
The Song[ook Package

Version 4.1a

Christopher Rath
<Christopher@Rath.ca>

2003/08/31

Abstract

This package provides an all purpose songbook style for LATEX2e. The
package allows for three types of output from a single input file: words
and chords books for the musicians to play from, words only songbooks
for the congregation to sing from, and overhead transparency masters for
congregational use. The style will also print a table of contents, an index
sorted by title and first line, and an index sorted by key. It attempts to
handle songs in multiple keys, as well as songs in multiple languages.

Contents

I High Level Documentation 3

1 Description 3

2 Commands 4
2.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Primary Song[ook Macros . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Miscellaneous Commands . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Ifthen Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Spacing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 String Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Font Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9 Deprecated Commands . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Usage Guidelines 14

4 Index/TOC Generation 15
4.1 Table of Contents Generation . . . . . . . . . . . . . . . . . . . . . 15
4.2 Title & First Line Index Generation . . . . . . . . . . . . . . . . . 15
4.3 Song Key Index Generation . . . . . . . . . . . . . . . . . . . . . . 16

5 Example 16

6 Dependencies 17

7 Files 18

8 See Also 18
8.1 Contributed Resources . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2 Other Similar Packages . . . . . . . . . . . . . . . . . . . . . . . . 19

1



9 Bugs 19

10 Special Thanks 20

11 Author 20

12 .dtx Documentation Driver 21

II Detailed Documentation 22

13 Identification Part 22

14 Initial Code Part 22
14.1 If Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

14.1.1 Song[ook Types . . . . . . . . . . . . . . . . . . . . . . . . 23
14.1.2 Song[ook Subtypes . . . . . . . . . . . . . . . . . . . . . . . 23
14.1.3 Song Indicator . . . . . . . . . . . . . . . . . . . . . . . . . 23
14.1.4 Behaviour Flags . . . . . . . . . . . . . . . . . . . . . . . . 24
14.1.5 Papesize Indicators . . . . . . . . . . . . . . . . . . . . . . . 24

14.2 Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2.1 Chord Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2.2 Title Block Fonts . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2.3 Versicle Tag Fonts . . . . . . . . . . . . . . . . . . . . . . . 26
14.2.4 Marginal Notes Fonts . . . . . . . . . . . . . . . . . . . . . 26
14.2.5 Song Body Fonts . . . . . . . . . . . . . . . . . . . . . . . . 27
14.2.6 Other Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

14.3 Configurable Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 27
14.3.1 Published Dimensions . . . . . . . . . . . . . . . . . . . . . 27
14.3.2 Internal Dimensions . . . . . . . . . . . . . . . . . . . . . . 29

14.4 Declaration Of Non-Core Options . . . . . . . . . . . . . . . . . . . 29
14.4.1 Papersize Options . . . . . . . . . . . . . . . . . . . . . . . 29
14.4.2 Compactsong Option . . . . . . . . . . . . . . . . . . . . . . 30
14.4.3 Printallsongs Option . . . . . . . . . . . . . . . . . . . . . . 31

14.5 Declaration Of Core Options . . . . . . . . . . . . . . . . . . . . . 31
14.5.1 chordbk Option . . . . . . . . . . . . . . . . . . . . . . . . 31
14.5.2 wordbk Option . . . . . . . . . . . . . . . . . . . . . . . . . 34
14.5.3 overhead Option . . . . . . . . . . . . . . . . . . . . . . . . 36

14.6 Execution Of Options . . . . . . . . . . . . . . . . . . . . . . . . . 38
14.7 Package Loading Part . . . . . . . . . . . . . . . . . . . . . . . . . 39
14.8 Main Code Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

14.8.1 Constants & Variables . . . . . . . . . . . . . . . . . . . . . 40
14.8.2 Special Characters . . . . . . . . . . . . . . . . . . . . . . . 42
14.8.3 Table Of Contents & Indices . . . . . . . . . . . . . . . . . 43
14.8.4 Some Other Hooks . . . . . . . . . . . . . . . . . . . . . . . 45
14.8.5 Miscellaneous Macros . . . . . . . . . . . . . . . . . . . . . 46
14.8.6 Primary Songbook Macros . . . . . . . . . . . . . . . . . . 47
14.8.7 Obsolete Macros . . . . . . . . . . . . . . . . . . . . . . . . 60
14.8.8 Deprecated Macros . . . . . . . . . . . . . . . . . . . . . . . 61

Preface to version 4.1a

What’s new in version 4.1a:

• Corrected a bug whereby the new exclude song mode was throwing an error
when either the \SBRef or \SBMargNote commands were used

2



Preface to version 4.1

What’s new in version 4.1:

• a new optional 〈Include? 〉 parameter has been added to the song environ-
ment; that parameter allows you to have a song omitted from the printed
songbook yet still have the song counter incremented and the song’s table
of contents entry written to a separate TOC file (see the description of the
song environment, below, for more details)

• to go along with the new optional 〈Include? 〉 parameter is a new \usepackage{}
option, printallsongs, which overrides the individual song option declara-
tions and prints all the songs in the songbook

• the song “My Sun and My Shield” was removed from the sample songbook;
it turns out that this is a Ted Sandquist song and is not in the public domain

• chordbk’s compactsong option is still experimental

Preface to version 4.0

What’s new in version 4.0:

• the Song[ook style has now completed its transition to LATEX2e (I think):
there is now a single .sty file which accepts options in order to invoke the
different songbook styles. The Song[ook style now also accepts and produces
reasonable output for all of LATEX2e’s standard papersize options.

• the song title block (where the title, copyright info., etc. are listed) has
been changed, use of the \centerline macro has been replaced with a
center environment. This change is not compatible with previous versions of
songbook.sty and requires you to re-verify all page breaks (mostly in words-
only mode). The reason for making the change is to allow long song titles to
line-wrap (instead of hanging off the edge of the page), and this means that
the definition of the following macros has been changed: \STitle, \CpyRt,
\WAndM, and \ScriptRef. The centering of these lines is now also done
within a center environment; in each the centering may now be disabled by
adding an optional first parameter (any value except ‘Y’)

• since the change to the title block invalidated pagination of the previous ver-
sion I have taken the opportunity to fine tune the value of \SpaceAfterSong,
a value that is used primarily in words-only mode: the inter-song gap has
been decreased to \vspace{0ex plus10ex minus3ex} (from \vspace{0ex
plus15ex minus0ex})

• a new space command, \SpaceAfterTitleBlk, has been created to allow
the space between a song’s title block and its versicles to be tuned by the
user; this was a previously hardcoded value

• a bug in the SBBracket environment has been corrected: long lines were not
always exhibiting their hanging indentation

• the style now supports all of LATEX2e’s standard papersizes. While the out-
put will not be ideal for all papersizes, it does produce sane and usable
results for all papersizes. I would be most appreciative if European users
would send me page layout corrections for the A4, A5, and B5 sizes

• added a new environment, SBOpGroup (i.e., “an open group”), serves to
group the lines of a verse or chorus together, but not indent or label them.
Use of this environment allows for better control of font changes, proper

3



indentation of wrapped lines, and automatic spacing of open groups which
follow one another. I strongly suggest that SBOpGroup be used to enclose any
set of lines which don’t otherwise end up in one of the songbook environments
when typsetting with this package

• chordbk mode now supports one variation: compactsong. In compactsong
mode the songs are laid out in two columns; note that the song title block
spans the two columns. The songs are set in a smaller typeface to allow
them to fit into the smaller space two column mode supplies. This mode
should be considered experimental for the present time; see its description,
below, for more details

• conditionals.sty has been updated with more current information and
macros, as supplied by Donald Arseneau

• all of the verse-like environments now have their \baselineskip amount
expressly calculated just prior to laying out their lines. This has been done
in order to overcome the problem all previous versions of the songbook style
had which was that linespacing differed based upon whether a particular line
contained chords. Now all lines are spaced the same, regardless of whether
they contain a chord. I consider the previous behaviour—where linespacing
varied—to be a bug. If you really must retain the old behaviour this can be
done by inserting the following code into the preamble of your document:

\renewcommand{\sbSetsbBaselineSkipAmt}

{\setlength{\sbBaselineSkipAmt} {\baselineskip}}

• the \SBDefaultFont command no longer needs to be specified at the top of
each songbook

• fixed a bug that was inhibiting the Song[ook style from detecting blank and
empty song parameters

• the commands which had previously been listed as deprecated (i.e., to be
removed in some future release) have all been removed

• the following commands have been moved from the “Obsolete Macros” sec-
tion into “Deprecated Macros” section and will be removed in the next ma-
jor release of the Song[ook style: \False, \True, \ChordBk, \Overhead,
\SongEject, \WordBk, and \WordsOnly

A few minor changes were made during release testing of version 4.0. The
following changes occured between version 4.0pre2 and 4.0:

• the spacing around the SBBracket environment has been tuned :
\SpaceAfterSBBracket has been increased, and a new
\SpaceBeforeSBBracket amount has been added

• added missing space around the SBBracket* environment; using
\SpaceBeforeSBBracket and \SpaceAfterSBBracket

• removed unused length, \SBBracketHangAmt

• added a new \LeftMarginSBBracket length and rewrote the part of the
SBBracket environment that creates the tag and left indents the versicle.
The SBBracket environment now left aligns its words with those of the
SBVerse and SBChorus versicles.

4



Part I

High Level Documentation

1 Description

The Song[ook document style provides a core set of functions for the production
of songbooks. Three pre-defined songbook formats and one variation are provided
(and they are invoked via options to the \usepackage{songbook} command) and
they are typically used along with LATEX’s book class. One of the following options
must be specified or the Song[ook style will throw an error: chordbk, wordbk, or
overhead.

An empty minimal songbook looks like the following:

\documentclass{book}

\usepackage[chordbk]{songbook}

\begin{document}

\begin{song}{}{}{}{}{}{}

\end{song}

\end{document}

We’ll start by explaining the \usepackage[]{songbook} options:

chordbk a songbook suitable for musicians which gives both lyrics and wordschordbk

(this is the default mode of the Song[ook document style)—one variation to
this style is offered, compact song mode (see below). This option is specified
as \usepackage[chordbk]{songbook}

wordbk a words-only songbook suitable for mass distribution to those singing butwordbk

not playing an instrument. This option is specified as
\usepackage[wordbk]{songbook}

overhead to produce overhead transparencies from songbook source files. Thisoverhead

option is specified as \usepackage[overhead]{songbook}

Other additional options supported by the Song[ook style include all LATEX’s
standard papersize options, and:

compactsong this option only takes effect along with chordbk. It causes thecompactsong

songs to be set in two columns, where the song title information spans the
both columns. It is specified as
\usepackage[chordbk,compactsong]{songbook}

The version of compactsong provided in this release should be considered
experimental! The formatting produced in this mode is not always desirable.
An outstanding question to be answered is whether or not new songs title
blocks should span both columns, and whether each song should generate a
page break; in other words, should this feature set be implemented as two
pieces: compactsong and compactbook. The idea would be to provide a
compactsong environment, which could be judiciously used on a per song
basis, and a compactbook mode which would result in a compressed song-
book, where the words and chords book would look very much like a words
only songbook (but with chords).

printallsongs this option causes all songs in a songbook to be printed, regard-printallsongs

less of what 〈Include? 〉 option may have been specified on each individual
song environment

5



2 Commands

This section is broken into several subsections. Hopefully this makes the individual
commands easier to understand by placing them in a meaningful context. Since
some forward references exist, it may be necessary to read through the entire
Commands section a couple of times before it makes complete sense.

This reference section will present terse command and environment descrip-
tions; more detailed descriptions, along with examples, may be found in the im-
plementation detail section at the bottom of this document.

Note that each subsection’s descriptions are presented in alphabetical order;
while this doesn’t make the sections quite as easy to read, it makes them much
more useful for reference purposes.

2.1 Environments

The Song[ook style defines several new environments to make the formatting of
songbooks easier and more consistent (and most of them have parameters). Unless
otherwise noted, all of the environments are verse-like: wrapped lines are indented
more than the first line is indented.

\begin{SBBracket}{〈bracket tag〉}〈. . . stuff to enbracket. . . 〉
\end{SBBracket} is the environment used to mark certain lines of the songSBBracket

with a tag and bracket. An example usage is to mark the line of the song
played to end the piece, if it is somehow different than the chords played if
one were to repeat the song. For example:

Be\Ch{Am}{cause} of \Ch{Dm7}{what} the...

\end{SBChorus}

\begin{SBBracket}{Ending}

Give \Ch{F}{thanks,}\Ch{C/F}{} \Ch{Bb/F}{}...

\end{SBBracket}

This is very similar to the SBOccurs environment, the difference being how
the section of the song is marked.

There are two versions of this environment: SBBracket and SBBracket*.SBBracket*

They operate identically, except that the *ed version doesn’t print its tag
and bracket in words-only modes.

At present, \SBBracket and \SBBracket* are fragile and are not compatible
with SBVerse, SBChorus, or any other environment; with the exception of
the song environment.

\begin{SBChorus}〈. . . the chorus. . . 〉\end{SBChorus} is the environment toSBChorus

wrap around a chorus that you wish to be indented and given a chorus tag
(“Ch:”). A song with one verse and one chorus, where the chorus is sung
after the verse would probably use the SBChorus environment. Whereas,
if the chorus was sung first, an SBVerse environment would probably be
used. The indent amount for lines that are too long is set by redefining the
\HangAmt command.

The SBChorus* version of this command indents but does not place aSBChorus*

\SBChorusTag before the chorus.

\begin{SBExtraKeys}{〈song content〉}\end{SBExtraKeys} is the environmentSBExtraKeys

used when you wish to list the song again in another key. Typically, this
environment is used along with an \STitle command. For example:

\begin{SBExtraKeys}{

\STitle{You Alone}{D}

6



\begin{SBVerse}

\Ch{D}{Ho}\Ch{F#m}{ly,} \Ch{G}{Ho}\Ch{D}{ly,}

...

\end{SBVerse}

}\end{SBExtraKeys}

\begin{SBOccurs}{〈the occurrence〉}〈. . . stuff to group. . . 〉\end{SBOccurs} isSBOccurs

the environment used to mark a given line of the song with a tag and brack-
ets. For example “1,3” would designate that this passage applies to the 1st
and 3rd occurances. For example:

Be\Ch{Am}{cause} of \Ch{Dm7}{what} the...

\end{SBChorus}

\begin{SBOccurs}{1,3}

Give \Ch{F}{thanks,}\Ch{C/F}{} \Ch{Bb/F}{}...

\end{SBOccurs}

\begin{SBOpGroup}〈. . . stuff to group. . . 〉\end{SBOpGroup} is the environmentSBOpGroup

in which unmarked versicles are placed; so called “open groups”.

\begin{SBSection}〈. . . the section. . . 〉\end{SBSection} is very much likeSBSection

LATEX’s verse environment, except that here the sections are numbered. The
indent amount for lines that are too long is set using the \HangAmt command.
This environment would be used in place of the \SBVerse environment for
songs which are broken into pieces/sections, in place of, or in addition to,
verses.

The SBSection* version of this command indents but doesn’t place anSBSection*

\SBSectionCnt before the chorus. Similar to LATEX’s \section* command,
the section counter is not incremented either.

\begin{SBVerse}〈. . . the chorus. . . 〉\end{SBVerse} is the environment to wrapSBVerse

around a verse that you wish to be indented and given a verse number
(\SBVerseCnt). A song with one chorus and one verse, where the verse
is sung after the verse would probably use the SBChorus environment.
Whereas, if the chorus was sung first, an SBVerse environment would prob-
ably be used. The indent amount for lines that are too long is set with the
\HangAmt command.

The SBVerse* version of this environment indents but down not place anSBVerse*

\SBVerseCnt before the chorus; similar to LATEX’s \section* command, the
verse counter is not incremented either.

\begin{song}[〈1 〉]{〈2 〉} . . . {〈7 〉} 〈. . . the song. . . 〉\end{song} is the environ-song

ment which each song resides within. The parameter list is quite long, and
is defined as:

1. Include this song? (optional);

2. Song title;

3. Key song is written in;

4. Copyright information;

5. Name(s) of composer and lyricist;

6. Scripture reference for the song;

7. Copyright licensing information.

7



The song environment takes care of making index entries, incrementing
\SBSongCnt and page generation (if necessary). Note, this environment
makes use of \everypar. See the Example section, below, for a sample
one-song songbook document.

The “Include this song?” parameter is optional; the parameter is referred to
within this documentation as “〈Include? 〉”. If you don’t specify it (and you
typically do not), then it behaves as though you provided a value of “Y”.
If you specify any other value then the song is excluded from the current
songbook; however, a table of contents record is written to a separate file
(jobname.tocS).

Some predefined macros have been provided which allow conditional exclu-\CBExcl

\OHExcl

\WBExcl

\WOExcl

sion of a song (they are used in the optional parameter): \CBExcl, \OHExcl,
\WBExcl, and \WOExcl; respectively, these correspond to exclude in chordbk
mode, overhead mode, wordbk mode, and when in words-only (i.e., not in
chordbk) mode.

As an organisation’s songbook grows, and time passes, it is not uncommon
for the songbook to become overly large. The 〈Include? 〉 parameter allows
for a songbook’s songs to be easily removed and re-added, without requiring
old songbooks to be destroyed or overhead transparencies renumbered.

When the “copyright information” or “composer & lyricist” parameters are
left empty then the string defined by the \SBUnknownTag macro used (instead
of leaving whitespace in the song header.

\begin{xlatn}{〈1 〉} . . . {〈3 〉} 〈. . . the translation. . . 〉\end{xlatn}is the songxlatn

translation environment. The parameter list is defined as:

1. Translated song title (in the foreign language);

2. Translation permission;

3. Who performed the translation.

The xlatn environment always occurs within a song environment; it resets
the verse counter, causes the title and other parameter information to be
displayed, and makes the appropriate index and table of contents entries. It
is important for the xlatn environment to occur within a song environment,
because the xlatn environment inherits the song environment’s \everypar
definition.

2.2 Primary Song[ook Macros

Along with the Song[ook environments, these are the macros you will most often
use when constructing a songbook (of any style).

\CBPageBrk forces a new page if \ifChordBk is true.\CBPageBrk

\Ch{〈chord〉}{〈syllable〉} the chord over lyrics command definition. This is the\Ch

most commonly used command in the Song[ook style. The words-only sub-
style turns off the chord generation and just prints the second parameter.
The 〈chord〉 parameter is left-justified over the 〈syllable〉 parameter. Any
‘#’ or ‘b’ characters in the 〈chord〉 parameter are replaced with ‘]’ and ‘[’
characters, respectively. Also, if a bass note is specified in a chord (by way
of a ‘/’ character followed by the note) then it will appear in a smaller font
than the rest of the 〈chord〉.
It is often desireable to typeset a chord—or set of chords—inside square
brackets, to indicate that they are optional. A lighter weight font is probably
desired, so that the brackets do not detract from the chord name, so any

8



‘[’ and ‘]’ characters are typeset with the font specified by the \ChBkFont
macro.

