784 \else

785 {\endlinechar=-1\read\cb@read to\cb@temp
786 \xdef\cb@historystack{\cb@historystack\cb@templ}’
787 Y

788 \fi

789 \fi

790 \fi

791 \ifx#1\Qempty

792 \global\cb@topleft\cb@nil

793 \global\cb@page\z@\relax

794 \else

795 \expandafter\cbQcarcdr#le#ly,

796 \fi

797 \cb@trace@pop{#1}}

This macro is used to ‘decode’ a stack entry.
798 \def\cbQcarcdr#in#2p#31#4e#5{),

799 \global\cb@topleft#l\relax

800 \global\cb@page#2\relax

801 \global\cb@curbarwd#3\relax

802 \xdef#5{#4}}

The macro \cb@push Pushes \cb@topleft, \cb@page and \cb@curbarwd onto the
top of the named stack.

803 \def\cb@push#1{}

804 \xdef#1{\the\cb@topleft n\the\cb@page p\the\cb@curbarwd 1#1}%
805 \cb@trace@push{#1}}

806

The macro \cb@barpoint populates the history file. It writes one line to .cb file
which is equivalent to one (element) described above.

807 \def\cb@barpoint#1#2#3{\cb@cnta=#2

808 \if@cb@firstcolumn\advance\cb@cnta by\m@ne\fi

809 \immediate\write\cb@write{#1n\the\cb@cnta p#31}}

32

\AtBeginDocument

\AtEndDocument

5.7 Macros For Checking That The .aux File Is Stable

While reading the .aux file, I’'TEX has created the history stack in a separate file.
We need to close that file and open it for reading. Also the ‘initialisation’ of the
\special commands has to take place. While we are modifying the macro we also
include the computation of the possible positions of the changebars
For these actions we need to add to the ITEX begin-document hook.

810 \AtBeginDocument{¥%
811 \cb@setup@specials

Add a sentinel to \cb@pagejumplst.
812 \cb@pagejump{999999999, }%

Compute the left and right positions of the changebars.

813 \cb@positions
814 \cb@trace{)

815 0dd left : \the\cbQodd@left\space

816 0dd right : \the\cb@odd@right\MessageBreak
817 Even left: \the\cb@even@left\space

818 Even right: \the\cbQeven@right

819 Y

820 \immediate\closeout\cb@urite
821 \immediate\openin\cb@read=\jobname.cb}

We need to issue a \clearpage to flush rest of document. (Note that I be-
lieve there is contention in this area: are there in fact situations in which the
end-document hooks need to be called before the final \clearpage? — the
documentation of BTEX itself implies that there are.) Then closes the .cb file
and reopens it for checking. Initialize history stack (to be read from file). Let
\cb@barpoint=\cb@checkHistory for checking.
822 \AtEndDocument{/,
823 \clearpage
824 \cb@initstack\cb@historystack
825 \immediate\closein\cb@read
826 \immediate\openin\cb@read=\jobname.cb

Let \cb@pdfxy=\cb@checkPdfxy for checking. Make \cb@pagejump dummy.
827 \ifx\cb@readxy\@undefined

828 \else
829 \immediate\closein\cb@readxy
830 \immediate\openin\cb@readxy=\jobname.cb2},

831 \def\cb@pdfpoints{}/

832 \def\cb@pdfpagenr{0}%

833 \fi

834 \@cb@firstcolumnfalse

835 \cb@checkrerun

836 \let\cb@pdfxy\cb@checkPdfxy

837 \let\cb@pagejump\@gobble

838 \let\cb@barpoint\cb@checkHistory}

\cb@checkHistory Pops the top of the history stack (\jobname.cb) and checks to see if the point

and page numbers are the same as the arguments #1 and #2 respectively. Prints
a warning message if different.

33

\cb@rerun

\cb@error

\end@float

839 \def\cb@checkHistory#1#2#3{/
840 \cb@pop\cb@historystack
841 \ifnum #1=\cb@topleft\relax

842 \cb@cnta=#2
843 \if@cb@firstcolumn\advance\cb@cnta by\m@ne\fi
844 \ifnum \cb@cnta=\cb@page\relax

Both page and point numbers are equal; do nothing,
845 \else

but generate a warning when page numbers don’t match, or

846 \cb@error
847 \fi
848 \else

when point numbers don’t match.

849 \cb@error

850 \fi}

Dummy definition for \cb@checkPdfxy. This will be overwritten by the pdftex
option.

