
An environment for multicolumn output∗†

Frank Mittelbach
Email: see top of the source file

Printed October 3, 2004

Abstract

This article describes the use and the implementation of the multicols environment. This environment
allows switching between one and multicolumn format on the same page. Footnotes are handled correctly
(for the most part), but will be placed at the bottom of the page and not under each column. LATEX’s float
mechanism, however, is partly disabled in the current implementation. At the moment only page-wide
floats (i.e., star-forms) can be used within the scope of the environment.

Preface to version 1.5 + 1.6

The 1.5 release contains two
major changes: multicols will
now support up to 10 columns
and two more tuning possibilities
have been added to the balancing
routine. The balancing routine

now checks the badness of the re-
sulting columns and rejects solu-
tions that are larger than a cer-
tain treshold. At the same time
multicols has been upgraded to
run under LATEX2ε.

Later changes to 1.5 include
\columnbreak and multicols*.

For version 1.6 micro-spacing
around the boxes produced by
multicols has been improved to al-
low for baseline-grid typesetting.

1 Introduction

Switching between two column
and one column layout is pos-
sible in LATEX, but every use
of \twocolumn or \onecolumn
starts a new page. More-
over, the last page of two
column output isn’t balanced
and this often results in an
empty, or nearly empty, right col-
umn. When I started to write
macros for doc.sty (see “The
doc–Option”, TUGboat volume

10 #2, pp. 245–273) I thought
that it would be nice to place
the index on the same page as
the bibliography. And balanc-
ing the last page would not only
look better, it also would save
space; provided of course that
it is also possible to start the
next article on the same page.
Rewriting the index environment
was comparatively easy, but the
next goal, designing an environ-

ment which takes care of foot-
notes, floats etc., was a harder
task. It took me a whole week-
end1 to get together the few lines
of code below and there is still a
good chance that I missed some-
thing after all.

Try it and, hopefully, enjoy it;
and please direct bug reports and
suggestions back to Mainz.

∗This file has version number v1.6e, last revised 2004/02/14.
†Note: This package is released under terms which affect its use in commercial applications. Please see the details at the

top of the source file.
1I started with the algorithm given in the TEXbook on page 417. Without this help a weekend would not have been

enough. (This remark was made in the documentation of the initial release, since then several hundreds more hours went into
it improving the original code.)

1

2 The User Interface

To use the environment one sim-
ply says

\begin{multicols}{〈number〉}
〈multicolumn text〉

\end{multicols}

where 〈number〉 is the required
number of columns and 〈multi-
column text〉 may contain arbi-
trary LATEX commands, except
that floats and marginpars are
not allowed in the current imple-
mentation2.

As its first action, the multicols
environment measures the cur-
rent page to determine whether
there is enough room for some
portion of multicolumn out-
put. This is controlled by the
〈dimen〉 variable \premulticols
which can be changed by the
user with ordinary LATEX com-
mands. If the space is less than
\premulticols, a new page is
started. Otherwise, a \vskip of
\multicolsep is added.3

When the end of the mul-
ticols environment is encoun-
tered, an analogous mechanism
is employed, but now we test
whether there is a space larger
than \postmulticols available.
Again we add \multicolsep or
start a new page.

It is often convenient to spread
some text over all columns, just
before the multicolumn output,
without any page break in be-
tween. To achieve this the multi-
cols environment has an optional
second argument which can be
used for this purpose. For exam-
ple, the text you are now reading
was started with

\begin{multicols}{3}

[\section{The User

Interface}] ...

If such text is unusually

long (or short) the value of
\premulticols might need ad-
justing to prevent a bad page
break. We therefore provide a
third argument which can be
used to overwrite the default
value of \premulticols just for
this occasion. So if you want
to combine some longer single
column text with a multicols en-
vironment you could write

\begin{multicols}{3}

[\section{Index}

This index contains ...]

[6cm]

...

The space between columns is
controlled by the length param-
eter \columnsep. The width
for the individual columns is
automatically calculated from
this parameter and the current
\linewidth. In this article a
value of 18.0pt was used.

Separation of columns with
vertical rules is achieved
by setting the parameter
\columnseprule to some posi-
tive value. In this article a value
of .4pt was used.

Since narrow columns tend
to need adjustments in in-
terline spacing we also pro-
vide a 〈skip〉 parameter called
\multicolbaselineskip which
is added to the \baselineskip
parameter inside the multicols en-
vironment. Please use this pa-
rameter with care or leave it
alone; it is intended only for
package file designers since even
small changes might produce to-
tally unexpected changes to your
document.

2.1 Balancing columns

Besides the previously mentioned
parameters, some others are pro-
vided to influence the layout of
the columns generated.

Paragraphing in TEX is con-
trolled by several parameters.
One of the most important is
called \tolerance: this controls
the allowed ‘looseness’ (i.e. the
amount of blank space between
words). Its default value is 200
(the LATEX \fussy) which is too
small for narrow columns. On the
other hand the \sloppy declara-
tion (which sets \tolerance to
10000 = ∞) is too large, allow-
ing really bad spacing.4

We therefore use a
\multicoltolerance parameter
for the \tolerance value inside
the multicols environment. Its
default value is 9999 which
is less than infinity but ‘bad’
enough for most paragraphs
in a multicolumn environment.
Changing its value should be
done outside the multicols envi-
ronment. Since \tolerance is
set to \multicoltolerance at
the beginning of every multicols
environment one can locally
overwrite this default by as-
signing \tolerance = 〈desired
value〉. There also exists a
\multicolpretolerance pa-
rameter holding the value
for \pretolerance within a
multicols environment. Both
parameters are usually used only
by package designers.

Generation of multicolumn
output can be divided into two
parts. In the first part we are
collecting material for a page,
shipping it out, collecting mate-
rial for the next page, and so on.

2This is dictated by lack of time. To implement floats one has to reimplement the whole LATEX output routine.
3Actually the added space may be less because we use \addvspace (see the LATEX manual for further information about this

command).
4Look at the next paragraph, it was set with the \sloppy declaration.

2

As a second step, balancing will
be done when the end of the mul-
ticols environment is reached. In
the first step TEX might consider
more material whilst finding the
final columns than it actually
use when shipping out the page.
This might cause a problem if
a footnote is encountered in the
part of the input considered, but
not used, on the current page. In
this case the footnote might show
up on the current page, while the
footnotemark corresponding to
this footnote might be set on the
next one.5 Therefore the multi-
cols environment gives a warning
message6 whenever it is unable
to use all the material considered
so far.

If you don’t use footnotes too
often the chances of something
actually going wrong are very
slim, but if this happens you can
help TEX by using a \pagebreak
command in the final document.
Another way to influence the be-
havior of TEX in this respect
is given by the counter variable
‘collectmore’. If you use the
\setcounter declaration to set
this counter to 〈number〉, TEX
will consider 〈number〉 more (or
less) lines before making its fi-
nal decision. So a value of −1
may solve all your problems at
the cost of slightly less optimal
columns.

In the second step (balanc-
ing columns) we have other bells
and whistles. First of all you
can say \raggedcolumns if you
don’t want the bottom lines to
be aligned. The default is
\flushcolumns, so TEX will nor-
mally try to make both the
top and bottom baselines of all
columns align.