To set the chord raise amount to a value that matches version 1.x and 2.x re-
leases of the Song[ook style, insert the following command into the preamble
of your document:

\renewcommand{\SBChordRaise}{\SBOldChordRaise}

\Chr{〈chord〉}{〈syllable〉} this command performs the same function as the \Ch\Chr

command with one exception: the \Chr command inserts a rule, at the height
specified by the \SBRuleRaiseAmount macro, when the chord is wider than
the syllable. The default value creates an extended em-dash-like rule; a value
of 0pt creates an underbar-like rule. See the Usage Guidelines section of this
document, below, for a more detailed explanation.

\ChX{〈chord〉}{〈syllable〉} this command performs the same function as the \Ch\ChX

command with one exception: the \ChX command causes spaces trailing the
command to be ignored. See the Usage Guidelines section of this document,
below, for a more detailed explanation.

\CSColBrk generates a column break here if we’re in compactsong mode.\CSColBrk

\makeKeyIndex start creation of an index of songs by key. If you need to add\makeKeyIndex

your own information to this index use the \keyIndex[][] command, doc-
umented in the Detailed Documentation section, below.

\makeTitleContents start creation of a table of contents. If you need to add\makeTitleContents

your own information to this index use the \titleContents[][] command,
documented in the Detailed Documentation section, below.

\makeTitleContentsSkip start creation of a table of contents of songs exluded\makeTitleContentsSkip

from the current songbook. This macro operates in the same manner as
\makeTitleContents.

\makeTitleIndex start creation of a title and first line index. If you need to add\makeTitleIndex

your own information to this index use the \titleIndex[][] command,
documented in the Detailed Documentation section, below.

\NotWOPageBrk forces a new page if \ifWordsOnly is false.\NotWOPageBrk

\OHContPgFtr prints a page heading continuation footer on overheads; this macro\OHContPgFtr

must be manually inserted where needed. \OHContPgHdr is a no-op, except
when \ifOverhead is true.

\OHContPgHdr prints a page heading continuation header on overheads; this\OHContPgHdr

macro must be manually inserted where needed. \OHContPgHdr is a no-op,
except when \ifOverhead is true.

\OHPageBrk forces a new page if \ifOverhead is true.\OHPageBrk

\SBBridge{〈the bridge〉} is used to encapsulate a bridge: it causes 〈the bridge〉 to\SBBridge

be set with \SBBridgeTag, using in the \SBBridgeTagFont font. In words-
only mode this command is a no-op.

\SBEnd[〈use in words-only〉]{〈the ending〉} is used to encapsulate a song end-\SBEnd

ing: it causes 〈the ending〉 to be set with the \SBEndTag, using in the
\SBEndTagFont font. The first parameter is optional and if used is put
in square brackets; specifying any value except ‘N’ will cause the ending to
be used in words-only mode. Some examples of its intended use are:

9



This will cause the ending to be printed in words-only mode. Note how the
parameter is specified in square brackets!

\SBEnd[Y]{Give \Ch{F}{thanks,} \ldots}

In this case the ending is a no-op in words-only mode.

\SBEnd{\Ch{A}{} \Ch{B/A}{} \Ch{D}{}}

\SBIntro[〈use in words-only〉]{〈the introduction〉} is used to encapsulate anySBIntro

introduction to a song: it causes 〈the introduction〉 to be set with an intro
tag of “Intro:”, using in the \SBIntroTagFont font. The first parameter is
optional and if used is put in square brackets; specifying any value except
‘N’ will cause the ending to be used in words-only mode. Some examples of
its intended use are:

This will cause the ending to be printed in words-only mode. Note how the
parameter is specified in square brackets!

\SBIntro[Y]{\Ch{D}{} \Ch{C}{} Ooooh}

In this case the ending is a no-op in words-only mode.

\SBIntro{{\SBLyricNoteFont Guitar and drums}}

\SBMargNote{〈marginal note〉} is used to place a note of some kind in the margin\SBMargNote

of a songbook. In words-only mode this macro is a no-op.

\SBRef{〈book title〉}{〈page or song number〉} creates a reference in the margin\SBRef

to another music book, or tape. This provides a method for directing people
to resources they may use to learn the song. The marginal reference only
prints when \WordsOnly is \False.

\SBem prints an em-dash (i.e., “—”) when \WordsOnly is \False. See \SBen.\SBem

\SBen prints an en-dash (i.e., “–”) when \WordsOnly is \False. This allows us\SBen

to place a short rule within text in order place a chord earlier than a syllable;
yet, that rule will not appear in the words-only book. The words-only version
of this macro is a no-op. An example of its intended use is:

...flows like a ri\Ch{B/A}{\SBen ver,} flows...

\STitle{〈song title〉}{〈key〉} prints the 〈song title〉, preceded by the current\STitle

\SBSongCnt value and followed by the 〈key〉 the song is given in. \STitle is
most often used along with the SBExtraKeys environment. This command
resets the \SBVerseCnt and \SBSectionCnt counters.

\WBPageBrk forces a new page if \ifWordBk is true.\WBPageBrk

\WOPageBrk forces a new page if \ifWordsOnly is true.\WOPageBrk

2.3 Miscellaneous Commands

Not all of the commands listed here are commonly used in songbooks written using
one of the Song[ook styles. The commands are listed alphabetically.

\CpyRt{〈copyright info.〉} prints the copyright information line. This command\CpyRt

is not usually explicitly used in a songbook. It is called by the song envi-
ronment and will normally only be used there.

10



\FLineIdx{〈first line〉} make an entry in the Title & First Line Index file,\FLineIdx

“jobname .tIdx.”

\SBChorusMarkright hook to allow \SBSection’s \markright to be overridden.\SBChorusMarkright

\SBContinueMark conditionally produce a continuation symbol. If the con-\SBContinueMark

tents of \rightmark will result in nothing being typeset, then don’t out-
put the continuation mark; otherwise, output a continuation mark using the
\SBContinueTag command.

\SBSectionMarkright hook to allow \SBSection’s \markright to be overridden.\SBSectionMarkright

\SBVerseMarkright hook to allow \SBVerse’s \markright to be overridden.\SBVerseMarkright

\SongMarkboth hook to allow the song environment’s \markboth to be overrid-\SongMarkboth

den.

\STitleMarkboth hook to allow \STitle’s \markboth to be overridden.\STitleMarkboth

\ScriptRef{〈scripture address〉} is a scripture reference for the song. This com-\ScriptRef

mand has its name because the Song[ook style was written to produce song-
books for the church I am part of. This command is not usually explicitly
used in a songbook. It is called by the song environment and will normally
only be used there.

\WAndM{〈lyricist & composer〉} prints a line telling who wrote the words and\WAndM

music for this song. The string “W&M:” precedes the listing of the 〈lyricist
& composer〉 when it is printed. This command is not usually explicitly used
in a songbook. It is called by the song environment and will normally only
be used there.

2.4 Ifthen Commands

These \if tests are used to perform formatting that is dependent upon the type
of songbook you are creating. It is these \if tests which allow a single source file
to output the three songbook styles.

\ifSBinSongEnv is true if we are inside of a song environment.\ifSBinSongEnv

\ifChordBk is true if we are processing a chordbk document.\ifChordBk

\ifOverhead is true if we are processing an overhead document.\ifOverhead

\ifWordBk are we processing a wordbk document?\ifWordBk

\ifWordsOnly is true when we are typesetting a words-only document (i.e., no\ifWordsOnly

chords).

\ifNotWordsOnly is true if we are processing a document that displays chords.\ifNotWordsOnly

\ifCompactSongMode is set to true if you want songs presented in a compact\ifCompactSongMode

mode? It is initially set to false. Set this to true or false using the
\CompactSongModetrue and \CompactSongModefalse commands, respec-
tively.

\ifSongEject is set to true if we want a new page generated at the end of every\ifSongEject

song environment? A value of true means eject after every song environment
(default value is true).

Papersize tests have been provided in order to detect if a particular papersize
has been specified. These are only documented in the Detailed Documentation
section, below, since they are not generally needed.

11



2.5 Counters

These are the counters used in the various environments. Although you will gen-
erally not need to use them, they do sometimes come in handy; hence, they have
been documented here.

\theSBSongCnt counter is used for numbering the songs. When a song is listed\theSBSongCnt

multiple times (for multiple keys) the songs number must remain the same
each time.

\theSBSectionCnt the section counter is used for numbering sections as they\theSBSectionCnt

occur within a song.

\theSBVerseCnt the verse counter is used for numbering verses as they occur\theSBVerseCnt

within a song.

2.6 Spacing Commands

These commands define the amount of space to leave in various situations. Change
their values via LATEX’s \renewcommand command.

All of these spaces are defined as LATEX commands to overcome limitations in
LATEX length evaluation. For example, if \LeftMarginSBVerse were to be defined
as a length (i.e., using \newlength) and then immediately set to 4em’s, the specific
length would be evaluated with respect to the current font. This may not be what
is desired; instead a length evaluated with respect to the font in place at the start
of an SBVerse is probably what is desired. This can only be done by making these
lengths LATEX commands instead of lengths.

\HangAmt amount to indent when a line wraps.\HangAmt

\LeftMarginSBBracket is the amount of left margin to leave when the \SBBracketLeftMarginSBBracket

environment is in effect.

\LeftMarginSBChorus is the amount of left margin to leave when the \SBChorus\LeftMarginSBChorus

environment is in effect.

\LeftMarginSBSection is the amount of left margin to leave when the \SBSectionLeftMarginSBSection

environment is in effect.

\LeftMarginSBVerse is the amount of left margin to leave when the \SBVerse\LeftMarginSBVerse

environment is in effect.

\SBChordRaise the distance to raise the chords above the baseline of the text\SBChordRaise

they sit over.

\SBRuleRaiseAmount the distance to raise the rule (as specified by\SBRuleRaiseAmount

\SBIntersyllableRule) which fills the space between adjoining syllables.

\SpaceAboveSTitle is the amount of vertical space left by the STitle command\SpaceAboveSTitle

before it prints the song title line.

\SpaceAfterTitleBlk is the space inserted by the song environment between\SpaceAfterTitleBlk

the title block and the versicles.

\SpaceAfterChorus is the vertical space to leave after an SBChorus.\SpaceAfterChorus

\SpaceAfterOpGroup is the vertical space to leave after an SBOpGroup.\SpaceAfterOpGroup

\SpaceAfterSection is the vertical space to leave after an SBSection.\SpaceAfterSection

\SpaceAfterSBBracket is the vertical space to leave after an SBBracket.\SpaceAfterSBBracket

\SpaceAfterSong is the vertical space to leave after a song.\SpaceAfterSong

12



\SpaceAfterVerse is the vertical space to leave after an SBVerse.\SpaceAfterVerse

\SpaceBeforeSBBracket is the vertical space to leave before an SBBracket.\SpaceBeforeSBBracket

It is worth noting that the \SpaceAfterChorus, \SpaceAfterOpGroup,
\SpaceAfterSection, and \SpaceAfterSong, \SpaceAfterVerse macros all al-
low negative glue to be inserted; that is, the space may be shrunk as well as
expanded. If this proves problematic (due to sections being visibly pushed into
each other, the old spacing (as in versions 1.x and 2.x) can be restored by resetting
these macros to 0ex. For example:

\renewcommand{\SpaceAfterChorus} {\vspace{0ex}}

\renewcommand{\SpaceAfterOpGroup}{\vspace{0ex}}

\renewcommand{\SpaceAfterSection}{\vspace{0ex}}

\renewcommand{\SpaceAfterSong} {\vspace{0ex}}

\renewcommand{\SpaceAfterVerse} {\vspace{0ex}}

2.7 String Constants

These constants are provided so that users may easily customize the appearance
of formatted songs and songbooks. Use the \renewcommand command to change
the value of these constants.

\OHContPgFtrTag tag is inserted by the \OHContPgFtr command. The default\OHContPgFtrTag

value for this is “continued on next page\ldots”.

\OHContPgHdrTag tag is inserted by the \OHContPgHdr command. The default\OHContPgHdrTag

value for this is “\theSBSongCnt\ --- \theSongTitle, continued\ldots”.

\SBBridgeTag the Bridge Tag to insert before the start of a bridge. The default\SBBridgeTag

value for this is “Bridge:”.

\SBChorusTag the Chorus Tag to insert before the first line of a chorus. The\SBChorusTag

default value for this is “Ch:”.

\SBContinueTag the Continue Tag to insert in an\SBContinueTag

\SBContinueMark. The default value for this is “cont\ldots”.

\SBEndTag the End Tag to insert before the start of an ending (in an \SBEnd\SBEndTag

command). The default value for this is “End:”.

\SBIntersyllableRule the command(s) to draw the rule between adjoining syl-\SBIntersyllableRule

lables.

\SBIntroTag the Intro Tag to insert before the start of an introduction (in an\SBIntroTag

\SBIntro command). The default value for this is “Intro:”.

\SBPubDom the string to insert which indicates song is in the public domain. The\SBPubDom

default value for this is “Public Domain”. If you want to localize this string
in the song title block, be sure to use this public interface: the \CpyRt macro
uses \SBPubDom to determine whether or not to print the copyright symbol
( c©).

\SBUnknownTag the WAndM string to insert when either the author/artist or the\SBUnknownTag

copyright holder is unknown. The default value for this is “Unknown”.

\SBWAndMTag the tag to insert before the words and music entry printed in the\SBWAndMTag

song header. The default value for this is “W\&M:”.

13



2.8 Font Handling

Of all the font selection Song[ook macros, only one is commonly used by someone
writing a songbook: \SBLyricNoteFont. All the other font macros are only used
by an author to over-ride default behaviour, via the \renewcommand command.

\ChBassFont sets the font for the bass note in chords as printed by the \Ch, \Chr\ChBassFont

and \ChX commands.

\ChBkFont sets the font for square brackets typeset inside \Ch commands (and\ChBkFont

its variants).

\ChFont sets the font for chords as printed by the \Ch, \Chr, and \ChX commands.\ChFont

\CpyRtFont sets the font used to print the copyright line produced by the \CpyRt\CpyRtFont

command.

\CpyRtInfoFont sets the font used to print the 〈copyright licensing information〉\CpyRtInfoFont

parameter of the song environment; which appears after the 〈copyright
information〉 parameter under the 〈song title.〉

\SBBracketTagFont sets the font used to create the tag for an SBBracket envi-\SBBracketTagFont

ronment.

\SBBridgeTagFont sets the font used to create the tag for an SBBridge environ-\SBBridgeTagFont

ment.

\SBChorusTagFont sets the font used to print the chorus tag, \SBChorusTag.\SBChorusTagFont

\SBDefaultFont sets the default font for the songbook. As of version 4.0 there\SBDefaultFont

is no need for you to specify this command yourself.

\SBEndTagFont sets the font used to print the tag, \SBEndTag, for the \SBEnd\SBEndTagFont

command.

\SBIntroTagFont sets the font used to print the introduction tag, \SBIntroTag.\SBIntroTagFont

\SBLyricNoteFont sets the font used in comments placed within the lyrics giving\SBLyricNoteFont

musical direction. This is the only font command commonly used by the
writer of a songbook.

\SBMargNoteFont sets the font used in the marginal reference printed by the\SBMargNoteFont

\SBMargNote command.

\SBOccursBrktFont sets the font used to create the large left and right square\SBOccursBrktFont

brackets which delimit an SBOccurs environment.

\SBOccursTagFont sets the font used to create the \SBOccurs tag.\SBOccursTagFont

\SBRefFont sets the font used in the marginal reference printed by the \SBRef\SBRefFont

command.

\SBVerseNumberFont sets the font used to print the \SBVerseCnt in front of\SBVerseNumberFont

verses in an SBVerse environment.

\SBSectionNumberFont sets the font used to print the \SBSectionCnt in front\SBSectionNumberFont

of sections in an SBSection environment.

\STitleFont sets the font used to print the song title, as generated by the\STitleFont

\STitle command.

\STitleKeyFont sets the font used to print the key a song is written in, as\STitleKeyFont

generated by the \STitle command.

14



\STitleNumberFont sets the font used to print the \SBSongCnt in front of the\STitleNumberFont

song title, as generated by the \STitle command.

\ScriptRefFont sets the font used to print the scripture reference generated by\ScriptRefFont

the \ScriptRef command.

\WandMFont sets the font used to print the lyricist and composer line generated\WandMFont

by the \WandM command.

2.9 Deprecated Commands

The following commands will be discontinued in some future release of the
Song[ook style:

\ChordBk is set to \True if we’re producing words and chord books. Set to
\False, otherwise. Superceded by the \ifChordBk if.

\False is a constant used in TEX \if expressions. This command is now unnec-
essary.

\Overhead is set to \True if we’re producing overhead transparencies. Set to
\False, otherwise. Superceded by the \ifOverhead if.

\SongEject is a flag indicating whether or not the \song environment should
end the current page when the environment ends: \True means end the
page when the \song environment ends; \False means don’t end the page.
Superceded by the \ifSongEject if.

\True is a constant used in TEX \if expressions. This command is now unnec-
essary.

\WordBk is the flag which tells us whether we’re producing a songbook with just
words that is not a set of overhead masters. Superceded by the \ifWordBk
if.

\WordsOnly is the flag which tells us whether we’re producing a songbook with
just words, or set of overhead masters. Superceded by the \ifWordsOnly if.

3 Usage Guidelines

This section gives some guidelines for use of the commands and environments
offered by the Song[ook style. These are not absolute standards, merely the sug-
gestions that I have come up with after entering some 450 songs into a Song[ook
style based songbook. These guidelines rarely justify themselves, try things out
and decide for yourself whether they’re right or wrong.

1. Make each line of a song its own paragraph. This means that the songbook
file is mostly double spaced. This allows the file to more easily survive
encounters with users who edit the songbook source using a non-text-editor,
such as WordPerfect.

2. Use of the \Ch command:

• Always try to attach a chord to a single syllable. If you need to include
more than one syllable with the chord then include extra text in units
of syllables (whenever possible). For example:

Do: \Ch{G}{Halle}luia

Don’t: \Ch{G}{Hall}eluia

• Always include punctuation along with a syllable that has been included
in a \Ch command. For example:

15



Do: \Ch{G}{Lord!}

Don’t: \Ch{G}{Lord}!

• Only place a single chord within a \Ch command. For example:

Do: \Ch{[}{}\Ch{G}{} \Ch{D}{}\Ch{]}{}

Don’t: \Ch{[G D]}{}

3. Extension of syllables. Syllables may be extended at either/or both ends.
Each end should be done in a different way:

(a) One usually needs to make a syllable longer because the chord it is tied
to is too long. This type of extension should be done using the \Chr
command.

Do: \Chr{G\#m7/C}{Ho}\Ch{C}{ly}

Don’t: \Ch{G\#m7/C}{Ho\SBem}\Ch{C}{ly}

(b) Extending the beginning (i.e., delaying the start) of a syllable is gener-
ally required because the chord change needs to occur between syllables.
For example, when the chord change is on the beat and the syllable is
sung off-beat. Use \SBen and \SBem for this purpose.

Do: none Ho\Ch{D}{\SBen ly}

4. Typographic conventions. LATEX knows about certain ligatures; that is, it
groups certain sequences of letters into a single character unit. ff is one
of these ligatures and is typeset in a special way; however this cannot oc-
cur if the f’s are split by a \Ch command. Therefore, if at all possible,
never split up the following character sequences with the \Ch command:
ff, fi, ffi, fl, ffl.

