PSfragX: one graphic in one file *

Pascal Kockaert

2004/12/10

Abstract

\usepackage[options]{pfragx} inputs the packages psfrag and
graphicx, and adds essentially one BIEX command, which is \includegraphicx
(with an ’x” at the end).

This command differs from \includegraphics in the fact that
it inputs \psfrag replacements contained into the included Eps file
itself.

If the Eps files contains those replacements at the right place,
\usepackage[sub]{psfragx} will substitute \includegraphicx to
\includegraphics automatically. At the same time, it is possible to
include overpic commands into the Eps file, and they will be auto-
matically processed.

The Eps file can be written by a matlab script, so that the user
needs only to call the script in order to print the matlab figure. No
additional work will be necessary.

Contents

1 Warning 2

2 Motivation 2

3 How PSfragX works 4
3.1 PSfrag, Pex, overpicandove L 4
3.2 Merging and separating the TEX and EPs documents
3.3 Input the right file at the right moment S

4 Usage 6
41 Packageoptions L. 6
42 Twonewcommands 6
4.3 Othernewcommands 7

*This file has version vi.o. It was processed on 2004/12/10.

s Configuration file vé

6 Example of tagged EPsS file 8
7 Associated matlab scripts 9
8 Credits 9
9 Mise en ceuvre 10
9.1 Required packages and options 10

9.2 Reading the Eps file and writing PEx or ovp files IT
9.2.1 Copying sele¢ted lines from the eps file I

9.3 Code that inputs the pEx and ovrp files. 15
9.3.1 Saving and providing commands of other packages 15

9.3.2 New commands to read and write files 17

9.4 The main command of this package 19
9.4.1 Internal commands 19

9.4.2 External commands 20

9.5 Overloading includegraphics and overpic 21

9.6 Configurationfile 0L 22

10 Code of the matlab script 22

1 Warning

Some options of this package allow to overwrite some files ending in .pfx
and in .ovp. Be sure to understand how these options work before using
them.

The text below assumes that you are used to \includegraphics from
the graphicx package, and also to \psfrag from the psfrag package. Read-
ing the documentation of overpic could also help to understand what fol-
lows.

2 Motivation

Using graphics drawn by mathematical softwares is very convenient but
does not offer all the flexibility of TEX and BIEX when it comes to write
labels.

Some solutions exist, like the matlab laprint.mfun&ion (http://www.uni-
kassel.de/fb16/rat/matlab/laprint/) to print from matlab(TM) into Eps files
suited to be easily handled by psfrag. All the labels (including numbers
on the axis) are converted into strings like xo1” that should be replaced by
their values, like ‘3.141’.

Though the result is pleasant, it is MANDATORY to keep track of the
substitutions. This is why the laprint.m fun&ion takes care to write a TEX
file that contains all the \psfrag commands necessary to obtain the original
labels. This TEX file can be edited to modify the \psfrag commands. This
scheme works well, but has some limitations. You must obviously take care
to move the .tex and the .eps file together. But in addition, you must
input the graphic using an \input command. If you intend to modify its
size or change some \psfrag replacements, you need to open and modify
the original . tex file. If you want to use packages like overpic, you must
modify the . tex file output by laprint or copy all the psfrag replacements
that it contains to your main TEX file. In case you would choose to copy
the psfrag replacements into your main TEX file, you will end up with a lot
of lines like

\psfrag{x01}[B][B][1][0]{3.141}
\psfrag{x02}[B][B][1][0]{6.283}
\psfrag{x03}[B][B][1]1[0]{9.425}
\psfrag{x04}[B][B][1]1[0]{12.566}

into your BIEX document.
In fa&, you Do NOT NEED to see all these lines, and should never see
them, except, for example, if you want to replace them with

\psfrag{x01}[B][B][1][0]{$\pis}
\psfrag{x02}[B][BI[1][0]{$\2\,\pi$}

and so on.

What is said here about \psfrag commands can be transposed to the
overpic environment that allows to put picture objects over a graphic.

The authors of psfrag have designed a mechanism that allows to em-
bed \psfrag commands into the Eps file itself!. Though this mechanism
can be convenient, it presents some drawbacks that are described into the
documentation of psfrag.

The package psfragX aims to circumvent these drawbacks, as well as
to introduce more flexibility into the automatic inclusion mechanism. For
example, psfragX allows to define different \psfrag replacements for dif-
ferent languages. If babel is used, replacements will be sele¢ted according
to the current language of the document. It also allows to make use of
color commands that are ignored if the color package is not loaded.

"This was kindly reminded to me by Michael C. Grant, one of the authors of psfrag,
that I would like to thank here.

3 How PSfragX works

3.1 PSfrag, PFX, overpic and OVP

The package psfragx allows to embed \psfrag commands into the EPs
file, as well as picture objets in overpic environments. In order to sim-
plify the description, we will refer only to \psfrag inclusions here below.
The overpic inclusion mechanism works in the same way and will not
be described. The differences between psfrag and overpic inclusions will
appear in the syntax of some commands. We use the three letters pfx to
prefix things that relate to psfrag and ovp to prefix things that relate to
overpic.

The psfragx mechanism can be divided into two parts that are described
separately.

3.2 Merging and separating the TEX and EPS documents

We use the result of laprint.m as an example, but all the eps file could
be processed in the same way. laprint outputs Figl.tex & Figl.eps files
that can be converted into a single file that we call Figurer.eps, which is a
copy of Figr.eps, with additional comments that contain all the interesting
lines of Figr.tex. At this stage, you can throw the original files Figr.tex and
Fig1.eps. BE CAREFUL TO MAKE A BACKUP!!!

The added comments are not read by the PostScript interpreter and
should not affe&t the resulting Eps file. As far as I know, the com-
ments used conform to the Adobe(TM) Document Stru¢turing Conven-
tion (ADSC). These comments can be added by hand or using the matlab
script psfragx.m that should be accompanying this file. Their stru¢ture
also conforms to the DocStrip convention (see docstrip.dtx): the part to
be copied starts with a comment %<*pfx> and ends with %</pfx>. All the
lines between these marks will be taken into account by psfragx.

%<*pfx>
%\psfrag{x01}[B][B][1][0]{3.141}
%\psfrag{x02}[B][B][1][0]{6.283}
%\psfrag{x03}[B][BI[1]1[0]1{9.425}
%\psfrag{x04}[B][B][1]1[0]{12.566}
%</pfx>

PSfragx looks for these lines into the eps file and outputs them into a file
with the same name, but a .pfx extension. In other words, Figurel.pfx is
created with the comments of Figurel.eps. This file is normally created
only once, though there is an option to overwrite it. This means that you
could edit it by hand without loosing your work next time you run LaTeX.

