
PerlTEX—defining LATEX macros in terms of Perl

code∗

Scott Pakin
scott+pt@pakin.org

October 7, 2004

Abstract

PerlTEX is a combination Perl script (perltex.pl) and LATEX2ε style
file (perltex.sty) that, together, give the user the ability to define LATEX
macros in terms of Perl code. Once defined, a Perl macro becomes indistin-
guishable from any other LATEX macro. PerlTEX thereby combines LATEX’s
typesetting power with Perl’s programmability.

1 Introduction

TEX is a professional-quality typesetting system. However, its programming lan-
guage is rather hard to use for anything but the most simple forms of text sub-
stitution. Even LATEX, the most popular macro package for TEX, does little to
simplify TEX programming.

Perl is a general-purpose programming language whose forte is in text manip-
ulation. However, it has no support whatsoever for typesetting.

PerlTEX’s goal is to bridge these two worlds. It enables the construction of doc-
uments that are primarily LATEX-based but contain a modicum of Perl. PerlTEX
seamlessly integrates Perl code into a LATEX document, enabling the user to define
macros whose bodies consist of Perl code instead of TEX and LATEX code.

As an example, suppose you need to define a macro that reverses a set of words.
Although it sounds like it should be simple, few LATEX authors are sufficiently
versed in the TEX language to be able to express such a macro. However, a word-
reversal function is easy to express in Perl: one need only split a string into a
list of words, reverse the list, and join it back together. The following is how a
\reversewords macro could be defined using PerlTEX:

\perlnewcommand{\reversewords}[1]{join " ", reverse split " ", $_[0]}

∗This document corresponds to PerlTEX v1.2, dated 2004/10/07.

1

Then, executing “\reversewords{Try doing this without Perl!}” in a docu-
ment would produce the text “Perl! without this doing Try”. Simple, isn’t it?

As another example, think about how you’d write a macro in LATEX to extract
a substring of a given string when provided with a starting position and a length.
Perl has an built-in substr function and PerlTEX makes it easy to export this to
LATEX:

\perlnewcommand{\substr}[3]{substr $_[0], $_[1], $_[2]}

\substr can then be used just like any other LATEX macro—and as simply as
Perl’s substr function:

\newcommand{\str}{superlative}
A sample substring of ‘‘\str’’ is ‘‘\substr{\str}{2}{4}’’.

⇓
A sample substring of “superlative” is “perl”.

To present a somewhat more complex example, observe how much easier it is
to generate a repetitive matrix using Perl code than ordinary LATEX commands:

\perlnewcommand{\hilbertmatrix}[1]{

my $result = ’

\[

\renewcommand{\arraystretch}{1.3}

’;

$result .= ’\begin{array}{’ . ’c’ x $_[0] . "}\n";

foreach $j (0 .. $_[0]-1) {

my @row;

foreach $i (0 .. $_[0]-1) {

push @row, ($i+$j) ? (sprintf ’\frac{1}{%d}’, $i+$j+1) : ’1’;

}

$result .= join (’ & ’, @row) . " \\\\\n";

}

$result .= ’\end{array}

\]’;

return $result;

}

\hilbertmatrix{20}

⇓

2

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
16

1
17

1
18

1
19

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
13

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
14

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
15

1
16

1
17

1
18

1
19

1
20

1
21

1
22

1
23

1
24

1
25

1
26

1
27

1
28

1
29

In addition to \perlnewcommand and \perlrenewcommand, PerlTEX supports
\perlnewenvironment and \perlrenewenvironment macros. These enable envi-
ronments to be defined using Perl code. The following example, a spreadsheet
environment, generates a tabular environment plus a predefined header row. This
example would have been much more difficult to implement without PerlTEX:

\newcounter{ssrow}

\perlnewenvironment{spreadsheet}[1]{

my $cols = $_[0];

my $header = "A";

my $tabular = "\\setcounter{ssrow}{1}\n";

$tabular .= ’\newcommand*{\rownum}{\thessrow\addtocounter{ssrow}{1}}’ . "\n";

$tabular .= ’\begin{tabular}{@{}r|*{’ . $cols . ’}{r}@{}}’ . "\n";

$tabular .= ’\\multicolumn{1}{@{}c}{} &’ . "\n";

foreach (1 .. $cols) {

$tabular .= "\\multicolumn{1}{c";

$tabular .= ’@{}’ if $_ == $cols;

$tabular .= "}{" . $header++ . "}";

if ($_ == $cols) {

$tabular .= " \\\\ \\cline{2-" . ($cols+1) . "}"

}

else {

$tabular .= " &";

}

$tabular .= "\n";

}

return $tabular;

}{

3

return "\\end{tabular}\n";

}

\begin{center}

\begin{spreadsheet}{4}

\rownum & 1 & 8 & 10 & 15 \\

\rownum & 12 & 13 & 3 & 6 \\

\rownum & 7 & 2 & 16 & 9 \\

\rownum & 14 & 11 & 5 & 4

\end{spreadsheet}

\end{center}

⇓
A B C D

1 1 8 10 15
2 12 13 3 6
3 7 2 16 9
4 14 11 5 4

2 Usage

There are two components to using PerlTEX. First, documents must
include a “\usepackage{perltex}” line in their preamble in order to
define \perlnewcommand, \perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment. Second, LATEX documents must be compiled using the
perltex.pl wrapper script.

2.1 Defining and redefining Perl macros

perltex.sty defines four macros: \perlnewcommand, \perlrenewcommand,\perlnewcommand

\perlrenewcommand

\perlnewenvironment

\perlrenewenvironment

\perlnewenvironment, and \perlrenewenvironment. These behave exactly like
their LATEX2ε counterparts—\newcommand, \renewcommand, \newenvironment,
and \renewenvironment—except that the macro body consists of Perl code that
dynamically generates LATEX code. perltex.sty even includes support for op-
tional arguments and the starred forms of its commands (i.e. \perlnewcommand*,
\perlrenewcommand*, \perlnewenvironment*, and \perlrenewenvironment*).

When the Perl code is executed, it is placed within a subroutine named af-
ter the macro name but with “\” replaced with “latex_”. For example, a
PerlTEX-defined LATEX macro called \myMacro produces a Perl subroutine called
latex_myMacro. Macro arguments are converted to subroutine arguments. A
LATEX macro’s #1 argument is referred to as $_[0] in Perl; #2 is referred to as
$_[1]; and so forth.

Any valid Perl code can be used in the body of a macro. However, PerlTEX
executes the Perl code within a secure sandbox. This means that potentially

4

harmful Perl operations, such as unlink, rmdir, and system will result in a run-
time error. (It is possible to disable the safety checks, however, as will be explained
in Section 2.2.) Having a secure sandbox implies that it is safe to build PerlTEX
documents written by other people without worrying about what they may do to
your computer system.

A single sandbox is used for the entire latex run. This means that multiple
macros defined by \perlnewcommand can invoke each other. It also means that
global variables persist across macro calls:

\perlnewcommand{\setX}[1]{$x = $_[0]; return ""}
\perlnewcommand{\getX}{’x was set to ’ . $x . ’.’}
\setX{123}
\getX
\setX{456}
\getX

⇓
x was set to 123. x was set to 456.

Macro arguments are expanded by LATEX before being passed to Perl.
Consider the following macro definition, which wraps its argument within
\begin{verbatim*}. . . \end{verbatim*}:

\perlnewcommand{\verbit}[1]{

"\\begin{verbatim*}\n$_[0]\n\\end{verbatim*}\n"

}

An invocation of “\verbit{\TeX}” would therefore typeset the expan-
sion of “\TeX”, namely “T\kern -.1667em\lower .5ex\hbox {E}\kern
-.125emX\spacefactor \@m”, which might be a bit unexpected. The solution
is to use \noexpand: \verbit{\noexpand\TeX} ⇒ \TeX. “Robust” macros as
well as \begin and \end are implicitly preceded by \noexpand.

2.2 Invoking perltex.pl

The following pages reproduce the perltex.pl program documentation. Key
parts of the documentation are excerpted when perltex.pl is invoked with the
--help option. The various Perl pod2〈something〉 tools can be used to generate the
complete program documentation in a variety of formats such as LATEX, HTML,
plain text, or Unix man-page format. For example, the following command is the
recommended way to produce a Unix man page from perltex.pl:

pod2man --center=" " --release=" " perltex.pl > perltex.1

5

NAME

perltex — enable LATEX macros to be defined in terms of Perl code

SYNOPSIS

perltex [--help] [--latex=program] [--[no]safe] [--permit=feature] [latex
options]

DESCRIPTION

LATEX — through the underlying TEX typesetting system — produces beautifully
typeset documents but has a macro language that is difficult to program. In
particular, support for complex string manipulation is largely lacking. Perl is a
popular general-purpose programming language whose forte is string manipula-
tion. However, it has no typesetting capabilities whatsoever.