Additionally you can set
another counter, the ‘unbal-
ance’ counter, to some positive
〈number〉. This will make all but
the right-most column 〈number〉
of lines longer than they would
normally have been. ‘Lines’ in
this context refer to normal text
lines (i.e. one \baselineskip
apart); thus, if your columns
contain displays, for example,
you may need a higher 〈number〉
to shift something from one col-
umn into another.

Unlike ‘collectmore,’ the ‘unbal-
ance’ counter is reset to zero at
the end of the environment so it
only applies to one multicols en-
vironment.

The two methods may be com-
bined but I suggest using these
features only when fine tuning
important publications.

Two more general tuning pos-
sibilities were added with ver-
sion 1.5. TEX allows to mea-
sure the badness of a column in
terms of an integer value, where
0 means optimal and any higher
value means a certain amount
of extra white space. 10000 is
considered to be infinitely bad
(TEX does not distinguish any
further). In addition the special
value 100000 means overfull (i.e.,
the column contains more text
than could possibly fit into it).

The new release now measures
every generated column and ig-
nores solutions where at least
one column has a badness be-
ing larger than the value of the
counter columnbadness. The de-
fault value for this counter is
10000, thus TEX will accept all
solutions except those being over-
full. By setting the counter to a
smaller value you can force the
algorithm to search for solutions
that do not have columns with a

lot of white space.
However, if the setting is too

low, the algorithm may not find
any acceptable solution at all and
will then finally choose the ex-
treme solution of placing all text
into the first column.

Often, when colunms are bal-
anced, it is impossible to find a
solution that distributes the text
evenly over all columns. If that
is the case the last column usu-
ally has less text than the oth-
ers. In the earlier releases this
text was stretched to produce a
column with the same height as
all others, sometimes resulting in
really ugly looking columns.

In the new release this stretch-
ing is only done if the badness
of the final column is not larger
than the value of the counter fi-
nalcolumnbadness. The default
setting is 9999, thus preventing
the stretching for all columns
that TEX would consider in-
finitely bad. In that case the fi-
nal column is allowed to run short
which gives a much better result.

And there are two more
parameters of some exper-
imental nature, one called
\multicolovershoot the other
\multicolundershoot. They
control the amount of space a
column is allowed to be “too full”
or “too short” without affecting
the column badness. They are
set to 0pt and 2pt, respectively.

2.2 Not balancing the
columns

Although this package was writ-
ten to solve the problem of bal-
ancing columns, I got repeated
requests to provide a version
where all white space is auto-
matically placed in the last col-
umn or columns. Since version

5The reason behind this behavior is the asynchronous character of the TEX page builder. However, this could be avoided
by defining very complicated output routines which don’t use TEX primitives like \insert but do everything by hand. This is
clearly beyond the scope of a weekend problem.

6This message will be generated even if there are no footnotes in this part of the text.

3

v1.5q this now exists: if you
use multicols* instead of the
usual environment the columns
on the last page are not balanced.
Of course, this environment only
works on top-level, e.g., inside a
box one has to balance to deter-
mine a column height in absense
of a fixed value.

2.3 Manually breaking
columns

Another request often voiced
was: “How to I tell LATEX that
it should break the first column
after this particular line?”. The
\pagebreak command (which
works with the two-column op-
tion of LATEX) is of no use here
since it would end the collection
phase of multicols and thus all
columns on that page. So with
version 1.5u the \columnbreak
command was added. If used
within a paragraph it marks the
end of the current line as the de-
sired breakpoint. You can ob-
serve its effect on the previous
page where three lines of text
have been artifically forced into
the second column (resulting in
some white space between para-
graphs in the first column).

2.4 Floats inside a mul-
ticols environment

Within the multicols environment
the usual star float commands
are available but their function is
somewhat different as in the two-
column mode of standard LATEX.
Stared floats, e.g., figure*, de-
note page wide floats that are
handled in a similar fashion as
normal floats outside the multi-
cols environment. However, they
will never show up on the page
where they are encountered. In
other words, one can influence
their placement by specifying a
combination of t, b, and/or p
in their optional argument, but

h doesn’t work because the first
possible place is the top of the
next page. One should also note,
that this means that their place-
ment behavior is determined by
the values of \topfraction, etc.
rather then by \dbl....

2.5 Warnings

Under certain circumstances the
use of the multicols environment
may result in some warnings from
TEX or LATEX. Here is a list of the
important ones and the possible
cause:

Underfull \hbox (badness
...)

As the columns are often very
narrow TEX wasn’t able to find
a good way to break the para-
graph. Underfull denotes a loose
line but as long the badness val-
ues is below 10000 the result is
probably acceptable.

Underfull \vbox ... while
\output is active

If a column contains an charac-
ter with an unusual depth, for
example a ‘(’, in the bottom line
then this message may show up.
It usually has no significance as
long as the value is not more
than a few points.

LaTeX Warning: I moved
some lines to the next
page

As mentioned above, multicols
sometimes screws up the foot-
note numbering. As a pre-
caution, whenever there is a
footnote on a page that where
multicols had to leave a re-
mainder for the following page
this warning appears. Check
the footnote numbering on this
page. If it turns out that it
is wrong you have to manually
break the page using \newpage
or \pagebreak[..].

Floats and marginpars not
allowed inside ‘multicols’
environment!

This message appears if you try
to use the \marginpar com-
mand or an unstared version of
the figure or table environment.
Such floats will disappear!

Very deep columns! Grid
alignment might be broken

This message can only appear if
the option grid was chosen. In
that case it will show up if a col-
umn has a very large depth so
that multicols is unable to back
up to its baseline. This is only
relevant if one tries to produce
a document where all text lines
are aligned at an invisible grid,
something that requires careful
adjustment of many parameters
and macros, e.g., heading defini-
tions.

2.6 Tracing the output

To understand the reasoning be-
hind the decisions TEX makes
when processing a multicols envi-
ronment, a tracing mechanism is
provided. If you set the counter
‘tracingmulticols’ to a positive
〈number〉 you then will get some
tracing information on the termi-
nal and in the transcript file:

〈number〉 = 1. TEX will now
tell you, whenever it enters
or leaves a multicols environ-
ment, the number of columns it
is working on and its decision
about starting a new page be-
fore or after the environment.

〈number〉 = 2. In this case
you also get information from
the balancing routine: the
heights tried for the left and
right-most columns, informa-
tion about shrinking if the
\raggedcolumns declaration is
in force and the value of the
‘unbalance’ counter if positive.

4

〈number〉 = 3. Setting
〈number〉 to this value will ad-
ditionally trace the mark han-
dling algorithm. It will show
what marks are found, what
marks are considered, etc. To
fully understand this informa-
tion you will probably have to

read carefully trough the imple-
mentation.

〈number〉 ≥ 4. Setting
〈number〉 to such a high value
will additionally place an
\hrule into your output, sep-
arating the part of text which

had already been considered
on the previous page from the
rest. Clearly this setting should
not be used for the final out-
put. It will also activate even
more debugging code for mark
handling.

3 Prefaces to older versions

3.1 Preface to version 1.4

Beside fixing some bugs as men-
tioned in the multicol.bug file this
new release enhances the multi-
cols environment by allowing for
balancing in arbitrary contexts.
It is now, for example, possible
to balance text within a multicols
or a minipage as shown in 2 where
a multicols environment within a
quote environment was used. It
is now even possible to nest mul-
ticols environments.

The only restriction to such
inner multicols environments
(nested, or within TEX’s internal
vertical mode) is that such vari-

ants will produce a box with the
balanced material in it, so that
they can not be broken across
pages or columns.