In the same manner, it is possible to include pi¢ture commands using

%<*ovp>
%\put(50,50){Middle of the graphic}
%</ovp>

These lines will go into the file Figurel.ovp.
The process of seeking for pfx and ovp environments stops as soon as
a line starting with %\endinput is found. Including such a line will speed

the things up.

3.3 Input the right file at the right moment

Once the Figurel.pfx file exists, the command \includegraphicx in-
cludes it and uses the conventional \includegraphics from graphicx with
the same arguments. The result is that all the \psfrag replacements are
processed before the Figurel.eps file is included.

The \psfrag commands do not appear into the TEX file. The pex
file could be deleted, and all the replacements would still be performed,
because the PEx file would be re-generated on the fly.

Now that all the labels on the axes are perfeétly drawn, we could
still want to replace the value 3.141 by the tag π. This is why the
\includegraphicx command has a second facultative argument. Inside
this argument, you should issue all the \psfrag commands that you want
to perform after the inclusion of the rrx file.

\includegraphicx[width=\1inewidth]
(\psfrag{x01}[B][BI{π}%
\psfrag{x02}[BI[B]1{$2\,\pi$})
{Figurel.eps}

The second optional argument is defined with () to avoid an inter-
a&ion between the brackets of the \psfrag command and those of the
\includegraphicx command.

All that is said about pex files and psfrag replacements can be trans-
posed to ovp files and overpic picture commands.

If we want to add overpic commands before or after the inclu-
sion of the ovr file, we can use the two other optional arguments of
\includegraphicx:

\includegraphicx[width=\1inewidth]
<\put (50, 50){Foreground object}>
[\put(0,0){Background object}]
{Figurel.eps}

h!

Table 1: Meaning of the keys for \includegraphics and overpix

key acceptable values altion
graphicx keys usual values usual meanings
pfx true/false allows/disallows the inclusion of the rrx file
overwritepfx true/false allows/disallows to overwrite an existing prx file
pfxadd psfrags \psfrag commands to be processed after the inclusion of the prx file
ovp true/false allows/disallows the inclusion of the ovp file
overwriteovp true/false allows/disallows to overwrite an existing ovp file
ovpbgd picture commands picture commands to be processed before the inclusion of the ovr file
ovpfgd picture commands picture commands to be processed after the inclusion of the ovr file

4 Usage

4.1 Package options

The package is input by \usepackage[options]{psfragx}
The options are

sub, nosub substitute or do not substitute \includegraphicx to \includegraphics;

allcom,selcom copy all or only sele€ted MetaComments from the Eps file
to the pex file (if you do not understand what this means, you can
safely ignore it);

ovp, noovp makes use of overpic to (automatically) put pi¢ture objects
over the graphics.

4.2 Two new commands

\includegraphicx

overpix \includegraphicx [keys]

(psfrags)
e THE command of the package is: <foreground overpic>

[background overpic]
{file.epst

\begin{overpix} [keys]
<foreground overpic>
e THE environment of the package is: [background overpic]

{file.epst

\end{overpix}

The meaning of the keys is explained in table 1.
The item denoted by psfrags should consist only in \psfrag{A}[b][c][d][e]{F}
commands, where A,b,c,d,e,F can be anything. In addition, the \psfrag

commands can be selectively included according to the current language
of the document (at the point of inclusion). Two commands are provided.
The commands \iflanguage is explained in the babel documentation. If
babel is not loaded, \iflanguage is redefined to match the definition of
babel, that is:

\iflanguage{/anguagename} {true case} {false case}. The configuration file
psfragxcfg given below, as an example, redefines the main commands of
the color package so that no error occurs if the psfrags contains color com-
mands and the package color is not loaded.

The item denoted by picfure commands should consist only in com-
mands that are allowed in the usual picture environment of EIEX. You
can also make use of \iflanguage and color commands, provided that the
configuration file given below is used.

YOoU CANNOT PUT BLANK LINES, that is lines that would consist only in
one “%” sign. If you insert such lines, the “%” sign will be removed and
some space will be added in front of the included figure.

4.3 Other new commands

Though they are not needed in a normal use of psfragx, the follow-
ing commands are available: \allmetacomments, \selectedmetacomments,
\copypfxfromto{<EPS file>}{<PFX file>}, \setpfxinput{<File>}, \setpfxoutput{<File>},
\copypfxlines, \pfxinput, \ovpinput. Their usage can be deduced from
the commented source code.

The other commands are internal and start with \pfx@ or \ovpa.

s Configuration file

The file psfragx.cfg will be input by psfrags, if it exists. This file can
contain new commands of general use, or commands that must appear
just before or just after the inclusion of the pex/ovp file occurs. To this
aim, four commands can be defined. Their names are \Beforepfxinput,
\Afterpfxinput, \Beforeovpinput, and \Afterovpinput. 'Thcy’can be
used as in the example below.

1 (xcfg)

2% Example of configuration file for psfragx.sty

3% The macros \Beforepfxinput, \Afterpfxinput

4% \Beforeovpinput, and \Afterovpinput are executed

5% into a group. They should not define global commands to

6% avoid side effects.

7%

8%

9% The command \providecolorcommands defines commands that

10% take the same arguments as the mains commands of the

n% color package, in case this package is not loaded.
2%

13 \newcommand{\providecolorcommands}

4 {\def\pfx@gobble@two##1##2{\typeout{Some psfragx

15 replacement would appear

16 in color ##1{##2}

17 if the color package was

18 loaded!!!}}%

19 \def\pfx@gobble@three@fbox##1##2##3{\typeout{Some psfragx
20 replacement would

21 appear

22 in color ##1{##2}

23 and others

24 in color ##1{##3}

25 if the color package
26 was loaded!!!}%

27 \fbox}%

28 \def\pfx@fm@to@mm##1##2##{\csname ##1\endcsname{##2}}%
29 \expandafter\ifx\csname textcolor\endcsname\relax

30 \def\textcolor{\pfx@fm@to@mm{pfx@gobble@two}}\fi

31 \expandafter\ifx\csname color\endcsname\relax

32 \def\color{\pfx@fm@to@mm{pfx@gobble@two}}\fi

33 \expandafter\ifx\csname colorbox\endcsname\relax

34 \def\colorbox{\pfx@fm@to@mm{pfx@gobble@two}}\fi

35 \expandafter\ifx\csname fcolorbox\endcsname\relax

36 \def\fcolorbox{\pfx@fm@to@mm{pfx@gobble@three@fbox}}\fi
37 }

38% The name of the next four commands are specific to psfragx
39 \def\Beforepfxinput{\providecolorcommands}

40 \def\Afterpfxinput{}

41 \def\Beforeovpinput{\providecolorcommands}

42 \def\Afterovpinput{}

43 (/cfg)

6 Example of tagged EPS file

We provide here below an example of Eps that uses the language and color
features... According to the “Adobe Document Structuring Convention”
(ADSC), comments starting with two percent signs have a special mean-
ing. You should therefore avoid to put EXACTLY two percents signs at the
beginning of a line. If you respect this rule and avoid very long lines, you
should never broke your Eps file.

