
?? “Contents”

The geom style for LATEX

Silvio Levy
Geometry Center

University of Minnesota

Revised for LATEX2ε, July 1995

Contents

1 Introduction . 2
2 Overall Organization . 2
3 Installation . 3
4 No More Fragile Commands . 4
5 Labels and Cross-References . 5
6 Theorems and Their Friends . 6
7 The Proof Environment . 8
8 Equations . 9
9 The Figure and Table environments . 10
10 PostScript Figures . 10
11 Fonts . 14
12 The Index, the Table of Contents and the Glossary 14
13 Proofing Aids . 15
Appendix: mathfig—A System for Doing Typesetting in Mathematica 16
References . 18
Index . 19

c©1992 Silvio Levy. The software described in this document is available free of charge
through the Geometry Center at the University of Minnesota. It is distributed without any
warranty, express or implied.

Bug reports and comments about the software and documentation can be sent to
levy@geom.umn.edu. I will take them into consideration in future releases, but there is
no guarantee that particular bugs will be fixed.

Revision: 1.12 Date: 95/07/03 15:57:22

1. Introduction 2

Section “Introduc-
tion”

geom

PostScript
historical notes
acknowledgements
Bill Thurston
Three-Dimensional

Geometry and
Topology

Yair Minsky
David Epstein
Warwick University
Don Knuth
Leslie Lamport
Rainer Schöpf
Frank Mittelbach
Trevor Darrell
Section “Overall

Organization”
new font selection

scheme

1. Introduction

This document describes a LATEX style called geom, which is loosely based on Lamport’s
book and article styles [Lam86], but provides a number of additional features, such as:

• inclusion of PostScript figures in the document, and of TEX text within figures;

• automatic creation of index entries and cross-reference labels where appropriate;

• no restriction on the use of macros and special characters in titles, cross-references,
captions, etc.;

• greater versatility in defining theorem-like environments;

• upright digits in an italics environment (optionally); and

• proofing aids such as version numbers and a running index.

There are also purely esthetic differences, many of which can be controlled by the user.
This style had its inception in a set of LATEX macros written for the formatting of Bill

Thurston’s Three-Dimensional Geometry and Topology, first by Yair Minsky and subse-
quently by me. After three years of gestation, the macros started being used intensively by
some other people—notably Thurston, David Epstein and a number of students at Warwick
University—and more modifications, including a complete rewrite, were made. The first
book published using the geom style [ECL+92] came out in February 1992.

The Appendix to this document describes mathfig, a system for typesetting TEX labels
in Mathematica figures. (Mathematica is described in [Wol91]). This system can also be
used independently of geom.

This release owes much to the patience of these first users and the feedback they pro-
vided, for which I am very grateful. Naturally, my debt to the people on whose work I’ve
built—Don Knuth, Leslie Lamport, Rainer Schöpf, Frank Mittelbach, Trevor Darrell and
others—is impossible to quantify. I wish to take this opportunity to thank them, and also
John Rawnsley, who provided the port to LATEX2ε. I also thank Al Marden, the Found-
ing Director of the Geometry Center, for creating the conditions needed for this work to
happen.

2. Overall Organization

In order to use this style, you need to be running a version of LATEX that supports
the so-called new font selection scheme (NFSS), due to Frank Mittelbach and Rainer
Schöpf. If your version of LATEX is LATEX2ε, you are automatically using NFSS. If your
version is LATEX2.09, you must check whether it supports NFSS. Start LATEX and type
\show\selectfont. If the response includes

> \selectfont=undefined.

this is the wrong LATEX. Don’t despair yet; the right LATEX may be available at your site,
but under a different name—try amslatex, or ask your local guru. (Strictly speaking, AMS-
LATEX [Ame] is a set of LATEX style files that emulate AMS-TEX. Since their use requires
NFSS and the necessary modifications used to be supplied with the AMS-LATEX style files,

Revision: 1.12 Date: 95/07/03 15:57:22

3. Installation 3

% Installation
calling geom

Section “Installation”
% Overall Organiza-

tion

the name is sometimes used for LATEX+NFSS.) If you can’t find LATEX+NFSS at all, see
further instructions in Section 3.

Unlike most other LATEX styles, geom comes in several files, devoted to different ca-
pabilities such as cross-referencing, figures, indexing and so on. The files currently in the
distribution are:

dvips.chg
geom.sty
geomar10.sty
geomar11.sty
geomar12.sty
geomart.sty
geombk10.sty
geombk11.sty
geombk12.sty

driver dependencies
master file
changes to art10.sty
changes to art11.sty
changes to art12.sty
changes to article.sty
changes to book10.sty
changes to book11.sty
changes to book12.sty

geombook.sty
geomenv.sty
geomeqns.sty
geomfig.sty
geomfnt.sty
geomindx.sty
geompsfi.sty
multicol.doc
multicol.sty

changes to book.sty
environments
option file
high-level figure support
fonts and special symbols
index and glossary
PostScript figure support
source for multicol.sty
two-column formatting

The file geom.sty is the master, and it is read in when geom is called as an option to
a main document style, which can be either book or article. That is, to use the stuff
described in this document, your text file should start with a line such as

\documentstyle[12pt,geom,...]{book}

When geom.sty is loaded in, it guesses what your main style is, and reads in some changes
to that style, contained in the files geombook.sty, geombk12.sty, and so on.

The file multicol.sty is part of the package files developed by Frank Mittelbach and
Rainer Schöpf at the University of Mainz. It is accompanied by multicol.doc, which is
a “source” file with documentation. To obtain more of the excellent software written by
Mittelbach and Schöpf, check the CTAN archives (see the Installation section below).