Additionally I rewrote the al-
gorithm for balancing so that it
will now produce slightly better
results.

I updated the source documen-
tation but like to apologize in ad-
vance for some ‘left over’ parts
that slipped through the revision.

A note to people who like
to improve the balancing algo-
rithm of multicols: The balanc-
ing routine in now placed into

a single macro which is called
\balance@columns. This means
that one can easily try different
balancing routines by rewriting
this macro. The interface for it
is explained in table 1. There
are several improvements possi-
ble, one can think of integrating
the \badness function of TEX3,
define a faster algorithm for find-
ing the right column height, etc.
If somebody thinks he/she has an
enhancement I would be pleased
to learn about it. But please obey
the copyright notice and don’t
change multicol.dtx directly!

3.2 Preface to version 1.2

After the article about the mul-
ticols environment was published
in TUGboat 10#3, I got numer-
ous requests for these macros.
However, I also got a changed
version of my style file, together
with a letter asking me if I would
include the changes to get better
paragraphing results in the case
of narrow lines. The main dif-
ferences to my original style op-
tion were additional parameters
(like \multicoladjdemerits to
be used for \adjdemerits, etc.)
which would influence the line
breaking algorithm.

But actually resetting such pa-
rameters to zero or even worse to
a negative value won’t give bet-
ter line breaks inside the multicols
environment. TEXs line break-

ing algorithm will only look at
those possible line breaks which
can be reached without a badness
higher than the current value of
\tolerance (or \pretolerance
in the first pass). If this isn’t pos-
sible, then, as a last resort, TEX
will produce overfull boxes. All
those (and only those) possible
break points will be considered
and finally the sequence which re-
sults in the fewest demerits will
be chosen. This means that a
value of −1000 for \adjdemerits
instructs TEX to prefer visibly in-
compatible lines instead of pro-
ducing better line breaks.

However, with TEX 3.0 it is
possible to get decent line breaks
even in small columns by setting
\emergencystretch to an appro-

priate value. I implemented a
version which is capable of run-
ning both in the old and the new
TEX (actually it will simply ig-
nore the new feature if it is not
available). The calculation of
\emergencystretch is probably
incorrect. I made a few tests but
of course one has have much more
experience with the new possi-
bilities to achieve the maximum
quality.

Version 1.1a had a nice ‘fea-
ture’: the penalty for using
the forbidden floats was their
ultimate removal from LATEXs
\@freelist so that after a few
\marginpars inside the multi-
cols environment floats where dis-
abled forever. (Thanks to Chris
Rowley for pointing this out.) I

5

The macro \balance@columns that contains
the code for balancing gathered material is a
macro without parameters. It assumes that
the material for balancing is stored in the box
\mult@box which is a \vbox. It also “knows”
about all parameters set up by the multicols
environment, like \col@number, etc. It can
also assume that \@colroom is the still avail-
able space on the current page.
When it finishes it must return the individ-
ual columns in boxes suitable for further pro-
cessing with \page@sofar. This means that
the left column should be stored in box reg-

ister \mult@gfirstbox, the next in register
\mult@firstbox + 2, . . . , only the last one
as an exception in register \mult@grightbox.
Furthermore it has to set up two the macros
\kept@firstmark and \kept@botmark to hold
the values for the first and bottom mark as
found in the individual columns. There are
some helper functions defined in section 5.1
which may be used for this. Getting the marks
right “by hand” is non-trivial and it may pay
off to first take a look at the documentation
and implementation of \balance@columns be-
low before trying anew.

Table 1: Interface description for \balance@columns

\setemergencystretch: This is a hook for people
who like to play around. It is supposed to set the
\emergencystretch 〈dimen〉 register provided in
the new TEX 3.0. The first argument is the num-
ber of columns and the second one is the current
\hsize. At the moment the default definition is

4pt × #1, i.e. the \hsize isn’t used at all. But
maybe there are better formulae.

\set@floatcmds: This is the hook for the experts
who like to implement a full float mechanism for
the multicols environment. The @ in the name
should signal that this might not be easy.

Table 2: The new commands of multicol.sty version 1.2. Both commands might be removed if good solutions
to these open problems are found. I hope that these commands will prevent that nearly identical style files
derived from this one are floating around.

removed this misbehaviour and
at the same time decided to al-
low at least floats spanning all
columns, e.g., generated by the
figure* environment. You can
see the new functionality in ta-
ble 2 which was inserted at this
very point. However single col-
umn floats are still forbidden and

I don’t think I will have time to
tackle this problem in the near fu-
ture. As an advice for all who
want to try: wait for TEX 3.0.
It has a few features which will
make life much easier in multi-
column surroundings. Neverthe-
less we are working here at the
edge of TEXs capabilities, really

perfect solutions would need a
different approach than it was
done in TEXs page builder.

The text below is nearly un-
changed, I only added documen-
tation at places where new code
was added.

4 The Implementation

We are now switching to two-column output to show the abilities of this environment (and bad layout
decisions).

4.1 The documentation driver file

The next bit of code contains the documentation
driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be
extracted from this file by the docstrip program.
Since this is the first code in this file one can produce
the documentation simply by running LATEX on the
.dtx file.

1 〈∗driver〉
2 \documentclass{ltxdoc}

We use the balancingshow option when loading
multicols so that full tracing is produced. This has to
be done before the doc package is loaded, since doc
otherwise requires multicols without any options.

3 \usepackage{multicol}[1999/05/25]

6

4 \usepackage{doc}

First we set up the page layout suitable for this ar-
ticle.
5 \setlength{\textwidth}{39pc}

6 \setlength{\textheight}{54pc}

7 \setlength{\parindent}{1em}

8 \setlength{\parskip}{0pt plus 1pt}

9 \setlength{\oddsidemargin}{0pc}

10 \setlength{\marginparwidth}{0pc}

11 \setlength{\topmargin}{-2.5pc}

12 \setlength{\headsep}{20pt}

13 \setlength{\columnsep}{1.5pc}

We want a rule between columns.
14 \setlength\columnseprule{.4pt}

We also want to ensure that a new multicols envi-
ronment finds enough space at the bottom of the
page.
15 \setlength\premulticols{6\baselineskip}

When balancing columns we disregard solutions that
are too bad. Also, if the last column is too bad we
typeset it without stretch.
16 \setcounter{columnbadness}{7000}

17 \setcounter{finalcolumnbadness}{7000}

The index is supposed to come out in four columns.
And we don’t show macro names in the margin.
18 \setcounter{IndexColumns}{4}

19 \let\DescribeMacro\SpecialUsageIndex

20 \let\DescribeEnv\SpecialEnvIndex

21 \renewcommand\PrintMacroName[1]{}

22 \CodelineIndex

23 %\DisableCrossrefs % Partial index

24 \RecordChanges % Change log

Line numbers are very small for this article.
25 \renewcommand{\theCodelineNo}

26 {\scriptsize\rm\arabic{CodelineNo}}

27 \settowidth\MacroIndent{\scriptsize\rm 00\ }

28

29 \begin{document}

30 \typeout

31 {**

32 ^^J* Expect some Under- and overfull boxes.

33 ^^J**}

34 \DocInput{multicol.dtx}

35 \end{document}

36 〈/driver〉

4.2 Identification and option processing

We start by identifying the package. Since it makes
use of features only available in LATEX2ε we ensure
that this format is available. (Now this is done ear-
lier in the file.)
37 〈∗package〉
38 % \NeedsTeXFormat{LaTeX2e}

39 % \ProvidesPackage{multicol}[..../../..