44 (xexample)

45 %%!PS-Adobe-2.0 EPSF-1.2

46 %%Creator: Adobe Illustrator(TM) 1.2d4
47 %%Title: tiger.eps

48 %%CreationDate: 4/12/90 3:20 AM

49 %%BoundingBox: 17 171 567 739

s0 %<*pfx>

st %\psfrag{T}[B][B]{\fcolorbox{white}{black}{\color{white}Title}}
s2 %\psfrag{t}[t][t]{time (s)}

53 %\psfrag{I}[b][b]{I (W)}

s4 %\iflanguage{french}

ss % {\psfrag{T}[B][B]{Title}%
56 % \psfrag{t}[t][t]{temps (s)}}
57 % {3}

58 %\psfrag{T}[B][B]{Title}
59 %</pfx>

60 %<*ovp>

61 %\put(0,80){(a)}

62 %</ovp>

63 %\endinput

64 %%EndComments

65 %%

66 %% [The code of the {\EPS} file should come HERE]
67 %%

68 %% End

69 (/example)

Full examples should be provided with this package. They are not in-
cluded into psfrags.dtx.

7 Associated matlab scripts

The script psfragx.m is written for matlab and can be used in conjunétion
with laprint.m (see URL above) in order to benefit from the advantages of
laprint.m and mix the resulting .tex and .eps files into a file that contains
all the information.

The scripts pfxprint.m can be used with the same syntax as laprint.m
(see documentation of laprint). This script invoques laprint with the
settings contained in the file laprpfx.mat, and immediately after, it merges
the generated EPs and TEX files. Therefore, you should ensure that the
files laprint.m, laprpfx.mat, and psfragx.mare in a diretory searched by
matlab before using the pfxprint command.

At the time of writing, the current version of laprint is 3.16. This
version works well with pfxprint.m and psfragx.sty.

8 Credits

All the code to extract the comments from the eps file is inspired from
docstrip. The set of commands was reduced to its minimum, and a \pfx@
prefix was added to all the commands, in order to avoid any interaltion
with other packages.

\pfx@subfalse
\pfx@subtrue

\pfx@ovptrue
\pfx@ovpfalse

\allmetacomments
\selectedmetacomments

9 Mise en ceuvre

70 (xpackage)

Almost all the internal commands start with \pfx@, \ovp@, \ifpfx@, or
\ifovp@. Two exceptions are \@. .@overpix and \@..@igx, where @..@ can
be @, @@, @ea or eeea.

9.1 Required packages and options

We offer the option to substitute the new \includegraphicx command to
the usual \includegraphics, and optionally, the overpix environment to
the usual overpic one. This could broke things but allows to use psfragx
with existing documents almost transparently.

71 \DeclareOption{sub}{\pfx@subtrue}
72 \DeclareOption{nosub}{\pfx@subfalse}

The next option was of some help to debug this package. With allcom,
all the lines of the Eps file starting with %% are copied to the Prx and ovr
files. Otherwise, these lines are not copied if they are out of a tagged
environment.

73 \DeclareOption{allcom}{\allmetacomments}

74 \DeclareOption{selcom}{\selectedmetacomments}

The next option specifies that the overpic environment will be used. There-

fore, the overpic package should be loaded.

75 \DeclareOption{ovp}{\pfx@ovptrue}
76 \DeclareOption{noovp}{\pfx@ovpfalse}

We define the new commands needed to process the options.

77 \newif\ifpfx@sub\pfx@subfalse

78 \newif\ifpfx@ovp\pfx@ovptrue

79 \newif\ifpfx@metacomments

8o \pfx@metacommentsfalse

81 \def\allmetacomments{\pfx@metacommentstrue}

82 \def\selectedmetacomments{\pfx@metacommentsfalse}

Finally, default options are defined.

83 \ExecuteOptions{sub,ovp,selcom}
84 \ProcessOptions*

Now, we load the other packages.

85 \RequirePackage{graphicx}
86 \RequirePackage{psfrag}

IO

\pfx@gobble
\pfx@percent
\pfx@doublepercent

\pfx@ext
\pfx@tag
\pfx@metaprefix

\pfx@endinput

The overpic package is not loaded if this was required by the user. Oth-
erwise, we load this package. To ensure proper placement of the objects put
into the picture environment, we must always use the same option when
loading overpic. We choose this option to be percent.

87 \ifpfx@ovp \RequirePackage[percent]{overpic} \fi

9.2 Reading the EPS file and writing PFX or OVP files

The code that follows is highly inspired from that of docstrip.tex.

9.2.1 Copying selected lines from the EPS file

Below, we write the code to copy specific lines contained in the eps file
into an auxiliary file. Comments (single % sign) in front of these lines are
automatically removed.

First, we define a few macros of general use.

88 \def\pfx@gobble#1{}

89 {\catcode ‘\%=12

9o \gdef\pfx@percent{%}

o1 \gdef\pfx@doublepercent{%%}
92 }

Here we define the extension of the auxiliary file, and the name of the
tag associated to this file. The metaprefix replaces double percent signs
found into the original Eps file.

93 \let\pfx@metaprefix\pfx@doublepercent
94 \def\pfx@tag{pfx}

95 \def\pfx@ext{pfx}

96 \def\pfx@tmp{}

We also need to define the string after which we will stop to scan the
EPs file. This string must appear at the beginning of a line. If this string is
not present into the EPs file, the file will be scanned up to the end. This
string is defined to be %\endinput.