851 \def\cb@checkPdfxy#1#2#3#4#5{}

The macro \cb@rerun is called when we detect that we need to rerun ITEX.

852 \def\cb@rerun{/,
853 \global\let\cb@checkrerun\cb@error}
854 \let\cb@checkrerun\relax

When a mismatch between the changebar information in the auxiliary file and the
history stack is detected a warning is issued; further checking is disabled. For
pdftex we also disable \cb@checkPdfxy.

855 \def\cbQerror{}

856 \PackageWarning{Changebar}j,

857 {Changebar info has changed.\MessageBreak
858 Rerun to get the bars right}

859 \gdef\cb@checkHistory##1##2##3{}

860 \let\cb@barpoint\cb@checkHistory

861 \gdef\cb@checkPdfxy##1##2##3##4#%5{}Y,
862 \let\cb@pdfxy\cb@checkPdfxy}

5.8 Macros For Making It Work With Nested Floats/Footnotes

This is a replacement for the INTEX-macro of the same name. All it does is check to
see if changebars are active and, if so, it puts changebars around the box containing
the float. Then it calls the original TEX \end@float.

863 \let\1ltx@end@float\end@float

864 \def\cb@end@float{}

865 \cb@trace@stack{end float on page \the\c@pagel/
866 \cb@pop\cb@currentstack

867 \ifnum\cb@topleft=\cb@nil

868 \else

34

\float@end

\end@dblfloat

869 \cb@push\cb@currentstack

870 \global\cb@curbarwd=\cb@curbarwd

871 \@endfloatbox

872 \global\setbox\@currbox

873 \color@vbox

874 \normalcolor

875 \vbox\bgroup\cb@start [\cb@curbarwd] \unvbox\@currbox\cb@end
876 \fi

877 \ltx@end@float}
878 \let\end@float\cb@end@float

This only works if this new version of \end@float is really used. With I#TEX2.09
the documentstyles used to contain:

\let\endfigure\end@float

In that case this binding has to be repeated after the redefinition of \end@float.
However, the IATEX 2¢ class files use \newenvironment to define the figure and
table environments. In that case there is no need to rebind \endfigure.

When the float package is being used we need to take care of its changes to
the float mechanism. It defines it’s own macros (\float@end and \float@dblend
which need to be modified for changebars to work.
First we’ll save the original as \f1t@float@end.
879 \let\flt@float@end\float@end
Then we redefine it to insert the changebarcode.
880 \def\float@end{’,
881 \cb@trace@stack{end float on page \the\c@pagel/

882 \cb@pop\cb@currentstack
883 \ifnum\cb@topleft=\cb@nil

884 \else

885 \cb@push\cb@currentstack

886 \global\cb@curbarwd\cb@curbarwd

887 \@endfloatbox

888 \global\setbox\Q@currbox

889 \color@vbox

890 \normalcolor

891 \vbox\bgroup\cb@start [\cb@curbarwd] \unvbox\@currbox\cb@end
892 \fi

893 \let\end@float\ltx@end@float
894 \flt@float@end
895 }

This is a replacement for the IANTEX-macro of the same name. All it does is check to
see if changebars are active and, if so, it puts changebars around the box containing
the float. In this case the EXTEX macro had to be rewritten.

896 \let\1ltx@end@dblfloat\end@dblfloat
897 \def\cb@end@dblfloat{’
898 \if@twocolumn

899 \cb@trace@stack{end dblfloat on page \the\c@pagel
900 \cb@pop\cb@currentstack

901 \ifnum\cb@topleft=\cb@nil

902 \else

35

903 \cb@push\cb@currentstack

904 \global\cb@curbarwd=\cb@curbarwd

905 \@endfloatbox

906 \global\setbox\Q@currbox

907 \color@vbox

908 \normalcolor

909 \vbox\bgroup\cb@start [\cb@curbarwd] \unvbox\@currbox\cb@end
910 \fi

911 \@endfloatbox

912 \ifnum\@floatpenalty <\z@

913 \@largefloatcheck

914 \@cons\@dbldeferlist\Q@currbox

915 \fi

916 \ifnum \@floatpenalty =-\@Mii \@Esphack\fi
917 \else

918 \end@float

919 \fi}

920 \let\end@dblfloat\cb@end@dblfloat

\float@dblend Something similar needs to be done for the case where the float package is being
used...