40 % v... multicolum formatting]

Next we declare options supported by multicols.
Twocolumn mode and multicols do not work to-
gether so we warn about possible problems. How-
ever, since you can revert to \onecolumn in which
case multicols does work, we don’t make this an er-
ror.
41 \DeclareOption{twocolumn}

42 {\PackageWarning{multicol}{May not work

43 with the twocolumn option}}

Tracing is done using a counter. However it is also
possible to invoke the tracing using the options de-

clared below.

44 \newcount\c@tracingmulticols

45 \DeclareOption{errorshow}

46 {\c@tracingmulticols\z@}

47 \DeclareOption{infoshow}

48 {\c@tracingmulticols\@ne}

49 \DeclareOption{balancingshow}

50 {\c@tracingmulticols\tw@}

51 \DeclareOption{markshow}

52 {\c@tracingmulticols\thr@@}

53 \DeclareOption{debugshow}

54 {\c@tracingmulticols5\relax}

The next option is intended for typesetting on a
\baselineskip grid. Right now it doesn’t do any-
thing other than warning if it thinks that the grid
got lost.

55 \let\mc@gridwarn\maxdimen

56 \DeclareOption{grid}{\def\mc@gridwarn{\maxdepth}}

57 \ProcessOptions

4.3 Starting and Ending the multicols Environment

As mentioned before, the multicols environment has
one mandatory argument (the number of columns)
and up to two optional ones. We start by reading
the number of columns into the \col@number regis-
ter.

58 \def\multicols#1{\col@number#1\relax

If the user forgot the argument, TEX will complain
about a missing number at this point. The error
recovery mechanism will then use zero, which isn’t
a good choice in this case. So we should now test

7

whether everything is okay. The minimum is two
columns at the moment.
59 \ifnum\col@number<\tw@

60 \PackageWarning{multicol}%

61 {Using ‘\number\col@number’

62 columns doesn’t seem a good idea.^^J

63 I therefore use two columns instead}%

64 \col@number\tw@ \fi

We have only enough box registers for ten columns,
so we need to check that the user hasn’t asked for
more.
65 \ifnum\col@number>10

66 \PackageError{multicol}%

67 {Too many columns}%

68 {Current implementation doesn’t

69 support more than 10 columns.%

70 \MessageBreak

71 I therefore use 10 columns instead}%

72 \col@number10 \fi

Within the environment we need a special version
of the kernel \@footnotetext command since the
original sets the the \hsize to \columnwidth which
is not correct in the multicol environment. Here
\columnwidth refers to the width of the individual
column and the footnote should be in \textwidth.
Since \@footnotetext has a different definition in-
side a minipage environment we do not redefine it
directly. Instead we locally set \columnwidth to
\textwidth and call the original (current) definition
stored in \orig@footnotetext. If the multicols
environment is nested inside another multicols envi-
ronment then the redefinition has already happened.
So be better test for this situation. Otherwise, we
will get a TEX stack overflow as this would generate
a self-referencing definition. .
73 \ifx\@footnotetext\mult@footnotetext\else

74 \let\orig@footnotetext\@footnotetext

75 \let\@footnotetext\mult@footnotetext

76 \fi

Now we can safely look for the optional arguments.
77 \@ifnextchar[\mult@cols{\mult@cols[]}}

78 \long\def\mult@footnotetext#1{\begingroup

79 \columnwidth\textwidth

80 \orig@footnotetext{#1}\endgroup}

The \mult@cols macro grabs the first optional ar-
gument (if any) and looks for the second one.
81 \def\mult@cols[#1]{\@ifnextchar[%

This argument should be a 〈dimen〉 denoting the
minimum free space needed on the current page to
start the environment. If the user didn’t supply one,
we use \premulticols as a default.

82 {\mult@@cols{#1}}%

83 {\mult@@cols{#1}[\premulticols]}}

After removing all arguments from the input we are
able to start with \mult@@cols.
84 \def\mult@@cols#1[#2]{%

First thing we do is to decide whether or not this is
an unbounded multicols environment, i.e. one that
may split across pages, or one that has to be typeset
into a box. If we are in TEX’s “inner” mode (e.g.,
inside a box already) then we have a boxed version
of multicols therefore we set the @boxedmulticols
switch to true. The multicols should start in vertical
mode. If we are not already there we now force it
with \par since otherwise the test for “inner” mode
wouldn’t show if we are in a box.
85 \par

86 \ifinner \@boxedmulticolstrue

Otherwise we check \doublecol@number. This
counter is zero outside a multicols environment but
positive inside (this happens a little later on). In
the second case we need to process the current mul-
ticols also in “boxed mode” and so change the switch
accordingly.
87 \else

88 \ifnum \doublecol@number>\z@

89 \@boxedmulticolstrue

90 \fi

91 \fi

Then we look to see if statistics are requested:
92 \mult@info\z@

93 {Starting environment with

94 \the\col@number\space columns%

In boxed mode we add some more info.
95 \if@boxedmulticols\MessageBreak

96 (boxed mode)\fi

97 }%

Then we measure the current page to see whether a
useful portion of the multicolumn environment can
be typeset. This routine might start a new page.
98 \enough@room{#2}%

Now we output the first argument and produce ver-
tical space above the columns. (Note that this ar-
gument corresponds to the first optional argument
of the multicols environment.) For many releases
this argument was typeset in a group to get a sim-
ilar effect as \twocolumn[..] where the argument
is also implicitly surrounded by braces. However,
this conflicts with local changes done by things like
sectioning commands (which account for the major-
ity of commands used in that argument) messing up
vertical spacing etc. later in the document so that

8

from version v1.5q on this argument is again typeset
at the outer level.
99 #1\par\addvspace\multicolsep

When the last line of a paragraph had a posi-
tive depth then this depth normally taken into ac-
count by the baselineskip calculation for the next
line. However, the columns produced by a following
multicol are rigid and thus the distance from the
baseline of a previous text line to the first line in
a multicol would differ depending on the depth of
the previous line. To account for this we add a nega-
tive space unless the depth is -1000pt which signals
something special to TEXand is not supposed to be
a real depth.

100 \ifdim \prevdepth = -\@m\p@

101 \else

The actual generation of this corrective space is a
little bit more complicated as it doesn’t make sense
to always back up to the previous baseline (in case
an object with a very large depth was placed there,
e.g., a centered tabular). So we only back up to the
extend that we are within the \baselineskip grid.
We know that the box produced by multicols has
\topskip at its top so that also needs to be taken
into account.

102 \@tempcnta\prevdepth

103 \@tempcntb\baselineskip

104 \divide\@tempcnta\@tempcntb

105 \advance\@tempcnta\@ne

106 \dimen@\prevdepth

107 \advance\dimen@ -\@tempcnta\baselineskip

108 \advance\dimen@ \topskip

109 \kern-\dimen@

110 \fi

We start a new grouping level to hide all subsequent
changes (done in \prepare@multicols for exam-
ple).

111 \begingroup

112 \prepare@multicols

If we are in boxed mode we now open a box to type-
set all material from the multicols body into it, oth-
erwise we simply go ahead.

113 \if@boxedmulticols

114 \setbox\mult@box\vbox\bgroup

We may have to reset some parameters at this point,
perhaps \@parboxrestore would be the right action
but I leave it for the moment.