97 \edef\pfx@endinput
98 {\pfx@percent\expandafter\pfx@gobble\string\\endinput}

And now, we copy the needed code from docstrip, with some modific-
ations to throw the leading percent sign when we copy the lines that appear
between two tags <*pfx>...</pfx>.

We define a command to change catcodes,

99 \def\pfx@makeother#1{\catcode‘#1=12\relax}

II

\setpfxinput
\setpfxoutput

\copypfxfromto

\copypfxlines

another to copy a given token,
100 \def\pfx@iden#1{#1}

and a few boolean variables.
1o1 \newif\ifpfx@continue
102 \newif\ifpfx@outputtofile

The names of the input and output files are contained into the in-
ternal variables \pfx@infile and \pfx@outfile. These named can be ac-
cessed from the document through the two commands \setpfxinput and
\setpfxoutput.

103 \def\setpfxinput#1{\gdef\pfx@infile{#1}}
104 \def\setpfxoutput#1{\gdef\pfx@outfile{#1}}
105 \gdef\pfx@infile{} \gdef\pfx@outfile{}

Two streams are reserved by psfragx. I do not know if I should use
them locally rather than globally.

106 \newread\pfx@in
107 \newwrite\pfx@out

The macro \copypfsfromto DOES NOT CHECK that the input file exists.

108 \def\copypfxfromto#1#2{%
109 \setpfxinput{#1}%

o \setpfxoutput{#2}%

1 \copypfxlines%

m2 }

The macro \copypfxlines does the real job. See docstrip to understand
how it works.

3 \def\pfx@ignorespaces{\ignorespaces}%
114 \def\copypfxlines{% input and output files are global names
15 \immediate\openin\pfx@in\pfx@infile\relax \ifeof\pfx@in

16 \errmessage{psfragx tried to read from a file that

1y does not exist. This seems to be a bug!}%

18 \else

119 \immediate\openout\pfx@out=\pfx@outfile\relax

120 \immediate\write\pfx@out{\pfx@ignorespaces}

121 \ifeof\pfx@out

122 \begingroup

123 \pfx@makeother\ \pfx@makeother\\\pfx@makeother\$%
124 \pfx@makeother\#\pfx@makeother\A\pfx@makeother\AAK%
125 \pfx@makeother_\pfx@makeother\AAA\pfx@makeother\%%
126 \pfx@makeother\~\pfx@makeother\{\pfx@makeother\}%
127 \pfx@makeother\&\endlinechar-1\relax

128 \loop

12

\pfx@processline

129 \read\pfx@in to \pfx@inline

130 \ifx\pfx@inline\pfx@endinput

131 \pfx@continuefalse

132 \typeout{psfragx: \pfx@percent
133 \expandafter\pfx@gobble
134 \string\\endinput was
135 found in \pfx@infile.}%
136 \else

137 \ifeof\pfx@in

138 \pfx@continuefalse

139 \typeout{psfragx: End of file
140 \pfx@infile was reached.}%
141 \else

142 \pfx@continuetrue

143 \expandafter\pfx@rocessline
144 \pfx@inline\pfx@endline
145 \fi%

146 \fi%

147 \ifpfx@continue

148 \repeat

149 \endgroup

150 \else

151
152
153

\errmessage{psfragx: output file already exists!}%

\fi %\pfx@out
\immediate\closeout\pfx@out

154 \fi %\pfx@in

155 \immediate\closein\pfx@in

156 }

At this stage, all <pfx> and <*pfx>
should be in \pfx@outfile.

Each time a new line is found by

...</pfx> lines from \pfx@infile

the previous macro, the line is pro-

cessed using \pfx@processline. This macro scans the beginning of the line
and defers the treatment to the right macro. In the docstrip code, normal
lines are copied without change. In our code, the leading percent of copied
lines is removed.

157 \def\pfx@normalline#1\pfx@endline{%

\immediate\write\pfx@out{\pfx@inline}%

158 \def\pfx@inline{#1}%
159 \ifpfx@outputtofile%
160

161 \fi%

162 }

163 %

164 \def\pfx@removecomment#1\pfx@endline{%

165 \def\pfx@inline{#1}%
166 \ifpfx@outputtofilek
167

\immediate\write\pfx@out{\pfx@inline}%

13

168 \fi%

169 }

170 %

171 \bgroup\catcode ‘\%=12 \pfx@iden{\egroup
172 \def\pfx@putmetacomment%}#1\pfx@endline{%

173 \edef\pfx@inline{\pfx@metaprefix#13}%

174 \ifpfx@metacomments

175 \immediate\write\pfx@out{\pfx@inline}%

176 \else

177 \ifpfx@outputtofile

178 \immediate\write\pfx@out{\pfx@inline}%
179 \fi

180 \fi

181 }

182 %

183 \begingroup
184 \catcode ‘\%=12 \catcode‘*=14 \gdef\pfx@processline#1{*

185 \ifx%#1*

186 \expandafter\pfx@processlinex
187 \else

188 \expandafter\pfx@normalline
189 \fi

190 #1}

191 \endgroup

192 %

193 \begingroup
194 \catcode ‘\%=12 \catcode‘*=14
195 \gdef\pfx@processlinex%#1{*

196 \ifcase\ifx%#10\else

197 \ifx<#11\else2\fi\fi\relax
198 \expandafter\pfx@utmetacomment\or
199 \expandafter\pfx@checkoption\or
200 \expandafter\pfx@removecomment\fi
201 #1}

202 \endgroup

203 %

204 \def\pfx@checkoption<#1{%

205 \ifcase\ifx*#10\else

206 \ifx/#11\else2\fi\fi\relax
207 \expandafter\pfx@staroption\or
208 \expandafter\pfx@slashoption\or
209 \expandafter\pfx@tagoption\fi

210 #1}

211 %

212 \def\pfx@staroption*#1>#2\pfx@endline{%
213 \def\pfx@tmp{#13}%

214 \ifx\pfx@tmp\pfx@tag

215 \pfx@outputtofiletrue

216 \fi

14

217 }
218 %
219 \def\pfx@slashoption/#1>#2\pfx@endline{%

220 \def\pfx@tmp{#1}%

221 \ifx\pfx@tmp\pfx@tag\relax

222 \pfx@outputtofilefalse
223 \fi

224 }

225 %

226 \def\pfx@tagoption#1>#2\pfx@endline{%
227 \def\pfx@tmp{#13}%

228 \ifx\pfx@tmp\pfx@tag\relax

229 \def\pfx@inline{#23}%
230 \immediate\write\pfx@out{\pfx@inline}%
231 \fi

232 }

This ends the code to read Eps file and write pEx file. It is clear that only
\pfx@tag and \pfx@ext should be changed from pfxto ovp in order to
process overpic inclusions rather than psfrag replacements.