921 \let\f1lt@float@dblend\float@dblend

922 \def\float@dblend{’

923 \cb@trace@stack{end dbl float on page \the\c@pagel/,
924 \cb@pop\cb@currentstack

925 \ifnum\cb@topleft=\cb@nil

926 \else

927 \cb@push\cb@currentstack

928 \global\cb@curbarwd=\cb@curbarwd

929 \@endfloatbox

930 \global\setbox\@currbox

931 \color@vbox

932 \normalcolor

933 \vbox\bgroup\cb@start [\cb@curbarwd] \unvbox\@currbox\cb@end
934 \fi

935 \let\end@dblfloat\ltx@end@dblfloat
936 \flt@float@dblend
937 }

\@footnotetext This is a replacement for the IXTEX macro of the same name. It simply checks
to see if changebars are active, and if so, wraps the macro argument (i.e., the
footnote) in changebars.

938 \let\1tx@footnotetext\@footnotetext

939 \long\def\cb@footnotetext#1{}

940 \cb@trace@stack{end footnote on page \the\c@pagel/
941 \cb@pop\cb@currentstack

942 \ifnum\cb@topleft=\cb@nil

943 \1tx@footnotetext{#1}}

944 \else

945 \cb@push\cb@currentstack

946 \edef\cb@temp{\the\cb@curbarwd}/,

947 \1tx@footnotetext{\cb@start [\cb@temp] #1\cb@end}’
948 \fi}

36

949 \let\@footnotetext\cb@footnotetext

\@mpfootnotetext Replacement for the TEX macro of the same name. Same thing as \@footnotetext.
950 \let\1ltx@mpfootnotetext\@mpfootnotetext

951 \long\def\cb@mpfootnotetext#1{

952 \cb@pop\cb@currentstack

953 \ifnum\cb@topleft=\cb@nil

954 \1tx@mpfootnotetext{#1}/

955 \else

956 \cb@push\cb@currentstack

957 \edef\cb@temp{\the\cb@curbarwd}/

958 \ltx@mpfootnotetext{\cb@start [\cb@temp]l#1\cbQend}/
959 \fi}

960 \let\@mpfootnotetext\cb@mpfootnotetext

961 (/package)

Index

Numbers in ¢talics indicate the page where the macro is described, the underlined
numbers indicate the number of the line of code where the macro is defined, all
other numbers indicate where a macro is used.

Symbols \@ifnextchar .. 422, 712, 747, 865,
\@@cbcolor 465, 466 426, 431, 449, 464 881, 899, 923, 940
\@auxout 346, 605, 618, \@ifpackagewith . 446 \cbeefindpdfpoint

698, 699, 719, 720 \@largefloatcheck . 913 285, 288, 398
@cb@firstcolumn 7 \@leftcolummn \cb@@show@stack 90, 125
\@cb@firstcolumnfalse 617, 620, 621 \cpoadvancePoint

699, 720, 834 \@makecol 679 488, 489
\@cb@firstcolumntrue \Cmpfootnotetext .. 950 \cb@barpoint

........ 698, 719 \@outputbox ... 697, . 606, 807, 838, 860
@cb@pagejump 26 701, 702, 718, 722 \cb@barsplace
\@cb@page jumpfalse . \@preamblecnds - 174 18, 83-86, 580

........ 650, 662 \Gundeclaredcbcolor \cb@beginstack .

) PR 449, 450 g

\@cb@page jumptrue . 648 \Gundefined 65, . 130, 739, 743, 774
QcbQ@trace 7 66, 69, 111, 112, \cb@botleft 7,
\@cb@tracefalse ... 88 137, 139, 372, 827 561, 566, 569, 574
\@cb@tracetrue 87 \@vtryfc 679 \cb@botright . 7, 562,
\@cbcolor 465, 467 567, 570, 572, 576
\@cclv 688, 691, 733, 734 A \cb@buildstack 694, 751
\@colht ... 617,697, 718 \AtBeginDocument .. 810 \cb@carcdr 795, 798
\@currbox . 872, 875, \AtEndDocument 822 \cb@checkHistory

888, 891, 906, . 838, 839, 859, 860

909, 914, 930, 933 \boxmaxdeptig \cb@checkpage
\@dbldeferlist 914 TR 476, 501, 512

692, 723, 735
\@declaredcbcolor \cb@checkpagecount .