The rest of this document describes the installation of geom (skip if it’s already in-
stalled), its major features, and how you can take advantage of them and (sometimes)
modify them. Some material that is either very technical or unlikely to be needed except
under unusual circumstances is printer in smaller type and introduced by an asterisk ∗.

3. Installation

You only need to read this section if you are in charge of installing geom at your site.
Installation is very simple if your LATEX supports NFSS and your TEX-to-PostScript driver
is Tom Rokicki’s dvips [Rok].

To check whether you have LATEX+NFSS, see the beginning of Section 2. If you don’t,
it’s time to switch over to LATEX2ε. Get it by ftp from one of the worldwide CTAN archives
(currently pip.shsu.edu, ftp.uni-stuttgart.de, and tex.ac.uk).

If your driver is not dvips, you have two choices: either install dvips, which is almost
certainly a good idea (get it by ftp from a CTAN archive); or make a copy of the file
dvips.chg in this distribution, and modify it so it writes the \special commands required
by your driver. If you adapt dvips.chg for your driver, give the new file a different name,
and replace with this name all occurrences of dvips.chg in the rest of this section. Also,
please send me a copy of the file, so I can include it in future distributions.

Revision: 1.12 Date: 95/07/03 15:57:22

4. No More Fragile Commands 4

Section “No
More Fragile
Commands”

As I was saying before I got sidetracked, installation is simple. If you’re on a UNIX
system, edit the Makefile to make sure the pathnames are correct for your site, and run
make install. If you’re not on a UNIX system, here are the step-by-step instructions:

Place the files listed in the previous section (all the distribution files that end in .sty,
.chg or .doc) in the system-wide directory for TEX input files. Create a symbolic link
driver.chg in this directory, pointing to dvips.chg. (If your system does not support
symbolic links, copy dvips.chg to driver.chg.)

Copy the file mathlabels.orig to mathlabels and edit its first line to be the correct
pathname of the perl executable on your system. (If you don’t have perl at all, you don’t
know what you’re missing—get it as soon as possible.) Decide on a directory where you want
to install the auxiliary scripts mathlabels and geomfix (which are used by mathfig), and
put copies of them there. Copy the file mathfig.orig to mathfig and edit the lines at the
top to specify the location of the mathlabels and geomfix scripts, then copy mathlabels
to a system-wide directory for executables.

Finally, copy math.pro and illustrator.pro into the directory where your TEX-to-
PostScript driver looks for prolog files. (This assumes your driver supports the inclusion of
prolog files; switch to dvips if it doesn’t.)

4. No More Fragile Commands

In standard LATEX, commands such as \section have moving arguments, that is, arguments
that migrate to an auxiliary file jobname.aux to be used later in typesetting the table of
contents and so on [Lam86, 33–34]. In this process, macros in the body of the argument
are expanded, so that when you type, say,

\section{Annoying \TeX nicalities}

what goes into the auxiliary file is something like

\@writefile{toc}{\string\contentsline\space {chapter}{\string\numberline\space
{1}Annoying T\kern -.1667em\lower .5ex\hbox {E}\kern -.125emXnicalities}{1}}

where the second line contains the expansion of the macro \TeX.
There are several problems with this. First, the expansion, and consequently the line

where it occurs in the auxiliary file, can be very long, which in some implementations means
that TEX cannot read the line back in. Secondly, the expansion might not make sense, or
might do the wrong thing, at the time when it is read in again. Even worse, the expansion
of \section{\small foo}, for example, actually causes an infinite loop.

∗ Experienced users of TEX who want to know why this happens can try typing the following
lines to plain TEX:

\def\foo{\let\bar\foo}
\foo %Nothing much happens
\immediate\write0{\foo} %Disaster strikes

The problem is that at the time of the \write no assignment is taking place, so the \foo at the end
of the expansion is not handled as a literal.

Revision: 1.12 Date: 95/07/03 15:57:22

5. Labels and Cross-References 5

% Theorems and
Their Friends

% PostScript Figures
Section “Labels and

Cross-References”
% Theorems and

Their Friends

Standard LATEX’s solution to these problems is for the user to precede “fragile” macros
with the \protect command [Lam86, 33–34]. By contrast, in the geom style, you don’t
have to worry about “fragile” commands in the following situations:

• in the arguments of the sectioning commands \chapter, \section, and so on;

• in the optional argument to the theorem environment and its relatives (Section 6);

• in the arguments to \caption, \fig and its relatives (Section 10);

• in the arguments to \markright and \markboth;

• in the argument to \cite.

This covers almost all important situations where fragile commands need to be \protected
[Lam86, 151]. In future versions I hope to extend this permissiveness to the remaining
situations.

Notice, however, that the \verb|...| construction continues to be forbidden inside
arguments to most commands. This is due to reasons deeply embedded in TEX itself, and
is unlikely ever to change.

∗ In some circumstances you might want the old LATEX behavior of macro expansion inside the
argument of \chapter, say. For instance, you might have a locally defined macro whose definition
will be unknown at the time the table of contents is read. In this case you can use the following
construction:

\edef\mystring{...} % where ... stands for the argument to be expanded
\expandafter\chapter\expandafter{\mystring}

5. Labels and Cross-References

In standard LATEX, the argument to the \label command cannot contain anything but
characters (after expansion). In the geom style, this restriction is lifted, so labels contain just
about anything. For example, \label{\TeX} and \label{Isometries of $\bold R^2$}
are acceptable. Macros are no longer expanded.