9.3 Code that inputs the PFX and OVP files

This code will add commands to input the pPrx and ovr files if they exist.
If they do not, they will be created on the fly and read just after. An option
allows to ignore existing files and generate Prx and ovp files from the Eps
file each time the Eps file is included.

At first, we define commands related to prx files. Later on, we will
adapt them to ovp files.

9.3.1 Saving and providing commands of other packages

We save the commands that could be redefined later
233 \1let\pfx@includegraphics=\includegraphics
234 \let\pfx@overpic=\overpic
235 \1let\pfx@endoverpic=\endoverpic

Even if overpic is not loaded, the overpic environment should exist.
In this case, the ovp files will not be processed, and no picture element
should be put over the graphics. Nonetheless, \includegraphicx is defined
to always use the overpic environment.

Therefore, we provide a definition of the overpic environment that is
partially copied from overpic.sty. We have removed all the code that makes
computations about the size and the position of the grid.

\pfx@overpic

\pfx@endoverpic 36 \@ifundefined{pfx@overpic}{%
237 \newcommand*{\pfx@overpic}[2][]

I5

\iflanguage

\onlylanguage
\endonlylanguage

\pfx@iflanguage
\iflanguage
\onlylanguage
\endonlylanguage
\pfx@save@iflanguage
\pfx@restore@iflanguage
\pfx@firstoftwo
\pfx@secondoftwo

238 {\sbox{\z@}{\includegraphics[#1]{#2}}%

239 \settodepth{\@tempcnta}{\usebox{\z@}}%

240 \settoheight{\@tempcntb}{\usebox{\z@}}%

241 \advance\@tempcntb\@tempcnta%

242 \settowidth{\@tempcnta}{\usebox{\z@}}%

243 \begin{picture}(\@tempcnta,\@tempcntb)%

244 \put (0,0) {\makebox(0,0) [bl]{\usebox{\z@}}}}%
245 H?

246 \@ifundefined{pfx@endoverpic}{\def\pfx@endoverpic{\end{input}}}{}

We also have to provide \iflanguage command, in case babel is not
loaded. We could have simplified the code, because \pfx@iflanguage
should always expand to \@secondoftwo if babel is not loaded. Because
this code was also copied from the babel package with some changes, we
use it even if babel is loaded. This could cause problems if the internal
command 1@/anguage of babel was redefined. Though we redefine a babel
command, this should cause no major problem, because the command
\1iflanguage will be provided only at time of the file inclusion. This means
that \psfrag replacements should contain no reference to \iflanguage as
these commands will be evaluated after the file is read. The command
\iflanguage should be evaluated at time of inclusion, in order to decide
which psfrag or picture commands are to be taken into account.

In order to simplify the writing of multilingual eps files, we also provide
the command \onlylanguage {/anguage} . .. \endonlylanguage, which ar-
gument is read only if the current language of the document is language.

In order to simplify the writing of multilingual ps files, we also provide
the command \onlylanguage {/anguage}. .. \endonlylanguage, which ar-
gument is read only if the current language of the document is language.

247 \1long\def\pfx@firstoftwo#1#2{#1\ignorespaces}%
248 \long\def\pfx@secondoftwo#1#2{#2\ignorespaces}%
249 \def\pfx@iflanguage#1{%

250 \ifnum\csname 1@#1\endcsname=\language
251 \expandafter\pfx@firstoftwo

252 \else

253 \expandafter\pfx@secondoftwo

254 \fi}

255 \long\def\onlylanguage#1#2\endonlylanguage{\pfx@iflanguage{#1}{#2}{}\ignorespaces}

256 \def\pfx@save@iflanguage{\let\save@pfx@iflanguage=\iflanguage%
257 \let\iflanguage=\pfx@iflanguage}
258 \def\pfx@restore@iflanguage{\let\iflanguage=\save@pfx@iflanguage}

The two commands \pfx@save@iflanguage and \pfx@restore@iflanguage
will be called just before and after the inclusion of the pEx file.

16

\ifpfx@generate
\ifovp@generate
\pfx@add
\ovp@add@bgd
\ovp@add@fgd
\1fGin@pfx
\ifGin@overwritepfx
\1fGin@ovp
\ifGin@overwriteovp

9.3.2 New commands to read and write files

We start with some declarations (new commands and new if) The names
of the ifGin series are chosen to be easily processed through the keyval
package mechanism. Gin is the prefix used by the graphicx package.

259 \newif\ifpfx@generate

260 \newif\ifovp@generate

261 \newcommand*\pfx@add{}

262 \newcommand*\ovp@add@bgd{ }
263 \newcommand*\ovp@addafgd{}
264 \newif\ifGin@pfx

265 \newif\ifGin@overwritepfx

266 \newif\ifGin@ovp

267 \newif\ifGin@overwriteovp

As the names indicate, these macros are attached to PEx or ovr inclusions.
They allow to save information to know if a Pex/ovp file is to be generated,
if the Prx/ovP automatic inclusion mechanism is to be used and if existing
prx/ovp files should be overwritten. Finally, three commands will contain
the \psfrag commands (\pfx@add) to be issued after the inclusion of the
prX file, as well as picture commands to be issued before (\ovp@add@bgd)
and after (\ovp@addefgd) the ovp file inclusion.

The new keys will be available through the optional arguments of
\includegraphicx. This is why they are defined as belonging to the same
group as the graphicx keys: Gin.

The role that we have described for the previous commands is assigned
here below. As is common, the boolean keys are set to be true if they are
invoked without argument.

268 \define@key{Gin}{pfx}[truel]%

269 {\lowercase{\Gin@boolkey{#1}}{pfx}}

270 \define@key{Gin}{overwritepfx}[true]%

271 {\lowercase{\Gin@boolkey{#1}}{overwritepfx}}
272 \define@key{Gin}{pfxadd}[]%

273 {\def\pfx@add{#1}}

274 \define@key{Gin}{ovp}[truel%

275 {\lowercase{\Gin@boolkey{#1}}{ovp}}

276 \define@key{Gin}{overwriteovp}[true]%

277 {\lowercase{\Gin@boolkey{#1}}{overwriteovp}}
278 \define@key{Gin}{ovpbgd}[1%

279 {\def\ovp@add@bgd{#1}}

280 \define@key{Gin}{ovpfgd}[1%

281 {\def\ovp@addefgd{#1}}

We will define a handy syntax for the \includegraphicx command. This
command will mainly convert some of its optional arguments to keys
pfxadd={argument}, ovpbgd={argument}, and ovpfgd={argument}.