Clearly, Perl’s programmability could complement LATEX’s typesetting strengths.
perltex is the tool that enables a symbiosis between the two systems. All a user
needs to do is compile a LATEX document using perltex instead of latex. (perltex
is actually a wrapper for latex, so no latex functionality is lost.) If the document
includes a \usepackage{perltex} in its preamble, then \perlnewcommand and
\perlrenewcommand macros will be made available. These behave just like LATEX’s
\newcommand and \renewcommand except that the macro body contains Perl code
instead of LATEX code.

OPTIONS

perltex accepts the following command-line options:

--help
Display basic usage information.

--latex=program
Specify a program to use instead of latex. For example, --latex=pdflatex
would typeset the given document using pdflatex instead of ordinary latex.

--[no]safe
Enable or disable sandboxing. With the default of --safe, perltex executes
the code from a \perlnewcommand or \perlrenewcommand macro within a
protected environment that prohibits “unsafe” operations such as accessing
files or executing external programs. Specifying --nosafe gives the LATEX
document carte blanche to execute any arbitrary Perl code, including that
which can harm the user’s files. See the Safe manpage for more information.

--permit=feature
Permit particular Perl operations to be performed. The --permit option,

6

which can be specified more than once on the command line, enables finer-
grained control over the perltex sandbox. See the Opcode manpage for more
information.

These options are then followed by whatever options are normally passed to latex
(or whatever program was specified with --latex), including, for instance, the
name of the .tex file to compile.

EXAMPLES

In its simplest form, perltex is run just like latex:

perltex myfile.tex

To use pdflatex instead of regular latex, use the --latex option:

perltex --latex=pdflatex myfile.tex

If LATEX gives a “trapped by operation mask” error and you trust the .tex file
you’re trying to compile not to execute malicious Perl code (e.g., because you
wrote it yourself), you can disable perltex’s safety mechansisms with --nosafe:

perltex --nosafe myfile.tex

The following command gives documents only perltex’s default permissions
(:browse) plus the ability to open files and invoke the time command:

perltex --permit=:browse --permit=:filesys_open

--permit=time myfile.tex

ENVIRONMENT

perltex honors the following environment variables:

PERLTEX
Specify the filename of the LATEX compiler. The LATEX compiler defaults
to “latex”. The PERLTEX environment variable overrides this default, and
the --latex command-line option (see the OPTIONS entry elsewhere in this
document) overrides that.

FILES

While compiling jobname.tex , perltex makes use of the following files:

jobname.lgpl
log file written by Perl; helpful for debugging Perl macros

7

jobname.topl
information sent from LATEX to Perl

jobname.frpl
information sent from Perl to LATEX

jobname.tfpl
“flag” file whose existence indicates that jobname.topl contains valid data

jobname.ffpl
“flag” file whose existence indicates that jobname.frpl contains valid data

jobname.dfpl
“flag” file whose existence indicates that jobname.ffpl has been deleted

NOTES

perltex’s sandbox defaults to what the Opcode manpage calls “:browse”.

SEE ALSO

latex (1), pdflatex (1), perl(1), Safe(3pm), Opcode(3pm)

AUTHOR

Scott Pakin, scott+pt@pakin.org

8

3 Implementation

Users interested only in using PerlTEX can skip Section 3, which presents the
complete PerlTEX source code. This section should be of interest primarily to
those who wish to extend PerlTEX or modify it to use a language other than Perl.

Section 3 is split into two main parts. Section 3.1 presents the source code
for perltex.sty, the LATEX side of PerlTEX, and Section 3.2 presents the source
code for perltex.pl, the Perl side of PerlTEX. In toto, PerlTEX consists of a
relatively small amount of code. perltex.sty is only 201 lines of LATEX and
perltex.pl is only 214 lines of Perl. perltex.pl is fairly straightforward Perl
code and shouldn’t be too difficult to understand by anyone comfortable with Perl
programming. perltex.sty, in contrast, contains a bit of LATEX trickery and
is probably impenetrable to anyone who hasn’t already tried his hand at LATEX
programming. Fortunately for the reader, the code is profusely commented so the
aspiring LATEX guru may yet learn something from it.

After documenting the perltex.sty and perltex.pl source code, a few sug-
gestions are provided for porting PerlTEX to use a backend language other than
Perl (Section 3.3).

3.1 perltex.sty

Although I’ve written a number of LATEX packages, perltex.sty was the most
challenging to date. The key things I needed to learn how to do include the
following:

1. storing brace-matched—but otherwise not valid LATEX—code for later use

2. iterating over a macro’s arguments

Storing non-LATEX code in a variable involves beginning a group in an argu-
mentless macro, fiddling with category codes, using \afterassignment to specify
a continuation function, and storing the subsequent brace-delimited tokens in the
input stream into a token register. The continuation function, which also takes
no arguments, ends the group begun in the first function and proceeds using the
correctly \catcoded token register. This technique appears in \plmac@haveargs
and \plmac@havecode and in a simpler form (i.e., without the need for storing
the argument) in \plmac@write@perl and \plmac@write@perl@i.

Iterating over a macro’s arguments is hindered by TEX’s requirement that “#”
be followed by a number or another “#”. The technique I discovered (which is used
by the Texinfo source code) is first to \let a variable be \relax, thereby making
it unexpandable, then to define a macro that uses that variable followed by a loop
variable, and finally to expand the loop variable and \let the \relaxed variable be
“#” right before invoking the macro. This technique appears in \plmac@havecode.

I hope you find reading the perltex.sty source code instructive. Writing it
certainly was.

9

3.1.1 Package initialization

PerlTEX defines six macros that are used for communication between Perl and
LATEX. \plmac@tag is a string of characters that should never occur within one
of the user’s macro names, macro arguments, or macro bodies. perltex.pl
therefore defines \plmac@tag as a long string of random uppercase letters.
\plmac@tofile is the name of a file used for communication from LATEX to Perl.
\plmac@fromfile is the name of a file used for communication from Perl to LATEX.
\plmac@toflag signals that \plmac@tofile can be read safely. \plmac@fromflag
signals that \plmac@fromfile can be read safely. \plmac@doneflag signals that
\plmac@fromflag has been deleted. Table 1 lists all of these variables along with
the value assigned to each by perltex.pl.

Table 1: Variables used for communication between Perl and LATEX
Variable Purpose perltex.pl assignment
\plmac@tag \plmac@tofile field separator (20 random letters)
\plmac@tofile LATEX → Perl communication \jobname.topl
\plmac@fromfile Perl → LATEX communication \jobname.frpl
\plmac@toflag \plmac@tofile synchronization \jobname.tfpl
\plmac@fromflag \plmac@fromfile synchronization \jobname.ffpl
\plmac@doneflag \plmac@fromflag synchronization \jobname.dfpl

\ifplmac@have@perltex

\plmac@have@perltextrue

\plmac@have@perltexfalse

The following block of code checks the existence of each of the variables listed in
Table 1. If any variable is not defined, perltex.sty gives an error message and—
as we shall see on page 20—defines dummy versions of \perl[re]newcommand and
\perl[re]newenvironment.
1 \newif\ifplmac@have@perltex

2 \plmac@have@perltextrue

3 \@ifundefined{plmac@tag}{\plmac@have@perltexfalse}{}

4 \@ifundefined{plmac@tofile}{\plmac@have@perltexfalse}{}

5 \@ifundefined{plmac@fromfile}{\plmac@have@perltexfalse}{}

6 \@ifundefined{plmac@toflag}{\plmac@have@perltexfalse}{}

7 \@ifundefined{plmac@fromflag}{\plmac@have@perltexfalse}{}

8 \@ifundefined{plmac@doneflag}{\plmac@have@perltexfalse}{}

9 \ifplmac@have@perltex

10 \else

11 \PackageError{perltex}{Document must be compiled using perltex}

12 {Instead of compiling your document directly with latex, you need

13 to\MessageBreak use the perltex script. \space perltex sets up

14 a variety of macros needed by\MessageBreak the perltex

15 package as well as a listener process needed for\MessageBreak

16 communication between LaTeX and Perl.}

17 \fi

10

3.1.2 Defining Perl macros

PerlTEX defines four macros intended to be called by the user. Section 3.1.2 details
the implementation of two of them: \perlnewcommand and \perlrenewcommand.
(Section 3.1.3 details the implementation of the other two, \perlnewenvironment
and \perlrenewenvironment.) The goal is for these two macros to behave exactly
like \newcommand and \renewcommand, respectively, except that the author macros
they in turn define have Perl bodies instead of LATEX bodies.