One advantage of this flexibility is that subdivisions can be automatically labeled by
their titles. In the geom format, by default, every sectioning command such as \section
generates a label with its title. If this feature causes you to run out of memory, you can
turn it off by saying \autolabelfalse in your document’s preamble.

To refer to the place where a label occurs, you can still use the \ref command,
as in standard LATEX. This gives a bald number—for example, \ref{Isometries
of $\bold R^2$} will print “8.3” if Section 8.3 starts with \section{Isometries of
$\bold R^2$} while automatic labeling is in effect.

A new feature is that you can replace \ref by \fullref or \Fullref, to get “section
8.3” or “Section 8.3”, respectively. The way \fullref works is by storing in a certain
register the type of environment in which a label was created. Thus, when a new section
starts, this register gets the value “section”. When a \begin command introducing one of
the environments described in Section 6 is encountered inside this section, the register gets
updated to the type of that environment, say “theorem”. It reverts to “section” when the
matching \end command is read.

Revision: 1.12 Date: 95/07/03 15:57:22

6. Theorems and Their Friends 6

Theorem “Erdös”
Kurdish
% Erdös
% circle
% Kurdish
Erdös
% circle
% circle
Section “Theorems

and Their Friends”

Even if you have nested environments, labels placed in each of them are assigned the
correct type. Consider the input

\newtheorem[{\par\large}{\it}]{theorem}{Theorem}[section]
\equationwith{theorem} % These two lines are explained
... % in later sections
\begin{theorem}[Erd\"os]
A theorem both deep and profound / Is that a circle is round:
\begin{equation}
\mathrm{curvature}\,S^1=\mathrm {const}.
\label{circle}
\end{equation}
In a paper by Erd\"os / Written in Kurdish / A counterexample is found.
\label{Kurdish}
\end{theorem}

which gives

Theorem 5.1 (Erdös). A theorem both deep and profound / Is that a circle is
round:

curvature S1 = const. (5.2)

In a paper by Erdös / Written in Kurdish / A counterexample is found.

Now \Fullref{Erd\"os} gives “Theorem 5.1”, \Fullref{circle} gives “Equation 5.2”,
and \Fullref{Kurdish} gives “Theorem 5.1”. Furthermore, \ref*{Erd\"os} gives “5.1
(Erdös)”, that is, it prints the (optional) tag associated with theorems and the like. Of
course you can also use \fullref* and \Fullref*.

∗ If you disagree with LATEX’s idea of what the label type should be at a particular point, you can
override is using \setlabeltype. For example, if we had \setlabeltype{formula} right before the
\label command in the previous example, the result of \Fullref{circle} would be “Formula 5.2”
instead of “Equation 5.2”.

Before \ref actually prints the number of a cross-reference, it applies the macro
\preref to it. By default, this macro does nothing; but you can redefine it to do what-
ever you want with the number. If you want the number to appear upright even if the
surrounding text is in italics, you can say

\def\preref#1{{\normalshape#1}}

The output of \pageref and of \cite is also passed to \pageref before being printed.

6. Theorems and Their Friends

Standard LATEX provides the \newtheorem command to create environments for statements
like theorems, lemmas, and so on. The basic idea can be adapted for other types of text
that should stand out, such an exercises, conventions, and so on. Not all of these should be
treated typographically the same: for example, you might want exercises in smaller type.

Revision: 1.12 Date: 95/07/03 15:57:22

6. Theorems and Their Friends 7

% Labels and
Cross-References

% Labels and
Cross-References

% Erdös

The geom style extends LATEX’s \newtheorem command to allow you to do this easily.
Recall from [Lam86, 58] that \newtheorem has two required arguments: the name of the
new environment (say “theorem”), and the text used to introduce it (say “Theorem”). In
standard LATEX it also takes an optional argument, whose meaning depends on whether it
comes before or after the second required argument.

In the geom style, you can use yet another optional argument, right after \newtheorem,
to tell LATEX how this environment differs from a vanilla theorem-like environment. This
optional argument should consist of two sequences of commands, each surrounded by braces,
like this:

\newtheorem[{\par\large}{\it}]{theorem}{Theorem}[section]

(This is the same definition used for the example in Section 5.)
The first sequence of commands in braces, \par\large, will be executed as soon as

LATEX sees a \begin{theorem}. This means the theorem will come out in larger type (see
the output in Section 5). LATEX implicitly starts a new level of braces when it encounters
a \begin command—changes inside the environment are local, so the \large will cease to
have effect at the end of the environment.

The second sequence of commands is inserted right after the introductory text The-
orem 5.1 (Erdös). It affects everything from that point till the end of the environment.
Here we’ve used \it, so the statement of the theorem is printed in italics. Note that, un-
like the standard article and book styles, geom does not italicize theorems by default. If
we didn’t have the \it in the \newtheorem command, the text of the theorem would be
upright.

∗ You can also control the appearance of the introductory text itself by changing the definition
of \theoremintro, which by default is

\def\theoremintro#1{\normalshape\bf#1}

The argument #1 stands for the introductory text.

You need two pairs of braces in the new optional argument to \newtheorem, even if one
is empty. If both are empty, the behavior is the same as if the optional argument weren’t
there.