Do: \Ch{C}{diffi}cult

Don’t: \Ch{C}{dif}ficult

5. Ordering of songs in the songbook. In order to allow LATEX2e to fill pages
in as natural a manner as possible, it is best to order the songs within
the songbook based upon a wordbk formatted songbook. In that way, the
words-only songbooks will contain optimally filled columns. Start by placing
the longest songs first, only inserting shorter songs to cause page breaks at
logical intervals.

6. Overheads that occupy more than one page. When in overhead mode, if a
song spills over onto a second page (or beyond), it is helpful to print an extra
header at the top of the page identifying which song the extra page belongs
to. This is accomplished with the \OHContPgHdr macro. For example, one
would insert the following lines where the new page is to occur:

\OHContPgFtr

\OHPageBrk

\OHContPgHdr

4 Index/TOC Generation

The Song[ook style provides facilities for title/first line index, song key index and
table of contents generation. While this facility is not yet completely developed, it
is much better than it was in early Song[ook releases, and it produces very usable
output!

16



4.1 Table of Contents Generation

Steps to follow in order to produce a table of contents:

1. Add a \makeTitleContents command to the preamble of your songbook.

2. Run LATEX2e on the songbook source.

3. Make your own copy of sampleToc.tex and customize its header and footer
definitions (so they match your songbook’s). Then change the name of the
file being \inputed to match your table of contents file.

4. Run LATEX2e on your copy of sampleToc.tex.

4.2 Title & First Line Index Generation

Steps to follow in order to produce a title and first line index:

1. Add a \makeTitleIndex command to the preamble of your songbook.

2. Run LATEX2e on the songbook source.

3. Run the ./mksbtdx shell script on the .tIdx file that was produced by the
previous step. Do this by typing “mksbtdx jobname” at a UNIX command
line. For example, the index file for sample-sb.tex was produced by typing
“mksbtdx sample-sb”.

4. Make your own copy of sampleTdx.tex and customize its header and footer
definitions (so they match your songbook’s). Then change the name of the
file being \inputed to match your index file. (./mksbtdx told you this file’s
name).

5. Run LATEX2e on your copy of sampleTdx.tex.

4.3 Song Key Index Generation

Steps to follow in order to produce a song key index:

1. Add a \makeKeyIndex command to the preamble of your songbook.

2. Run LATEX2e on the songbook source.

3. Run the ./mksbkdx shell script on the .kIdx file that was produced by the
previous step. Do this by typing “mksbkdx jobname” at a UNIX command
line. For example, the key index file for sample-sb.tex was produced by
typing “mksbkdx sample-sb”.

4. Make your own copy of sampleKdx.tex and customize its header and footer
definitions (so they match your songbook’s). Then change the name of the
file being \inputed to match your index file. (./mksbkdx told you this file’s
name).

5. Run LATEX2e on your copy of sampleKdx.tex.

5 Example

Here is an example songbook; where the the songbook contains exactly one song.

\documentstyle[12pt]{book}

\usepackage[chordbk]{songbook} %% Words & Chords edition.

%%

% C.C.L.I. license number definition; for copyright licensing info.

17



%%

\newcommand{\CCLInumber}{\#999999}

\newcommand{\CCLIed}{(CCLI \CCLInumber)}

\newcommand{\NotCCLIed}{}

\newcommand{\PGranted}{}

\newcommand{\PPending}{(Permission Pending)}

%%

% Turn on index and table of contents.

%%

\makeTitleIndex %% Title and First Line Index.

\makeTitleContents %% Table of Contents.

\makeKeyIndex %% Song Key Index.

\begin{document}

%%

% Songbook begins.

%%

\begin{song}{What A Mighty God We Serve}{C}

{\SBPubDom}

{Unknown}

{Isaiah 9:6}

{\NotCCLIed}

\renewcommand{\RevDate}{February~11,~1993}

\SBRef{Give Thanks}{Hosanna! Music Tape HM-7}

\SBRef{Hosanna! Music Book~I}{\#93}

\begin{SBOpGroup}

\Ch{C}{What} a mighty God we serve,

What a mighty God we \Ch{G7}{serve},

\Ch{C}{An}gels bow before Him,

\Ch{C}{Hea}ven and earth adore Him,

\Ch{C}{What} a mighty \Ch{G7}{God} we \Ch{C}{serve!}\Ch{[}{}\Ch{F}{}

\Ch{C}{}\Ch{]}{}

\end{SBOpGroup}

\begin{SBVerse}

O \Ch{C}{Zion,} O \Ch{F}{Zion,} that \Ch{G7}{bring}est good \Ch{C}{tid}ings,

Get thee \Ch{F}{up} into the \Ch{G7}{High} Moun\Ch{C}{tains}

Je\Ch{C}{ru}salem, Je\Ch{F}{ru}salem, that \Ch{G7}{bring}est good \Ch{C}{tid}ings

Lift up thy \Ch{F}{voice} with \Ch{G7}{all} thy \Ch{C}{strength}

Lift it \Ch{F}{up,} be not afraid;

Lift it \Ch{C}{up,} be not afraid

Say \Ch{Am}{unto} the \Ch{C}{ci}ties of \Ch{G7}{Judah,}

‘‘Behold your \Ch{C}{God,}\Ch{C7}{} Behold your \Ch{F}{God,}

Be\Ch{C}{hold} \Ch{G7}{your} \Ch{C}{God!’’}

\end{SBVerse}

\CBPageBrk

\begin{SBExtraKeys}{%

\STitle{What A Mighty God We Serve}{D}

\begin{SBOpGroup}

\Ch{D}{What} a mighty God we serve,

What a mighty God we \Ch{A7}{serve},

\Ch{D}{An}gels bow before Him,

18



\Ch{D}{Hea}ven and earth adore Him,

\Ch{D}{What} a mighty \Ch{A7}{God} we \Ch{D}{serve!}\Ch{[}{}\Ch{G}{}

\Ch{D}{}\Ch{]}{}

\end{SBOpGroup}

\begin{SBVerse}

O \Ch{D}{Zion,} O \Ch{G}{Zion,} that \Ch{A7}{bring}est good \Ch{D}{tid}ings,

Get thee \Ch{G}{up} to into the \Ch{A7}{High} Moun\Ch{D}{tains}

Je\Ch{D}{ru}salem, Je\Ch{G}{ru}salem, that \Ch{A7}{bring}est good

\Ch{D}{tid}ings

Lift up thy \Ch{G}{voice} with \Ch{A7}{all} thy \Ch{D}{strength}

Lift it \Ch{G}{up} be not afraid,

Lift it \Ch{D}{up} be not afraid

Say \Ch{Bm}{unto} the \Ch{D}{ci}ties of \Ch{A7}{Judah,}

‘‘Behold your \Ch{D}{God,}\Ch{D7}{} Behold your \Ch{G}{God,}

Be\Ch{D}{hold} \Ch{A7}{your} \Ch{D}{God!’’}

\end{SBVerse}

}\end{SBExtraKeys}

\end{song}

\end{document}

\bye

6 Dependencies

The Song[ook style is dependent upon four other LATEX2e styles: conditional.sty,
calc.sty, ifthen.sty, and multicol.sty. Conditional.sty is supplied with
this package. Calc.sty, ifthen.sty, and multicol.sty are part of the LATEX2e
distribution.

Embedding guitar chord fingering charts within a songbook can be accom-
plished with the texchord.sty package; which is supplied in the contrib directory
of the Song[ook distribution.

7 Files

conditionals.sty Donald Arseneau’s conditional tests.

mksbkdx A shell script around makeindex to sort the song key index.

mksbtdx A shell script around makeindex to sort the title & first line index.

relnotes.txt The Song[ook package release notes.

sample-sb.tex A sample songbook.

sampleKdx.tex Song key index for the sample songbook.

sampleTdx.tex Title & first line index for the sample songbook.

sampleToc.tex TOC for the sample songbook.

songbook.ist The Song[ook package makeindex .ist file.

songbook.dtx The base style file.

songbook.inx The install script used to create songbook.sty.

19



8 See Also

Some resources you will find helpful when coding songbooks:

• LATEX A Document Preparation System, by Leslie Lamport

• The LATEX Companion, by Goossens, Mittlebach, & Samarin

• The Song[ook homepage, at URL http://rath.ca/Misc/Songbook/

• The TEX book, by Donald Knuth

8.1 Contributed Resources

A couple of Song[ook users have created additional resources intended to be used
with the Song[ook style. If you have written anything which you would like to
contribute to Song[ook style’s distribution, please let me know.

CarolBook a Song[ook formatted book containing words for all the Christmas
songs I’ve been able to find where the words are now in the public domain.
PDF versions of the file are included for quick and easy use.

crd2sb a perl script which converts Chord files into Songbook files. Contributed
by Abel Chow <abel@g2networks.com>. Note that a postscript formatter
for Chord songs can be ftp’ed from:
ftp://ftp.uu.net/doc/music/guitar/resources/misc/CHORD/.

modulate a perl script for modulating a song from one key to another. Con-
tributed by Christopher Rath <christopher@rath.ca>.

LYX Integration files for use of the Song[ookstyle with LYX. Christian Rid-
derström <chr@md.kth.se> has put together the necessary files to allow
Song[ooks to be edited using LYX. While these files are not distributed in
the Song[ook’s contrib files, they are available from
http://www.md.kth.se/~chr/lyx/songbook/Songbook.shtml.

texchord.sty LATEX macros for printing guitar fingering charts. Contributed
by Joel M. Hoffman <joel@wam.umd.edu>. Note, this style is no longer
actively supported by Joel.

8.2 Other Similar Packages

There are a number of song and songbook formatting packages available which at-
tempt to provide similar functionality to the Song[ook package (although, IMHO,
my package is better). Similar LATEX2e packages (of which the author is aware)
include:

chord.sty a song formatting package based on LATEX’s article style; written by
Olivier Biot (http://www.biot.yucom.be/).

Chordpack a utility for typesetting chordpro chord files in TeX; written by
Daniel Polansky (http://www.fi.muni.cz/~xpolansk/home.html) and
available at http://www.fi.muni.cz/~xpolansk/chordpack.

gchords.sty a TeX packages for typesetting guitar chord diagrams; written by
Kasper Peeters (http://www.damtp.cam.ac.uk/user/kp229/) and avail-
able at http://www.damtp.cam.ac.uk/user/kp229/gchords/.

Guitar.sty LATEX macros for typesetting guitar chords over song texts; writ-
ten by Martin Vth (http://www.mathematik.uni-wuerzburg.de/~vaeth/)
and available from
http://www.mathematik.uni-wuerzburg.de/~vaeth/download/.

20



GuitarTeX a graphical tool for editing chordpro chord files and printing them
in TeX; written by Joachim Miltz and available from
http://www.rz-home.de/~jmiltz/guitartex/.

song.sty a song formatting package based on LATEX’s book style; written by Jens
T. Berger Thielemann (http://www.stud.ifi.uio.no/~jensthi/).

9 Bugs

In the specific case where a \Ch, \Chr, or \ChX macro begins a paragraph that isn’t
inside one of Song[ook’s versicle environments, that line may not indent properly
in the chordbk substyle (specifically, a long, wrapped line won’t have its extra
indentation). I have been unable to identify the reason for the problem, although
it is easily reproducible. The best way to avoid this problem is through use of
the \SBOpGroup environment. If that isn’t possible, the problem may often be
overcome by starting such lines with an \mbox{} command; this inserts an empty
(i.e., zero width) mbox at the start of the line. For example:

\mbox{}\Ch{G}{Great} is the Lord \Ch{A}{even} beyond the

\Ch{D}{borders} of I\Chr{F#m}{srae}\Ch{Bm7}{l;}

The \emph macro is not completely compatible with \Ch and its friends. The
specific problem is that sharps can not be specified via ‘#’ within an \emph macro.
The following snippet,

\emph{for the \Ch{G/A}{King} of \Ch{F#}{kings.}}

will fail with the LATEX2e message,

! Illegal parameter number in definition of \\reserved\@a.

<to be read again>

The error message can be supressed by replacing ‘#’ with ‘##’, however this
results in a double-sharp being typeset. The problem can be worked-around by
replacing the snippet with:

\emph{for the \Ch{G/A}{King} of} \Ch{F#}{\emph{kings.}}

10 Special Thanks

Thanks to Donald Arseneau for writing the conditionals.sty file, and for helping
write the \Chord macro. Donald, you are one of the faithful who is always quick to
reply with correct answers to questions posted to comp.text.tex. Thanks again.

Thanks also to Philip Hirschhorn whose \Chord macro I ultimately used in
versions 1.0–2.3 of the Song[ook style, and to Olivier Boit who constructed a
similar chord macro which I used to enhance Philip’s code for version 3.0

A quick thank you to Herbert Martin Dietze <herbert@fh-wedel.de> for
noting that SBVerse* and its cousins were missing from the .sty file, and then
coding up an acceptable SBVerse* which I could quickly use as a model for the
other two missing environments.

For version 4.1, I am grateful to Mark Wooding for suggesting the method I
ultimately used for implementing the song environment’s 〈Include? 〉 option (al-
though I did not use his preferred method).

21



11 Author

Christopher Rath christopher@rath.ca (613) 824-4584
1371 Major Rd.
Orleans, ON
Canada K1E 1H3

22



12 .dtx Documentation Driver

There is one last administrative detail to take care of before beginning the detailed
review: the insertion of the documentation driver (i.e., the code that builds the
documentation .dvi file.
1 〈∗driver〉
2 \documentclass{ltxdoc} \RequirePackage{calc} \EnableCrossrefs

3 \CodelineIndex

4 \RecordChanges % Gather update information

5 %\OnlyDescription % comment out for implementation details

6 %\OldMakeindex % use if your MakeIndex is pre-v2.9

7 \setlength\hfuzz{15pt} % dont make so many

8 \hbadness=7000 % over and under full box warnings

9 \def\MacroFont{\fontencoding\encodingdefault

10 \fontfamily\ttdefault

11 \fontseries\mddefault

12 \fontshape\updefault

13 \footnotesize}%

14

15 \voffset=-1.00in

16 \topmargin=0.5in

17 \headheight=0.0in

18 \headsep=0.20in

19 \textheight=9.4in

20 \footskip=0.4in

21

22 \newenvironment{ParameterList}

23 {\par\hskip 1.5em Parameters:\begin{list}{}

24 {\setlength{\topsep}{0pt}

25 \setlength{\parsep}{0pt}

26 \setlength{\itemsep}{0pt}

27 \setlength{\leftmargin}{\leftmargin + 1.5em}

28 \setlength{\parsep}{0pt}

29 }

30 }

31 {\end{list}\vskip 0.5ex

32 }

33 \newcommand{\parm}[1]{\texttt{[}\meta{#1}\texttt{]}}

34 \begin{document}

35 \setcounter{IndexColumns}{1}

36 \DocInput{songbook.dtx}

37 \end{document}

38 〈/driver〉

23



Part II

Detailed Documentation
This section contains style implementation details along with the detailed descrip-
tions and documentation for the Song[ook commands and environments. It is
strongly recommended that these detailed descriptions be reviewed at least once
as part of becoming familiar with the Song[ook style.

This coding style has been structured in a top down fashion which assume that
macros and environments must be declared before they are first used. TEX doesn’t
require this to be so, but since I’ve been coding software this way for 20+ years,
it’s easier for me to also maintain this structure here too.

13 Identification Part

The first section in songbook.sty is what LATEX2e calls the Implementation Part.
This is where Song[ook identifies itself to the outside world. As part of this section
an RCS “Id:” variable has been included as a TEX comment; the intent is that
this may assist with reporting problems later.
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 %% %%

4 %% I D E N T I F I C A T I O N P A R T %%

5 %% %%

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %%

9 %% rcsid = @(#)$Id: songbook.dtx,v 1.10 2003/09/23 01:10:23 christopher Exp $

10 %%

11 \NeedsTeXFormat{LaTeX2e}

12 \ProvidesPackage{songbook}[2003/08/31 v4.1a All purpose Songbook style]

13 \typeout{Document Subclass: songbook 2003/08/31 v4.1a All purpose Songbook style}

14 Initial Code Part

The next section is called the Initial Code Part. This is where any dependen-
cies in the early sections of songbook.sty has are contained. In the case of the
Song[ook style we must declare our dependence on calc.sty here because some
of Song[ook’s declarative sections themselves contain calculations. In this section
we also declare the \if constructs used in the package.
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 %% %%

17 %% I N I T I A L C O D E P A R T %%

18 %% %%

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21

22 %%========================================================

23 %% E A R L Y P A C K A G E D E P E N D E N C I E S %

24 %%========================================================

Page layout calculations have become overly complex and so as of version 4.0
we now require calc.sty to make them readable once again. In every instance
we could probably find a way to get along without calc.sty; however, since the
package is a part of the LATEX2e Base there is no logical reason to avoid its use.
25 \RequirePackage{calc}

26

24



14.1 If Constructs

Most of these \if contructs are needed for use in the Delaration Of Options
section of songbook.sty. In each case, we create the if statement (a.k.a. the
flag) and then immediately set it to a known value. Where there are several flags
which act as sort of radio buttons, all of the flags are set so that none of them is
selected; which has been done so that if we forget to deal with them properly in
the Declaration Of Options code it will eventually manifest itself as an error.

Since the majority of the \ifs have to be declared in this section, we will go
ahead and declare the remaining \ifs as well. It’s simpler to maintain them when
they are all in one place.
27 %%========================================================

28 %% I F C O N S T R U C T S %

29 %%========================================================

14.1.1 Song[ook Types

At any time, only one of \ifChordBk, \ifOverhead, or \ifWordBk may be true.
These \ifs correspond directly to the chordbk, overhead, and wordbk options;
one of which must be used in the \usepackage{} statement used to invoke the
Song[ook style. All three flags are set to \false, and this fact is use later in order
to confirm that the user had specified one of the 3 options in their document.

\ifChordBk \ifChordBk is true if the user specified the chordbk option.

\ifOverhead \ifOverhead is true if the user specified the overhead option.

\ifWordBk \ifWordBk is true if the user specified the wordbk option.
30 \newif\ifChordBk \ChordBkfalse

31 \newif\ifOverhead \Overheadfalse

32 \newif\ifWordBk \WordBkfalse

14.1.2 Song[ook Subtypes

A pair of \ifs are declared to indicate whether we are only typesetting words on
the page (i.e., the flag is false if we are typesetting words and chords). We are
in words only mode when the user has declared either the overhead or wordbk
options. When these flags are first declared they are set to the same value, false.

\ifWordsOnly \ifWordsOnly is true if we’re in words-only mode.

\ifNotWordsOnly \ifNotWordsOnly always has a value oposite the of \ifWordsOnly. \ifNotWordsOnly
is false if we are in words-only mode.
33 \newif\ifWordsOnly \WordsOnlyfalse

34 \newif\ifNotWordsOnly \NotWordsOnlyfalse

14.1.3 Song Indicator

\ifSBinSongEnv The \ifSBinSongEnv flag is provided to the style or a songbook’s author to detect
if the current text is inside of a song environment. This flag hasn’t proven to be
useful, but it doesn’t hurt anything to leave it around; so, it hasn’t been removed—
who knows, there may well be a user somewhere making use of it! The song
environment takes care of setting this flag’s status.
35 \newif\ifSBinSongEnv \SBinSongEnvfalse

25



14.1.4 Behaviour Flags

There are three flags which can be set in order to effect certain behaviours from
the Song[ook style. They are not related to one another but have been grouped
together since they are they all \ifs used to control Song[ook behaviour.