The sequence of the operations defined in this section is as follows:

1. The user invokes \perl[re]newcommand, which stores \[re]newcommand
in \plmac@command. The \perl[re]newcommand macro then in-
vokes \plmac@newcommand@i with a first argument of “*” for
\perl[re]newcommand* or “!” for ordinary \perl[re]newcommand.

2. \plmac@newcommand@i defines \plmac@starchar as “*” if it was passed a
“*” or 〈empty〉 if it was passed a “!”. It then stores the name of the
user’s macro in \plmac@macname, a \writeable version of the name in
\plmac@cleaned@macname, and the macro’s previous definition (needed by
\perlrenewcommand) in \plmac@oldbody. Finally, \plmac@newcommand@i
invokes \plmac@newcommand@ii.

3. \plmac@newcommand@ii stores the number of arguments to the user’s
macro (which may be zero) in \plmac@numargs. It then invokes
\plmac@newcommand@iii@opt if the first argument is supposed to be op-
tional or \plmac@newcommand@iii@no@opt if all arguments are supposed to
be required.

4. \plmac@newcommand@iii@opt defines \plmac@defarg as the default value
of the optional argument. \plmac@newcommand@iii@no@opt defines it as
〈empty〉. Both functions then call \plmac@haveargs.

5. \plmac@haveargs stores the user’s macro body (written in Perl) verbatim
in \plmac@perlcode. \plmac@haveargs then invokes \plmac@havecode.

6. By the time \plmac@havecode is invoked all of the information needed to
define the user’s macro is available. Before defining a LATEX macro, how-
ever, \plmac@havecode invokes \plmac@write@perl to tell perltex.pl to
define a Perl subroutine with a name based on \plmac@cleaned@macname
and the code contained in \plmac@perlcode. Figure 1 illustrates the data
that \plmac@write@perl passes to perltex.pl.

7. \plmac@havecode invokes \newcommand or \renewcommand, as appropriate,
defining the user’s macro as a call to \plmac@write@perl. An invocation of
the user’s LATEX macro causes \plmac@write@perl to pass the information
shown in Figure 2 to perltex.pl.

8. Whenever \plmac@write@perl is invoked it writes its argument ver-
batim to \plmac@tofile; perltex.pl evaluates the code and writes
\plmac@fromfile; finally, \plmac@write@perl \inputs \plmac@fromfile.

11

DEF
\plmac@tag
\plmac@cleaned@macname
\plmac@tag
\plmac@perlcode

Figure 1: Data written to \plmac@tofile to define a Perl subroutine

USE
\plmac@tag
\plmac@cleaned@macname
\plmac@tag
#1
\plmac@tag
#2
\plmac@tag
#3

...
#〈last〉

Figure 2: Data written to \plmac@tofile to invoke a Perl subroutine

An example might help distinguish the myriad macros used internally by
perltex.sty. Consider the following call made by the user’s document:

\perlnewcommand*{\example}[3][frobozz]{join("---", @_)}

Table 2 shows how perltex.sty parses that command into its constituent com-
ponents and which components are bound to which perltex.sty macros.

Table 2: Macro assignments corresponding to an sample \perlnewcommand*
Macro Sample definition
\plmac@command \newcommand
\plmac@starchar *
\plmac@macname \example
\plmac@cleaned@macname \example (catcode 11)
\plmac@oldbody \relax (presumably)
\plmac@numargs 3
\plmac@defarg frobozz
\plmac@perlcode join("---", @_) (catcode 11)

\perlnewcommand

\perlrenewcommand

\plmac@command

\plmac@next

\perlnewcommand and \perlrenewcommand are the first two commands exported
to the user by perltex.sty. \perlnewcommand is analogous to \newcommand

12

except that the macro body consists of Perl code instead of LATEX code. Like-
wise, \perlrenewcommand is analogous to \renewcommand except that the macro
body consists of Perl code instead of LATEX code. \perlnewcommand and
\perlrenewcommand merely define \plmac@command and \plmac@next and invoke
\plmac@newcommand@i.
18 \def\perlnewcommand{%

19 \let\plmac@command=\newcommand

20 \let\plmac@next=\relax

21 \@ifnextchar*{\plmac@newcommand@i}{\plmac@newcommand@i!}%

22 }

23 \def\perlrenewcommand{%

24 \let\plmac@next=\relax

25 \let\plmac@command=\renewcommand

26 \@ifnextchar*{\plmac@newcommand@i}{\plmac@newcommand@i!}%

27 }

\plmac@newcommand@i

\plmac@starchar

\plmac@macname

\plmac@oldbody

\plmac@cleaned@macname

If the user invoked \perl[re]newcommand* then \plmac@newcommand@i is passed
a “*” and, in turn, defines \plmac@starchar as “*”. If the user in-
voked \perl[re]newcommand (no “*”) then \plmac@newcommand@i is passed
a “!” and, in turn, defines \plmac@starchar as 〈empty〉. In either case,
\plmac@newcommand@i defines \plmac@macname as the name of the user’s macro,
\plmac@cleaned@macname as a \writeable (i.e., category code 11) version of
\plmac@macname, and \plmac@oldbody and the previous definition of the user’s
macro. (\plmac@oldbody is needed by \perlrenewcommand.) It then invokes
\plmac@newcommand@ii.
28 \def\plmac@newcommand@i#1#2{%

29 \ifx#1*%

30 \def\plmac@starchar{*}%

31 \else

32 \def\plmac@starchar{}%

33 \fi

34 \def\plmac@macname{#2}%

35 \let\plmac@oldbody=#2\relax

36 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{%

37 \expandafter\string\plmac@macname}%

38 \@ifnextchar[{\plmac@newcommand@ii}{\plmac@newcommand@ii[0]}%]

39 }

\plmac@newcommand@ii

\plmac@numargs

\plmac@newcommand@i invokes \plmac@newcommand@ii with the number of ar-
guments to the user’s macro in brackets. \plmac@newcommand@ii stores that
number in \plmac@numargs and invokes \plmac@newcommand@iii@opt if the first
argument is to be optional or \plmac@newcommand@iii@no@opt if all arguments
are to be mandatory.
40 \def\plmac@newcommand@ii[#1]{%

41 \def\plmac@numargs{#1}%

42 \@ifnextchar[{\plmac@newcommand@iii@opt}

43 {\plmac@newcommand@iii@no@opt}%]

44 }

13

\plmac@newcommand@iii@opt

\plmac@newcommand@iii@no@opt

\plmac@defarg

Only one of these two macros is executed per invocation of \perl[re]newcommand,
depending on whether or not the first argument of the user’s macro is an op-
tional argument. \plmac@newcommand@iii@opt is invoked if the argument is
optional. It defines \plmac@defarg to the default value of the optional argu-
ment. \plmac@newcommand@iii@no@opt is invoked if all arguments are manda-
tory. It defines \plmac@defarg as \relax. Both \plmac@newcommand@iii@opt
and \plmac@newcommand@iii@no@opt then invoke \plmac@haveargs.
45 \def\plmac@newcommand@iii@opt[#1]{%

46 \def\plmac@defarg{#1}%

47 \plmac@haveargs

48 }

49 \def\plmac@newcommand@iii@no@opt{%

50 \let\plmac@defarg=\relax

51 \plmac@haveargs

52 }

\plmac@perlcode

\plmac@haveargs

Now things start to get tricky. We have all of the arguments we need to define the
user’s command so all that’s left is to grab the macro body. But there’s a catch:
Valid Perl code is unlikely to be valid LATEX code. We therefore have to read the
macro body in a \verb-like mode. Furthermore, we actually need to store the
macro body in a variable, as we don’t need it right away.