7

\pfxinput

It is now time to define the commands that will test for the existence
of the input and output files and decide if an output file is to be generated.
This command makes use of values defined previously for Pex files. This is
why we prefix the command with \pfx. To understand the code below, it
is important to know that the command \filename@parse{} defines three
commands that are \filename@area, \filename@base and \filename@ext.

282 \newcommand* {\pfxinput}[1]{%

283 \filename@parse{#1}%

284 \IfFileExists{\filename@base.\pfx@ext}
285 {\pfx@generatefalse}

286 {\pfx@generatetrue}%

287 \ifGin@overwritepfx\pfx@generatetrue\fi
288 \IfFileExists{#1}{}{\pfx@generatefalse}%
289 \ifpfx@generate%

290 \copypfxfromto{\filename@area\filename@base.\filename@ext}
291 {\filename@base.\pfx@ext}%
292 \fi%

293 \pfx@save@iflanguage
294 \csname Before\pfx@tag input\endcsname
295 \InputIfFileExists{\filename@base.\pfx@ext}

296 {\typeout{psfragx: reading commands from

297 \filename@base.\pfx@ext}}

298 {\typeout{psfragx: I was not able to read psfrag
299 definitions from

300 \filename@base.\pfx@ext}}%

3o1 \csname After\pfx@tag input\endcsname
302 \pfx@restore@iflanguage
303 }

As was announced, we determine if the output file exists. In case this file
exists we decide not to generate the output file. If the user required that the
output file be overwritten, we ask to generate the output file in any case.
Then we test if the input file exists. If not, we cannot generate the ouptut
file.

Now that the existence of the input file has been checked, we can call
the low level command \copypfxfromto. This completes the first step.

The second step is to input the Pex file if it exists. The file is input
inside a \pfx@save@iflanguage \pfx@restore@iflanguage pair. In addi-
tion, the commands \Beforepfxinput and \Afterpfxinput are issued if
they exist. Otherwise, they expand to \relax. These commands should be
defined into the psfragx.cfg file in order to customise the behaviour of
psfragx.

Now, we define variations of \pfx@ commands in order to work with
the overpic environment rather than with psfrag replacements.

18

We redefine the tag and the extension, copy the overwrite permission
and call \pfxinput.

\ovpinput

304 \newcommand*{\ovpinput}[1]1{%
305 \begingroup

306 \def\pfx@ext{ovp}%

307 \def\pfx@tag{ovp}%

308 \ifGin@overwriteovp\Gin@overwritepfxtrue

309 \else\Gin@overwritepfxfalse\fi
310 \pfxinput{#13}%

311 \endgroup}

9.4 The main command of this package

Here comes the definition of the main command of this package, as seen
by the user : \includegraphicx. This new command will make use of the
new environment called overpix, in order to include the graphics.

9.4.1 Internal commands

First, we define two internal commands that perform the required task.
Then we define external commands with optional arguments.

\pfx@includegraphicx The macro \pfx@includegraphics is just a shortcut to acces the overpix
environment. We do not call \begin{pfx@overpix}. .. \end{pfx@overpix},
in order to save time.

312 \def\pfx@includegraphicx#1#2{%
313 \mbox{\pfx@overpix{#1}{#2}\endpfx@overpix}}

\ovp@box@tmp In what follows, we need a temporary box. This is called \ovp@box@tmp.
314 \newbox{\ovp@box@tmp}%

\pfx@overpix The environment overpix has the same syntax as the overpic one. You
\endpfx@overpix can notice that the original version of \includegraphics is used. This
is important if we decide, later, to let \includegraphics be equivalent to
\includegraphicx. The \psfrag commands and the picture commands
are processed inside this environment. To avoid side effe¢ts of command
redefinitions inside the included files, we enclose the contents of overpix

inside a \begingroup \endgroup pair.

The graphic is included via the original or the lightened version of the
overpic environment.

All we do is to evaluate the keys of the first argument, then input the
prx file, and process the contents of \pfx@add. Thereafter, we call the
original or lightened version of the overpic environment. We read the
keys again and add the background layer of the pi¢ture environment, then
the layer contained into the ovr file.

9

\overpix
\endoverpix

When the \pfx@overpix command is issued, we end up into a picture
environment that constitutes yet another layer. Finally, the picture envir-
onment should be closed by an \endpfx@overpix command. Before doing
so, the foreground layer of the pi¢ture environment is drawn.

It is mandatory to take care that not spurious space is added at the end
of the lines. A percent sign should appear each time the line is ending with
something else than a command name.

315 \def\pfx@overpix#1#2{%

316 \begingroup%

317 \begin{lrbox}{\ovp@box@tmp}%
318 \let\includegraphics=\pfx@includegraphics%
319 \Gin@pfxtruek%

320 \Gin@overwritepfxfalse%

321 \def\pfx@add{}%

322 \setkeys{Gin}{#1}%

323 \ifGin@pfx%

324 \pfxinput{#2}%

325 \fi%

326 \pfx@add

327 \pfx@overpic[#1]{#2}

328 \Gin@ovptrue

329 \Gin@overwriteovpfalse
330 \def\ovp@add@bgd{}%
331 \def\ovp@addefgd{}%
332 \setkeys{Gin}{#1}%
333 \ovp@add@bgd

334 \ifGin@ovp

335 \ovpinput{#2}%
336 \fi

337 }% \pfx@overpix

338 %

339 \def\endpfx@overpix{%

340 \ovp@addefgd%

341 \pfx@endoverpic

342 \end{1lrbox}%

343 \usebox{\ovp@box@tmp}%

344 \endgroup%

345 1%

9.4.2 External commands

The definitions here below ensure that the optional arguments are op-
tional.

The syntax of overpix is as follows.