115 \fi

We finish by suppressing initial spaces.
116 \ignorespaces}

Here is the switch and the box for “boxed” multicols
code.

117 \newif\if@boxedmulticols

118 \@boxedmulticolsfalse

119 \newbox\mult@box

The \enough@room macro used above isn’t perfect
but works reasonably well in this context. We mea-
sure the free space on the current page by subtract-
ing \pagetotal from \pagegoal. This isn’t en-
tirely correct since it doesn’t take the ‘shrinking’
(i.e. \pageshrink) into account. The ‘recent con-
tribution list’ might be nonempty so we start with
\par and an explicit \penalty.7 Actually, we use
\addpenalty to ensure that a following \addvspace
will ‘see’ the vertical space that might be present.
The use of \addpenalty will have the effect that all
items from the recent contributions will be moved
to the main vertical list and the \pagetotal value
will be updated correctly. However, the penalty will
be placed in front of any dangling glue item with
the result that the main vertical list may already
be overfull even if TEX is not invoking the output
routine.

120 \def\enough@room#1{%

Measuring makes only sense when we are not in
“boxed mode” so the routine does nothing if the
switch is true.

121 \if@boxedmulticols\else

122 \par

To empty the contribution list the first release con-
tained a penalty zero but this had the result that
\addvspace couldn’t detect preceding glue. So this
was changed to \addpenalty. But this turned out
to be not enough as \addpenalty will not add a
penalty when @nobreak is true. Therefore we force
this switch locally to false. As a result there may
be a break between preceding text and the start of
a multicols environment, but this seems acceptable
since there is the optional argument for exactly this
reason.

123 \bgroup\@nobreakfalse\addpenalty\z@\egroup

124 \page@free \pagegoal

125 \advance \page@free -\pagetotal

To be able to output the value we need to assign it
to a register first since it might be a register (de-
fault) in which case we need to use \the or it might
be a plain value in which case \the would be wrong.

126 \@tempskipa#1\relax

7See the documentation of \endmulticols for further details.

9

Now we test whether tracing information is required:
127 \mult@info\z@

128 {Current page:\MessageBreak

129 height=%

130 \the\pagegoal: used \the\pagetotal

131 \space -> free=\the\page@free

132 \MessageBreak

133 needed \the\@tempskipa

134 \space(for #1)}%

Our last action is to force a page break if there isn’t
enough room left.

135 \ifdim \page@free <#1\newpage \fi

136 \fi}

When preparing for multicolumn output several
things must be done.

137 \def\prepare@multicols{%

We start saving the current \@totalleftmargin
and then resetting the \parshape in case we are
inside some list environment. The correct inden-
tation for the multicols environment in such a case
will be produced by moving the result to the right
by \multicol@leftmargin later on. If we would
use the value of of \@totalleftmargin directly then
lists inside the multicols environment could cause a
shift of the output.

138 \multicol@leftmargin\@totalleftmargin

139 \@totalleftmargin\z@

140 \parshape\z@

We also set the register \doublecol@number for
later use. This register should contain 2 ×
\col@number. This is also an indicator that we are
within a multicols environment as mentioned above.

141 \doublecol@number\col@number

142 \multiply\doublecol@number\tw@

143 \advance\doublecol@number\mult@rightbox

144 \if@boxedmulticols

145 \let\l@kept@firstmark\kept@firstmark

146 \let\l@kept@botmark\kept@botmark

147 \global\let\kept@firstmark\@empty

148 \global\let\kept@botmark\@empty

149 \else

We add an empty box to the main vertical list to
ensure that we catch any insertions (held over or in-
serted at the top of the page). Otherwise it might
happen that the \eject is discarded without calling
the output routine. Inside the output routine we re-
move this box again. Again this code applies only
if we are on the main vertical list and not within
a box. However, it is not enough to turn off inter-
line spacing, we also have to clear \topskip before
adding this box, since \topskip is always inserted

before the first box on a page which would leave us
with an extra space of \topskip if multicols start on
a fresh sheet.

150 \nointerlineskip {\topskip\z@\null}%

151 \output{%

152 \global\setbox\partial@page\vbox

153 {%

Now we have to make sure that we catch one spe-
cial situation which may result in loss of text! If
the user has a huge amount of vertical material
within the first optional argument that is larger then
\premulticols and we are near the bottom of the
page then it can happen that not the \eject is
triggering this special output routine but rather the
overfull main vertical list. In that case we get an-
other breakpoint through the \eject penalty. As
a result this special output routine would be called
twice and the contents of \partial@page, i.e. the
material before the multicols environment gets lost.
There are several solutions to avoid this problem,
but for now we will simply detect this and inform the
user that he/she has to enlarge the \premulticols
by using a suitable value for the second argument.

154 〈∗check〉
155 \ifvoid\partial@page\else

156 \PackageError{multicol}%

157 {Error saving partial page}%

158 {The part of the page before

159 the multicols environment was

160 nearly full with^^Jthe result

161 that starting the environment

162 will produce an overfull

163 page. Some^^Jtext may be lost!

164 Please increase \premulticols

165 either generally or for this%

166 ^^Jenvironment by specifying a

167 suitable value in the second

168 optional argument to^^Jthe

169 multicols environment.}

170 \unvbox\partial@page

171 \box\last@line

172 \fi

173 〈/check〉
174 \unvbox\@cclv

175 \global\setbox\last@line\lastbox

176 }%

Finally we need to record the marks that are present
within the \partial@page so that we can construct
correct first and bottom marks later on. This is done
by the following code.

177 \prep@keptmarks

Finally we have to initialize \kept@topmark which
should ideally be initialized with the mark that is
current on “top” of this page. Unfortunately we

10

can’t use \topmark because this register will not al-
ways contain what its name promises because LATEX
sometimes calls the output routine for float manage-
ment.8 Therefore we use the second best solution by
initializing it with \firstmark. In fact, for our pur-
pose this doesn’t matter as we use \kept@topmark
only to initialize \firstmark and \botmark of a fol-
lowing page if we don’t find any marks on the current
one.

178 \global\let\kept@topmark\firstmark

179 }\eject

The next thing to do is to assign a new value to
\vsize. LATEX maintains the free room on the page
(i.e. the page height without the space for already
contributed floats) in the register \@colroom. We
must subtract the height of \partial@page to put
the actual free room into this variable.

180 \advance\@colroom-\ht\partial@page

Then we have to calulate the \vsize value to use
during column assembly. \set@mult@vsize takes
an argument which allows to make the setting local
(\relax) or global (\global). The latter variant is
used inside the output routine below. At this point
here we have to make a local change to \vsize be-
cause we want to get the original value for \vsize
restored in case this multicols environment ends on
the same page where it has started.

181 \set@mult@vsize\relax

Now we switch to a new \output routine which will
be used to put the gathered column material to-
gether.

182 \output{\multi@column@out}%

Finally we handle the footnote insertions. We have
to multiply the magnification factor and the extra
skip by the number of columns since each footnote
reduces the space for every column (remember that
we have pagewide footnotes). If, on the other hand,
footnotes are typeset at the very end of the docu-
ment, our scheme still works since \count\footins
is zero then, so it will not change. To allow even
further customization the setting of the \footins
parameters is done in a separate macro.