The approach we take in \plmac@haveargs is as follows. First, we give all
“special” characters category code 12 (“other”). We then indicate that the car-
riage return character (control-M) marks the end of a line and that curly braces
retain their normal meaning. With the aforementioned category-code definitions,
we now have to store the next curly-brace-delimited fragment of text, end the
current group to reset all category codes to their previous value, and continue
processing the user’s macro definition. How do we do that? The answer is to as-
sign the upcoming text fragment to a token register (\plmac@perlcode) while an
\afterassignment is in effect. The \afterassignment causes control to transfer
to \plmac@havecode right after \plmac@perlcode receives the macro body with
all of the “special” characters made impotent.
53 \newtoks\plmac@perlcode

54 \def\plmac@haveargs{%

55 \begingroup

56 \let\do\@makeother\dospecials

57 \catcode‘\^^M=\active

58 \newlinechar‘\^^M

59 \endlinechar=‘\^^M

60 \catcode‘\{=1

61 \catcode‘\}=2

62 \afterassignment\plmac@havecode

63 \global\plmac@perlcode

64 }

Control is transfered to \plmac@havecode from \plmac@haveargs right af-
ter the user’s macro body is assigned to \plmac@perlcode. We now have

14

everything we need to define the user’s macro. The goal is to define it as
“\plmac@write@perl{〈contents of Figure 2〉}”. This is easier said than done
because the number of arguments in the user’s macro is not known statically,
yet we need to iterate over however many arguments there are. Because of this
complexity, we will explain \plmac@perlcode piece-by-piece.

\plmac@sep Define a character to separate each of the items presented in Figures 1 and 2. Perl
will need to strip this off each argument. For convenience in porting to languages
with less powerful string manipulation than Perl’s, we define \plmac@sep as a
carriage-return character of category code 11 (“letter”).
65 {\catcode‘\^^M=11\gdef\plmac@sep{^^M}}

\plmac@argnum Define a loop variable that will iterate from 1 to the number of arguments in the
user’s function, i.e., \plmac@numargs.
66 \newcount\plmac@argnum

\plmac@havecode Now comes the final piece of what started as a call to \perl[re]newcommand. First,
to reset all category codes back to normal, \plmac@havecode ends the group that
was begun in \plmac@haveargs.
67 \def\plmac@havecode{%

68 \endgroup

\plmac@define@sub We invoke \plmac@write@perl to define a Perl subroutine named after
\plmac@cleaned@macname. \plmac@define@sub sends Perl the information
shown in Figure 1 on page 12.
69 \edef\plmac@define@sub{%

70 \noexpand\plmac@write@perl{DEF\plmac@sep

71 \plmac@tag\plmac@sep

72 \plmac@cleaned@macname\plmac@sep

73 \plmac@tag\plmac@sep

74 \the\plmac@perlcode

75 }%

76 }%

77 \plmac@define@sub

\plmac@body The rest of \plmac@havecode is preparation for defining the user’s macro.
(LATEX2ε’s \newcommand or \renewcommand will do the actual work, though.)
\plmac@body will eventually contain the complete (LATEX) body of the user’s
macro. Here, we initialize it to the first three items listed in Figure 2 on page 12
(with intervening \plmac@seps).
78 \edef\plmac@body{%

79 USE\plmac@sep

80 \plmac@tag\plmac@sep

81 \plmac@cleaned@macname

82 }%

\plmac@hash Now, for each argument #1, #2, . . . , #\plmac@numargs we append a \plmac@tag
plus the argument to \plmac@body (as always, with a \plmac@sep after each

15

item). This requires more trickery, as TEX requires a macro-parameter char-
acter (“#”) to be followed by a literal number, not a variable. The approach
we take, which I first discovered in the Texinfo source code (although it’s
used by LATEX and probably other TEX-based systems as well), is to \let-bind
\plmac@hash to \relax. This makes \plmac@hash unexpandable, and because
it’s not a “#”, TEX doesn’t complain. After \plmac@body has been extended
to include \plmac@hash1, \plmac@hash2, . . . , \plmac@hash\plmac@numargs, we
then \let-bind \plmac@hash to ##, which TEX lets us do because we’re within a
macro definition (\plmac@havecode). \plmac@body will then contain #1, #2, . . . ,
#\plmac@numargs, as desired.
83 \let\plmac@hash=\relax

84 \plmac@argnum=1%

85 \loop

86 \ifnum\plmac@numargs<\plmac@argnum

87 \else

88 \edef\plmac@body{%

89 \plmac@body\plmac@sep\plmac@tag\plmac@sep

90 \plmac@hash\plmac@hash\number\plmac@argnum}%

91 \advance\plmac@argnum by 1%

92 \repeat

93 \let\plmac@hash=##\relax

\plmac@define@command We’re ready to execute a \[re]newcommand. Because we need to expand
many of our variables, we \edef \plmac@define@command to the appropriate
\[re]newcommand call, which we will soon execute. The user’s macro must first
be \let-bound to \relax to prevent it from expanding. Then, we handle two
cases: either all arguments are mandatory (and \plmac@defarg is \relax) or the
user’s macro has an optional argument (with default value \plmac@defarg).
94 \expandafter\let\plmac@macname=\relax

95 \ifx\plmac@defarg\relax

96 \edef\plmac@define@command{%

97 \noexpand\plmac@command\plmac@starchar{\plmac@macname}%

98 [\plmac@numargs]{%

99 \noexpand\plmac@write@perl{\plmac@body}%

100 }%

101 }%

102 \else

103 \edef\plmac@define@command{%

104 \noexpand\plmac@command\plmac@starchar{\plmac@macname}%

105 [\plmac@numargs][\plmac@defarg]{%

106 \noexpand\plmac@write@perl{\plmac@body}%

107 }%

108 }%

109 \fi

The final steps are to restore the previous definition of the user’s macro—we
had set it to \relax above to make the name unexpandable—then redefine it
by invoking \plmac@define@command. Why do we need to restore the previous
definition if we’re just going to redefine it? Because \newcommand needs to produce

16

an error if the macro was previously defined and \renewcommand needs to produce
an error if the macro was not previously defined.

\plmac@havecode concludes by invoking \plmac@next, which is a no-op for
\perlnewcommand and \perlrenewcommand but processes the end-environment
code for \perlnewenvironment and \perlrenewenvironment.

110 \expandafter\let\plmac@macname=\plmac@oldbody

111 \plmac@define@command

112 \plmac@next

113 }

3.1.3 Defining Perl environments

Section 3.1.2 detailed the implementation of \perlnewcommand and
\perlrenewcommand. Section 3.1.3 does likewise for PerlTEX’s remaining
two macros, \perlnewenvironment and \perlrenewenvironment, which are
the Perl-bodied analogues of \newenvironment and \renewenvironment. This
section is significantly shorter than the previous because \perlnewenvironment
and \perlrenewenvironment are largely built atop the macros already defined
in Section 3.1.2.

\perlnewenvironment

\perlrenewenvironment

\plmac@command

\plmac@next

\perlnewenvironment and \perlrenewenvironment are the remaining two com-
mands exported to the user by perltex.sty. \perlnewenvironment is anal-
ogous to \newenvironment except that the macro body consists of Perl code
instead of LATEX code. Likewise, \perlrenewenvironment is analogous to
\renewenvironment except that the macro body consists of Perl code instead of
LATEX code. \perlnewenvironment and \perlrenewenvironment merely define
\plmac@command and \plmac@next and invoke \plmac@newenvironment@i.

The significance of \plmac@next (which was let-bound to \relax for
\perl[re]newcommand but is let-bound to \plmac@end@environment here) is that
a LATEX environment definition is really two macro definitions: \〈name〉 and
\end〈name〉. Because we want to reuse as much code as possible the idea is to
define the “begin” code as one macro, then inject—by way of plmac@next—a call
to \plmac@end@environment, which defines the “end” code as a second macro.

114 \def\perlnewenvironment{%

115 \let\plmac@command=\newcommand

116 \let\plmac@next=\plmac@end@environment

117 \@ifnextchar*{\plmac@newenvironment@i}{\plmac@newenvironment@i!}%

118 }

119 \def\perlrenewenvironment{%

120 \let\plmac@command=\renewcommand

121 \let\plmac@next=\plmac@end@environment

122 \@ifnextchar*{\plmac@newenvironment@i}{\plmac@newenvironment@i!}%

123 }

\plmac@newenvironment@i

\plmac@starchar

\plmac@envname

\plmac@macname

\plmac@oldbody

\plmac@cleaned@macname

The \plmac@newenvironment@i macro is analogous to \plmac@newcommand@i;
see the description of \plmac@newcommand@i on page 13 to understand the ba-
sic structure. The primary difference is that the environment name (#2) is just

17

text, not a control sequence. We store this text in \plmac@envname to facilitate
generating the names of the two macros that constitute an environment defini-
tion. Note that there is no \plmac@newenvironment@ii; control passes instead to
\plmac@newcommand@ii.