Another enhancement to \newtheorem in the geom style is automatic labeling. Suppose
you say

\newtheorem{definition}[theorem]{Definition}

(recall from [Lam86, 59] that the use of [theorem] causes definitions to be numbered in
the same sequence as theorems, assuming the theorem environment has been previously
defined). Now saying

\begin{definition}[universe]
The universe is a Hubble bubble.
\end{definition}

prints

Revision: 1.12 Date: 95/07/03 15:57:22

7. The Proof Environment 8

Def. “universe”
% Labels and

Cross-References
% universe
% Labels and

Cross-References
% universe
% Labels and

Cross-References
Section “The Proof

Environment”

Definition 6.1 (universe). The universe is a Hubble bubble.

and implicitly calls \label{universe}. (As mentioned in Section 5, you can turn this
feature off by saying \autolabelfalse.) The environment knows its type at the time the
label is made, so saying \Fullref{universe} will print “Definition 6.1”.

∗ The type is usually just the environment name, but it can be overridden by including
\setlabeltype (Section 5) in the first optional argument to \newtheorem. Thus if the definition
environment had been created with

\newtheorem[{\setlabeltype{def.}}{}]{definition}[theorem]{Definition}

\Fullref{universe} would appear as “Def. 6.1”.

The preferred style of some publishing houses calls for digits and punctuation to be typeset
upright in theorems and such, amidst surrounding text in italics. The control sequence
\specialdigits achieves this. It causes each digit in text, as well as parentheses, commas,
colon, semicolons and periods, to effectively be preceded by \normalshape. You can use
\specialdigits after \it in the definition of a new environment with \newtheorem.

∗ The way \specialdigits works is by making digits and punctuation into active characters
(changing their \catcodes to 13). This has two consequences. First, characters that arise from
macro expansion don’t get the special treatment, because their \catcodes are frozen beforehand;
this is true, in particular, of the expansion of \ref commands (but see the end of Section 5).

The second consequence is that the digits and decimal point no longer work in specifying
dimensions: if you write \vskip 1in while \specialdigits is in effect, you get an error message
complaining that a number was expected. To get around this, you can temporarily cancel the
specialness with \regulardigits. If you run into this problem more than once or twice, it’s best
to create a macro, outside the scope of \specialdigits, that expands to the desired command
(\def\inch{\vskip 1in}).

7. The Proof Environment

Theorems and proofs go hand in hand. The proof environment in geom, in its most basic
form, prints Proof. at the beginning of the proof, and an end-of-proof symbol � at the end.
With an optional argument it behaves like this:

\begin{proof}[Poincar\’e conjecture]
Notice first that ...
... as we wished to show.
\end{proof}

Proof of Poincaré conjecture. Notice first that . . . as we wished to show.
Poincaré conjecture

∗ The formatting of the proof’s introductory text is controlled by the macro \proofintro, whose
single argument is the optional argument to \begin{proof}—in this case, “Poincaré conjecture”. If
the optional argument is not used, \proofintro is passed an empty argument. The default setting
of \proofintro is

Revision: 1.12 Date: 95/07/03 15:57:22

8. Equations 9

Section “Equations”
% Labels and

Cross-References

\def\proofintro#1{\def\@tempa{#1}%
{\it Proof\ifx\@tempa\empty\else\ of #1\fi. }\ignorespaces}

You can probably figure out how it decides whether to write Proof or Proof of. . . . You can change
its definition to obtain other effects.

Likewise, the formatting of the box at the end of the proof is controlled by the macro
\provedboxcontents, which is entirely analogous. Its standard setting is

\def\provedboxcontents#1{\def\@tempa{#1}%
\ifx\@tempa\empty\square\else\fbox{\small#1}\fi}

To identify your proofs with the number of their corresponding theorems, lemmas, corol-
laries, etc., use \setprooftag in the definition of these environments. For instance, after
you say

\newtheorem[{\setprooftag}{\it}]{theorem}{Theorem}[section]
\newtheorem[{\setprooftag}{\it}]{corollary}[theorem]{Corollary}

\begin{proof} will behave as if you were passing it as its optional argument the number of
the most recent theorem or corollary. Nested proofs keep track of their arguments correctly,
so the box at the end of each gets the same tag as the Proof of. . . at the beginning.
However, certain situations are too confusing for \setprooftag. For example, if you state
a corollary between a theorem and its proof, the proof will incorrectly get the corollary’s
number, which is more recent. In this situation you have to use the optional argument. Of
course, it’s best to use \ref{...} as the argument, rather than an explicit number, which
might change later.

If a proof ends with a displayed formula, it is recommented that the proved box be
placed next to the formula (as if it were a tag). This is done by inserting \proved before
the closing $$. Likewise, if the last line of the proof is part of an \item, you can use \proved
before the closing \end{enumerate} (or whatever) so the proved box won’t be set on a line
by itself. In even more difficult cases—for instance, a formula that already has a tag, or is
part of a multi-line display—plop \box\provedbox where you want the box to be.

8. Equations

The geom style reinstates the plain TEX macro \eqalign, which is not part of standard
LATEX but is nonetheless very useful. Unlike the eqnarray environment, \eqalign creates
math alignments that are not treated as whole lines, and so can be combined with other
elements.

The example in Section 5 has \equationwith{theorem} after the theorem environment
is created. This causes equations made with the equation and the eqnarray environments
to be numbered in the same sequence as theorems. You can replace theorem with any
environment that was defined with \newtheorem and that has a counter with its name (the
environment has a counter with its name if there was no optional argument between the
first and second required arguments to \newtheorem).