\ifCompactSongMode \ifCompactSongMode is set to true if you want songs presented in a compact mode.
It is initially set to false. This flag will only be set to true by the user; the style
itself does not toggle this flag. Set this to true by specifying the compactsong
option in the \usepackage statement.

\ifExcludeSong \ifExcludeSong is set to true if you want to have the current song excluded from
the songbook. It is initially set to false, and would only be set to true inside a
song environment, during processing of a song to be excluded. Its value is set
to true when you pass a value of “N” as the first (optional) parameter to a song
environment.

\ifPrintAllSongs \ifPrintAllSongs is set to true if you want to have Song[ook print all a song-
book’s songs regardless of what option may have been specified in each song.

\ifSamepageMode \ifSamepageMode indicates we want the Song[ook style to try and keep each song
together on the same page. Set this true or false using the \SamepageModetrue
and \SamepageModefalse commands, respectively. Important note: this com-
mand has not been documented in the High Level Documentation section, above;
\ifSamepageMode is very unreliable. The LATEX2e page breaking algorithms are
not happy when this mode is used. The the song environment description, below,
for a further explanation.

\ifSongEject \ifSongEject is set to true if we want a new page generated at the end of ev-
ery song environment. A value of true means eject after every song environ-
ment (default value is true). Set this true or false using the \SongEjecttrue and
\SongEjectfalse commands, respectively.
36 \newif\ifCompactSongMode\CompactSongModefalse

37 \newif\ifExcludeSong \ExcludeSongfalse

38 \newif\ifPrintAllSongs \PrintAllSongsfalse

39 \newif\ifSamepageMode \SamepageModefalse

40 \newif\ifSongEject \SongEjecttrue

14.1.5 Papesize Indicators

This next set of flags are needed to track the papersize specified by the user in then
processed in the Declaration Of Options section. This set of \ifs are mutually
exclusive and only one of them should be true at any one time. They are all
initially set to false; setting of a default value is done via an \ExecuteOptions{}
clause, below. These flags were created for use by the Song[ook style itself, but
have been made part of the public interface to simplify page layout coding related
to paper handling in a user’s own songbook.

\ifSBpaperA4 \ifSBpaperA4 is true if papersize is A4.

\ifSBpaperA5 \fSBpaperA5 is true if papersize is A5.

\ifSBpaperB5 \ifSBpaperB5 is true if papersize is B5.

\ifSBpaperLtr \ifSBpaperLtr is true if papersize is US Letter.

\ifSBpaperLgl \ifSBpaperLgl is true if papersize is US Legal.

\ifSBpaperExc \ifSBpaperExc is true if papersize is US Executive Letter.
41 \newif\ifSBpaperAfour \SBpaperAfourfalse

42 \newif\ifSBpaperAfive \SBpaperAfivefalse

43 \newif\ifSBpaperBfive \SBpaperBfivefalse

44 \newif\ifSBpaperLtr \SBpaperLtrfalse

45 \newif\ifSBpaperLgl \SBpaperLglfalse

46 \newif\ifSBpaperExc \SBpaperExcfalse

26



14.2 Fonts

Fonts are specified up-front in this section in order to simplify the \DeclareOption{}
clauses that follow (i.e., those clauses need only make changes against these base-
line settings). The fonts sizes and selections initially declared herein are those
necessary for chordbk songbooks.

Fonts are handled by way of LATEX2e commands defined using the \newcommand
command. This was done specifically so that traditional LATEX2e font selection
occurs in the context the Song[ook font command is used. I may have completely
misunderstood how LATEX2e does its font selection, in which case my implementa-
tion choice here is pointless; however, until proven otherwise. . . here it is.1 Change
these font specifiers via LATEX2e’s \renewcommand.
47 %%========================================================

48 %% F O N T S %

49 %%========================================================

14.2.1 Chord Fonts

These font selectors are used to determine how chords are printed in words and
chords songbooks:

\ChBassFont \ChBassFont sets the font for the bass note in chords as printed by the \Ch, \Chr,
and \ChX commands.

\ChBkFont \ChBkFont sets the font for square brackets typeset by \Ch, \Chr, and \ChX com-
mands.

\ChFont \ChFont sets the font for chords as printed by the \Ch, \Chr, and \ChX commands.
This used to be set to \bf\sf (i.e., cmss12 at 14.4pt).
50 \newcommand{\ChBassFont}{\normalsize\bf\sf} % = cmss12 at 12.0pt

51 \newcommand{\ChFont}{\large\fontfamily{\sfdefault}%

52 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 14.4pt

53 \newcommand{\ChBkFont}{\ChFont\fontseries{m} %

54 \selectfont} % =cmssm12 at 14.4pt

14.2.2 Title Block Fonts

These font selectors are used to select the fonts used in the Title Block that occurs
that the start of each song:

\CpyRtFont \CpyRtFont sets the font used to print the copyright symbol produced by the
\CpyRt command.

\CpyRtInfoFont \CpyRtInfoFont sets the font used to print the copyright licensing information pa-
rameter of the \song environment; which appears after the copyright information
parameter under the song title.

\STitleFont \STitleFont sets the font used to print the song title, as generated by the \STitle
command.

\STitleKeyFont \STitleKeyFont sets the font used to print the key a song is written in, as gener-
ated by the \STitle command.

\STitleNumberFont \STitleNumberFont sets the font used to print the \SBSongCnt in front of the
song title, as generated by the \STitle command. This is one of two Song[ook
font commands that are implemented using a real LATEX2e \font command; this
turned out to be the easiest manner in which to obtain the desired fonts. In order to
make the \STitleNumberFont’s behaviour the the same as the other Song[ook font
commands, the implementation is done indirectly; whereby the \font command
is inserted into the \STitleNumberFont command so that it may be changed by
the user in the same way as the other font commands in this package.

1Given that doc.dtx uses fonts in this fashion, I feel I’m in pretty good company.

27



\ScriptRefFont \ScriptRefFont sets the font used to print the scripture reference generated by
the \ScriptRef command.

\WandMFont \WandMFont sets the font used to print the lyricist and composer line generated
by the \WandM command.
55 \newcommand{\CpyRtFont}{\footnotesize} % = cmr10 at 10pt

56 \newcommand{\CpyRtInfoFont}{\tiny} % = cmss8 at 8pt

57 \newcommand{\STitleFont}{\large\bf\sf} % = cmss12 at 14.4pt

58 \newcommand{\STitleKeyFont}{\large} % = cmr12 at 14.4pt

59 \font\STNFont=cmtt12 at 20pt

60 \newcommand{\STitleNumberFont}{\STNFont} % = cmtt12 at 20pt

61 \newcommand{\ScriptRefFont}{\footnotesize} % = cmr10 at 10pt

62 \newcommand{\WandMFont}{\footnotesize} % = cmr10 at 10pt

14.2.3 Versicle Tag Fonts

These font selectors are used to select the fonts used to tag verses, choruses,
bridges, and other elements with which a song is constructed (e.g., verse numbers,
“Ch:” chorus indicator, etc.):

\SBBracketTagFont \SBBracketTagFont sets the font used to create the tag for an SBBracket envi-
ronment.

\SBBridgeTagFont \SBBridgeTagFont sets the font used to create the tag for an SBBridge environ-
ment.

\SBChorusTagFont \SBChorusTagFont sets the font used to print the chorus tag, \SBChorusTag.

\SBEndTagFont \SBEndTagFont sets the font used to print the tag, \SBEndTag, for the \SBEnd
command.

\SBIntroTagFont \SBIntroTagFont sets the font used to print the introduction tag, \SBIntroTag.

\SBOccursBrktFont \SBOccursBrktFont sets the font used to create the large left and right square
brackets used to delimit the \SBOccurs environment.

\SBOccursTagFont \SBOccursTagFont sets the font used to create the \SBOccurs tag.

\SBVerseNumberFont \SBVerseNumberFont sets the font used to print the \SBVerseCnt in front of verses
in an SBVerse environment.

\SBSectionNumberFont \SBSectionNumberFont sets the font used to print the \SBSectionCnt in front of
sections in an SBSection environment.
63 \newcommand{\SBBracketTagFont}{\small\bf\sf} % = cmss10 at 10.0pt

64 \newcommand{\SBBridgeTagFont}{\SBEndTagFont} % = cmss10 at 10.9pt

65 \newcommand{\SBChorusTagFont}{\small\bf\sf} % = cmss10 at 10.9pt

66 \newcommand{\SBEndTagFont}{\small\bf\sf} % = cmss10 at 10.9pt

67 \newcommand{\SBIntroTagFont}{\SBEndTagFont} % = cmss10 at 10.9pt

68 \font\SBOBFont=cmss17 at 30pt

69 \newcommand{\SBOccursBrktFont}{\SBOBFont} % = cmss17 at 30pt

70 \newcommand{\SBOccursTagFont}{\small\bf\sf} % = cmss10 at 10.0pt

71 \newcommand{\SBVerseNumberFont}{\small\bf\sf} % = cmss10 at 10.9pt

72 \newcommand{\SBSectionNumberFont}{\small\bf\sf} % = cmss10 at 10.9pt

73

14.2.4 Marginal Notes Fonts

These font selectors are used to select the fonts used when Song[ook commands
make notations in the margin of the songbook:

\SBMargNoteFont \SBMargNoteFont sets the font used in the marginal reference printed by the
\SBMargNote command.

28



\SBRefFont \SBRefFont sets the font used in the marginal reference printed by the \SBRef
command.
74 \newcommand{\SBMargNoteFont}{\scriptsize} % = cmti8 at 8pt

75 \newcommand{\SBRefFont}{\SBMargNoteFont} % = cmti8 at 8pt

14.2.5 Song Body Fonts

These font selector command are used to select fonts which are used within the
body of songs:

\SBDefaultFont \SBDefaultFont sets the default font for the songbook. We will insert an occur-
rence of this command at the top of the songbook using the \AtBeginDocument{}
clause, below.

\SBLyricNoteFont \SBLyricNoteFont sets the font used in comments placed within the lyrics giving
musical direction. This is the only font command commonly used by the writer of
a songbook. For example, to tag a line to be sung only by the Cantor and another
by everyone, one would write:

{\SBLyricNoteFont (Cantor)} Give thanks to the Lord.

{\SBLyricNoteFont (All)} His love endures forever.

76 \newcommand{\SBDefaultFont}{\fontfamily{\rmdefault}%

77 \large} % = cmr12 at 14.4pt

78 \newcommand{\SBLyricNoteFont}{\footnotesize\sf} % = cmss10 at 10pt

14.2.6 Other Fonts

The remaining font selector commands:

\SBOHContTagFont \SBOHContTagFont sets the font used to print the \OHContPgFtr and \OHContPgHdr.
79 \newcommand{\SBOHContTagFont}{\small\bf\sf\itshape} % = cmss10 at 10.9pt

80

14.3 Configurable Dimensions

In this section we define the spaces to leave in various situations.
All of these spaces are defined as LATEX2e commands to overcome limitations

in length evaluation. For example, if \LeftMarginSBVerse were to be defined as
a length, and then immediately set to 4ems the specific length would be evaluated
with respect to the current font. This is not be what is desired; instead a length
evaluated with respect to the font in place at the start of an SBVerse is what is
desired. This can only be done by making these lengths LATEX2e commands.
81 %%========================================================

82 %% C O N F I G U R A B L E D I M E N S I O N S %

83 %%========================================================

14.3.1 Published Dimensions

While the bulk of the declared dimensions have been created to make the Song[ook
style more user configurable, there are also some dimensions which were created
for internal use. This first section describes the user configurable dimensions:

\HangAmt \HangAmt is the amount to indent when a line wraps. This has been defined using
\newcommand instead of \newlength so that any unit definitions are evaluated at
the time the \HangAmt command is used.

29



\LeftMarginSBBracket \LeftMarginSBBracket is the amount of left margin left in front of SBBrackets
and SBBracket*s in the songbook. The value for this variable has been chosen
such that the song-words for SBVerses, SBChoruses, and SBBrackets all align
against the same left margin when printing standard words & chords songbooks.

\LeftMarginSBChorus \LeftMarginSBChorus is the amount of left margin left in front of named choruses
in the songbook. In most cases \LeftMarginSBChorus, \LeftMarginSBSection,
and \LeftMarginSBVerse should all be the same value.

\LeftMarginSBSection \LeftMarginSBSection is the amount of left margin left in front of sections in
the songbook.

\LeftMarginSBVerse \LeftMarginSBVerse is the amount of left margin left in front of verses in the
songbook.

\SBChordRaise \SBChordRaise is the distance to raise the chords above the baseline of the text
they sit over.

\SBRuleRaiseAmount \SBRuleRaiseAmount is the distance to raise the rule (as specified by
\SBIntersyllableRule) which fills the space between adjoining syllables.

\SpaceAboveSTitle \SpaceAboveSTitle is the space skipped by the \STitle macro before it prints
the song title.

\SpaceAfterTitleBlk \SpaceAfterTitleBlk is the space inserted by the song environment between the
title block and the versicles.

\SpaceAfterChorus \SpaceAfterChorus is the vertical space to leave after an SBChorus environment.

\SpaceAfterOpGroup \SpaceAfterOpGroup is the vertical space to leave after an SBOpGroup environ-
ment.

\SpaceAfterSBBracket \SpaceAfterSBBracket is the vertical space to leave after an SBBracket environ-
ment. This has proven troublesome to choose (see also \SpaceBeforeSBBracket
because the list environment that produces the versicle inside of the SBBracket
environment is itself enclosed inside of a math construct (which requires the list
to have its vertical spacing supressed—otherwise the vertical line forming the
left bracket encloses unnecessary whitespace). The vertical spacing around a list
is created by way of some nontrivial macros and can’t simply be copied into
some other context. Thus, the choice of values for \SpaceAfterSBBracket and
\SpaceBeforeSBBracket have been rather arbitrarily chosen.

\SpaceAfterSection \SpaceAfterSection is the vertical space to leave after an SBSection environ-
ment.

\SpaceAfterSong \SpaceAfterSong is the vertical space to leave after a song.

\SpaceAfterVerse \SpaceAfterVerse is the vertical space to leave after an SBVerse environment.

\SpaceBeforeSBBracket \SpaceBeforeBBracket is the vertical space to leave before an SBBracket envi-
ronment. None of the other versicles have an extra space inserted before them.
See \SpaceAfterSBBracket for further explanation.
84 \newcommand{\HangAmt} {1.5em}

85 \newcommand{\LeftMarginSBBracket}{2.85em}

86 \newcommand{\LeftMarginSBChorus} {4em}

87 \newcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

88 \newcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

89 \newcommand{\SBChordRaise} {2.25ex}

90 \newcommand{\SBOldChordRaise} {2.90ex}

91 \newcommand{\SBRuleRaiseAmount} {0.57ex}

92 \newcommand{\SpaceAboveSTitle} {0.5in}

93 \newcommand{\SpaceAfterTitleBlk} {-1.75ex}

30



94 \newcommand{\SpaceAfterChorus} {\vspace{0ex plus0ex minus3ex}}

95 \newcommand{\SpaceAfterOpGroup} {\vspace{0ex plus0ex minus3ex}}

96 \newcommand{\SpaceAfterSBBracket}{\vspace{2ex plus1ex minus1ex}}

97 \newcommand{\SpaceAfterSection} {\vspace{0ex plus0ex minus3ex}}

98 \newcommand{\SpaceAfterSong} {\vspace{0ex plus10ex minus3ex}}

99 \newcommand{\SpaceAfterVerse} {\vspace{0ex plus0ex minus3ex}}

100 \newcommand{\SpaceBeforeSBBracket}{\vspace{1ex plus1ex minus1ex}}

101

14.3.2 Internal Dimensions

These variables are used internally within Song[ook macros. They are not part
of the published songbook.sty interface; but can be used to tune some of its
functions.

\chSpaceTolerance

\chMiniSpace

The \chSpaceTolerance and \chMiniSpace lengths are used in the \Chr macro.

\sbBaselineSkipAmt \sbBaselineSkipAmt is used internally in SBVerse, SBChorus, and all the other
versicle environments; where hanging indentation has been accomplished using a
specially defined list environment. The value of \sbBaselineSkipAmt is recalcu-
lated immediately before each being used in each hanging indent list.

102 \newlength{\chSpaceTolerance} \setlength{\chSpaceTolerance}{1.5mm}

103 \newlength{\chMiniSpace} \setlength{\chMiniSpace} {0.3mm}

104 \newlength{\sbBaselineSkipAmt} \setlength{\sbBaselineSkipAmt}{0pt}

105

14.4 Declaration Of Non-Core Options

In the Declaration Of Options section of the .sty file we deal with the various op-
tions which a user may specify in the options part of the \usepackage{songbook}
command. Since the Song[ook style accepts standard LATEX2e papersize options,
we deal with those in addition to the style’s own options. The documentation
of these options is broken into two parts: the core options (chordbk, wordbk, &
overhead), and the non-core options (all the rest).

The LATEX2e documentation specifies that the options will be processed in the
order in which they are listed in the .sty file. We take advantage of this fact and
cause all of the options except the core three (chordbk, wordbk, & overhead) to
simply set flags which indicate they were user-specified. The core options then do
all the work.

106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

108 %% %%

109 %% D E C L A R A T I O N O F O P T I O N S %%

110 %% %%

111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

113

14.4.1 Papersize Options

Paper selection options inherited from Book Class. We process these first in
order to remember what paper size the user has selected; before processing the
Song[ook’s own options.

The code in each of these \DeclareOption{} clauses sets the \SBpaper. . .
flags to unambiguously indicate which papersize the user specified.

114 %%=======================================================%

115 %% P A P E R S I Z E O P T I O N S %

116 %%=======================================================%

a4paper

117 \DeclareOption{a4paper}{% Paper size: 210mm x 297mm

118 \SBpaperAfourtrue

31



119 \SBpaperAfivefalse

120 \SBpaperBfivefalse

121 \SBpaperLtrfalse

122 \SBpaperLglfalse

123 \SBpaperExcfalse

124 }

125

a5paper

126 \DeclareOption{a5paper}{% Paper size: 148mm x 210mm

127 \SBpaperAfourfalse

128 \SBpaperAfivetrue

129 \SBpaperBfivefalse

130 \SBpaperLtrfalse

131 \SBpaperLglfalse

132 \SBpaperExcfalse

133 }

134

b5paper

135 \DeclareOption{b5paper}{% Paper size: 176mm x 250mm

136 \SBpaperAfourfalse

137 \SBpaperAfivefalse

138 \SBpaperBfivetrue

139 \SBpaperLtrfalse

140 \SBpaperLglfalse

141 \SBpaperExcfalse

142 }

143

letterpaper

144 \DeclareOption{letterpaper}{% Paper size: 8.5in x 11in

145 \SBpaperAfourfalse

146 \SBpaperAfivefalse

147 \SBpaperBfivefalse

148 \SBpaperLtrtrue

149 \SBpaperLglfalse

150 \SBpaperExcfalse

151 }

152

legalpaper

153 \DeclareOption{legalpaper}{% Paper size: 8.5in x 14in

154 \SBpaperAfourfalse

155 \SBpaperAfivefalse

156 \SBpaperBfivefalse

157 \SBpaperLtrfalse

158 \SBpaperLgltrue

159 \SBpaperExcfalse

160 }

161

executivepaper

162 \DeclareOption{executivepaper}{% Paper size: 7.25in x 10.5in

163 \SBpaperAfourfalse

164 \SBpaperAfivefalse

165 \SBpaperBfivefalse

166 \SBpaperLtrfalse

167 \SBpaperLglfalse

168 \SBpaperExctrue

169 }

170

14.4.2 Compactsong Option

This option tells the Song[ook style to present the songs in a compact form. For
chordbk mode this means presenting the songs in two columns per page using a
smaller font. When I can figure out what this option should mean for the other

32



modes I’ll code them up. In the mean time, wordbk and overhead modes simply
ignore the compactsong option. Like the papersize options, the compactsong pro-
cessing here simply sets a flag; the actual code required to implement compactsong
mode is embedded below inside the three core options.