124 \def\plmac@newenvironment@i#1#2{%

125 \ifx#1*%

126 \def\plmac@starchar{*}%

127 \else

128 \def\plmac@starchar{}%

129 \fi

130 \def\plmac@envname{#2}%

131 \expandafter\def\expandafter\plmac@macname\expandafter{\csname#2\endcsname}%

132 \expandafter\let\expandafter\plmac@oldbody\plmac@macname\relax

133 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{%

134 \expandafter\string\plmac@macname}%

135 \@ifnextchar[{\plmac@newcommand@ii}{\plmac@newcommand@ii[0]}%]

136 }

\plmac@end@environment

\plmac@next

\plmac@macname

\plmac@oldbody

\plmac@cleaned@macname

Recall that an environment definition is a shortcut for two macro definitions:
\〈name〉 and \end〈name〉 (where 〈name〉 was stored in \plmac@envname by
\plmac@newenvironment@i). After defining \〈name〉, \plmac@havecode trans-
fers control to \plmac@end@environment because \plmac@next was let-bound to
\plmac@end@environment in \perl[re]newenvironment.

\plmac@end@environment’s purpose is to define \end〈name〉. This is a little
tricky, however, because LATEX’s \[re]newcommand refuses to (re)define a macro
whose name begins with “end”. The solution that \plmac@end@environment
takes is first to define a \plmac@end@macro macro then (in plmac@next) let-bind
\end〈name〉 to it. Other than that, \plmac@end@environment is a combined
and simplified version of \perlnewenvironment, \perlrenewenvironment, and
\plmac@newenvironment@i.

137 \def\plmac@end@environment{%

138 \expandafter\def\expandafter\plmac@next\expandafter{\expandafter

139 \let\csname end\plmac@envname\endcsname=\plmac@end@macro

140 \let\plmac@next=\relax

141 }%

142 \def\plmac@macname{\plmac@end@macro}%

143 \expandafter\let\expandafter\plmac@oldbody\csname end\plmac@envname\endcsname

144 \expandafter\def\expandafter\plmac@cleaned@macname\expandafter{%

145 \expandafter\string\plmac@macname}%

146 \@ifnextchar[{\plmac@newcommand@ii}{\plmac@newcommand@ii[0]}%]

147 }

3.1.4 Communication between LATEX and Perl

As shown in the previous section, when a document invokes \perl[re]newcommand
to define a macro, perltex.sty defines the macro in terms of a call to
\plmac@write@perl. In this section, we learn how \plmac@write@perl operates.

18

At the highest level, LATEX-to-Perl communication is performed via the filesys-
tem. In essence, LATEX writes a file (\plmac@tofile) corresponding to the in-
formation in either Figure 1 or Figure 2; Perl reads the file, executes the code
within it, and writes a .tex file (\plmac@fromfile); and, finally, LATEX reads and
executes the new .tex file. However, the actual communication protocol is a bit
more involved than that. The problem is that Perl needs to know when LATEX has
finished writing Perl code and LATEX needs to know when Perl has finished writing
LATEX code. The solution involves introducing three extra files—\plmac@toflag,
\plmac@fromflag, and \plmac@doneflag—which are used exclusively for LATEX-
to-Perl synchronization.

There’s a catch: Although Perl can create and delete files, LATEX can only
create them. Even worse, LATEX (more specifically, teTEX, which is the TEX
distribution under which I developed PerlTEX) cannot reliably poll for a file’s
nonexistence; if a file is deleted in the middle of an \immediate\openin, latex
aborts with an error message. These restrictions led to the regrettably convoluted
protocol illustrated in Figure 3. In the figure, “Touch” means “create a zero-
length file”; “Await” means “wait until the file exists”; and, “Read”, “Write”,
and “Delete” are defined as expected. Assuming the filesystem performs these
operations in a sequentially consistent order (not necessarily guaranteed on all
filesystems, unfortunately), PerlTEX should behave as expected.

Time LATEX Perl

?

Write \plmac@tofile
Touch \plmac@toflag → Await \plmac@toflag

Read \plmac@tofile
Write \plmac@fromfile
Delete \plmac@toflag
Delete \plmac@tofile
Delete \plmac@doneflag

Await \plmac@fromflag ← Touch \plmac@fromflag
Read \plmac@fromfile
Touch \plmac@tofile → Await \plmac@tofile

Delete \plmac@fromflag
Await \plmac@doneflag ← Touch \plmac@doneflag

Figure 3: LATEX-to-Perl communication protocol

\plmac@await@existence

\ifplmac@file@exists

\plmac@file@existstrue

\plmac@file@existsfalse

The purpose of the \plmac@await@existence macro is to repeatedly check
the existence of a given file until the file actually exists. For conve-
nience, we use LATEX2ε’s \IfFileExists macro to check the file and invoke
\plmac@file@existstrue or \plmac@file@existsfalse, as appropriate.

148 \newif\ifplmac@file@exists

149 \newcommand{\plmac@await@existence}[1]{%

150 \loop

151 \IfFileExists{#1}%

19

152 {\plmac@file@existstrue}%

153 {\plmac@file@existsfalse}%

154 \ifplmac@file@exists

155 \else

156 \repeat

157 }

\plmac@outfile We define a file handle for \plmac@write@perl@i to use to create and write
\plmac@tofile and \plmac@toflag.

158 \newwrite\plmac@outfile

\plmac@write@perl \plmac@write@perl begins the LATEX-to-Perl data exchange, following the pro-
tocol illustrated in Figure 3. \plmac@write@perl prepares for the next piece of
text in the input stream to be read with “special” characters marked as category
code 12 (“other”). This prevents LATEX from complaining if the Perl code contains
invalid LATEX (which it usually will). \plmac@write@perl ends by passing control
to \plmac@write@perl@i, which performs the bulk of the work.

159 \newcommand{\plmac@write@perl}{%

160 \begingroup

161 \let\do\@makeother\dospecials

162 \catcode‘\^^M=\active

163 \newlinechar‘\^^M

164 \endlinechar=‘\^^M

165 \catcode‘\{=1

166 \catcode‘\}=2

167 \plmac@write@perl@i

168 }

\plmac@write@perl@i When \plmac@write@perl@i begins executing, the category codes are set up so
that the macro’s argument will be evaluated “verbatim” except for the part con-
sisting of the LATEX code passed in by the author, which is partially expanded.
Thus, everything is in place for \plmac@write@perl@i to send its argument to
Perl and read back the (LATEX) result.

Because all of perltex.sty’s protocol processing is encapsulated within
\plmac@write@perl@i, this is the only macro that strictly requires perltex.pl.
Consequently, we wrap the entire macro definition within a check for perltex.pl.

169 \ifplmac@have@perltex

170 \newcommand{\plmac@write@perl@i}[1]{%

The first step is to write argument #1 to \plmac@tofile:
171 \immediate\openout\plmac@outfile=\plmac@tofile\relax

172 \let\protect=\noexpand

173 \def\begin{\noexpand\begin}%

174 \def\end{\noexpand\end}%

175 \immediate\write\plmac@outfile{#1}%

176 \immediate\closeout\plmac@outfile

(In the future, it might be worth redefining \def, \edef, \gdef, \xdef, \let, and
maybe some other control sequences as “\noexpand〈control sequence〉\noexpand”
so that \write doesn’t try to expand an undefined control sequence.)

20

We’re now finished using #1 so we can end the group begun by
\plmac@write@perl, thereby resetting each character’s category code back to its
previous value.

177 \endgroup

Continuing the protocol illustrated in Figure 3, we create a zero-byte
\plmac@toflag in order to notify perltex.pl that it’s now safe to read
\plmac@tofile.

178 \immediate\openout\plmac@outfile=\plmac@toflag\relax

179 \immediate\closeout\plmac@outfile

To avoid reading \plmac@fromfile before perltex.pl has finished writing it
we must wait until perltex.pl creates \plmac@fromflag, which it does only after
it has written \plmac@fromfile.

180 \plmac@await@existence\plmac@fromflag

At this point, \plmac@fromfile should contain valid LATEX code. However, we
defer inputting it until we the very end. Doing so enables recursive and mutually
recursive invocations of PerlTEX macros.