If you load the optional style geomeqns—that is, if your document starts with

Revision: 1.12 Date: 95/07/03 15:57:22

9. The Figure and Table environments 10

Section “The
Figure and Table

environments”
% Proofing Aids

\documentstyle[geom,geomeqns,...

the tags in the equation and the eqnarray environments are printed on the left, in bold-
face. This makes them visually similar to the tags that introduce theorems, so it is generally
appropriate to use this style if you’re numbering equations and theorems in the same se-
quence.

9. The Figure and Table environments

The geom style supports the figure and table environments of standard LATEX, and, as
mentioned above, if you use the \caption command you don’t have to worry about fragile
macros inside its argument. However, I recommend that you use instead the new Figure
and Table environments, which provide some bells and whistles.

These environments take three arguments: a cross-reference label, a title and a legend
(or explanatory caption). The command

\begin{Figure}{torus}{The square torus}
{A torus can be obtained, topologically,
by gluing together parallel sides of a square.}
$$
\begin{picture}(1,1)
... % lots of \put commands
\end{picture}
$$
\end{Figure}

prints

-

6 6
-

torus

Figure 1. The square torus. A torus can be obtained, topologically, by gluing together

parallel sides of a square.

and in addition it creates a cross-reference label torus and an entry in the table of contents
with the text “The square torus”. As you can see, the figure number and the title appear
in boldface, the legend in a lighter face. In proofing mode (Section 13), the file name also
appears under the figure, in tiny letters. If you don’t want a legend, just write {} after the
first two arguments. (In other words, the legend is not an optional argument—it is simply
an argument that sometimes happens to be empty.) There is an optional argument to the
\Figure environment, consisting of a subset of the letters htbp and indicating a location
where the figure may be placed [Lam86, 176]; it should come before all other arguments.
All of this applies to the Table environment as well.

Revision: 1.12 Date: 95/07/03 15:57:22

10. PostScript Figures 11

Section “PostScript
Figures”

Psfig/TEX
Psfig/TEX
Stephan Bechtolsheim
% PStorus

10. PostScript Figures

Most often your picture won’t be made with LATEX commands; it will exist in a separate
PostScript file. Inclusion of PostScript figures is still a bit of a bugaboo for many TEX users,
in spite of the existence for many years now of Trevor Darrell’s excellent macro package
Psfig/TEX [Dar] and others.

The geom style automatically loads the file geompsfi.sty, a modified version of Ps-
fig/TEX (incorporating some improvements by Stephan Bechtolsheim and others of my
own). It allows you to include PostScript figures very simply:

\fig{PStorus}{The square torus}{A torus can be obtained, topologically,
by gluing together parallel sides of a square.}

a

b

a′

b′

PStorus

Figure 2. The square torus. A torus can be obtained, topologically, by gluing together

parallel sides of a square.

The \fig macro takes the same three arguments (plus an optional one) as the Figure
environment. But the first argument, in addition to being used to make a label, is also the
name of the file where the PostScript figure is stored (minus the .ps suffix). Thus Figure 2
is stored in the file PStorus.ps.

To get two or three figures side by side, sharing the same caption, use \doublefig
or \triplefig. The PostScript file names for \doublefig{foo}... would be in this case
would be foo-1.ps and foo-2.ps, and likewise for \triplefig. There is no similar mech-
anism for more than three figures.

The directory where the figures are to be found is governed by the macro \picpath.
For example, if the directory is called /u/levy/pictures, you should say

\def\picpath{/u/levy/pictures/}

at the beginning of your document. (You need the / at the end.)
∗ You can also use a relative pathname, such as pictures/, or even the empty string (or ./) for
the current directory. However, the program that sends your .dvi file to the printer may not find
the pictures since it is likely to be invoked from a different directory.

If a pathname includes characters that are special to TEX, you need to make then unspecial in
order to define \picpath. Here is an example:

\begingroup % start a group so the change in _ is local
\catcode‘_=12 % make _ behave like an ordinary character
\gdef\picpath{/home/tampa_a/fac/wpt/pictures/} % this def is global
\endgroup % now _ reverts to its usual meaning

Revision: 1.12 Date: 95/07/03 15:57:22

10. PostScript Figures 12

% torus
% PostScript Figures
% PostScript Figures
% PostScript Figures
% PStorus
% Proofing Aids
% PStorus
% PStorus

If you have a long document with lots of pictures, it is better to organize them into sec-
tions and chapters. In that case you should leave \picpath unset, and set the macro
\masterpicpath to the master picture directory. If I were using this scheme in this docu-
ment, I might say

\def\masterpicpath{/home/levy/pictures/}

and put Figure 1 in file /home/levy/pictures/10/PStorus.ps. (With the book style,
which has chapters, I would need chap3/10 instead of just 10.)

The way \fig works is by calling the command \psfig [Dar], which creates a TEX
\vbox of the right size and containing instructions for the figure to be included at the time
of printing. You normally won’t use \psfig directly, since \fig calls it automaticaly.

∗ However, occasionally you many want to use \psfig directly to take advantage of this macro’s
many options, such as resizing. See the Psfig/TEX manual [Dar] for details; but some of the newer
options to Psfig/TEX are not supported here.

In order for the \psfig command to know what size box to make, it needs to find your
PostScript figure file, and the file must have near the top a line like this:

%%BoundingBox: 0 30 98 128

The first two numbers represent the low x- and y-coordinates of the figure’s bounding box,
in points, and the last two represent the high x- and y-coordinates. In the example just
given, which corresponds to Figure 2, the bounding box goes from 0 to 98 pt in the x-
direction and from 30 to 128 pt in the y-direction, so its height and width are both 98 pt,
or approximately 1.35 inches. The corners of the bounding box appear on the page in proof
mode (Section 13).