171 %%=======================================================%

172 %% C O M P A C T S O N G O P T I O N %

173 %%=======================================================%

compactsong

174 \DeclareOption{compactsong}{%

175 %%%

176 % Set flag to indicate the user wants compact song mode.

177 \CompactSongModetrue

178 }

179

14.4.3 Printallsongs Option

This option tells the Song[ook style to print all songs in the songbook, regard-
less of what has been specified in each song. Like the papersize options, the
printallsongs processing here simply sets a flag; the actual code required to im-
plement printallsongs mode is embedded below inside the song environment.

180 %%=======================================================%

181 %% P R I N T A L L S O N G S O P T I O N %

182 %%=======================================================%

printallsongs

183 \DeclareOption{printallsongs}{%

184 %%%

185 % Set flag to indicate the user wants to print all songs.

186 \PrintAllSongstrue

187 }

188

14.5 Declaration Of Core Options

Now we deal with the Options which set up the songbook instances appropri-
ately; i.e., a “words-only”, “chords & words”, or “overhead master” book (wordbk,
chordbk, & overhead). These option declarations take advantage of the fact that
we have already been told what paper size to design for.

The style has been constructed on the underlying assumption that the user
must specify one of the core options. To that end, we will later throw an error
if none of these three options was executed (done at \AtBeginDocument time, see
the top of the Main Code Part for details).

189 %%=======================================================%

190 %% S O N G B O O K C O R E O P T I O N S %

191 %%=======================================================%

14.5.1 chordbk Option

chordbk The chordbk option is executed here.
Each of the core options is structured similarly. As as result, the documentation

for the first one, chordbk, will be more detailed, and the other two subsections
will refer to this one.

192 \DeclareOption{chordbk}{%

Set flags to indicate that we are in chordbk mode. Set flags to indicate we are
not in words-only mode. Indicate that we do want a page eject after every song.

193 \ChordBktrue

194 \WordBkfalse

33



195 \Overheadfalse

196 \WordsOnlyfalse

197 \NotWordsOnlytrue

198 \SongEjecttrue

199

Page Layout This first part specifies the page layout considerations.
Page layout usage recommendation: copy the appropriate page layout com-

mands to the preamble of your own document and customize them appropriately.
This will over-ride the default layout specified herein. Use a structure like this one
to handle the three songbook types automatically for your songbooks:

\ifChordBk

<page layout for Words & Chords books>

\else\ifWordBk

<page layout for Words-Only books>

\else\ifOverhead

<page layout for Overhead masters>

\fi\fi\fi

The only way I found to get these page layouts successfully built was to draw
the various frames in a drawing package and then use a combination of page
measurements and hand calculations to ensure I had everything done correctly.
One of the key concepts that had not been evident to me until just recently
was that on even pages the \marginparsep and \marginparwidth variables exist
inside the \evensidemargin; this fact is not explicitly mentioned in any LATEX
manual I have read, not even in “The LATEX Companion”!

The negative \hoffset and \voffset are to overcome the DVI driver default
left and top margins of 1in, and all page layout commands herein assume these
offsets have been “unset” in this fashion.

200 \voffset=-1.00in

201 \hoffset=-1.00in

202

Papersize-dependant processing. In general we don’t change anything except
the page layout, however for smaller page sizes the some of the fonts are reduced
to ensure that the songs fit reasonably onto the page.

203 \ifSBpaperAfour

204 \topmargin=0.5in

205 \headheight=0.21in

206 \headsep=0.2in

207 \textheight=10.0in

208 \footskip=0.19in

209 %

210 \oddsidemargin=0.618in

211 \evensidemargin=1.4in

212 \textwidth=6.25in

213 \marginparsep=0.2in

214 \marginparwidth=0.8in

215 \else\ifSBpaperAfive

216 \topmargin=6.0mm

217 \headheight=5.334mm

218 \headsep=2.666mm

219 \textheight=185.17mm

220 \footskip=4.826mm

221 %

222 \oddsidemargin=12.0mm

223 \evensidemargin=30.0mm

224 \textwidth=106.0mm

225 \marginparsep=3.68mm

226 \marginparwidth=20.32mm

Downsize the fonts to allow song to fit into the smaller A5 papersize.
227 \renewcommand{\ChBassFont}{\small\bf\sf} % = cmss12 at 11.0pt

228 \renewcommand{\ChFont}{\normalsize\fontfamily{\sfdefault}%

34



229 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 12.0pt

230 \renewcommand{\ChBkFont}{\ChFont\fontseries{m} %

231 \selectfont} % =cmssm12 at 12.0pt

232 \renewcommand{\SBDefaultFont}{\normalsize} % = cmr12 at 12.0pt

233 \renewcommand{\SBOccursBrktFont}{\large\bf\sf} % = cmss10 at 10.9pt

234 \else\ifSBpaperBfive

235 \topmargin=10.0mm

236 \headheight=5.334mm

237 \headsep=5.0mm

238 \textheight=214.84mm

239 \footskip=4.826mm

240 %

241 \oddsidemargin=20.0mm

242 \evensidemargin=34.0 mm

243 \textwidth=122.0mm

244 \marginparsep=3.68mm

245 \marginparwidth=20.32mm

Downsize the fonts to allow song to fit into the smaller B5 papersize.
246 \renewcommand{\ChBassFont}{\small\bf\sf} % = cmss12 at 11.0pt

247 \renewcommand{\ChFont}{\normalsize\fontfamily{\sfdefault}%

248 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 12.0pt

249 \renewcommand{\ChBkFont}{\ChFont\fontseries{m} %

250 \selectfont} % =cmssm12 at 12.0pt

251 \renewcommand{\SBDefaultFont}{\normalsize} % = cmr12 at 12.0pt

252 \renewcommand{\SBOccursBrktFont}{\large\bf\sf} % = cmss10 at 10.9pt

253 \else\ifSBpaperLtr

254 \topmargin=0.5in

255 \headheight=0.21in

256 \headsep=0.20in

257 \textheight=9.4in

258 \footskip=0.19in

259 %

260 \oddsidemargin=0.75in

261 \evensidemargin=1.5in

262 \textwidth=6.25in

263 \marginparsep=0.2in

264 \marginparwidth=0.8in

265 \else\ifSBpaperLgl

266 \topmargin=0.5in

267 \headheight=0.21in

268 \headsep=0.20in

269 \textheight=12.4in

270 \footskip=0.19in

271 %

272 \oddsidemargin=0.75in

273 \evensidemargin=1.5in

274 \textwidth=6.25in

275 \marginparsep=0.2in

276 \marginparwidth=0.8in

277 \else\ifSBpaperExc

278 \topmargin=0.25in

279 \headheight=0.21in

280 \headsep=0.165in

281 \textheight=9.435in

282 \footskip=0.19in

283 %

284 \oddsidemargin=0.5in

285 \evensidemargin=1.25in

286 \textwidth=5.5in

287 \marginparsep=0.2in

288 \marginparwidth=0.8in

289 \fi\fi\fi\fi\fi\fi

290

Enable ragged bottom.
291 \raggedbottom

292

35



CompactSong Processing Downsize fonts to allow song to fit into half the
space (i.e., two column mode); although the title will not be reset since it will be
presented unchanged from normal chordbk mode.

293 \ifCompactSongMode

294 \renewcommand{\ChBassFont}{\small\bf\sf} % = cmss12 at 11.0pt

295 \renewcommand{\ChFont}{\normalsize\fontfamily{\sfdefault}%

296 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 12.0pt

297 \renewcommand{\ChBkFont}{\ChFont\fontseries{m} %

298 \selectfont} % =cmssm12 at 12.0pt

299 \renewcommand{\SBDefaultFont}{\normalsize} % = cmr12 at 12.0pt

300 \renewcommand{\SBOccursBrktFont}{\large\bf\sf} % = cmss10 at 10.9pt

301

Multicol specific changes.
302 \setlength{\columnsep}{0.25in}

303

Remove side-margin, since marginal notes are not allowed when using multi-
col.sty.

304 \addtolength{\textwidth} {\marginparsep + \marginparwidth}

305 \addtolength{\evensidemargin}{-\marginparsep - \marginparwidth}

306 \setlength {\marginparsep} {0in}

307 \setlength {\marginparwidth}{0in}

308

Reduce minimum spacing amount used in \Chr macro (since we’re now using
a smaller font for lyrics and chords.

309 \setlength{\chSpaceTolerance}{1.0mm}

310

Remove the extra space before Verses, etc.
311 \renewcommand{\HangAmt} {1.5em}

312 \renewcommand{\LeftMarginSBChorus} {2em}

313 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

314 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

315 \fi

316 }

317

14.5.2 wordbk Option

wordbk The wordbk option is executed here.
318 \DeclareOption{wordbk}{%

Set flags to indicate we are in wordbk mode. Set flags to indicate we are in
words-only mode. Indicate that we do not want a page eject after every song.

319 \ChordBkfalse

320 \WordBktrue

321 \Overheadfalse

322 \WordsOnlytrue

323 \NotWordsOnlyfalse

324 \SongEjectfalse

325

Set fonts for wordbk use.
326 \renewcommand{\SBDefaultFont}{\normalsize}

327 \font\mySTNFont=cmtt12 at 17pt

328 \renewcommand{\STitleNumberFont}{\mySTNFont}

329 \renewcommand{\CpyRtFont}{\scriptsize}

330 \renewcommand{\WandMFont}{\scriptsize}

331 \renewcommand{\ScriptRefFont}{\scriptsize}

332 \renewcommand{\SBOccursBrktFont}{\large\bf\sf}

333

36



Reset a few of the song spacing amounts.
334 \renewcommand{\SpaceAboveSTitle} {0.25in}

335 \renewcommand{\LeftMarginSBChorus} {1.5em}

336 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

337 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

338

See the page layout comment in the \DeclareOption{chordbk} section, above,
for usage recommendations w.r.t. page layout commands.

The negative \hoffset and \voffset are to overcome the DVI driver default
left and top margins of 1in, and all page layout commands herein assume these
offsets have been “unset” in this fashion.

339 \voffset=-1.00in

340 \hoffset=-1.00in

341

Papersize-dependant processing.
342 \ifSBpaperAfour

343 \topmargin=0.5in

344 \headheight=0.21in

345 \headsep=0.2in

346 \textheight=10.0in

347 \footskip=0.19in

348 %

349 \oddsidemargin=0.618in

350 \evensidemargin=0.4in

351 \textwidth=7.25in

352 \marginparsep=0.0in

353 \marginparwidth=0.0in

354 \else\ifSBpaperAfive

355 \topmargin=6.0mm

356 \headheight=5.334mm

357 \headsep=2.666mm

358 \textheight=185.17mm

359 \footskip=4.826mm

360 %

361 \oddsidemargin=12.0mm

362 \evensidemargin=6.0mm

363 \textwidth=130.0mm

364 \marginparsep=0.0mm

365 \marginparwidth=0.0mm

366 \else\ifSBpaperBfive

367 \topmargin=10.0mm

368 \headheight=5.334mm

369 \headsep=5.0mm

370 \textheight=214.84mm

371 \footskip=4.826mm

372 %

373 \oddsidemargin=20.0mm

374 \evensidemargin=10.0mm

375 \textwidth=146.0mm

376 \marginparsep=0.0mm

377 \marginparwidth=0.0mm

378 \else\ifSBpaperLtr

379 \topmargin=0.5in

380 \headheight=0.21in

381 \headsep=0.10in

382 \textheight=9.4in

383 \footskip=0.29in

384 %

385 \oddsidemargin=0.75in

386 \evensidemargin=0.5in

387 \textwidth=7.25in

388 \marginparsep=0.0in

389 \marginparwidth=0.0in

390 \else\ifSBpaperLgl

391 \topmargin=0.5in

392 \headheight=0.21in

393 \headsep=0.20in

37



394 \textheight=12.4in

395 \footskip=0.19in

396 %

397 \oddsidemargin=0.75in

398 \evensidemargin=0.5in

399 \textwidth=7.25in

400 \marginparsep=0.0in

401 \marginparwidth=0.0in

402 \else\ifSBpaperExc

403 \topmargin=0.25in

404 \headheight=0.21in

405 \headsep=0.165in

406 \textheight=9.435in

407 \footskip=0.19in

408 %

409 \oddsidemargin=0.5in

410 \evensidemargin=0.25in

411 \textwidth=6.5in

412 \marginparsep=0.0in

413 \marginparwidth=0.0in

414 \fi\fi\fi\fi\fi\fi

415

Set ragged-right margins.
416 \raggedright

417

Do CompactSong processing, which at this time is nothing except resetting the
compactsong flag back to false; to ensure that no compactsong processing occurs.
We take time to print a warning message for the user to remind them that the
compactsong option will not have any effect at this time.

418 \ifCompactSongMode

419 \typeout{‘‘compactsong’’ mode not implemented for Wordbk mode.}

420 \CompactSongModefalse

421 \fi

422 }

423

14.5.3 overhead Option

overhead The wordbk option is executed here.
424 \DeclareOption{overhead}{%

Set flags to indicate we are in overhead mode. Set flags to indicate we are in
words-only mode. Indicate that we do want a page eject after every song.

425 \ChordBkfalse

426 \WordBkfalse

427 \Overheadtrue

428 \WordsOnlytrue

429 \NotWordsOnlyfalse

430 \SongEjecttrue

431

Set fonts for overhead use. Before doing any font stuff, change the regular
sans serif font to demi-bold condensed.

432 \def\@mss{cmssdc10}

433 \renewcommand{\SBDefaultFont}{\LARGE\bf\sf}

434 \renewcommand{\STitleNumberFont}{\Large\sf}

435 \renewcommand{\STitleFont}{\LARGE\sf}

436 \renewcommand{\CpyRtFont}{\normalsize\rm}

437 \renewcommand{\CpyRtInfoFont}{\normalsize\rm}

438 \renewcommand{\WandMFont}{\normalsize\rm}

439 \renewcommand{\ScriptRefFont}{\normalsize\rm}

440 \renewcommand{\SBLyricNoteFont}{\normalsize\rm}

441 \renewcommand{\SBChorusTagFont}{\Large\sf}

442 \renewcommand{\SBVerseNumberFont}{\Large\sf}

443 \renewcommand{\SBSectionNumberFont}{\Large\sf}

444 \renewcommand{\SBOccursTagFont}{\Large\sf}

38



445 \renewcommand{\SBOccursBrktFont}{\huge\sf}

446 \renewcommand{\SBBracketTagFont}{\Large\sf}

447 \renewcommand{\SBOHContTagFont}{\Large\sf\itshape}

448

Reset a few of the song spacing amounts.
449 \renewcommand{\SpaceAboveSTitle} {0.25in}

450 \renewcommand{\LeftMarginSBBracket}{2.25em}

451 \renewcommand{\LeftMarginSBChorus} {1.5em}

452 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

453 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

454

Reset the . For some reason I’m not getting good results with the default
value.

455 \renewcommand{\baselinestretch}{.9}

456

See the page layout comment in the \DeclareOption{chordbk} section, above,
for usage recommendations w.r.t. page layout commands.

General note re: \textwidth and overhead tranparencies: it is my personal
experience that with font sizes used in overhead mode, a \textwidth of greater
than 6in produces too wide an image for use in all situations. Depending upon how
you intend to use your overheads, you may be able to use a wider image, however
if you are uncertain I strongly recommend you stick with the 6in \textwidth that
is specified herein.

The negative \hoffset and \voffset are to overcome the DVI driver default
left and top margins of 1in, and all page layout commands herein assume these
offsets have been “unset” in this fashion.

457 \voffset=-1.00in

458 \hoffset=-1.00in

459

Papersize-dependant processing.
460 \ifSBpaperAfour

461 \topmargin=0.25in

462 \headheight=0.25in

463 \headsep=0.0in

464 \textheight=10.3in

465 \footskip=0.2in

466 %

467 \oddsidemargin=1.134in

468 \evensidemargin=1.134in

469 \textwidth=6.0in

470 \marginparsep=0.0in

471 \marginparwidth=0.0in

472 \else\ifSBpaperAfive

473 \topmargin=0.0mm

474 \headheight=5.334mm

475 \headsep=0.0mm

476 \textheight=193.666mm

477 \footskip=4.826mm

478 %

479 \oddsidemargin=9.0mm

480 \evensidemargin=9.0mm

481 \textwidth=130.0mm

482 \marginparsep=0.0mm

483 \marginparwidth=0.0mm

484 \else\ifSBpaperBfive

485 \topmargin=0.666mm

486 \headheight=5.334mm

487 \headsep=0.0mm

488 \textheight=229.0mm

489 \footskip=4.826mm

490 %

491 \oddsidemargin=15.0mm

492 \evensidemargin=15.0mm

39



493 \textwidth=146.0mm

494 \marginparsep=0.0mm

495 \marginparwidth=0.0mm

496 \else\ifSBpaperLtr

497 \topmargin=0.25in

498 \headheight=0.25in

499 \headsep=0.0in

500 \textheight=9.75in

501 \footskip=0.2in

502 %

503 \oddsidemargin=1.25in

504 \evensidemargin=1.25in

505 \textwidth=6.0in

506 \marginparsep=0.0in

507 \marginparwidth=0.0in

508 \else\ifSBpaperLgl

509 \topmargin=0.25in

510 \headheight=0.25in

511 \headsep=0.0in

512 \textheight=12.8in

513 \footskip=0.2in

514 %

515 \oddsidemargin=1.25in

516 \evensidemargin=1.25in

517 \textwidth=6.0in

518 \marginparsep=0.0in

519 \marginparwidth=0.0in

520 \else\ifSBpaperExc

521 \topmargin=0.25in

522 \headheight=0.21in

523 \headsep=0.0in

524 \textheight=9.6in

525 \footskip=0.19in

526 %

527 \oddsidemargin=0.625in

528 \evensidemargin=0.625in

529 \textwidth=6.0in

530 \marginparsep=0.0in

531 \marginparwidth=0.0in

532 \fi\fi\fi\fi\fi\fi

533

Set ragged-botton and ragged-right margins.
534 \raggedright

535 \raggedbottom

536

Do CompactSong processing, which at this time is nothing except resetting the
compactsong flag back to false; to ensure that no compactsong processing occurs.
We take time to print a warning message for the user to remind them that the
compactsong option will not have any effect at this time.