20

\overpix [k@ﬂ]

<foreground layer>

[background layer]

{file.eps}
346 \def\overpix{\@ifnextchar[{\@overpix}%
347 {\@overpix[]}}%
348 \def\@overpix[#1]{\@ifnextchar<{\@@overpix[#1]}%
349 {\@@overpix[#1]<>}}%
350 \def\@@overpix[#1]<#2>%
351 {\@ifnextchar[{\@@@overpix[#1]<#2>}%
352 {\@@@overpix[#1]1<#2>[]1}}%
353 \def\@@@overpix[#1]<#2>[#3]#4%
354 {\pfx@overpix{#1,ovpfgd={#2},ovpbgd={#3}}{#4}}

355 \def\endoverpix{\endpfx@overpix}

This set of commands converts the optional arguments into keys.

\includegraphicx The syntax of \includegraphicx is as follows.
\includegraphicx [/eeys]

(psfrag replacements)
<foreground layer>
[background layer]
{file.eps}
356 \def\includegraphicx{\@ifnextchar[{\@igx}%
357 {\e@igx[1}3}%
358 \def\@igx[#1]{\@ifnextchar({\@@igx[#1]}%
359 {\@eigx[#1]1()}}%
360 \def\@@igx[#1] (#2){\@ifnextchar<{\@@@igx[#1](#2)}%
361 {\@@@igx[#1](#2)<>}}%
362 \def\@@@igx[#1] (#2)<#3>{\@ifnextchar[{\@@@@igx[#1] (#2)<#3>}%
363 {\@@e@igx [#1] (#2)<#3>[1}}%

364 \def\@@@@igx [#1] (#2) <#3>[#4]1#5%
365 {\pfx@includegraphicx{#1,pfxadd={#2},ovpfgd={#3},ovpbgd={#4}}{#5}}

This set of commands converts the optional arguments into keys.

9.5 Overloading includegraphics and overpic

If the user requires so, we let \includegraphics and the overpic environ-
ment act as their counterparts ending in x. Though this substitution was
tested, it could broke things and should be used with care.

\includegraphics
\overpic 366 \ifpfx@sub
\endoverpic 367 \let\includegraphics=\includegraphicx
368 \ifpfx@ovp
369 \let\overpic=\overpix
370 \let\endoverpic=\endoverpix
371 \fi

21

372 \fi

9.6 Configuration file

Finally, we input the configuration file if it exists.
373 \InputIfFileExists{psfragx.cfg}{}{}

This ends the code of psfragx.sty.

374 (/package)

10 Code of the matlab script

Note that the lines containing the rm and mv commands should be replaced
by their equivalents on the operating system on wich matlab is running.
For example, under pos and its successors the replacements are del and
ren.

375 (*matlab)

376 % psfragx.m %%% [-*- Matlab -*-]
377 %

378 % function psfragx(NomTeX,NomEPS)

379 % nargin=1 -> NomTeX=NomEPS

380 %

381% Copy lines of NomTeX.tex

382 % starting with

383 % \psfrag

384 % and

385 % %<pfx>

386% to the file NomEPS.eps, as a comment following the
387 % %%BoundigBox

388% line.

389

390 function psfragx(TeXname,EPSname,Outname)

391 TMPname="psfragx_tmp’ ;

392 1f nargin<2, EPSname=TeXname; end

393 1f nargin<3, Outname=EPSname; end

394 1f Outname==EPSname,

395 eval([’!rm ’,TMPname,’.eps’])

396 eval([’!mv ’,EPSname,’.eps ’,TMPname,’.eps’])
397 EPSname=TMPname;

398 end

399 TeXName=([TeXname,’.tex’]);

400 EPSName=([EPSname, ’ .eps’]);

401 OutName=([Outname,’.eps’]);

402

403 BeginInput =’%%BoundingBox:’;

404 BeginPSFRAG="%<pfx>\pfxbegin[1l.0]{laprint}%’;
405 EndPSFRAG ="%<pfx>\pfxend’;

22

406 StartPFX ='"%<*pfx> Inserted where \begin{psfrags}% occured’;
407 StopPFX ='%</pfx> Inserted where \end{psfrags}% occured’;
408 EndInput =’%\endinput’;

409 EndOfFile =’%%EOF’;

410 ResizeBox =’%<pfx>\def\naturalwidth’;

411 StopOn ={’\psfrag{’, '<pfx>’,’\begin{psfrags}’, ’\end{psfrags}’,’\resizebox’};
412

413 TeXFile=fopen(TeXName,’'r’);

414 if (TeXFile==-1)

415 error([’I was not able to open ’,TeXName,’!’]);

416 end

417 EPSFile=fopen(EPSName, 'r’);

418 1f (EPSFile==-1)

419 error([’I was not able to open ’,EPSName,’!’]);

420 end

421 OutFile=fopen(OutName, 'w’);

422 if (OutFile==-1)

423 error([’I was not able to open ’,OutName,’!’]);
424 end

425

426 [SEPS,11EPS,iEPS]=CopyUntil (EPSFile,OutFile, {BeginInput});
427 if sEPS~=1, error([’No line contains ’,BeginInput]);
428 else

429 fprintf(OutFile, "%s\n’,11EPS);

430 end

431

432 %%%

433 %%% Write preamble

434 %6%%

435 fprintf (OutFile, *%%<*pfx> Begin Preamble\n’);

436 fprintf(OutFile, ’%%\\providecommand*{\\pfxbegin}[2][1{}%%\n’);
437 fprintf(OutFile, %%\ \providecommand{\\pfxend}{}%%\n’) ;

438 fprintf(OutFile, "%%</pfx> End Preamble\n’);

439 %%%

440 %%% Copy interesting lines

441 %%%

442while 1

443 [sTeX,11TeX,iTeX]=ReadUntil(TeXFile,StopOn);
444 if sTeX~=1, break; end

445 switch iTeX

446 case 1, % \psfrag

447 fprintf(OutFile, '%%%s\n’,11TeX);
448 case 2, % %<pfx>

449 fprintf(OutFile, ’%s\n’,11TeX);

450 case 3, % \begin{psfrags}

451 fprintf(OutFile, '%s\n’,BeginPSFRAG);
452 fprintf(OutFile, '%s\n’,StartPFX);
453 case 4, % \end{psfrags}

454 fprintf(OutFile, '%s\n’,StopPFX);

23

455 fprintf(OutFile, ’%s\n’ ,EndPSFRAG);

456 case 5, % \resizebox

457 tmpbeg=findstr(11TeX,’{’);

458 tmpend=findstr(11TeX,’}’);

459 if (length(tmpbeg)>0)&(length(tmpend)>0)
460 if (tmpbeg(1l)<tmpend(1l))