........ 449, 457 C 628, 687, 715
\@endfloatbox 871, \c@changebargrey .. 373 \cb@checkPdfxy 397

887, 905, 911, 929 \celor@to@ps ... 99, 102 836, 851, 861, 862
\@floatpenalty 912,916 \c@page 495, \cb@checkrerun .
\@footnotetext . 938 639, 684, 706, 835, 853, 854

37

\cb@cnta
477, 487,
509, 513,
528, 529,
807-809,
\cb@cntb 11
387-392, 515,
522, 530, 548-
550, 563-565,
581, 587, 615,
616, 618, 637-640
\cb@color@pkg
100, 103, 447
\cb@colwarn ... 466-468
\cb@connect 187, 574, 576
\cb@curbarwd
. 14, 474, 516,
531, 574, 576,
603, 801, 804,
870, 875, 886,
891, 904, 909,
928, 933, 946, 957
\cb@current@color
99, 102,
372, 376, 453, 460
\cb@currentstack
128, 475, 496,
777, 866, 869,
882, 885, 900,
903, 924, 927,
941, 945, 952, 956
\cb@cvtpct . 354, 373
\cb@defpoint 187, 551,
552, 554, 555,
566, 567, 569, 570
\cb@delete
. 427, 428, 429, 436
\cb@dima 11,
368-371, 378-
381, 385, 516, 531
\cb@driver@setup
. 50-61, 68,
142, 164-170,
\cb@end 425,
429, 433, 437,
494, 875, 891,
909, 933, 947, 958
\cb@end@dblfloat

H:
502,
514,
534,
842-844

188

........ 897, 920
\cb@end@float 864, 878
\cb@endstack 129, 730,

751, 762, 764, 774
\cbQerror

403, 406, 409,

846, 849, 853, 855
\cb@even@left
22, 28, 37—
40, 45, 551, 566, 817
\cb@even@right
22, 38, 41—
43, 46, 552, 567, 818
\cb@FindPageNum 520, 533
\cb@findpdfpoint 283,
360, 364, 389, 392
\cb@footnotetext

........ 939, 949
\cb@historystack
131, 517,
525, 537, 738,
755, 759, 770,
778, 786, 824, 840
\cb@initstack
752, 769
770, T74-777, 824
\cb@leftbar 573, 578
584, 588, 590, 593
\cb@makecol ... 680, 709
\cb@maxpoint
. 1, 196, 320,
412, 491, 521, 540
\cb@minpoint
. 3, 6, 196, 492
\cb@mpfootnotetext .
951, 960
\cb@next 302, 308, 313,
315, 318, 331, 336
\cb@nextpage jump
. 612, 626, 643, 645
\cb@nextpoint
b, 473, 490-492
4, 497,
524, 538,
744, 756,
792, 867, 883,
901, 925, 942, 953
\cb@odd@left
. 22, 27-30, 34,
35, 45, 554, 569, 815
\cb@odd@right 22, 30—
33, 46, 555, 570, 816
\cb@page 15
478, 503, 515,
522, 530, 758,
793, 800, 804, 844
\cb@pagecount 15, 181,
186, 343, 360,
364, 389, 392,
477, 478, 487,

\cb@nil
518,
731,

38

502,
548,
606, 615,
634, 637,
645647,
666, 669, 674,
685, 693, 707,
713, 726, 736, 758
\cb@page jump
. 613, 618, 812, 837
\cb@pagejumplist .. 611

503,
563,

500,
578,
631,
643,
661,

\cb@page jumplst
. 611, 613, 627, 644
\cb@pdffind ... 296, 301
\cb@pdfpagenr . 281
289, 320, 328, 832
324, 338

\cb@pdfparsexy
\cb@pdfpg
. 325, 328, 330, 339
\cb@pdfpoints
281, 293, 296,
309, 326, 327, 831
\cb@pdfreadxy . 290, 317
\cb@pdftexcheck
62-64, 171
\cb@pdftexerror
65, 66, 77, 78
\cb@pdftopy ... 363, 379
\cb@pdfx .. 292, 305,
361, 365, 369, 399
\cb@pdfxy
21,74, 347, 836, 862
\cb@pdfy
. 306, 363, 380, 400
\cb@pdfz .. 307, 368, 401
\cb@pop 496, 517, 526
537, 730, 743,
755, 764, 778
840, 866, 882,
900, 924, 941, 952
\cb@poppagejump 625, 644
\cb@positions .. 22, 813
\cb@processActive

694, 729

\cb@ps@color
. 97,99, 102,

206, 223, 251, 269
\cb@push 475,
525, 738,
739, 759, 762,
803, 869, 885,

903, 927, 945, 956
\cb@pushNextActive .