537 \ifCompactSongMode

538 \typeout{‘‘compactsong’’ mode not implemented for Overhead mode.}

539 \CompactSongModefalse

540 \fi

541 }

542

14.6 Execution Of Options

Here we tell the the Song[ook style to execute the user’s declared options.
First set up a default paper size, just in case the user didn’t specify one. Then

process the user specified options. It is mandatory for one of the songbook type
options to be declared, but rather than delare a default we will throw an error
(see below at the top of the Main Code Part).

543 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

544 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40



545 %% %%

546 %% E X E C U T I O N O F O P T I O N S %%

547 %% %%

548 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

549 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

550

551 \ExecuteOptions{letterpaper}

552 \ProcessOptions

553

14.7 Package Loading Part

In this section of the style we load the remaining styles upon which the Song[ook
style is dependant.

554 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

555 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

556 %% %%

557 %% P A C K A G E L O A D I N G P A R T %%

558 %% %%

559 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

560 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

561

Donald Arseneau’s conditionals.sty. This style is bundled with the
Song[ook style (Donald has often posted the macros to the USENET comp.text.tex
newsgroup, but they haven’t been formally submitted to CTAN.

562 \RequirePackage{conditionals}

563

Leslie Lamport’s & David Carlilse’s ifthen.sty. This style is part of the
LATEX2e distribution.

564 \RequirePackage{ifthen}

565

If we are in compactsong mode then load Frank Mittelbach’s multicol
package. We specify the date of the 1.5u release; since we make use of the
\columnbreak command which was only added in 1.5u.

566 \ifCompactSongMode

567 \RequirePackage{multicol}[1999/05/25]

568 \fi

569

14.8 Main Code Part

The Main Code Part is the main part of the style. All of the “hard working”
macros are detailed below.

570 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

571 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

572 %% %%

573 %% M A I N C O D E P A R T %%

574 %% %%

575 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

576 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

577

The user must specify at least one of the chordbk, wordbk, or overhead op-
tions; otherwise we throw an error. This bit of code performs that check at the
start of the users document.

We check to see if at least one of the core options have been specified by the
user by populating an \hbox{} with the digit “1” if an option was specified. If no
core option was specified then the \hbox{} will be empty and we throw an error.

\AtBeginDocument

578 \AtBeginDocument{%

41



579 \setbox0=\hbox{}

580 %

581 \ifChordBk\setbox0=\hbox{1}\fi

582 \ifWordBk\setbox0=\hbox{1}\fi

583 \ifOverhead\setbox0=\hbox{1}\fi

584 %

585 \ifthenelse{\wd0 = 0}

586 {\errmessage{No songbook option (i.e., type) specified.

587 Specify a songbook mode in your usepackage

588 statement; one of: [chordbk], [wordbk], or [overhead]}}

589 {\relax}

590

If the user had specified one of the required options then we continue with
setting things up. At present, the only housekeeping item that needs attention is to
set the default font for the songbook. We do this by inserting the \SBDefaultFont
here; this lifts from the user the burden of having to remember to specifying inside
the songbook.

591 \SBDefaultFont

592 }

593

14.8.1 Constants & Variables

Define Counters used herein.
594 %%========================================================

595 %% C O N S T A N T S & V A R I A B L E S %

596 %%========================================================

597

\theSBSongCnt The \theSBSongCnt counter is used for numbering the songs. When a song is
listed multiple times (for multiple keys) the songs number must remain the same
each time.

\theSBSectionCnt The \theSBSectionCnt counter is used for numbering sections as they occur
within a song.

\theSBVerseCnt The \theSBVerseCnt counter is used for numbering verses as they occur within a
song.

598 \newcounter{SBSongCnt}

599 \newcounter{SBSectionCnt}

600 \newcounter{SBVerseCnt}

601

String Constants Declare string constants.
These constants are provided so that users may easily customize the appearance

of formatted songs and songbooks. Use the \renewcommand command to change
the value of these constants.

\OHContPgFtrTag The \OHContPgFtrTag tag is inserted by the \OHContPgFtr command. The de-
fault value for this is “continued on next page\ldots”.

\OHContPgHdrTag The \OHContPgHdrTag tag is inserted by the \OHContPgHdr command. The de-
fault value for this is “\theSBSongCnt\ --- \theSongTitle, continued\ldots”.

\SBBridgeTag The \SBBridgeTag tag is inserted before the start of a bridge. The default value
for this is “Bridge:”.

\SBChorusTag The \SBChorusTag tag is inserted before the first line of a chorus. The default
value for this is “Ch:”.

\SBContinueTag The \SBContinueTag tag is inserted in an \SBContinueMark. The default value
for this is “cont\ldots”.

42



\SBEndTag The \SBEndTag tag is inserted before the start of an ending (in an \SBEnd com-
mand). The default value for this is “End:”.

\SBIntersyllableRule The \SBIntersyllableRule tag is actually the command(s) used to draw the rule
between adjoining syllables.

\SBIntroTag The \SBIntroTag tag is inserted before the start of an introduction (in an
\SBIntro command). The default value for this is “Intro:”.

\SBPubDom The \SBPubDom tag is used to indicate that a song is in the public domain. The
default value for this is “Public Domain”. If you want to localize this string in
the song title block, be sure to use this public interface: the \CpyRt macro uses
\SBPubDom to determine whether or not to print the copyright symbol ( c©).

\SBUnknownTag The \SBUnknownTag tag is used with the \WAndM command and is the string to
insert when either the author/artist or the copyright holder is unknown. The
default value for this is “Unknown”.

\SBWAndMTag The \SBWAndMTag the tag is insert before the words and music entry printed in
the song header. The default value for this is “W&M:”.

\Songbook The macro used to print this style’s name. The ‘b’ in the word songbook has been
replace with a flat ([).

602 \newcommand{\OHContPgFtrTag} {continued on next page\ldots}

603 \newcommand{\OHContPgHdrTag} {\theSBSongCnt\ --- \theSongTitle, continued\ldots}

604 \newcommand{\SBBridgeTag} {Bridge:}

605 \newcommand{\SBChorusTag} {Ch:}

606 \newcommand{\SBContinueTag} {cont\ldots}

607 \newcommand{\SBEndTag} {End:}

608 \newcommand{\SBIntersyllableRule}{\hrulefill}

609 \newcommand{\SBIntroTag} {Intro:}

610 \newcommand{\SBPubDom} {Public Domain}

611 \newcommand{\SBUnknownTag} {Unknown}

612 \newcommand{\SBWAndMTag} {W\&M:}

613 \newcommand{\Songbook} {\textrm{Song$\flat$ook}}

614

Internal Song Variables Declare song attribute variables.
These variables are intended for consumption within the songbook style itself,

so they will not be documented in the High Level Documentation section, above.

\theSongComposer \theSongComposer is the composer and lyricist of the last song.

\theSongKey \theSongKey is the key of the last song. This variable must be reset within the
\STitle command, as well as at the start of the song environment, because of the
way in which extra keys are handled.

\theSongLicense \theSongLicense is the copyright license info.

\theSongTitle \theSongTitle is the title of the last song.

\theCopyRtInfo \theCopyRtInfo is the copyright information of the last song. This includes the
copyright licensing information.

\theScriptureRef \theScriptureRef is the scripture reference of the last song.

\theXlatnBy \theXlatnBy is who translated the song.

\theXlatnPerm \theXlatnPerm is the permission details for the last song translation. This variable
is reset to an empty string at the start of each song environment.

43



\theXlatnTitle \theXlatnTitle is the title of the last song-translation. This variable is reset to
an empty string at the start of each song environment.

615 \newcommand{\theSongComposer}{the Composer}

616 \newcommand{\theSongCopyRt}{the Copyright}

617 \newcommand{\theSongKey}{the Key}

618 \newcommand{\theSongLicense}{the License}

619 \newcommand{\theSongScriptRef}{the Scripture}

620 \newcommand{\theSongTitle}{the Title}

621 \newcommand{\theXlatnBy}{the Translator}

622 \newcommand{\theXlatnPerm}{the Permission}

623 \newcommand{\theXlatnTitle}{the Translation Title}

624

14.8.2 Special Characters

Some macros to ease the entry of special characters in songbooks.
625 %%=======================================================%

626 %% S P E C I A L C H A R A C T E R S %

627 %%=======================================================%

628

\SBem \SBem — em-dash macro definition.
Parameters:

None.
Generate an em-dash within a songbook. This macro is used to place in em-

dash within text when we’re not in words-only mode. This allows us to place
dashes within text in order place a chord earlier than a sylable; yet, that dash
will not appear in the words-only book. The words-only version of this macro is
a no-op. Example of intended use:

629 \newcommand{\SBem}{\ifWordsOnly\relax\else---\fi}

630

\SBen \SBen — en-dash macro definition.
Parameters:

None.
Generate an en-dash within a songbook. This macro is used to place in en-dash

within text when we’re not in words-only mode; just like \SBem. The words-only
version of this macro is a no-op.

631 \newcommand{\SBen}{\ifWordsOnly\relax\else--\fi}

632

\SBContinueMark \SBContinueMark — conditionally produce a continuation symbol.
Parameters:

None.
If the contents of \rightmark will result in nothing being typeset, then don’t

output the continuation mark; otherwise, output a continuation mark using the
\SBContinueTag command.

633 \newcommand{\SBContinueMark}{%

634 \setbox0=\hbox{\rightmark}

635 \ifthenelse{\lengthtest{\wd0 = 0pt}}

636 {\relax}%

637 {\SBContinueTag}%

638 }

639

\OHContPgFtr \OHContPgFtr — macro to print page footing continuation headers on overheads.
Parameters:

None.

44



This macro must be manually inserted where needed. It is generally used in
conjunction with the \OHPageBrk and \OHPageHdr macros. \OHContPgFtr is a
no-op, except when \ifOverhead is true.

640 \newcommand{\OHContPgFtr}{%

641 \ifOverhead

642 \vskip .25in

643 \centerline{\SBOHContTagFont\OHContPgFtrTag}

644 \else%

645 \relax%

646 \fi}

\OHContPgHdr \OHContPgHdr — macro to print page heading continuation headers on overheads.
Parameters:

None.
This macro must be manually inserted where needed. It is generally used in

conjunction with the \OHPageBrk macro. \OHContPgHdr is a no-op, except when
\ifOverhead is true.

647 \newcommand{\OHContPgHdr}{%

648 \ifOverhead

649 \centerline{\SBOHContTagFont\OHContPgHdrTag}

650 \vskip .25in

651 \else%

652 \relax%

653 \fi}

654

14.8.3 Table Of Contents & Indices

The macros used to create the Key Index, the Title & First Line Index, and
the Table Of Contents. Planned enhancements are the addition of a Scripture
Index and a Artist Index ; i.e., an index of the \ScriptRef{} and \WandM{} entries,
respectively.

Most of the specific code involved in managing the index files and writing the
entries was copied from latex.tex (version 2.09) and then modified to suit our
purposes here.

655 %%=======================================================%

656 %% T A B L E O F C O N T E N T S %

657 %% %

658 %% A N D I N D I C E S %

659 %%=======================================================%

\makeKeyIndex \makeKeyIndex starts the creation of an index of songs by key.
Parameters:

None.
660 \def\makeKeyIndex{\if@filesw \newwrite\@keyIndexfile

661 \immediate\openout\@keyIndexfile=\jobname.kIdx

662 \def\keyIndex{\@bsphack\begingroup

663 \def\protect####1{\string####1\space}\@sanitize

664 \@wrKeyIndex}\typeout

665 {Writing index file \jobname.kIdx }\fi}

666

\keyIndex \keyIndex[〈1 〉][〈2 〉] makes an entry in the index of songs by key.
Parameters:
〈1 〉 Song key and title.
〈2 〉 Song number.

667 \def\@wrKeyIndex#1#2{\let\thepage\relax

668 \xdef\@gtempa{\write\@keyIndexfile{\string

669 \indexentry{#1}{#2}}}\endgroup\@gtempa

670 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

671

672 \def\keyIndex{\@bsphack\begingroup \@sanitize\@keyIndex}

45



673

674 \def\@keyIndex#1#2{\endgroup\@esphack}

675

\makeTitleIndex \makeTitleIndex starts creation of a title & first line index.
Parameters:

None.
676 \def\makeTitleIndex{\if@filesw \newwrite\@titleIndexfile

677 \immediate\openout\@titleIndexfile=\jobname.tIdx

678 \def\titleIndex{\@bsphack\begingroup

679 \def\protect####1{\string####1\space}\@sanitize

680 \@wrTitleIndex}\typeout

681 {Writing index file \jobname.tIdx }\fi}

682

\titleIndex \titleIndex[〈1 〉][〈2 〉] makes an entry in the title & first line index.
Parameters:
〈1 〉 Song title or first line.
〈2 〉 Song number.

683 \def\@wrTitleIndex#1#2{\let\thepage\relax

684 \xdef\@gtempa{\write\@titleIndexfile{\string

685 \indexentry{#1}{#2}}}\endgroup\@gtempa

686 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

687

688 \def\titleIndex{\@bsphack\begingroup \@sanitize\@titleIndex}

689

690 \def\@titleIndex#1#2{\endgroup\@esphack}

691

\makeTitleContents \makeTitleContents starts creation of a table of contents.
Parameters:

None.
692 \def\makeTitleContents{\if@filesw \newwrite\@titleContentsfile

693 \immediate\openout\@titleContentsfile=\jobname.toc

694 \def\titleContents{\@bsphack\begingroup

695 \def\protect####1{\string####1\space}\@sanitize

696 \@wrTitleContents}\typeout

697 {Writing table of contents file \jobname.toc }\fi}

698

\titleContents \titleContents[〈1 〉][〈2 〉] makes an entry in the table of contents file.
Parameters:
〈1 〉 Song number.
〈2 〉 Song title.

699 \def\@wrTitleContents#1#2{\let\thepage\relax

700 \xdef\@gtempa{\write\@titleContentsfile{\string

701 \item\ \theSBSongCnt. #1\protect\hbox{, \thepage}}}\endgroup\@gtempa

702 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

703

704 \def\titleContents{\@bsphack\begingroup \@sanitize\@titleContents}

705

706 \def\@titleContents#1#2{\endgroup\@esphack}

707

\SBtocSEntry \SBtocSEntry is the macro that encloses each skipped song TOC entry. The
intent is that when you format your skipped TOC list you redefine \SBtocSEntry
appropriately (assuming you are not happy with the default value).

Parameters:
〈1 〉 Song number.
〈2 〉 Song title.
〈3 〉 Page number.

708 \newcommand{\SBtocSEntry}[3]{#1. \textit{#2}\hbox{, #3}}

709

46



\makeTitleContentsSkip \makeTitleContentsSkip starts creation of a table of contents of songs excluded
from the songbook.

Parameters:
None.

710 \def\makeTitleContentsSkip{\if@filesw \newwrite\@titleContentsSkipfile

711 \immediate\openout\@titleContentsSkipfile=\jobname.tocS

712 \def\titleContentsSkip{\@bsphack\begingroup

713 \def\protect####1{\string####1\space}\@sanitize

714 \@wrTitleContentsSkip}\typeout

715 {Writing table of contents (skipped) file \jobname.tocS }\fi}

716

\titleContentsSkip \titleContentsSkip[〈1 〉][〈2 〉] makes an entry in the table of contents file.
Parameters:
〈1 〉 Song number.
〈2 〉 Song title.

717 \def\@wrTitleContentsSkip#1#2{\let\thepage\relax

718 \xdef\@gtempa{\write\@titleContentsSkipfile{\string

719 \item\ \protect\SBtocSEntry{\theSBSongCnt}{#1}{\thepage}}}\endgroup\@gtempa

720 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

721

722 \def\titleContentsSkip{\@bsphack\begingroup \@sanitize\@titleContentsSkip}

723

724 \def\@titleContentsSkip#1#2{\endgroup\@esphack}

725

\FLineIdx \FLineIdx[〈1 〉] adds a first line of song entry to the song & title index file (.idx).
Parameters:
〈1 〉 First line of song.

726 \newcommand{\FLineIdx}[1]{\titleIndex{#1@{\it #1\/}}{\theSBSongCnt}}

727

14.8.4 Some Other Hooks

The macros have been provided to allow the user additional control of songbooks
created by the Song[ook package.

728 %%=======================================================%

729 %% S O M E O T H E R H O O K S %

730 %%=======================================================%

731

\SBChorusMarkright The \SBChorusMarkright[〈1 〉] hook to allow \SBSection’s \markright to be
overridden.

732 \newcommand{\SBChorusMarkright}[1]{\markright{#1}}

733

\SBVerseMarkright The \SBVerseMarkright[〈1 〉] hook to allow \SBVerse’s \markright to be over-
ridden.

734 \newcommand{\SBVerseMarkright}[1]{\markright{#1}}

735

\SBSectionMarkright The \SBSectionMarkright[〈1 〉] hook to allow \SBSection’s \markright to be
overridden.

736 \newcommand{\SBSectionMarkright}[1]{\markright{\alph{#1}}}

737

\SongMarkboth The \SongMarkboth[〈1 〉][〈2 〉] hook to allow the song environment’s \markboth
to be overridden.

738 \newcommand{\SongMarkboth}[2]{\markboth{#1}{#2}}

739

\STitleMarkboth The \STitleMarkboth[〈1 〉][〈2 〉] hook to allow \Stitle’s \markboth to be over-
ridden.

740 \newcommand{\STitleMarkboth}[2]{\markboth{#1}{#2}}

741

47



14.8.5 Miscellaneous Macros

This section contains a few miscellaneous macros used by the main macros that
then follow.

742 %%=======================================================%

743 %% M I S C E L L A N E O U S M A C R O S %

744 %%=======================================================%

745

\CpyRt The \CpyRt[〈1 〉][〈2 〉][〈3 〉] copyright info. macro definition.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Copyright information.
〈3 〉 Copyright licensing information.

This command is not usually explicitly used in a songbook. It is called by the
song environment and will normally only be used there.

The first parameter to this macro is optional and is used to surpress the cen-
tering of the Scripture reference (i.e., if the parameter is specified, and that value
is not ‘Y’ then the center environment will not be created around the reference.

746 \newcommand{\CpyRt}[3][Y]{%

747 \if#1Y\begin{center}\fi

748 \if\blank{#2}%

749 \if\blank{#3}%

750 {\CpyRtFont\copyright \SBUnknownTag{} \CpyRtInfoFont}%

751 \else

752 {\CpyRtFont\copyright \SBUnknownTag{} \CpyRtInfoFont #3}%

753 \fi%

754 \else%

755 \ifthenelse{\equal{#2}{\SBPubDom}}

756 {%then

757 {\CpyRtFont #2 \CpyRtInfoFont #3}%

758 }{%else

759 {\CpyRtFont\copyright #2 \CpyRtInfoFont #3}%

760 }%fi

761 \fi%

762 \if#1Y\end{center}\fi

763 }

764

\ScriptRef The \ScriptRef[〈1 〉][〈2 〉] macro indicates a scripture reference.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Address of scripture reference for the song.

Used to indicate a scripture reference for the song. May either be the scripture
being quoted in the song, or a scripture which supports the theology presented in
the song.

The first parameter to this macro is optional and is used to surpress the cen-
tering of the Scripture reference (i.e., if the parameter is specified, and that value
is not ‘Y’ then the center environment will not be created around the reference.