Note that \psfig only cares about the height and the width of the bounding box, not
about the actual values of the high and low coordinates. The latter are relevant only in
reference to the coordinates of the objects inside the picture, about which \psfig knows
nothing. (Thus the bottom left corner of the square in Figure 2 has coordinates (4, 34),
which is a little bit above and to the right of the bounding box’s bottom left corner (0, 30).)
If one added the same number to the x-coordinates of the bounding box and of every object
in the picture, the result would be exactly the same.

Normally, the %%BoundingBox line should have been placed in the PostScript file auto-
matically, by whatever program you used to create the figure. If the program did not write
a line like that, you have to do it by hand, and you should consider switching to another
program.

Notice that the labels a and b in Figure 2 appear in the same font as they would in the
text. In fact the labels were typeset by TEX itself, and do not come from the PostScript
file, where it would be hard to specify them satisfactorily—especially details such as the
placement of the primes and other subscripts and superscripts. The information for these
labels is contained in a file with the suffix .lab, which normally is generated by the same
program that creates the PostScript file, or by a postprocessor. If you want to include
Mathematica graphics, for example, you should use the mathfig utility, described in the
Appendix.

Revision: 1.12 Date: 95/07/03 15:57:22

10. PostScript Figures 13

% PStorus ∗ The average user has no need to know what the .lab file looks like, but if you want to write
a new postprocessor in order to implement this labeling scheme in conjunction with your favorite
drawing program, here are the details. Each line of the file yields one label, and contains the
\setlabel command followed by five arguments: the text of the label, to be typeset in math mode;
the x- and y-coordinates of the label’s reference point, in points; and the relative x- and y-coordinates
of the reference point. A value of 1 for the last two arguments means the reference point of the label
it at the top or right of the label’s bounding box; a value of −1 means bottom or left, a value of 0
means middle, and so on.

For example, here is the file PStorus.lab corresponding to Figure 2:

\setlabel{a}{48.600000}{34.162104}{0}{1}
\setlabel{b}{4.162104}{78.600000}{1}{0}
\setlabel{a’}{48.600000}{123.037896}{0}{-1}
\setlabel{b’}{93.037896}{78.600000}{-1}{0}

For the label a, the reference point is at the top middle of the label’s bounding box, so the label
itself will be centered under the point with coordinates (48.6, 34.1).

If you want to typeset a label outside math mode, use LATEX’s \mbox command (or TEX’s
\hbox). The font used by default in this case is the same as for captions. Thus, to get the label foo
you’ll probably want to type the string \hbox{foo} into your figure-making program.

Sometimes the fact that the source \hbox{foo} has many more characters than the output
causes problems—for example, the figure-making program might leave too much space for the label.
The macro \hyperactivelabels provides a way around this. This macro is called every time a
label is about to be typeset, and you can define it at will, to allow abbreviations, say. Thus, after
the commands

\def\hyperactivelabels{\mathcode‘:="8000}
\def\activecolon#1:{\hbox{#1}}
{\catcode‘\:=\active\global\let:=\activecolon}

the construction :foo: has exactly the same effect as \hbox{foo}—but only inside labels. (The
command \mathcode‘:="8000 causes the colon to be treated as an active character in math mode;
the next two lines say, in a roundabout way, what this active character should do.)

Utilities (programs) that generate PostScript graphics files generally start the file with
a “signature” (a comment line stating the utility’s name and version) and a chunk of
PostScript code—call it a header—establishing abbreviations, subroutines, fonts and the
like. The header is always the same, so if you have dozens of figures generated by the
same utility it’s good to factor out this commonality, if possible. With certain utilities,
you can save your files without the header. Then they won’t print on their own; but when
\psfig looks into them, if it can recognize the utility’s signature, it puts into the dvi file
a command that causes the inclusion of the header at printing time. This way the header
is included only once for all figures, saving memory and time. The utilities that \psfig
currently knows about are Mathematica [Wol91] and Adobe Illustrator [S+88]. With Illus-
trator, saving without the header is accomplished by clicking on the appropriate entry in
the “Save As” dialog box. For Mathematica, see the Appendix.

∗ For the signature to be seen by \psfig, it must appear near the top of the file; the actual number
of lines that \psfig scans is controlled by the counter \maxheaderlines. The %%BoundingBox line
must also lie in that same initial stretch. The default value of \maxheaderlines is 100, which is
almost always adequate.

Revision: 1.12 Date: 95/07/03 15:57:22

11. Fonts 14

Section “Fonts”
% Overall Organiza-

tion
Section “The Index,

the Table of
Contents and the
Glossary”

% Labels and
Cross-References

% Theorems and
Their Friends

% Proofing Aids

11. Fonts

As mentioned in Section 2, the geom style requires NFSS, a rational font management system
that makes the use of new fonts easier than under old LATEX.

Under this scheme, unlike the old, if you say \bf... \small..., the \small has no
effect on the boldness of the current font—size, boldness, style and so on are independent
attributes. This is generally good, but it does create backward incompatibilities. For
example, if you have an old LATEX document where you’ve relied on \small to reset the
weight of the font, you’re in for a surprise. Also, \rm should generally be replaced by
\normalshape. For a list of all such differences, see [Ame].

Another case of conflicting ideas on what font-change commands should do is in-
side math mode. Under NFSS, \bf has no effect inside math mode—you need to say
\mathbf{xyz}, for example. The geom style will print a warning on your terminal if it
sees \bf in math mode.