183 \init@mult@footins

For the same reason (pagewide footnotes), the
〈dimen〉 register controlling the maximum space
used for footnotes isn’t changed. Having done this,
we must reinsert all the footnotes which are already
present (i.e. those encountered when the material
saved in \partial@page was first processed). This
will reduce the free space (i.e. \pagetotal) by the

appropriate amount since we have changed the mag-
nification factor, etc. above.

184 \reinsert@footnotes

All the code above was only necessary for the un-
restricted multicols version, i.e. the one that allows
page breaks. If we are within a box there is no point
in setting up special output routines or \vsize, etc.

185 \fi

But now we are coming to code that is necessary
in all cases. We assign new values to \vbadness,
\hbadness and \tolerance since it’s rather hard
for TEX to produce ‘good’ paragraphs within nar-
row columns.

186 \vbadness\@Mi \hbadness5000

187 \tolerance\multicoltolerance

Since nearly always the first pass will fail we ignore
it completely telling TEX to hyphenate directly. In
fact, we now use another register to keep the value
for the multicol pre-tolerance, so that a designer may
allow to use \pretolerance.

188 \pretolerance\multicolpretolerance

For use with the new TEX we set
\emergencystretch to \col@number × 4pt. How-
ever this is only a guess so at the moment this is
done in a macro \setemergencystretch which gets
the current \hsize and the number of columns as
arguments. Therefore users are able to figure out
their own formula.

189 \setemergencystretch\col@number\hsize

Another hook to allow people adding their own
extensions without making a new package is
\set@floatcmds which handles any redefinitions of
LATEXs internal float commands to work with the
multicols environment. At the moment it is only
used to redefine \@dblfloat and \end@dblfloat.

190 \set@floatcmds

Additionally, we advance \baselineskip by
\multicolbaselineskip to allow corrections for
narrow columns.

191 \advance\baselineskip\multicolbaselineskip

The \hsize of the columns is given by the formula:

\linewidth− (\col@number− 1)× \columnsep

\col@number

The formula above has changed from release to
release. We now start with the current value of
\linewidth so that the column width is properly
calculated when we are inside a minipage or a list
or some other environment. This will be achieved
with:

8During such a call the \botmark gets globally copied to \topmark by the TEX program.

11

192 \hsize\linewidth \advance\hsize\columnsep

193 \advance\hsize-\col@number\columnsep

194 \divide\hsize\col@number

We also set \linewidth and \columnwidth to
\hsize In the past \columnwidth was left un-
changed. This is inconsistent, but \columnwidth is
used only by floats (which aren’t allowed in their
current implementation) and by the \footnote
macro. Since we want pagewide footnotes9 this sim-
ple trick saved us from rewriting the \footnote
macros. However, some applications refered to
\columnwidth as the “width of the current column”
to typeset displays (the amsmath package, for exam-
ple) and to allow the use of such applications to-
gether with multicol this is now changed.

Before we change \linewidth to the new value
we record its old value in some register called
\full@width. This value is used later on when we
package all columns together.

195 \full@width\linewidth

196 \linewidth\hsize

197 \columnwidth\hsize

198 }

This macro is used to set up the parameters asso-
ciated with footnote floats. It can be redefined by
applications that require different amount of spaces
when typesetting footnotes.

199 \def\init@mult@footins{%

200 \multiply\count\footins\col@number

201 \multiply\skip \footins\col@number

202 }

Since we have to set \col@umber columns on one
page, each with a height of \@colroom, we have to
assign \vsize = \col@number × \@colroom in or-
der to collect enough material before entering the
\output routine again. In fact we have to add
another (\col@number − 1) × (\baselineskip −
\topskip) if you think about it.

203 \def\set@mult@vsize#1{%

204 \vsize\@colroom

205 \@tempdima\baselineskip

206 \advance\@tempdima-\topskip

207 \advance\vsize\@tempdima

208 \vsize\col@number\vsize

209 \advance\vsize-\@tempdima

But this might not be enough since we use \vsplit
later to extract the columns from the gathered ma-
terial. Therefore we add some ‘extra lines,’ one for

each column plus a corrective action depending on
the value of the ‘collectmore’ counter. The final
value is assigned globally if #1 is \global because
we want to use this macro later inside the output
routine too.

210 \advance\vsize\col@number\baselineskip

211 #1\advance\vsize

212 \c@collectmore\baselineskip}

Here is the dimen register we need for saving away
the outer value of \@totalleftmargin.

213 \newdimen\multicol@leftmargin

When the end of the multicols environment is sensed
we have to balance the gathered material. Depend-
ing on whether or not we are inside a boxed multicol
different things must happen. But first we end the
current paragraph with a \par command.

214 \def\endmulticols{\par

215 \if@boxedmulticols

In boxed mode we have to close the box in which we
have gathered all material for the columns.

216 \egroup

Now we call \balance@columns the routine that
balances material stored in the box \mult@box.

217 \balance@columns

After balancing the result has to be returned by the
command \page@sofar. But before we do this we
reinsert any marks found in box \mult@box.

218 \return@nonemptymark{first}%

219 \kept@firstmark

220 \return@nonemptymark{bot}%

221 \kept@botmark

222 \page@sofar

223 \global\let\kept@firstmark

224 \l@kept@firstmark

225 \global\let\kept@botmark

226 \l@kept@botmark

227 〈∗marktrace〉
228 \mult@info\tw@

229 {Restore kept marks to\MessageBreak

230 first: \meaning\kept@firstmark

231 \MessageBreak bot\space\space:

232 \meaning\kept@botmark }%

233 〈/marktrace〉

This finishes the code for the “boxed” case.

234 \else

9I’m not sure that I really want pagewide footnotes. But balancing of the last page can only be achieved with this approach
or with a multi-path algorithm which is complicated and slow. But it’s a challenge to everybody to prove me wrong! Another
possibility is to reimplement a small part of the fire up procedure in TEX (the program). I think that this is the best solution
if you are interested in complex page makeup, but it has the disadvantage that the resulting program cannot be called TEX
thereafter.

12

If there was a \columnbreak on the very last
line all material will have been moved to the
\colbreak@box. Thus the the galley will be ampty
and no output routine gets called so that the text
is lost. To avoid this problem (though unlikely)
we check if the current galley is empty and the
\colbreak@box contains text and if so return that
to the galley. If the galley is non-empty any mate-
rial in \colbreak@box is added in the output routine
since it needs to be put in front.

235 〈∗colbreak〉
236 \ifdim\pagegoal=\maxdimen

237 \ifvoid\colbreak@box\else

238 \mult@info\@ne{Re-adding forced

239 break(s) for splitting}%

240 \unvbox\colbreak@box\fi

241 \fi

242 〈/colbreak〉

If we are in an unrestricted multicols environment
we end the current paragraph above with \par but
this isn’t sufficient since TEXs page builder will not
totally empty the contribution list.10 Therefore we
must also add an explicit \penalty. Now the con-
tribution list will be emptied and, if its material
doesn’t all fit onto the current page then the output
routine will be called before we change it. At this
point we need to use \penalty not \addpenalty to
ensure that a) the recent contributions are emptied
and b) that the very last item on the main vertical
list is a valid break point so that TEX breaks the
page in case it is overfull.

243 \penalty\z@

The processed material might consist of a last line
with a decender in which case the \prevdepth will
be non-zero. However, this material is getting refor-
matted now so that this value is likely to be wrong.
We therefore normalize the situation by pretending
that the depth is zero and arrange later that the
box containing the assembled columns has in fact
this property.