Because TEX can’t delete files we require an additional LATEX-to-Perl synchro-
nization step. For convenience, we recycle \plmac@tofile as a synchronization
file rather than introduce yet another flag file to complement \plmac@toflag,
\plmac@fromflag, and \plmac@doneflag.

181 \immediate\openout\plmac@outfile=\plmac@tofile\relax

182 \immediate\closeout\plmac@outfile

183 \plmac@await@existence\plmac@doneflag

The only thing left to do is to \input and evaluate \plmac@fromfile, which
contains the LATEX output from the Perl subroutine.

184 \input\plmac@fromfile\relax

185 }

The foregoing code represents the “real” definition of \plmac@write@perl@i.
For the user’s convenience, we define a dummy version of \plmac@write@perl@i
so that a document which utilizes perltex.sty can still compile even if not built
using perltex.pl. All calls to macros defined with \perl[re]newcommand and all
invocations of environments defined with \perl[re]newenvironment are replaced
with “ PerlTEX ”. A minor complication is that text can’t be inserted before the
\begin{document}. Hence, we initially define \plmac@write@perl@i as a do-
nothing macro and redefine it as “\fbox{Perl\TeX}” at the \begin{document}.

186 \else

187 \newcommand{\plmac@write@perl@i}[1]{\endgroup}

188 \AtBeginDocument{%

189 \renewcommand{\plmac@write@perl@i}[1]{%

\plmac@show@placeholder There’s really no point in outputting a framed “PerlTEX” when a macro is defined
and when it’s used. \plmac@show@placeholder checks the first character of the
protocol header. If it’s “D” (DEF), nothing is output. Otherwise, it’ll be “U” (USE)
and “PerlTEX” will be output.

21

190 \def\plmac@show@placeholder##1##2\@empty{%

191 \ifx##1D\relax

192 \endgroup

193 \else

194 \endgroup

195 \fbox{Perl\TeX}%

196 \fi

197 }%

198 \plmac@show@placeholder#1\@empty

199 }%

200 }

201 \fi

3.2 perltex.pl

perltex.pl is a wrapper script for latex (or any other LATEX compiler). It
sets up client-server communication between LATEX and Perl, with LATEX as the
client and Perl as the server. When a LATEX document sends a piece of Perl
code to perltex.pl (with the help of perltex.sty, as detailed in Section 3.1),
perltex.pl executes it within a secure sandbox and transmits the resulting LATEX
code back to the document.

3.2.1 Header comments

Because perltex.pl is generated without a DocStrip preamble or postamble we
have to manually include the desired text as Perl comments.

202 #! /usr/bin/env perl

203

204 ###

205 # Prepare a LaTeX run for two-way communication with Perl #

206 # By Scott Pakin <scott+pt@pakin.org> #

207 ###

208

209 #---

210 # This is file ‘perltex.pl’,

211 # generated with the docstrip utility.

212 #

213 # The original source files were:

214 #

215 # perltex.dtx (with options: ‘perltex’)

216 #

217 # This is a generated file.

218 #

219 # Copyright (C) 2004 by Scott Pakin <scott+pt@pakin.org>

220 #

221 # This file may be distributed and/or modified under the conditions

222 # of the LaTeX Project Public License, either version 1.2 of this

223 # license or (at your option) any later version. The latest

224 # version of this license is in:

22

225 #

226 # http://www.latex-project.org/lppl.txt

227 #

228 # and version 1.2 or later is part of all distributions of LaTeX

229 # version 1999/12/01 or later.

230 #---

231

3.2.2 Perl modules and pragmas

We use Safe and Opcode to implement the secure sandbox, Getopt::Long and
Pod::Usage to parse the command line, and various other modules and pragmas
for miscellaneous things.

232 use Safe;

233 use Opcode;

234 use Getopt::Long;

235 use Pod::Usage;

236 use File::Basename;

237 use POSIX;

238 use warnings;

239 use strict;

3.2.3 Variable declarations

With use strict in effect, we need to declare all of our variables. For clarity, we
separate our global-variable declarations into variables corresponding to command-
line options and other global variables.

Variables corresponding to command-line arguments

$latexprog

$runsafely

@permittedops

$latexprog is the name of the LATEX executable (e.g., “latex”). If $runsafely
is 1 (the default), then the user’s Perl code runs in a secure sandbox; if it’s 0,
then arbitrary Perl code is allowed to run. @permittedops is a list of features
made available to the user’s Perl code. Valid values are described in Perl’s Opcode
manual page. perltex.pl’s default is a list containing only :browse.

240 my $latexprog;

241 my $runsafely = 1;

242 my @permittedops;

Other global variables

$progname

$jobname

@latexcmdline

$toperl

$fromperl

$toflag

$fromflag

$doneflag

$logfile

$sandbox

$latexpid

$progname is the run-time name of the perltex.pl program. $jobname is the
base name of the user’s .tex file, which defaults to the TEX default of texput.
@latexcmdline is the command line to pass to the LATEX executable. $toperl
defines the filename used for LATEX→Perl communication. $fromperl defines the
filename used for Perl→LATEX communication. $toflag is the name of a file that
will exist only after LATEX creates $tofile. $fromflag is the name of a file that
will exist only after Perl creates $fromfile. $doneflag is the name of a file that

23

will exist only after Perl deletes $fromflag. $logfile is the name of a log file
to which perltex.pl writes verbose execution information. $sandbox is a secure
sandbox in which to run code that appeared in the LATEX document. $latexpid
is the process ID of the latex process.

243 my $progname = basename $0;

244 my $jobname = "texput";

245 my @latexcmdline;

246 my $toperl;

247 my $fromperl;

248 my $toflag;

249 my $fromflag;

250 my $doneflag;

251 my $logfile;

252 my $sandbox = new Safe;

253 my $latexpid;

3.2.4 Command-line conversion

In this section, perltex.pl parses its own command line and prepares a command
line to pass to latex.

Parsing perltex.pl’s command line We first set $latexprog to be the con-
tents of the environment variable PERLTEX or the value “latex” if PERLTEX is not
specified. We then use Getopt::Long to parse the command line, leaving any
parameters we don’t recognize in the argument vector (@ARGV) because these are
presumably latex options.

254 $latexprog = $ENV{"PERLTEX"} || "latex";

255 Getopt::Long::Configure("require_order", "pass_through");

256 GetOptions("help" => sub {pod2usage(-verbose => 1)},

257 "latex=s" => \$latexprog,

258 "safe!" => \$runsafely,

259 "permit=s" => \@permittedops) || pod2usage(2);

Preparing a LATEX command line

$firstcmd

$option

We start by searching @ARGV for the first string that does not start with “-” or
“\”. This string, which represents a filename, is used to set $jobname.

260 @latexcmdline = @ARGV;

261 my $firstcmd = 0;

262 for ($firstcmd=0; $firstcmd<=$#latexcmdline; $firstcmd++) {

263 my $option = $latexcmdline[$firstcmd];

264 next if substr($option, 0, 1) eq "-";

265 if (substr ($option, 0, 1) ne "\\") {

266 $jobname = basename $option, ".tex" ;

267 $latexcmdline[$firstcmd] = "\\input $option";

268 }

269 last;

270 }

24

271 push @latexcmdline, "" if $#latexcmdline==-1;

$separator To avoid conflicts with the code and parameters passed to Perl from LATEX (see Fig-
ure 1 on page 12 and Figure 2 on page 12) we define a separator string, $separator,
containing 20 random uppercase letters.

272 my $separator = "";

273 foreach (1 .. 20) {

274 $separator .= chr(ord("A") + rand(26));

275 }

Now that we have the name of the LATEX job ($jobname) we can assign
$toperl, $fromperl, $toflag, $fromflag, $doneflag, and $logfile in terms
of $jobname plus a suitable extension.

276 $toperl = $jobname . ".topl";

277 $fromperl = $jobname . ".frpl";

278 $toflag = $jobname . ".tfpl";

279 $fromflag = $jobname . ".ffpl";

280 $doneflag = $jobname . ".dfpl";

281 $logfile = $jobname . ".lgpl";

We now replace the filename of the .tex file passed to perltex.pl with a
\definition of the separator character, \definitions of the various files, and the
original file with \input prepended if necessary.