753, 754

536,

\cb@read .. 770, 783,
785, 821, 825, 826
\cb@readxy
. 71, 280, 319,
322, 827, 829, 830
\cb@removedim 49, 200

207, 216, 224,

244, 252, 262,

270, 378, 383, 385
\cb@rerun

. 361, 365, 670, 852
\cb@resetpoints 187, 689
\cb@rightbar 575, 578,

582, 584, 590, 595
\cb@setBeginPoints

. 480, 484, 546, 746
\cb@setEndPoints

. 505, 507, 559, 737
\cb@setup@specials

........ 177, 811
\cb@start

423, 424, 429,

431, 432, 435,

472, 875, 891,

909, 933, 947, 958
\cb@startSpanBars
690, 742
284,
297,
326,
373,
384,
607,

\cb@temp
286, 296,
322-324,
346, 349,
374, 378,
385, 605,
618, 619, 781,
782, 785, 786,
946, 947, 957, 958

\cb@tempstack

526, 536, 776

\cb@thehistorystack

778, 782

\cb@topleft 7,92, 94,
473, 497, 513,
518, 521, 524,
529, 534, 538,
540, 547, 551,
554, 557, 560—
562, 574, 731,
744, 756, 761,
792, 799, 804,
841, 867, 883,
901, 925, 942, 953

\cb@topright . 7, 547,
552, 555, 560, 576

\cb@trace 91, 93, 126,
146, 178, 183,
327, 539, 646,
665, 682, 712, 814
\cb@trace@connect
182, 194,
211, 230, 238,
257, 276, 395, 418
\cb@trace@defpoint .
177, 191,
203, 220, 235,
248, 266, 352, 417
\cb@trace@pop
93, 134, 797
\cb@trace@push .
91, 134, 805
\cb@trace@stack 90
133, 495, 684,
706, 747, 865,
881, 899, 923, 940
\cb@vtryfc 711, 728
\cb@urite . 770, 809, 820
\cb@uriteAux .. 557,
572, 599, 686, 714
\cb@uritepage jump
614, 654, 668

\cb@uritexy

69, 70, 72, 75, 279
\cbcolor &, 448, 464, 470
\cbdelete 3, 426
\cbend 3, 425
\cbstart 3, 422
\changebar 430

changebar (environ-
ment)
changebargrey
\changebarsep ... 4,
32, 34, 39, 42, 442
\changebarwidth
3, 33, 35,
40, 43, 424, 432, 438
452, 459

\color

\color@vbox
. 873, 889, 907, 931

453, 460
. 106

\current@color
\CurrentOption

D
\DeclareOption .
50-63, 83—

89, 96, 98, 101, 104
\DeclareRobustCommand

448

\deletebarwidth
...... 4, 428, 440
\driver 153
\DVIPS 159, 167
\DVItoPS 158, 166
E
\egroup 172
\emTeX 160, 168
\end@dblfloat 896, 935
\end@float 863, 893, 918
\endchangebar 430
\endlinechar .. 322, 785
environments:changebar
changebar 3
\evensidemargin ... 37
\ExecuteOptions

. 113, 116, 118, 122

F
\float@dblend
\float@end
\flt@float@dblend
921, 936
879, 894

\flt@float@end

I
\if@cb@firstcolumn .
20, 808, 843
\if@cb@page jump

610, 653, 664

\if@cb@trace
19, 147, 248, 257
\if@compatibility . 153
\if@filesw 341, 600
\if@firstcolumn
630, 642,
660, 682, 698, 719
\if@twocolumn . 577
629, 641, 659,
681, 696, 717, 898
\if@twoside
36, 584, 590, 636
388,

\ifodd
391, 550, 565,
578, 581, 587,

631, 634, 640, 761

L
\level 603, 606
\LN 157, 165
\1tx@end@dblfloat
........ 896, 935

\1tx@end@float

863, 877, 893
\1tx@footnotetext

938, 943, 947
\1ltx@makecol .. 679, 695
\1ltx@mpfootnotetext

950, 954, 958
\ltx@vtryfc ... 710, 716

19, 20, 610
. 3,434

\newif
\nochangebars

o
\oddsidemargin 29

outerbars 4
P
\PackageError 78, 104
\pdflastxpos 348
\pdflastypos 348

\pdfliteral 374, 376, 383

\pdfoutput .. 66, 67
112, 115, 139, 141
\pdfsavepos 65, 137, 345
\pdfTeX 163, 171
S
\special 190,
193, 196, 199,

40

205, 215, 222,
234, 237, 242,
243, 250, 261, 268

T
\tempa 155, 165-171
\Textures 161, 169
\thechangebargrey . 97
\thepage 181, 186
v
\VTeX 162, 170
\VTeXversion 111