In addition to the math-mode commands \mathbf, \mathrm and \mathit, the geom
style defines \mathss and \mathtt as the math mode counterparts of \sf (sans-serif) and
\tt (typewriter type).

Support for Fraktur (“gothic”) and blackboard-bold fonts is provided, as well as for the
fonts msam and msbm, which contain a plethora of mathematical symbols. This is all thanks
to the AMS, and you should turn to the AMS-LATEX distribution [Ame] if your site lacks
the fonts themselves or the prerequisite auxiliary files amsfonts.sty and amssymb.sty.

12. The Index, the Table of Contents and the Glossary

The basic command for putting something into the index is \index, as in standard LATEX.
But \index does not print its argument. To index a word that actually appears in the text
say \ix{...}. To index mathematical notation say \ixn$...$ or \ixninv$...$, depending
on whether the contents should appear or not. And, just for symmetry, you can also use
\ixinv, which equals \index:

Text Notation

Visible \ix \ixn
Invisible \ixinv \ixninv

An index entry is made automatically for any \label or \ref command. In the second
case the entry goes into the index file preceded by a %.

Remember that, unless you have issued the command \autolabelfalse, there are lots
of situations in which a label, and consequently an index entry, is generated automatically:
in particular, this happens for each sectioning command (Section 5) and for each tagged
theorem, lemma, and so on (Section 6). This provides a wealth of index entries, which
later you can winnow out semi-automatically, if necessary, since entries of this sort appear
in quotation marks, preceded by their type. You can see all the entries that a given page
contributes to the index by looking at the small print on the top left of the page when
proofing mode is on (Section 13).

Revision: 1.12 Date: 95/07/03 15:57:22

13. Proofing Aids 15

Frank Mittelbach
†dagger
% No More Fragile

Commands
Section “Proofing

Aids”

∗ The geom style modifies the \theindex format of standard LATEX so that the index is printed
in smaller type. Moreover, it achieves a double-column format not by using standard LATEX’s
\twocolumn command, which starts a new page, but rather Frank Mittelbach’s multicols envi-
ronment [Mit89], which is implemented in the file multicol.sty. Using this environment you can
have single-column and double-column text on the same page. If you want to add an explanation
before the index, for example, you might say something like this:

\begin{theindex}
\null % this avoids what seems to be a bug in multicol.sty
\end{multicols} % end double column format started by \begin{theindex}

Numbers in parentheses refer to pages where the entry should be
discussed but isn’t, due to laziness on the author’s part.

\begin{multicols}2 % restart double column format
\item aardvark...
\end{theindex}

Support for a glossary is somewhat more extensive than in standard LATEX. You can mark a
word as a glossary entry by saying \glo{...}; this causes a †dagger to be placed before the
word, and an index entry for the word to be generated in the file jobname.idx, preceded
by \dag.

∗ Note that the geom style does not use a separate jobname.glo file; although standard LATEX’s
\glossary command is still available if you insist in writing entries to that file, this command has
not been made robust in the way that \index and \label have. (See Section 4.)

The glossary itself is delimited by \begin{theglossary} and \end{theglossary}.
Glossary entries start like this:

\entry{doohickey} ...
\entry[\cite{...}]{thingamajig} ...

The entry name is printed in boldface, followed by a period. The contents of the optional
argument are printed immediately after the entry name, before the period. The comments
made above about double-column formatting apply to the glossary as well.

The table of contents is treated in much the same way as in standard LATEX, but there is
one important difference: starred sectioning commands, like \section*, do show up in the
table of contents, unless you’ve said \starredcontentsfalse. Since one generally doesn’t
want the table of contents to include an entry for the table of contents itself, the definition
of \tableofcontents in geomart.sty starts like this:

\def\tableofcontents{{\starredcontentsfalse\section*{Contents}...}}

The extra pair of braces limits the action of \starredcontentsfalse to this entry only.

13. Proofing Aids

The geom style provides a number of proofing aids that you can turn on and off by saying
\proofingtrue and \proofingfalse. The default is for proofing to be on. These facilities

Revision: 1.12 Date: 95/07/03 15:57:22

Appendix: mathfig—A System for Doing Typesetting in Mathematica 16

% The Index, the
Table of Contents
and the Glossary

RCS
Section “Appendix:

mathfig—A
System for Doing
Typesetting in
Mathematica”

are independent of standard LATEX’s draft option to the book and article style, whose
only effect is to make overfull box markers visible.

If you use LATEX’s \includeonly mechanism [Lam86, 76], you can print your final
version by passing the macro \noproofing as the argument to \includeonly. This not
only turns off all proofing aids, but also prevents LATEX from starting a new page for each
input file. (Naturally, the page breaks will likely be different because of that, so you’ll need
to run the job twice to get cross-references right.)

∗ Normally you have two lines like this in the main file for your document:

\typein[\sectionstoinclude]{Enter the sections that should be processed: }
\includeonly{\sectionstoinclude}

so you can type in the sections to be included from the terminal, without having to modify the
source file. The macro \noproofing works in this mode, too.

By the way, if you are using the book style, the construction \chap1{345} expands to

chap1/1.3,chap1/1.4,chap1/1.5

This has nothing to do with proofing, but it provides a useful shorthand for use with
\includeonly. Braces should be used around a section or chapter number having more
than one digit.

In proofing mode you get, to the left of the main text, a column in tiny print with
all the index entries contributed by that page. This includes automatic entries with their
respective prefixes (see Section 12).

If you are in proof mode and the macros \leftfoot and \rightfoot are defined, they
will be typeset flush left and flush right on the footline. These macros are often defined
to contain information about draft version, date of last modification, etc., which can be
updated automatically.