244 \prevdepth\z@

Now it’s safe to change the output routine in order
to balance the columns.

245 \output{\balance@columns@out}\eject

If the multicols environment body was completely
empty or if a multi-page multicols just ends at a
page boundary we have the unusual case that the
\eject will have no effect (since the main vertical

list is empty)—thus no output routine is called at
all. As a result the material preceding the multicols
(stored in \partial@page will get lost if we don’t
take of this by hand.

246 \ifvbox\partial@page

247 \unvbox\partial@page\fi

After the output routine has acted we restore the
kept marks to their initial value.

248 \global\let\kept@firstmark\@empty

249 \global\let\kept@botmark\@empty

250 〈∗marktrace〉
251 \mult@info\tw@

252 {Make kept marks empty}%

253 〈/marktrace〉
254 \fi

The output routine above will take care of the
\vsize and reinsert the balanced columns, etc. But
it can’t reinsert the \footnotes because we first
have to restore the \footins parameter since we
are returning to one column mode. This will be
done in the next line of code; we simply close the
group started in \multicols.

To fix an obscure bug which is the result of the
current definition of the \begin . . . \end macros,
we check that we are still (logically speaking) in the
multicols environment. If, for example, we forget to
close some environment inside the multicols environ-
ment, the following \endgroup would be incorrectly
considered to be the closing of this environment.

255 \@checkend{multicols}%

256 \endgroup

We also set the ‘unbalance’ counter to its default.
This is done globally since LATEX counters are al-
ways changed this way.11

257 \global\c@unbalance\z@

Now it’s time to return any footnotes if we are in
unrestricted mode:

258 \if@boxedmulticols\else

259 \reinsert@footnotes

We also take a look at the amount of free space on
the current page to see if it’s time for a page break.
The vertical space added thereafter will vanish if
\enough@room starts a new page.

But there is one catch. If the \end{multicols}
is at the top of which can happen if there is a break
point just before it (such as end ending environment)
which was chosen. In that case we would do the next
page using the internal \vsize for multicol collec-
tion which is a desaster. So we better catch this

10This once caused a puzzling bug where some of the material was balanced twice, resulting in some overprints. The reason
was the \eject which was placed at the end of the contribution list. Then the page builder was called (an explicit \penalty

will empty the contribution list), but the line with the \eject didn’t fit onto the current page. It was then reconsidered after
the output routine had ended, causing a second break after one line.

11Actually, we are still in a group started by the \begin macro, so \global must be used anyway.

13

case. Fortunately we can detect it by looking at
\pagegoal.

260 \ifdim \pagegoal=\maxdimen

261 \global\vsize\@colroom

262 \else

263 \enough@room\postmulticols

264 \fi

265 \fi

266 \addvspace\multicolsep

If statistics are required we finally report that we
have finished everything.

267 \mult@info\z@

268 {Ending environment

269 \if@boxedmulticols

270 \space(boxed mode)\fi

271 }}

Let us end this section by allocating all the registers
used so far.

272 \newcount\c@unbalance

273 \newcount\c@collectmore

In the new LATEX release \col@number is already al-
located by the kernel, so we don’t allocate it again.

274 %\newcount\col@number

275 \newcount\doublecol@number

276 \newcount\multicoltolerance

277 \newcount\multicolpretolerance

278 \newdimen\full@width

279 \newdimen\page@free

280 \newdimen\premulticols

281 \newdimen\postmulticols

282 \newskip\multicolsep

283 \newskip\multicolbaselineskip

284 \newbox\partial@page

285 \newbox\last@line

And here are their default values:
286 \c@unbalance = 0

287 \c@collectmore = 0

To allow checking whether some macro is used
within the multicols environment the counter
\col@number gets a default of 1 outside the the en-
vironment.

288 \col@number = 1

289 \multicoltolerance = 9999

290 \multicolpretolerance = -1

291 \premulticols = 50pt

292 \postmulticols= 20pt

293 \multicolsep = 12pt plus 4pt minus 3pt

294 \multicolbaselineskip=0pt

4.4 The output routines

We first start with some simple macros. When type-
setting the page we save the columns either in the
box registers 0, 2, 4,. . . (locally) or 1, 3, 5,. . . (glob-
ally). This is Plain TEX policy to avoid an overflow
of the save stack.

Therefore we define a \process@cols macro to help
us in using these registers in the output routines
below. It has two arguments: the first one is a
number; the second one is the processing informa-
tion. It loops starting with \count@=#1 (\count@ is
a scratch register defined in Plain TEX), processes
argument #2, adds two to \count@, processes ar-
gument #2 again, etc. until \count@ is higher than
\doublecol@number. It might be easier to under-
stand it through an example, so we define it now
and explain its usage afterwards.

295 \def\process@cols#1#2{\count@#1\relax

296 \loop

297 〈∗debug〉
298 \typeout{Looking at box \the\count@}

299 〈/debug〉
300 #2%

301 \advance\count@\tw@

302 \ifnum\count@<\doublecol@number

303 \repeat}

We now define \page@sofar to give an example
of the \process@cols macro. \page@sofar should
output everything prepared by the balancing routine
\balance@columns.

304 \def\page@sofar{%

\balance@columns prepares its output in the even
numbered scratch box registers. Now we output
the columns gathered assuming that they are saved
in the box registers 2 (left column), 4 (second col-
umn), . . . However, the last column (i.e. the right-
most) should be saved in box register 0.12 First
we ensure that the columns have equal width. We
use \process@cols for this purpose, starting with
\count@ = \mult@rightbox. Therefore \count@
loops through \mult@rightbox, \mult@rightbox+
2,. . . (to \doublecol@number).

305 \process@cols\mult@rightbox

We have to check if the box in question is void, be-
cause the operation \wd〈number〉 on a void box will
not change its dimension (sigh).

306 {\ifvoid\count@

12You will see the reason for this numbering when we look at the output routines \multi@column@out and
\balance@columns@out.

14

307 \setbox\count@\hbox to\hsize{}%

308 \else

309 \wd\count@\hsize

310 \fi}%

Now we give some tracing information.
311 \count@\col@number \advance\count@\m@ne

312 \mult@info\z@

313 {Column spec: \the\full@width\space = indent

314 + columns + sep =\MessageBreak

315 \the\multicol@leftmargin\space

316 + \the\col@number\space

317 x \the\hsize\space

318 + \the\count@\space

319 x \the\columnsep

320 }%

At this point we should always be in vertical mode.
321 \ifvmode\else\errmessage{Multicol Error}\fi

Now we put all columns together in an
\hbox of width \full@width (shifting it by
\multicol@leftmargin to the right so that it will
be placed correctly if we are within a list environ-
ment)

The box containing the columns has a large height
and thus will always result in using \lineskip if the
normal \baselineskip calculations are used. We
therefore better cancel that process.

322 \nointerlineskip

As mentioned earlier we want to have the reference
point of the box we put on the page being at the
baseline of the last line of the columns but we also
want to ensure that the box has no depth so that any
following skip is automatically starting from that
baseline. We achieve this by recording the depths
of all columns and then finally backing up by the
maximum. (perhaps a simpler method would be to
assemble the box in a register and set the depth of
that box to zero (not checked).

We need a global scratch register for this; using
standard TEX conventions we choose \dimen2 and
initialize it with the depth of the character “p” since
that is one of the depths that compete for the max-
imum.