282 $latexcmdline[$firstcmd] =

283 sprintf ’\makeatletter’ . ’\def%s{%s}’ x 6 . ’\makeatother%s’,

284 ’\plmac@tag’, $separator,

285 ’\plmac@tofile’, $toperl,

286 ’\plmac@fromfile’, $fromperl,

287 ’\plmac@toflag’, $toflag,

288 ’\plmac@fromflag’, $fromflag,

289 ’\plmac@doneflag’, $doneflag,

290 $latexcmdline[$firstcmd];

3.2.5 Launching LATEX

We start by deleting the $toperl, $fromperl, $toflag, $fromflag, and
$doneflag files, in case any of these were left over from a previous (aborted)
run. We also create a log file, $logfile. As @latexcmdline contains the com-
plete command line to pass to latex we need only fork a new process and have
the child process overlay itself with latex. perltex.pl continues running as the
parent.

Note that here and elsewhere in perltex.pl, unlink is called repeatedly until
the file is actually deleted. This works around a race condition that occurs in some
filesystems in which file deletions are executed somewhat lazily.

291 foreach my $file ($toperl, $fromperl, $toflag, $fromflag, $doneflag) {

292 unlink $file while -e $file;

293 }

294 open (LOGFILE, ">$logfile") || die "open(\"$logfile\"): $!\n";

25

295 defined ($latexpid = fork) || die "fork: $!\n";

296 unshift @latexcmdline, $latexprog;

297 if (!$latexpid) {

298 exec {$latexcmdline[0]} @latexcmdline;

299 die "exec(’@latexcmdline’): $!\n";

300 }

3.2.6 Preparing a sandbox

perltex.pl uses Perl’s Safe and Opcode modules to declare a secure sandbox
($sandbox) in which to run Perl code passed to it from LATEX. When the sandbox
compiles and executes Perl code, it permits only operations that are deemed safe.
For example, the Perl code is allowed by default to assign variables, call functions,
and execute loops. However, it is not normally allowed to delete files, kill processes,
or invoke other programs.

301 @permittedops=(":browse") if $#permittedops==-1;

302 @permittedops=(Opcode::full_opset()) if !$runsafely;

303 $sandbox->permit_only (@permittedops);

3.2.7 Communicating with LATEX

The following code constitutes perltex.pl’s main loop. Until latex exits, the
loop repeatedly reads Perl code from LATEX, evaluates it, and returns the result
as per the protocol described in Figure 3 on page 19.

304 while (1) {

$awaitexists We define a local subroutine $awaitexists which waits for a given file to exist. If
latex exits while $awaitexists is waiting, then perltex.pl cleans up and exits,
too.

305 my $awaitexists = sub {

306 while (!-e $_[0]) {

307 sleep 0;

308 if (waitpid($latexpid, &WNOHANG)==-1) {

309 foreach my $file ($toperl, $fromperl, $toflag,

310 $fromflag, $doneflag) {

311 unlink $file while -e $file;

312 }

313 undef $latexpid;

314 exit 0;

315 }

316 }

317 };

$entirefile Wait for $toflag to exist. When it does, this implies that $toperl must exist as
well. We read the entire contents of $toperl into the $entirefile variable and
process it. Figures 1 and 2 illustrate the contents of $toperl.

318 $awaitexists->($toflag);

319 my $entirefile;

26

320 {

321 local $/ = undef;

322 open (TOPERL, "<$toperl") || die "open($toperl): $!\n";

323 $entirefile = <TOPERL>;

324 close TOPERL;

325 }

$optag

$macroname

@otherstuff

We split the contents of $entirefile into an operation tag (either DEF or
USE), the macro name, and everything else (@otherstuff). If $optag is DEF
then @otherstuff will contain the Perl code to define. If $optag is USE then
@otherstuff will be a list of subroutine arguments.

326 my ($optag, $macroname, @otherstuff) =

327 map {chomp; $_} split "$separator\n", $entirefile;

We clean up the macro name by deleting all leading non-letters, replacing all
subsequent non-alphanumerics with “_”, and prepending “latex_” to the macro
name.

328 $macroname =~ s/^[^A-Za-z]+//;

329 $macroname =~ s/\W/_/g;

330 $macroname = "latex_" . $macroname;

If we’re calling a subroutine, then we make the arguments more palatable to
Perl by single-quoting them and replacing every occurrence of “\” with “\\” and
every occurrence of “’” with “\’”.

331 if ($optag eq "USE") {

332 foreach (@otherstuff) {

333 s/\\/\\\\/g;

334 s/\’/\\\’/g;

335 $_ = "’$_’";

336 }

337 }

$perlcode There are two possible values that can be assigned to $perlcode. If $optag is
DEF, then $perlcode is made to contain a definition of the user’s subroutine,
named $macroname. If $optag is USE, then $perlcode becomes an invocation of
$macroname which gets passed all of the macro arguments. Figure 4 presents an
example of how the following code converts a PerlTEX macro definition into a Perl
subroutine definition and Figure 5 presents an example of how the following code
converts a PerlTEX macro invocation into a Perl subroutine invocation.

338 my $perlcode;

339 if ($optag eq "DEF") {

340 $perlcode =

341 sprintf "sub %s {%s}\n",

342 $macroname, $otherstuff[0];

343 }

344 else {

345 $perlcode = sprintf "%s (%s);\n", $macroname, join(", ", @otherstuff);

346 }

27

LATEX: \perlnewcommand{\mymacro}[2]{%
sprintf "Isn’t $_[0] %s $_[1]?\n",
$_[0]>=$_[1] ? ">=" : "<"

}

⇓
Perl: sub latex_mymacro {

sprintf "Isn’t $_[0] %s $_[1]?\n",
$_[0]>=$_[1] ? ">=" : "<"

}

Figure 4: Conversion from LATEX to Perl (subroutine definition)

LATEX: \mymacro{12}{34}

⇓
Perl: latex_mymacro (’12’, ’34’);

Figure 5: Conversion from LATEX to Perl (subroutine invocation)

Log what we’re about to evaluate.
347 print LOGFILE "#" x 31, " PERL CODE ", "#" x 32, "\n";

348 print LOGFILE $perlcode, "\n";

$result

$msg

We’re now ready to execute the user’s code using the $sandbox->reval function.
If a warning occurs we write it as a Perl comment to the log file. If an error oc-
curs (i.e., $@ is defined) we replace the result ($result) with a call to LATEX2ε’s
\PackageError macro to return a suitable error message. We produce one error
message for sandbox policy violations (detected by the error message, $@, con-
taining the string “trapped by”) and a different error message for all other errors
caused by executing the user’s code. For clarity of reading both warning and error
messages, we elide the string “at (eval 〈number〉) line 〈number〉”.

349 undef $_;

350 my $result;

351 {

352 my $warningmsg;

353 local $SIG{__WARN__} =

354 sub {chomp ($warningmsg=$_[0]); return 0};

355 $result = $sandbox->reval ($perlcode);

356 if (defined $warningmsg) {

357 $warningmsg =~ s/at \(eval \d+\) line \d+\W+//;

358 print LOGFILE "# ===> $warningmsg\n\n";

359 }

28

360 }

361 $result="" if !$result;

362 if ($@) {

363 my $msg = $@;

364 $msg =~ s/at \(eval \d+\) line \d+\W+//;

365 $msg =~ s/\s+/ /;

366 $result = "\\PackageError{perltex}{$msg}";

367 my @helpstring;

368 if ($msg =~ /\btrapped by\b/) {

369 @helpstring =

370 ("The preceding error message comes from Perl. Apparently,",

371 "the Perl code you tried to execute attempted to perform an",

372 "‘unsafe’ operation. If you trust the Perl code (e.g., if",

373 "you wrote it) then you can invoke perltex with the --nosafe",

374 "option to allow arbitrary Perl code to execute.",

375 "Alternatively, you can selectively enable Perl features",

376 "using perltex’s --permit option. Don’t do this if you don’t",

377 "trust the Perl code, however; malicious Perl code can do a",

378 "world of harm to your computer system.");

379 }

380 else {

381 @helpstring =

382 ("The preceding error message comes from Perl. Apparently,",

383 "there’s a bug in your Perl code. You’ll need to sort that",

384 "out in your document and re-run perltex.");

385 }

386 my $helpstring = join ("\\MessageBreak\n", @helpstring);

387 $helpstring =~ s/\. /.\\space\\space /g;

388 $result .= "{$helpstring}";

389 }

Log the resulting LATEX code.
390 print LOGFILE "%" x 30, " LATEX RESULT ", "%" x 30, "\n";

391 print LOGFILE $result, "\n\n";

We add \endinput to the generated LATEX code to suppress an extraneous
end-of-line character that TEX would otherwise insert.