765 \newcommand{\ScriptRef}[2][Y]{%

766 \if#1Y\begin{center}\fi

767 {\ScriptRefFont #2}%

768 \if#1Y\end{center}\fi

769 }

770

\WAndM The \WAndM[〈1 〉][〈2 〉] macro indicates Words and Music authorship.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Name(s) of the composer and lyricist.

This command is not usually explicitly used in a songbook. It is called by the
song environment and will normally only be used there.

48



The first parameter to this macro is optional and is used to surpress the cen-
tering of the composer & lyricist (i.e., if the parameter is specified, and that value
is not ‘Y’ then the center environment will not be created around the composer &
lyricist.

771 \newcommand{\WAndM}[2][Y]{%

772 \if#1Y\begin{center}\fi

773 \if\blank{#2}%

774 {\WandMFont\SBWAndMTag ~\SBUnknownTag}%

775 \else

776 {\WandMFont\SBWAndMTag ~#2}%

777 \fi

778 \if#1Y\end{center}\fi

779 }

780

\sbSetsbBaselineSkipAmt \sbSetsbBaselineSkipAmt sets the \sbBaselineSkipAmt length.
Parameters:

None.
This command is only used internally within the songbook style. It is invoked

just prior to any use of the sbBaselineSkipAmt length and it calculated the proper
value based upon all the fonts chosen at that particular moment in time. It does
this by creating an \hbox{} that contains one letter with a chord overtop of it;
the height and depth of that \hbox{} added together then become the baseline
skip.

781 \newcommand{\sbSetsbBaselineSkipAmt}{

782 \ifChordBk%

783 \setbox0=\hbox{\strut\raise\SBChordRaise\hbox{\ChFont\sbChord{}A\relax\strut}A}%

784 \setlength{\sbBaselineSkipAmt}{\ht0 + \dp0}%

785 \else%

786 \setlength{\sbBaselineSkipAmt}{\baselineskip}%

787 \fi%

788 }

789

14.8.6 Primary Songbook Macros

The macros in this section comprise those most often used by Song[ook users.
790 %%=======================================================%

791 %% P R I M A R Y S O N G B O O K M A C R O S %

792 %%=======================================================%

793

\STitle \STitle[〈1 〉][〈2 〉][〈3 〉] is the song title macro.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Song’s title.
〈3 〉 Song’s Key.

Before printing the title we reset the \SBVerseCnt and \SBSectionCnt coun-
ters back to zero. This is for songs which are printed in more than one key, because
the verse count always begins at “1.” for each key.

The first parameter to this macro is optional and is used to surpress the cen-
tering of the title (i.e., if the parameter is specified, and that value is not ‘Y’ then
the center environment will not be created around the title.

This macro also makes an entry in the key index file; except in the case where
a song is not being included, in which case no entry is made.

794 \newcommand{\STitle}[3][Y]{%

795 \setcounter{SBVerseCnt}{0}%

796 \setcounter{SBSectionCnt}{0}%

797 \ifExcludeSong\relax%

798 \else\keyIndex{{\protect\sbChord#3\protect\relax} -- #2}{\theSBSongCnt}\fi%

799 \vspace{\SpaceAboveSTitle}%

800 \if#1Y\begin{center}\fi

49



801 {\STitleNumberFont\theSBSongCnt}{\STitleFont\ --- #2}%

802 \ifWordsOnly\relax\else{\STitleKeyFont\ [{\sbChord#3\relax}]}\fi%

803 \if#1Y\end{center}\fi

804 \STitleMarkboth{#2}{\relax}%

805 }

806

song song[〈1 〉]. . . [〈7 〉] is the environment within which a song is entered.
Parameters:
〈1 〉 Include song in book? (optional)
〈2 〉 Title of song.
〈3 〉 Key song is written in.
〈4 〉 Copyright information.
〈5 〉 Name(s) of composer and lyricist.
〈6 〉 Scripture reference for the song.
〈7 〉 Copyright licensing information.

The song environment encapsulates a song, including multiple appearances for
multiple keys and translations. We increment the song counter and then cause
the title and other parameter information to be displayed.

Include Song In Book? (optional) The first parameter is optional and its
default value is “Y”. For simplicity this description refers to the field as 〈Include? 〉.
When the value of 〈Include? 〉 is “Y” then all processing is done normally. If the
value of 〈Include? 〉 is (not “Y”) then:

• the songcounter is incremented;

• a TOC index entry is written to a skipped-entry files, with each entry brack-
etted by some extra code (compared to the non-skipped-entry files);

• consider making 〈Include? 〉 look for several values to allow exclusions/inclusions
to only happen for certain types of songbooks.

The skipped-entry TOC file is named *.tocS. The purpose of creating a sepa-
rate file is twofold: (1) to allow normal songbook processing to simply omit these
not-included files; (2) to allow the skipped entries to be easily added back into
the TOC processing process through simple appending of the files to the standard
TOC file.

807 \newenvironment{song}[7][Y]{ % Comment markers to negate

808 \if#1Y\ExcludeSongfalse\else\ExcludeSongtrue\fi% the newline.

809 \ifPrintAllSongs\ExcludeSongfalse\fi %

810 \SongMarkboth{\relax}{\relax} %

811 \SBinSongEnvtrue %

812 \renewcommand{\SBinSongEnv}{\True} %

813 \ifWordsOnly %

814 \setlength{\parindent}{0pt} %

815 \fi %

Store each of the parameters in a macro to make them easily accessible later.
This isn’t as useful as it should be due to my inability to properly detect in the
title block macros whether or not the parameter is nil or blank when one of these
\the macros is passed instead of the native parameter itself.

We clear the translation macros now, since the xlatn environment is only valid
inside a song environment, and we are now declaring a new song.

816 \renewcommand{\theSongComposer}{#5} %

817 \renewcommand{\theSongCopyRt}{#4} %

818 \renewcommand{\theSongKey}{#3} %

819 \renewcommand{\theSongLicense}{#7} %

820 \renewcommand{\theSongScriptRef}{#6} %

821 \renewcommand{\theSongTitle}{#2} %

822 \renewcommand{\theXlatnBy}{} %

50



823 \renewcommand{\theXlatnPerm}{} %

824 \renewcommand{\theXlatnTitle}{} %

825 %

826 \addtocounter{SBSongCnt}{1} %

827 %

Write table of contents and index entries in reponse to the user’s 〈Include? 〉
directive.

828 \ifExcludeSong %

829 \titleContentsSkip{\theSongTitle}{\theSongKey}%

830 \else %

831 \titleIndex{\theSongTitle}{\theSBSongCnt} %

832 \titleContents{\theSongTitle}{\theSongKey} %

833 \fi %

Now we deal with the user’s 〈Include? 〉 directive. If 〈Include? 〉 is “Y” then we
will cause normal songbook processing to occur; otherwise we’ll simply insert a
\relax macro. I have implemented this feature using a memory hungry method:
when excluding a song, put the lyrics into box2 and then discard it without using it.
Although Mark Wooding suggested using this method, he also provided a pointer
to a more robust method: using the sverb package that is part of ’mdwtools’
collection (specifically, the \ignoreenv{} command).

834 \ifExcludeSong\setbox2=\vbox\bgroup\fi%

Try to keep the song title and all its contents on the same page; if that is what
is desired.

835 \ifSamepageMode%

836 \begin{samepage}%

837 \fi%

Whereever you see a parameter used directly, and not the parameter macro
just set, above, it is because I haven’t figured out how the receiving macro can
deal with accepting its input via a macro (and not via the native parameter). In
general this is because the receiving macro is attempting to detect and empty or
blank parameter.

The second parameter is used directly here when \STitle is invoked (instead
of \theSongKey), because I can’t figure out how to cause the sharp and flat sub-
stitution to occur within the context of the \renewcommand statement, above.

838 \begin{center}

839 \STitle[N]{\theSongTitle}{#3}\\

840 \vspace{-.5ex}

841 \CpyRt[N]{#4}{#7}\\

842 \vspace{-.5ex}

843 \WAndM[N]{#5}\\

844 \if\given{#6}%

845 \vspace{-.75ex}

846 \ScriptRef[N]{\theSongScriptRef}\\

847 \fi%

848 \end{center}%

849 \vspace{\SpaceAfterTitleBlk}

If we’re in compactsong mode then put us into multicols{2} mode.
850 \ifCompactSongMode

851 \begin{multicols*}{2}

852 \raggedcolumns

853 \fi

854 \SBDefaultFont%

855 }%

This brings the song environment’s open clause to a close.
The close clause now starts. We begin by closing out the SamepageMode and

CompactSongMode environments, as applicable.
856 {\ifSamepageMode%

857 \end{samepage}%

858 \fi%

51



859 \ifCompactSongMode

860 \end{multicols*}

861 \fi

862 \ifSongEject%

863 \vfill\pagebreak%

864 \else%

865 \SpaceAfterSong\pagebreak[1]%

866 \fi%

Here’s where we close out the 〈Include? 〉 if-then-else. Note that we immedi-
ately clear box2 before proceding (an attempt to free up the memory we’ve just
consumed).

867 \ifExcludeSong\egroup\setbox2=\hbox{}\fi%

868 \renewcommand{\SBinSongEnv}{\False}%

869 \SBinSongEnvfalse%

870 }

871

\CBExcl

\OHExcl

\WBExcl

\WOExcl

The \CBExcl, \OHExcl, \WBExcl, and \WOExcl macros exist to be passed as pa-
rameters to the song environment’s 〈Include? 〉 parameter. The parameters cause
the song to be excluded when processing the particular Song[ook type:

CBExcl Exclude the song when in chordk mode

OHExcl Exclude the song when in overhead mode

WBExcl Exclude the song when in wordbk mode

WOExcl Exclude the song when in either wordbk or overhead mode

Here’s an example usage which shows a song to be excluded when in chordbk
mode:

\documentclass{book}

\usepackage[chordbk]{songbook}

\begin{document}

\begin{song}[\CBExcl]{title}{}{}{}{}{}

some lyrics

\end{song}

\end{document}

872 \newcommand{\CBExcl}{\ifChordBk N\else Y\fi}

873 \newcommand{\OHExcl}{\ifOverhead N\else Y\fi}

874 \newcommand{\WBExcl}{\ifWordBk N\else Y\fi}

875 \newcommand{\WOExcl}{\ifWordsOnly N\else Y\fi}

xlatn xlatn[〈1 〉][〈2 〉][〈3 〉] is the song-translation environment.
Parameters:
〈1 〉 Title of the translated song.
〈2 〉 Translation permission.
〈3 〉 Who performed the translation.

The xlatn environment always occurs within a song environment. We reset the
verse counter then cause the title and other parameter information to be displayed.

876 \newenvironment{xlatn}[3]{% Comment marker negates the newline.

877 \renewcommand{\theXlatnBy}{#3}%

878 \renewcommand{\theXlatnPerm}{#2}%

879 \renewcommand{\theXlatnTitle}{#1}%

880 %

881 \titleIndex{\theXlatnTitle}{\theSBSongCnt}%

882 \titleContents{\theXlatnTitle}{\theSongKey}%

883 %

884 \begin{center}

885 \STitle[N]{\theXlatnTitle}{\theSongKey}\\

886 \CpyRt[N]{\theSongCopyRt}{\theSongLicense}\\

887 \if\nil{#2}%

52



888 \relax%

889 \else%

890 \vspace{-.5ex}

891 {\CpyRtFont\theXlatnPerm}\\

892 \fi

893 \if\nil{#3}%

894 \relax%

895 \else%

896 \vspace{-.5ex}

897 {\CpyRtFont\theXlatnBy}\\

898 \fi

899 \end{center}%

900 %

901 \setcounter{SBVerseCnt}{0}%

902 \setcounter{SBSectionCnt}{0}%

903 }{\relax}

904

\sbChord \sbChord changes a sequence of characters into a chord.
Parameters:
〈1 〉 Chord.

The original version of this function was written by Philip Hirschhorn
<psh@math.mit.edu> or <phirschhorn@lucy.wellesley.edu>.

Scan the sequence of characters in Chord. Replace ‘#’ characters with ]’s and
‘b’ characters with [. This produces more realistic looking chord symbols (which
also take up less space than their phoney counterparts). We also look for ‘/’
characters, and insert a \ChBassFont command into the stream when a ‘/’ is
found. This makes the bass note of the chord to appear in a smaller font.

905 \def\sbChord#1{%

906 \ifx#1\relax%

907 \let\next=\relax%

908 \else%

909 \ifx#1##% double sharp because we’re inside a \def

910 $\sharp$%

911 \else%

912 \ifx#1b%

913 $\flat$%

914 \else%

915 \ifx#1/%

916 \ChBassFont /%

917 \else%

918 \ifx#1[%

919 \bgroup\ChBkFont [\egroup%

920 \else%

921 \ifx#1]%

922 \bgroup\ChBkFont ]\egroup%

923 \else%

924 #1%

925 \fi%

926 \fi%

927 \fi%

928 \fi%

929 \fi%

930 \let\next=\sbChord%

931 \fi%

932 \next%

933 }

934

\Ch

\ChX

\Chr

\Ch[〈1 〉][〈2 〉] is the chord over lyrics macro.
\ChX is the Chord over lyrics macro, but deleting trailing spaces.
\Chr is the Chord over lyrics macro, but inserting a rule, when necessary.

Parameters:
〈1 〉 Chord.
〈2 〉 Syllable that chord is to be left justified over.

53



The words-only style file turns off the chord generation and just prints the
second parameter.

The \ChX version of this macro is used for the benefit of the words-only style
to ensure that spaces following the macro are removed. For example, an interword
space containing a couple of extra chords would be written as (this is not usually
necessary, but sometimes there is no other way to elliminate spurious white space
from a words-only songbook):

\ChX{D7}{ing} \ChX{E}{} \ChX{D}{} \Ch{A}{You}

The \Chr version of this macro inserts a rule, at the height specified by the
\SBRuleRaiseAmount macro, when the chord is wider than the syllable. The
default value creates an extended em-dash-like rule; a value of 0pt creates an
underbar-like rule. More details about the \Chr command follow below, just
preceeding its definition.

This code is based on macros from Olivier Biot’s (http://www.biot.yucom.be/)
chord.sty file. Changes made by me:

• removed annoying space between \SBIntersyllableRules when they butt
up against one another

• changed the default \ChordRaise value to something closer to what my
previous version of the \Ch command used to set

• renamed the commands: \@ to \Ch, and \@@ to \Chr

• renamed the variables used to adjust \Ch’s behaviour, to ensure no conflict
exists with Olivier’s macro.

935 \newcommand{\Ch}[2]{{%

936 \ifChordBk%

937 \setbox1=\hbox{\ChFont\sbChord#1\relax\strut}%

938 \setbox0=\hbox{#2}%

939 \ifdim\wd1<\wd0%

940 \strut\raise\SBChordRaise\copy1\kern-\wd1\copy0%

941 \else%

942 \strut\copy0\kern-\wd0\strut\raise\SBChordRaise\copy1%

943 \fi%

944 \else%

945 #2%

946 \fi}}

947

The \ChX code.
948 \newcommand{\ChX}[2]{%

949 \ifWordsOnly%

950 \if\nil{#2}%

951 \ignorespaces%

952 \else%

953 #2%

954 \fi%

955 \else%

956 \Ch{#1}{#2}%

957 \fi}

958

The \Chr code and a detailed macro description & definition.
We start with some internal scratch variables. Any value they have prior to

\Chr’s execution will be discarded each time.
959 \newlength{\chCriticDim}

960 \newlength{\chSpaceDim}

DEF\Chr#1#2

BEGIN

\box1 == \hbox{... #1 --> Chord ...}

54



\box0 == \hbox{... #2 --> Syllable ...}

\chCriticDim == \wd0 - \chSpaceTolerance - 2 \chMiniSpace

IFF \wd1 > \chCriticDim

\chCriticDim == \wd1 - \wd0 - \chSpaceTolerance - 2 \chMiniSpace

IFF \chCriticDim > 0mm

\chSpaceDim == \wd1 - \wd0 + \chSpaceTolerance

ELSE

\chSpaceDim == \chSpaceTolerance

FFI

\chCriticDim == \chSpaceDim - 2 \chSpaceTolerance

\raise \SBChordRaise \copy1 \kern - \wd1

IFF \wd0 == 0mm

\kern - 2 \chMiniSpace

FFI

\copy0

\hbox to \chCriticDim{\hss\raise\SBRuleRaiseAmount

\hbox to \chSpaceDim{\SBIntersyllableRule}\hss}

ELSE

\raise \SBChordRaise \copy1 \kern - \wd1 \copy0

FFI

END

961 \newcommand{\Chr}[2]{{%

962 \ifChordBk

963 \setbox1=\hbox{\ChFont\sbChord#1\relax\strut}%

964 \setbox0=\hbox{#2}%

965 \setlength{\chCriticDim}{\wd0 - \chSpaceTolerance}%

966 \advance\chCriticDim by 2\chMiniSpace%

967 \ifdim\wd1>\chCriticDim%

968 \chCriticDim \wd1%

969 \advance\chCriticDim by -\wd0%

970 \advance\chCriticDim by -\chSpaceTolerance%

971 \advance\chCriticDim by -2\chMiniSpace%

972 \ifdim\chCriticDim>0mm%

973 \chSpaceDim \wd1%

974 \advance\chSpaceDim by -\wd0%

975 \advance\chSpaceDim by \chSpaceTolerance%

976 \else%

977 \chSpaceDim\chSpaceTolerance%

978 \fi%

979 \chCriticDim \chSpaceDim%

980 \advance\chCriticDim by 2\chMiniSpace%

981 \strut\raise\SBChordRaise\copy1\kern-\wd1\ifdim\wd0=0mm\kern-2\chMiniSpace\fi%

982 \copy0\hbox to\chCriticDim{\hss%

983 \raise\SBRuleRaiseAmount\hbox to\chSpaceDim{\SBIntersyllableRule}\hss}%

984 \else%

985 \strut\raise\SBChordRaise\copy1\kern-\wd1%

986 \copy0%

987 \fi%

988 \else%

989 #2%

990 \fi}%

991 }

992

\SBMargNote \SBMargNote[〈1 〉] creates a Song[ook marginal note.
Parameters:
〈1 〉 Text of note to place in margin.

Used to place a note of some kind in the margin of a songbook, or within a
footnote when in CompactSong mode. In words-only mode this macro is a no-op.

If we are excluding a song then we have \SBMargNote take no action. We do
this to be sure that no footnotes are generated, and to prevent the error that will
occur from attempting to use the \marginpar command within a \vbox{}.

993 \newcommand{\SBMargNote}[1]{%

994 \ifExcludeSong%

995 \relax%

996 \else\ifWordsOnly%

997 \relax%

55



998 \else\ifCompactSongMode%

999 \footnote{{\SBMargNoteFont{#1}}}%

1000 \else%

1001 \marginpar{{\begin{flushleft}\SBRefFont{#1}\end{flushleft}}}%

1002 \fi\fi\fi}

1003

\SBRef \SBRef creates a song reference in the margin.
Parameters:
〈1 〉 Songbook/CD/tape name.
〈2 〉 Page/Song number within book referenced by 〈1 〉, or tape/CD pub-
lisher info.