461 fprintf(OutFile, ’'%s%s%%\n’ ,ResizeBox,11TeX(tmpbeg(1l):tmpend(1)));

462 end

463 end

464 otherwise

465 error(’Otherwise should never happen !’)
466 end

467 end

468 %%%

469 %%% Write postamble

470 %%%

471 fprintf(OutFile, "%s\n’ ,EndInput);

472 %%%

473 %%% Copy to the end of file

474 %%%

475 [SEPS,11EPS,iEPS]=CopyUntil (EPSFile,OutFile,{’’});
476 %%%

477 %%% Close files

478 %%%

479 fclose(OutFile);

480 fclose(TeXFile);

481 fclose(EPSFile);

482 return

483

484 function [OK,lastline,elt]=CopyUntil(fidIn,fidOut,linebeg);
485 sl=1ength(linebeg);

486 if s1==0, OK=-2; return, end

487 11b=zeros(sl);

488 for ii=1:sl

489 11b(ii)=1ength(linebeg{ii});

490 end

491 lastline="";

492 0K=0;

493 elt=0;

494 while 1

495 Line=fgetl(fidIn);

496 if ~isstr(Line),

497 OK=-1;

498 return,

499 end %EndOfFile

500 for ii=1:sl

501 %%% fprintf(’Seeking for line starting with %s.\n’,linebeg{ii});
502 if 11b==0, %%% Copying to the end of file
503 else

24

504 if length(Line)>=11b(ii)

505 %%% fprintf(’This line counts more than %i chars.\n’,11b(ii));
506 if Line(1:11b(ii))==1inebeg{ii},
507 OK=1;

508 elt=ii;

509 lastline=Line;

510 break

SII end

12 end

513 end

514 end %%% No matching string

515 if OK==1, break, end

516 if ~isempty(fidOut)

517 fprintf(fidOut, ’%s\n’,Line);

518 end

s19 end

s20 return

521

s22 function [OK,lastline,elt]=ReadUntil(fidIn,linebeg);

523 [0K,lastline,elt]=CopyUntil(fidIn,[],linebeg);

s24 return

525 (/matlab)
526 (xpfxprint)

527 %%% pfxprint [-*- Matlab -*-] Time-stamp: <2004-08-12 18:20:57 Pascal Kockaert>
528 %%%

529 % function pfxprint(fig,name,’optA’,’valA’,’optB’,’valB’,...)

530 %

531% TO USE THIS FUNCTION, THE FILE laprpfx.mat SHOULD BE IN THE MATLAB PATH

532 %

533 % This function is to be used like laprint.m

534 % The EPS and TeX files resulting from the call to laprint with the given arguments
535% are automatically merged into one EPS file that contains the

536 % psfrags replacements as comments.

537 % These comments can be automatically used in LaTeX, with the help of the psfragx package
538 %

539 % This file is subject to the LPPL licence (see other files in the source archive or www.
540 % Copyright 2004, Pascal Kockaert

541 %

542

543 function pfxprint(fig,name,varargin)

s44 deftxtint=get (0, ’'DefaultTextInterpreter’);

s45 set(0, 'DefaultTextInterpreter’, ’none’);

546

s47 laprint(fig,name, 'options’,’laprpfx’,varargin{:});

548 psfragx(name);

549

sso set(0,’DefaultTextInterpreter’,deftxtint)

551

ss2% Default options are

25

553 % LAPRINTOPT =

554 % figno: 2

555 % filename: ’laprint’

556 % width: 12

557 % factor: 0.8

558 % scalefonts: 1

559 % keepfontprops: 0

560 % asonscreen: 0

561 % keepticklabels: 0

562 % mathticklabels: 0O

563 % head: 0

564 % comment: ’'Test de laprint’

565 % caption: '’

566 % extrapicture: 0

567 % nzeros: 3

568 % verbose: ’off’

569 % figcopy: 1

570 % printcmd: ’print(’-f<figurenumber>’,’-depsc2’,’<filename.eps>’)’

571 % package: ’graphicx’

572 % color: 0

573 % createview: 0

574 % viewfilename: ’unnamed_’

575 % processview: 0

576 % cmdl: ’latex -halt-on-error -interaction nonstopmode <viewfile>.tex’
577 % cmd2: ’dvips -D600 -E* -o<viewfile>.eps <viewfile>.dvi’

578 % cmd3: ’epstool --bbox --copy --output <filename>_final.eps <viewfile>.eps
579 % cmd4: ‘rm <viewfile>.eps <viewfile>.dvi <viewfile>.aux <viewfile>.log <vi
580 % cmd5: ’ghostview <filename>_final.eps&’

581 % cmd6: 7’

582 % cmd7: 77

583 % cmd8: 77

584 (/pfxprint)

Index

Numbers written in italic refer to the page where the corresponding entry
is described; numbers underlined refer to the code line of the definition;
numbers in roman refer to the code lines where the entry is used.

A \endoverpic 366 \ifGin@overwritepfx
\allmetacomments . 77 \endoverpix ﬂ 259
C \endpfx@overpix .. 315 \ifGin@ovp 259
\copypfxfromto .. 108 environments: \ifGin@pfx 259
\copypfxlines ... 113 overpix 6 \iflanguage .. I6,247
E I \ifovp@generate . 259
\endonlylanguage . \ifGin@overwriteovp \ifpfx@generate . 259
....... 16, 247 «+++..... 259 \includegraphics 366

\includegraphicx 6, 356

O
\onlylanguage 16, 247
\overpic 366
\overpix 346
overpix (environ-

ment) 6
\ovp@add@bgd 259
\ovp@add@fgd 259
\ovp@box@tmp 314
\ovpinput 304

P
\pfx@add 259
\pfx@doublepercent 88

\pfx@endinput .97
\pfx@endoverpic 236
\pfx@ext 93
\pfx@firstoftwo 247
\pfx@gobble 88
\pfx@iflanguage 247
\pfx@includegraphicx
......... 2
\pfx@metaprefix . . 93
\pfx@overpic 236
\pfx@overpix . 315
\pfx@ovpfalse 75
\pfx@ovptrue 75
\pfx@percent . 88
\pfx@processline 15

27

\pfx@restore@iflanguage

......... 247
\pfx@save@iflanguage

......... 247
\pfx@secondoftwo 247
\pfx@subfalse 71
\pfx@subtrue 71
\pfx@tag 93
\pfxinput 282

S

\selectedmetacomments

......... 77
\setpfxinput 103
\setpfxoutput 103