392 $result .= ’\endinput’;

Continuing the protocol described in Figure 3 on page 19 we now write $result
(which contains either the result of executing the user’s or a \PackageError) to
the $fromperl file, delete $toflag, $toperl, and $doneflag, and notify LATEX
by touching the $fromflag file.

393 open (FROMPERL, ">$fromperl") || die "open($fromperl): $!\n";

394 syswrite FROMPERL, $result;

395 close FROMPERL;

396 unlink $toflag while -e $toflag;

397 unlink $toperl while -e $toperl;

398 unlink $doneflag while -e $doneflag;

29

399 open (FROMFLAG, ">$fromflag") || die "open($fromflag): $!\n";

400 close FROMFLAG;

We have to perform one final LATEX-to-Perl synchronization step. Otherwise,
a subsequent \perl[re]newcommand would see that $fromflag already exists and
race ahead, finding that $fromperl does not contain what it’s supposed to.

401 $awaitexists->($toperl);

402 unlink $fromflag while -e $fromflag;

403 open (DONEFLAG, ">$doneflag") || die "open($doneflag): $!\n";

404 close DONEFLAG;

405 }

3.2.8 Final cleanup

If we exit abnormally we should do our best to kill the child latex process so that
it doesn’t continue running forever, holding onto system resources.

406 END {

407 close LOGFILE;

408 if (defined $latexpid) {

409 kill (9, $latexpid);

410 exit 1;

411 }

412 exit 0;

413 }

414

415 __END__

3.2.9 perltex.pl POD documentation

perltex.pl includes documentation in Perl’s POD (Plain Old Documentation)
format. This is used both to produce manual pages and to provide usage informa-
tion when perltex.pl is invoked with the --help option. The POD documenta-
tion is not listed here as part of the documented perltex.pl source code because
it contains essentially the same information as that shown in Section 2.2. If you’re
curious what the POD source looks like then see the generated perltex.pl file.

3.3 Porting to other languages

Perl is a natural choice for a LATEX macro language because of its excellent support
for text manipulation including extended regular expressions, string interpolation,
and “here” strings, to name a few nice features. However, Perl’s syntax is unusual
and its semantics are rife with annoying special cases. Some users will therefore
long for a 〈some-language-other-than-Perl〉TEX. Fortunately, porting PerlTEX to
use a different language should be fairly straightforward. perltex.pl will need to
be rewritten in the target language, of course, but perltex.sty modifications will
likely be fairly minimal. In all probability, only the following changes will need to
be made:

30

� Rename perltex.sty and perltex.pl (and choose a package name other
than “PerlTEX”) as per the PerlTEX license agreement (Section 4).

� In your replacement for perltex.sty, replace all occurrences of “plmac”
with a different string.

� In your replacement for perltex.pl, choose different file extensions for the
various helper files.

The importance of these changes is that they help ensure version consistency
and that they make it possible to run 〈some-language-other-than-Perl〉TEX along-
side PerlTEX, enabling multiple programming languages to be utilized in the same
LATEX document.

4 License agreement

Copyright © 2004 by Scott Pakin <scott+pt@pakin.org>

These files may be distributed and/or modified under the conditions of the LATEX
Project Public License, either version 1.2 of this license or (at your option) any
later version. The latest version of this license is in http://www.latex-project.
org/lppl.txt and version 1.2 or later is part of all distributions of LATEX version
1999/12/01 or later.

Change History

v1.0

General: Initial version 1

v1.0a

General: Made all unlink calls wait
for the file to actually disappear 25

Undefined $/ only locally 26

$awaitexists: Bug fix: Added
“undef $latexpid” to make
the END block correctly return a
status code of 0 on success . . 26

v1.1

General: Added new \perlnewenvironment

and \perlrenewenvironment

macros 17

\plmac@havecode: Added a
\plmac@next hook to support
PerlTEX’s new environment-

defining macros 15

\plmac@write@perl@i: Added a
dummy version of the macro to
use if latex was launched di-
rectly, without perltex.pl . . 21

Made argument-handling more
rational by making \protect,
\begin, and \end non-
expandable 20

v1.2

General: Renamed perlmacros.sty

to perltex.sty for consistency. 1

\plmac@write@perl@i: Moved the
\input of the generated Perl
code to the end of the routine
in order to support recursive
PerlTEX macro invocations. . . 21

31

http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\$. 257, 258
\@empty 190, 198
\@permittedops 259
\{ . 60, 165
\} . 61, 166
\^ 57–59, 65, 162–164

A
\active 57, 162
\advance . 91
\afterassignment 62
\AtBeginDocument 188
$awaitexists 305

B
\begin . 173

C
\catcode . . 57, 60, 61, 65, 162, 165, 166
\closeout 176, 179, 182
\csname 131, 139, 143

D
\do . 56, 161
$doneflag 243
\dospecials 56, 161

E
\end . 174
\endcsname 131, 139, 143
\endinput 392
\endlinechar 59, 164
$entirefile 318

F
\fbox . 195
$firstcmd 260
$fromflag 243
$fromperl 243

I
\IfFileExists 151
\ifplmac@file@exists 148

\ifplmac@have@perltex 1, 169
\input . 184

J
$jobname . 243

L
@latexcmdline 243
$latexpid 243
$latexprog 240
$logfile . 243
\loop . 85, 150

M
$macroname 326
$msg . 349

N
\newcommand . 19, 115, 149, 159, 170, 187
\newlinechar 58, 163

O
\openout 171, 178, 181
$optag . 326
$option . 260
@otherstuff 326

P
\PackageError 11
$perlcode 338
\perlnewcommand 18
\perlnewenvironment 114
\perlrenewcommand 18
\perlrenewenvironment 114
@permittedops 240
\plmac@argnum 66, 84, 86, 90, 91
\plmac@await@existence 148, 180, 183
\plmac@body 78
\plmac@cleaned@macname

. 28, 72, 81, 124, 137
\plmac@command 18, 97, 104, 114
\plmac@defarg 45, 95, 105
\plmac@define@command 94
\plmac@define@sub 69
\plmac@doneflag 183, 289

32

\plmac@end@environment 116, 121, 137
\plmac@end@macro 139, 142
\plmac@envname 124, 139, 143
\plmac@file@existsfalse 148
\plmac@file@existstrue 148
\plmac@fromfile 184, 286
\plmac@fromflag 180, 288
\plmac@hash 83
\plmac@have@perltexfalse 1
\plmac@have@perltextrue 1
\plmac@haveargs 47, 51, 53
\plmac@havecode 62, 67
\plmac@macname

. . . . 28, 94, 97, 104, 110, 124, 137
\plmac@newcommand@i 21, 26, 28
\plmac@newcommand@ii . 38, 40, 135, 146
\plmac@newcommand@iii@no@opt . 43, 45
\plmac@newcommand@iii@opt 42, 45
\plmac@newenvironment@i 117, 122, 124
\plmac@next 18, 112, 114, 137
\plmac@numargs 40, 86, 98, 105
\plmac@oldbody 28, 110, 124, 137
\plmac@outfile 158,

171, 175, 176, 178, 179, 181, 182
\plmac@perlcode 53, 74
\plmac@sep 65, 70–73, 79, 80, 89

\plmac@show@placeholder 190
\plmac@starchar 28, 97, 104, 124
\plmac@tag 71, 73, 80, 89, 284
\plmac@tofile 171, 181, 285
\plmac@toflag 178, 287
\plmac@write@perl . . . 70, 99, 106, 159
\plmac@write@perl@i 167, 169
$progname 243

R
\renewcommand 25, 120, 189
\repeat 92, 156
$result . 349
$runsafely 240

S
$sandbox . 243
$separator 272

T
\TeX . 195
$toflag . 243
$toperl . 243

W
\write . 175

33

	Introduction
	Usage
	Defining and redefining Perl macros
	Invoking perltex.pl

	Implementation
	perltex.sty
	Package initialization
	Defining Perl macros
	Defining Perl environments
	Communication between LaTeX and Perl

	perltex.pl
	Header comments
	Perl modules and pragmas
	Variable declarations
	Command-line conversion
	Launching LaTeX
	Preparing a sandbox
	Communicating with LaTeX
	Final cleanup
	perltex.pl POD documentation

	Porting to other languages

	License agreement