Used to indicate a source for the full SATB music for this song, or what
CD/cassette the song can be found on. In words-only mode this macro is a no-op.
This normally appears in the margin of the songbook, but in CompactSong mode
the information appears in a footnote that is always numbered ‘0’ (even if there
is more than one reference in a song.

If we are excluding a song then we have \SBRef take no action. We do this to
be sure that no footnotes are generated, and to prevent the error that will occur
from attempting to use the \marginpar command within a \vbox{}.

1004 \newcommand{\SBRef}[2]{%

1005 \ifExcludeSong%

1006 \relax%

1007 \else\ifWordsOnly%

1008 \relax%

1009 \else\ifCompactSongMode%

1010 \footnotetext[0]{{\SBRefFont{\em #1}, {#2}.}}%

1011 \else%

1012 \marginpar{{\begin{flushleft}\SBRefFont{\em #1}, {#2}.\end{flushleft}}}%

1013 \fi\fi\fi}

1014

SBVerse

SBVerse*

The SBVerse and SBVerse* environments encapsulate a verse.
Parameters:

None.
Very much like LATEX’s verse environment, except that here the verses are

numbered. The indent amount for lines that are too long is set with the \HangAmt
command (see the constant definitions at the top of this document).

A version of this command which indents but down not place an \SBVerseCnt
before the chorus is available as SBVerse*. Similar to LATEX’s \section* com-
mand, the verse counter is not incremented either.

1015 \newenvironment{SBVerse}{%

1016 \sbSetsbBaselineSkipAmt%

1017 \bgroup%

1018 \addtocounter{SBVerseCnt}{1}%

1019 \SBVerseMarkright{\theSBVerseCnt}%

1020 \begin{list}{{\SBVerseNumberFont\theSBVerseCnt .}}

1021 {\setlength {\leftmargin} {\LeftMarginSBVerse + \HangAmt}

1022 \setlength{\itemindent} {-\HangAmt}

1023 \setlength{\listparindent}{-\HangAmt}

1024 \setlength{\parsep} {0pt}

1025 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1026 }%

1027 \item}

1028 {\end{list}%

1029 \egroup%

1030 \SpaceAfterVerse}

1031

The SBVerse* code. Coding of this environment courtesy of Herbert Martin
Dietze <herbert@fh-wedel.de>.

1032 \newenvironment{SBVerse*}{%

1033 \sbSetsbBaselineSkipAmt%

1034 \bgroup%

56



1035 \begin{list}{{\SBVerseNumberFont }}

1036 {\setlength {\leftmargin} {\LeftMarginSBVerse + \HangAmt}

1037 \setlength{\itemindent} {-\HangAmt}

1038 \setlength{\listparindent}{-\HangAmt}

1039 \setlength{\parsep} {0pt}

1040 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1041 }%

1042 \item}

1043 {\end{list}%

1044 \egroup%

1045 \SpaceAfterVerse}

1046

SBSection

SBSection*

The SBSection and SBSection* environments encapsulate a section.
Parameters:

None.
Very much like LATEX’s verse environment, except that here the sections are

numbered. The indent amount for lines that are too long is set with the \HangAmt
command (see the constant definitions at the top of this file).

A version of this command which indents but doesn’t place an \SBSectionCnt
before the chorus is available as SBSection*. Similar to LATEX’s \section* com-
mand, the section counter is not incremented either.

1047 \newenvironment{SBSection}{%

1048 \sbSetsbBaselineSkipAmt%

1049 \bgroup%

1050 \addtocounter{SBSectionCnt}{1}%

1051 \SBSectionMarkright{SBSectionCnt}

1052 \begin{list}{{\SBSectionNumberFont\alph{SBSectionCnt})}}

1053 {\setlength {\leftmargin} {\LeftMarginSBSection + \HangAmt}

1054 \setlength{\itemindent} {-\HangAmt}

1055 \setlength{\listparindent}{-\HangAmt}

1056 \setlength{\parsep} {0pt}

1057 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1058 }%

1059 \item}

1060 {\end{list}%

1061 \egroup%

1062 \SpaceAfterSection}

1063

The SBSection* code. Coding of this environment courtesy of Herbert Martin
Dietze <herbert@fh-wedel.de>.

1064 \newenvironment{SBSection*}{%

1065 \sbSetsbBaselineSkipAmt%

1066 \bgroup%

1067 \begin{list}{{\SBSectionNumberFont }}

1068 {\setlength {\leftmargin} {\LeftMarginSBSection + \HangAmt}

1069 \setlength{\itemindent} {-\HangAmt}

1070 \setlength{\listparindent}{-\HangAmt}

1071 \setlength{\parsep} {0pt}

1072 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1073 }%

1074 \item}

1075 {\end{list}%

1076 \egroup%

1077 \SpaceAfterSection}

1078

\SBChorus

\SBChorus*

The SBChorus and SBChorus* environments encapsulate a chorus.
Parameters:

None.
Very much like LATEX’s verse environment, except that here a \SBChorusTag

tag is inserted to demark the start of the chorus. The indent amount for lines that
are too long is set with the \HangAmt command (see the constant definitions at
the top of this file).

57



A version of this command which indents but does not place a \SBChorusTag
before the chorus is available as SBChorus*.

1079 \newenvironment{SBChorus}{%

1080 \sbSetsbBaselineSkipAmt%

1081 \bgroup%

1082 \SBChorusMarkright{\SBChorusTag}

1083 \begin{list}{{\SBChorusTagFont\SBChorusTag}}

1084 {\setlength {\leftmargin} {\LeftMarginSBChorus + \HangAmt}

1085 \setlength{\itemindent} {-\HangAmt}

1086 \setlength{\listparindent}{-\HangAmt}

1087 \setlength{\parsep} {0pt}

1088 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1089 }%

1090 \item}

1091 {\end{list}%

1092 \egroup%

1093 \SpaceAfterChorus%

1094 }

1095

The SBChorus* code. Coding of this environment courtesy of Herbert Martin
Dietze <herbert@fh-wedel.de>.

1096 \newenvironment{SBChorus*}{%

1097 \sbSetsbBaselineSkipAmt%

1098 \bgroup%

1099 \begin{list}{{\SBChorusTagFont }}

1100 {\setlength {\leftmargin} {\LeftMarginSBChorus + \HangAmt}

1101 \setlength{\itemindent} {-\HangAmt}

1102 \setlength{\listparindent}{-\HangAmt}

1103 \setlength{\parsep} {0pt}

1104 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1105 }%

1106 \item}

1107 {\end{list}%

1108 \egroup%

1109 \SpaceAfterChorus}

1110

\SBOpGroup \SBOpGroup identifies an open chorus/verse.
Parameters:

None.
This environment is akin to SBChorus, except that no tag and no indentation

is performed. This environment serves two purposes:

1. Identify a verse or chorus that is unmarked (by way of a tag) and the left
margin of the block is not indented.

2. Puts the verse or chorus in a list environment so that wrapping lines are
properly indented.

1111 \newenvironment{SBOpGroup}{%

1112 \sbSetsbBaselineSkipAmt%

1113 \bgroup%

1114 \begin{list}{\hbox{}}

1115 {\setlength {\leftmargin} {\HangAmt}

1116 \setlength{\itemindent} {-\HangAmt}

1117 \setlength{\listparindent}{-\HangAmt}

1118 \setlength{\topsep} {0pt}

1119 \setlength{\parsep} {0pt}

1120 \setlength{\labelwidth} {0pt}

1121 \setlength{\labelsep} {0pt}

1122 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1123 }%

1124 \item}

1125 {\end{list}%

1126 \egroup%

1127 \SpaceAfterOpGroup}

1128

58



\SBBridge \SBBridge[〈1 〉] identifies a bridge.
Parameters:
〈1 〉 The Bridge.

This command is used to encapsulate a bridge that occurs in a song. In words-
only mode this command is a no-op.

1129 \newcommand{\SBBridge}[1]{%

1130 \ifWordsOnly%

1131 \relax%

1132 \else%

1133 \sbSetsbBaselineSkipAmt%

1134 \bgroup%

1135 \begin{list}{{\SBBridgeTagFont\SBBridgeTag}}

1136 {\setlength {\leftmargin} {\LeftMarginSBChorus}%

1137 \setlength{\parsep} {0pt}

1138 \setlength{\baselineskip}{\sbBaselineSkipAmt}

1139 }%

1140 \item #1

1141 \end{list}%

1142 \egroup\par

1143 \fi}

1144

\SBEnd \SBEnd[〈1 〉][〈2 〉] identifies a song ending.
Parameters:
〈1 〉 Display in words-only? (optional)
〈2 〉 The Ending.

This command is used to encapsulate the ending of a song. If the first param-
eter is not specified, or if it is ‘N’, then in words-only mode this command is a
no-op.

1145 \newcommand{\SBEnd}[2][N]{%

1146 \ifthenelse{\equal{\ifWordsOnly Y\fi}{Y}

1147 \and \equal{N}{#1}}%

1148 {\relax}%

1149 {\sbSetsbBaselineSkipAmt%

1150 \bgroup%

1151 \begin{list}{{\SBEndTagFont\SBEndTag}}

1152 {\setlength {\leftmargin} {\LeftMarginSBChorus}

1153 \setlength{\parsep} {0pt}

1154 \setlength{\baselineskip}{\sbBaselineSkipAmt}

1155 }%

1156 \item #2

1157 \end{list}%

1158 \egroup\par}

1159 }

1160

\SBIntro \SBIntro[〈1 〉][〈2 〉] identifiesd an introduction.
Parameters:
〈1 〉 Display in words-only? (optional)
〈2 〉 The Introduction.

This command is used to encapsulate an introduction to a song. If the first
parameter is not specified, or if it is ‘N’, then in words-only mode this command
is a no-op.

1161 \newcommand{\SBIntro}[2][N]{%

1162 \ifthenelse{\equal{\ifWordsOnly Y\fi}{Y}

1163 \and \equal{N}{#1}}%

1164 {\relax}%

1165 {\sbSetsbBaselineSkipAmt%

1166 \bgroup%

1167 \begin{list}{{\SBIntroTagFont\SBIntroTag}}%

1168 {\setlength {\leftmargin} {\LeftMarginSBChorus}%

1169 \setlength{\parsep} {0pt}

1170 \setlength{\baselineskip}{\sbBaselineSkipAmt}

1171 }%

59



1172 \item #2

1173 \vspace{-\topsep}%\vspace{-\partopsep}%

1174 \end{list}%

1175 \egroup\par}%

1176 }

1177

SBBracket

SBBracket*

The SBBracket[〈1 〉] and SBBracket[〈1 〉] environments encapsulates a bracketed
versicle.

Parameters:
〈1 〉 Some tag is inserted before the bracket to indicate the significance of
the bracketed area.

There are two versions of this environment: SBBracket and SBBracket*. They
operate identically, except that the *ed version doesn’t print its tag and bracket
in words-only modes.

This is a more versatile, and better formatted version of SBBridge, SBOccurs,
etc.; and it is recommended that this be used in the others place.

Starting in version 4.0 of the style, the left-hand indentation of this envi-
ronment has been chosen such that the SBVerse, SBChorus, and SBBracket song-
words all align against the same left margin when printing standard words & chords
songbooks.

1178 \newenvironment{SBBracket}[1]{%

1179 \SpaceBeforeSBBracket

1180 \sbSetsbBaselineSkipAmt%

1181 \setbox0=\hbox to \LeftMarginSBBracket{\parbox{\LeftMarginSBBracket}%

1182 {\flushright{\hspace{0pt}\SBBracketTagFont #1}}}%

1183 \hbox\bgroup%

1184 \rightskip=\LeftMarginSBBracket%

1185 $\raisebox{1.25ex}{\copy0}%

1186 \left\lbrack%

1187 \vcenter\bgroup%

1188 \begin{list}{\hbox{}}% %

1189 {\setlength {\leftmargin} {\HangAmt + 0.5em}% This list

1190 \setlength{\rightmargin} {\LeftMarginSBBracket}%

1191 \setlength{\itemindent} {-\HangAmt}% % been copied

1192 \setlength{\listparindent}{-\HangAmt}% % verbatim from

1193 \setlength{\topsep} {0pt}% % the SBOpGroup

1194 \setlength{\parsep} {0pt}% % environment,

1195 \setlength{\labelwidth} {0pt}% % above and then

1196 \setlength{\labelsep} {0pt}% % modified slightly.

1197 \setlength{\baselineskip} {\sbBaselineSkipAmt}%

1198 }% %

1199 \item%

1200 }{%

1201 \end{list}%

1202 \egroup%

1203 \right.$%

1204 \rightskip=0pt

1205 \egroup

1206 \SpaceAfterSBBracket

1207 }

1208

The SBBracket* code.
1209 \newenvironment{SBBracket*}[1]{%

1210 \SpaceBeforeSBBracket

1211 \sbSetsbBaselineSkipAmt%

1212 \ifNotWordsOnly

1213 \setbox0=\hbox to \LeftMarginSBBracket{\parbox{\LeftMarginSBBracket}%

1214 {\flushright{\hspace{0pt}\SBBracketTagFont #1}}}%

1215 \hbox\bgroup%

1216 \rightskip=\LeftMarginSBBracket%

1217 $\raisebox{1.25ex}{\copy0}%

1218 \left\lbrack%

1219 \vcenter\bgroup%

1220 \fi

1221 \begin{list}{\hbox{}}% %

60



1222 {\setlength {\leftmargin} {\HangAmt + 0.5em}% This list

1223 \setlength{\rightmargin} {\LeftMarginSBBracket}%

1224 \setlength{\itemindent} {-\HangAmt}% % been copied

1225 \setlength{\listparindent}{-\HangAmt}% % verbatim from

1226 \setlength{\topsep} {0pt}% % the SBOpGroup

1227 \setlength{\parsep} {0pt}% % environment,

1228 \setlength{\labelwidth} {0pt}% % above and then

1229 \setlength{\labelsep} {0pt}% % modified slightly.

1230 \setlength{\baselineskip} {\sbBaselineSkipAmt}%

1231 }% %

1232 \item%

1233 }{%

1234 \end{list}%

1235 \ifNotWordsOnly

1236 \egroup%

1237 \right.$%

1238 \rightskip=0pt

1239 \egroup

1240 \fi

1241 \SpaceAfterSBBracket

1242 }

1243

SBOccurs The SBOccurs[〈1 〉] environment encapsulates an occurance.
Parameters:
〈1 〉 Occurance number(s). For example “1,3” would designate that this
passage applies to the 1st and 3rd occurances.

1244 \newenvironment{SBOccurs}[1]{%

1245 {\SBOccursTagFont #1\SBOccursBrktFont [}

1246 }

1247 {{\SBOccursBrktFont ]}}

1248

SBExtraKeys The SBExtraKeys[〈1 〉] environment encapsulates extra song keys.
Parameters:
〈1 〉 This parameter actually is used to either pass or not pass all the
content of the environment on to the LATEXprocessor.

Songs are frequently listed in more than one key. This is ok for books with
chords, however the words-only edition should only print one occurance of a song.
So, any extra keys are placed in a SBExtraKey environment. This allows them to
be shut off when they’re not needed.

This was coded some years ago and I probably wouldn’t do it this way again;
however, it works so I’m not inclined to better it.

1249 \newenvironment{SBExtraKeys}[1]{%

1250 \ifWordsOnly%

1251 \relax%

1252 \else%

1253 #1

1254 \fi}

1255 {}

1256

\CBPageBrk \CBPageBrk[〈1 〉] generates a page break here if we’re in Chordbk mode.
Parameters:
〈1 〉 Take effect in CompactSong mode too? (optional)

When we’re also in CompactSong mode we will only execute the page break if
a parameter other than ‘N’ has been passed.

1257 \newcommand{\CBPageBrk}[1][N]{%

1258 \ifChordBk%

1259 \ifCompactSongMode

1260 \ifthenelse{\equal{#1}{N}}

1261 {\relax}

1262 {\vfill\pagebreak}

1263 \else

61



1264 \vfill\pagebreak

1265 \fi

1266 \fi}

1267

\CSColBrk \CSColBrk generates a column break here if we’re in compactsong mode.
Parameters:

None.
1268 \newcommand{\CSColBrk}{%

1269 \ifCompactSongMode%

1270 \columnbreak%

1271 \fi}

1272

\NotWOPageBrk \NotWOPageBrk generates a page break here if we’re not in words-only mode.
Parameters:

None.
1273 \newcommand{\NotWOPageBrk}{%

1274 \ifWordsOnly%

1275 \relax%

1276 \else%

1277 \pagebreak

1278 \fi}

1279

\OHPageBrk \OHPageBrk generates a page break here if we’re in overhead mode.
Parameters:

None.
1280 \newcommand{\OHPageBrk}{%

1281 \ifOverhead%

1282 \pagebreak

1283 \fi}

1284

\WBPageBrk \WBPageBrk generates a page break here if we’re in workbk mode.
Parameters:

None.
1285 \newcommand{\WBPageBrk}{%

1286 \ifWordBk%

1287 \pagebreak

1288 \fi}

1289

\WOPageBrk \WOPageBrk generates a page break here if we’re in words-only mode.
Parameters:

None.
1290 \newcommand{\WOPageBrk}{%

1291 \ifWordsOnly%

1292 \pagebreak

1293 \fi}

1294

14.8.7 Obsolete Macros

The macros in this section are no longer recommended, but will continue to exist
in the next version of the style. Existing users of this style should upgrade their
source files to make use of the new, replacement, mechanisms offered by the style.

1295 %%=======================================================%

1296 %% O B S O L E T E M A C R O S %

1297 %%=======================================================%

1298

There are no obsolete macros in this release.

62



14.8.8 Deprecated Macros

The macros in this section will be deleted in the next version of the style. Where
these old macros conflict with new ones they have been renamed by placing a
lowercase ‘o’ at the start of each macro name; this makes them easily accessible
yet out of the way.

1299 %%=======================================================%

1300 %% D E P R E C A T E D M A C R O S %

1301 %%=======================================================%

1302

Boolean Contants In the early releases, before I knew about LATEX’s \newif
command I had coded \ifs using these contants. These should have been removed
some time ago, but I had neglected placing them into this Deprecated Macros
section and so hadn’t given proper notice. Consider this notice.

\False

\True

\ChordBk

\Overhead

\SongEject

\WordBk

\WordsOnly

\SBinSongEnv

\False is defined for use in \if macro contructs and the other constants in this
style.
\True is defined for use in \if macro contructs and the other constants in this
style.
\ChordBk tells if we are processing a chordbk.sty document.
\Overhead tells if we are processing an overhead.sty document.
\SongEject specifies if we want to end the current page at the end of every song
environment. A value of \True means eject after every song environment.
\WordBk tells if we are processing a wordbk.sty document
\WordsOnly is equal to \True if we’re in words-only mode. The default value will
be \False, as that is how all of the commands in this file will act.
\SBinSongEnv tells if we are inside of a song environment. This is re-defined as
we enter and exit the song environment.

1303 \newcommand{\False}{0}

1304 \newcommand{\True}{1}

1305 \newcommand{\ChordBk}{\False}

1306 \newcommand{\Overhead}{\False}

1307 \newcommand{\SongEject}{\True}

1308 \newcommand{\WordBk}{\False}

1309 \newcommand{\WordsOnly}{\False}

1310 \newcommand{\SBinSongEnv}{\False}

1311

End of songbook.sty file.
1312 \endinput

1313

63