∗ Near the top of the source file for this document, I wrote the lines

\def\leftfoot{\RCSstring$Revision: 1.12 $}
\def\rightfoot{\RCSstring$Date: 95/07/03 15:57:22 $}
\def\RCSstring$#1 ${#1}

The first two lines are automatically updated by the UNIX utility RCS (Revision Control System)
whenever I check the file in or out. RCS requires that the keywords Revision, Date and so on
be found within dollar signs, and it tacks on a blank before the closing $ for good measure. The
\RCSstring macro eliminates this extraneous stuff.

Appendix: mathfig—A System for Doing Typesetting in Mathematica

Warning. The software described in this Appendix depends on Mathematica
[Wol91]. I make no representation whatsoever concerning its performance. Although
I have used mathfig under Mathematica versions 1.2, 2.0 and 2.1, I emphasize that
mathfig may fail to work as described here and that I take no responsibility for such
failure.

Revision: 1.12 Date: 95/07/03 15:57:22

Appendix: mathfig—A System for Doing Typesetting in Mathematica 17

% PostScript Figures
% Installation
% PStorus

The mathfig program, for use on UNIX systems, takes a Mathematica source file foo.m and
calls Mathematica to create a PostScript file foo.ps. Then mathfig postprocesses foo.ps
to take out the PostScript labels putting the same information in a file foo.lab that can be
read later by LATEX, as explained in Section 10. The usage of this program is the following:

mathfig [-d directory] [-i initfile] files

The -d option makes all file names relative to the specified directory. The -i option tells
Mathematica to read an initialization file. Any number of files can be passed as subsequent
argument; \mathfig processes one at a time, starting a new Mathematica session each time.

The steps performed by mathfig when processing the file foo.m are the following. It
calls math and gives it the commands Get["initfile"] (if an initialization file was speci-
fied) and Get["foo.m"]. The result of Get["foo.m"] should be an expression with head
Graphics or Graphics3D. This expression is passed to Display, with output sent to the
filter geomfix; this filter is analogous to the psfix program supplied with Mathematica.
The output of geomfix is further processed to create the files foo.ps and foo.lab. This
last step is performed by mathlabels, a perl program. (perl is a widely used UNIX utility,
and it should be available at your site. If mathfig claims that mathlabels cannot be found,
it may be because perl is not where mathfig expects to find it; see the end of Section 3.)

By default, \mathfig creates a figure two inches high and five inches wide. A different
height can be specified by including the assignment $height=height in the Mathematica
source file, where height is a number specifying the height in inches. You can also say
$width=width. The reason to put these numbers in the source file, rather than choosing
them at run time, is archival: in this way the output is entirely determined by the contents
of the source file.

∗ Furthermore, if you assign values to the variables $xlo, $xhi, $ylo and $yhi, the figure
produced by Mathematica will be clipped to a window with the given boundaries, and rescaled so as
to fit in a box of the given height and width. For example, setting $xlo=$ylo=.1 and $xhi=$yhi=.9
will trim 10% off the size of the box around each edge, and the remaining graphics will be rescaled
by a factor of 1/(.9 − .1) = 1.25. Under Mathematica 1.2, this is the only way I know to make a
3D-graphics object occupy the whole bounding box. Unfortunately the values of $xlo and so on
have to be determined by trial and error.

The symbols $height, $width, $xlo, $ylo, $xhi, $yhi and $Def should not be used in your
Mathematica source file except with the meanings described above. ($Def is used internally.)

When Mathematica generates a picture with labels, the scaling computations are implicit in
the resulting PostScript code, and they take into account the dimensions of the labels present in the
code. Thus the graph generated by

Plot[x,{x,0,1}]

looks a bit smaller on the screen than the one generated by

Plot[x,{x,0,1},Ticks->False]

because the first has to accomodate labels along the axes, in the same size window. However, when
you run mathfig, the labels are taken out of the PostScript file, and therefore don’t have any effect
on the scaling of the picture. The mathfig output for the two commands above would be scaled by
exactly the same amount, and the TEX labels generated for the first command would stick out of
the bounding box a little bit, just as they do in Figure 2.

Revision: 1.12 Date: 95/07/03 15:57:22

References 18

Section “References” References

[Ame] American Mathematical Society. AMS-LATEX version 1.1 user’s guide (1991).
Distributed with the software (use anonymous ftp from e-math.ams.com).

[Dar] Trevor Darrell. Psfig/TEX 1.8 users guide (1991). Distributed with the software
(use anonymous ftp from whitechapel.media.mit.edu).

[ECL+92] David B. A. Epstein, Jim Cannon, Silvio Levy, Derek Holt, Mike Paterson, and
William Thurston. Word Processing in Groups. Jones and Bartlett, Boston,
1992.

[Lam86] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, Read-
ing, MA, 1986.

[Mit89] Frank Mittelbach. An environment for multi-column output. TUGboat, 10:407–
415, 1989.

[Rok] Tom Rokicki. DVIPS: A TEX driver (version 5.490, 1992). Distributed with the
software (use anonymous ftp from labrea.stanford.edu).

[S+88] Mike Schuster et al. Adobe Illustrator. Adobe Systems, Palo Alto, CA, 1988.

[Wol91] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer.
Addison-Wesley, Reading, MA, 2nd edition, 1991.

Revision: 1.12 Date: 95/07/03 15:57:22

Index 19

Section “Index” Index

Revision: 1.12 Date: 95/07/03 15:57:22