323 \setbox\z@\hbox{p}\global\dimen\tw@\dp\z@

324 \moveright\multicol@leftmargin

325 \hbox to\full@width{%

and separating the columns with a rule if desired.
326 \process@cols\mult@gfirstbox{%

If the depth of the current box is larger than the
maximum found so far in \dimen2 we update that
register.

327 \ifdim\dp\count@>\dimen\tw@

328 \global\dimen\tw@\dp\count@ \fi

329 \box\count@

330 \hss{\normalcolor\vrule

331 \@width\columnseprule}\hss}%

As you will have noticed, we started with box regis-
ter \mult@gfirstbox (i.e. the left column). So this
time \count@ looped through 2, 4,. . . (plus the ap-
propriate offset). Finally we add box 0 and close the
\hbox. Again we may have to update \dimen\tw@.

332 \ifdim\dp\mult@rightbox>\dimen\tw@

333 \global\dimen\tw@\dp\mult@rightbox \fi

334 \box\mult@rightbox

The depths of the columns depend on their last lines.
To ensure that we will always get a similar look as
far as the rules are concerned we force the depth at
least the depth of a letter ‘p’.

335 \rlap{\phantom p}%

336 }%

Now after typesetting the box we mack up to its
baseline by using the value stored in \dimen2.

337 \kern-\dimen\tw@

However, in case of of the columns was unusually
deep TEX may have tried some corrective actions in
which case backing up by the ahve value will not
bring us back to the baseline. A good indication for
this is a depth of \maxdepth though it is not an abso-
lute proof. If the option grid is used \mc@gridwarn
will expand to this, otherwise to \maxdimen in which
case this warning will not show up.

338 \ifdim\dimen\tw@ = \mc@gridwarn

339 \PackageWarning{multicol}%

340 {Very deep columns!\MessageBreak

341 Grid alignment might be broken}%

342 \fi

343 }

Before we tackle the bigger output routines we
define just one more macro which will help us
to find our way through the mysteries later.
\reinsert@footnotes will do what its name in-
dicates: it reinserts the footnotes present in
\footinbox so that they will be reprocessed by
TEX’s page builder.

Instead of actually reinserting the footnotes we
insert an empty footnote. This will trigger insertion
mechanism as well and since the old footnotes are
still in their box and we are on a fresh page \skip
footins should be correctly taken into account.

344 \def\reinsert@footnotes{\ifvoid\footins\else

345 \insert\footins{}\fi}

Now we can’t postpone the difficulties any longer.
The \multi@column@out routine will be called in
two situations. Either the page is full (i.e. we
have collected enough material to generate all the
required columns) or a float or marginpar (or a

15

\clearpage is sensed. In the latter case the
\outputpenalty is less than −10000, otherwise the
penalty which triggered the output routine is higher.
Therefore it’s easy to distinguish both cases: we sim-
ply test this register.

346 \def\multi@column@out{%

347 \ifnum\outputpenalty <-\@M

If this was a \clearpage, a float or a marginpar we
call \speci@ls

348 \speci@ls \else

otherwise we construct the final page. For the next
block of code see comments in section 7.2.

349 〈∗colbreak〉
350 \ifvoid\colbreak@box\else

351 \mult@info\@ne{Re-adding forced

352 break(s) for splitting}%

353 \setbox\@cclv\vbox{%

354 \unvbox\colbreak@box

355 \penalty-\@Mv\unvbox\@cclv}%

356 \fi

357 〈/colbreak〉
Let us now consider the normal case. We have to
\vsplit the columns from the accumulated mate-
rial in box 255. Therefore we first assign appropriate
values to \splittopskip and \splitmaxdepth.

358 \splittopskip\topskip

359 \splitmaxdepth\maxdepth

Then we calculate the current column height (in
\dimen@). Note that the height of \partial@page
is already subtracted from \@colroom so we can use
its value as a starter.

360 \dimen@\@colroom

But we must also subtract the space occupied by
footnotes on the current page. Note that we first
have to reset the skip register to its normal value.
Again, the actual action is carried out in a utility
macro, so that other applications can modify it.

361 \divide\skip\footins\col@number

362 \ifvoid\footins \else

363 \leave@mult@footins

364 \fi

Now we are able to \vsplit off all but the last col-
umn. Recall that these columns should be saved in
the box registers 2, 4,. . . (plus offset).

365 \process@cols\mult@gfirstbox{%

366 \setbox\count@

367 \vsplit\@cclv to\dimen@

After splitting we update the kept marks.
368 \set@keptmarks

If \raggedcolumns is in force we add a vfill at the
bottom by unboxing the split box.

369 \ifshr@nking

370 \setbox\count@

371 \vbox to\dimen@

372 {\unvbox\count@\vfill}%

373 \fi

374 }%

Then the last column follows.

375 \setbox\mult@rightbox

376 \vsplit\@cclv to\dimen@

377 \set@keptmarks

378 \ifshr@nking

379 \setbox\mult@rightbox\vbox to\dimen@

380 {\unvbox\mult@rightbox\vfill}%

381 \fi

Having done this we hope that box 255 is emptied.
If not, we reinsert its contents.

382 \ifvoid\@cclv \else

383 \unvbox\@cclv

384 \penalty\outputpenalty

In this case a footnote that happens to fall into
the leftover bit will be typeset on the wrong page.
Therefore we warn the user if the current page con-
tains footnotes. The older versions of multicols pro-
duced this warning regardless of whether or not foot-
notes were present, resulting in many unnecessary
warnings.

385 \ifvoid\footins\else

386 \PackageWarning{multicol}%

387 {I moved some lines to

388 the next page.\MessageBreak

389 Footnotes on page

390 \thepage\space might be wrong}%

391 \fi

If the ‘tracingmulticols’ counter is 4 or higher we also
add a rule.

392 \ifnum \c@tracingmulticols>\thr@@

393 \hrule\allowbreak \fi

394 \fi

To get a correct marks for the current page
we have to (locally redefine \firstmark and
\botmark. If \kept@firstmark is non-empty then
\kept@botmark must be non-empty too so we can
use their values. Otherwise we use the value of
\kept@topmark which was first initialized when we
gathered the \partical@page and later on was up-
dated to the \botmark for the preceding page

395 \ifx\@empty\kept@firstmark

396 \let\firstmark\kept@topmark

397 \let\botmark\kept@topmark

398 \else

399 \let\firstmark\kept@firstmark

400 \let\botmark\kept@botmark

401 \fi

16

We also initalize \topmark with \kept@topmark.
This will make this mark okay for all middle pages
of the multicols environment.

402 \let\topmark\kept@topmark

403 〈∗marktrace〉
404 \mult@info\tw@

405 {Use kept top mark:\MessageBreak

406 \meaning\kept@topmark

407 \MessageBreak

408 Use kept first mark:\MessageBreak

409 \meaning\kept@firstmark

410 \MessageBreak

411 Use kept bot mark:\MessageBreak

412 \meaning\kept@botmark

413 \MessageBreak

414 Produce first mark:\MessageBreak

415 \meaning\firstmark

416 \MessageBreak

417 Produce bot mark:\MessageBreak

418 \meaning\botmark

419 \@gobbletwo}%

420 〈/marktrace〉

With a little more effort we could have done bet-
ter. If we had, for example, recorded the shrinkage
of the material in \partial@page it would be now
possible to try higher values for \dimen@ (i.e. the
column height) to overcome the problem with the
nonempty box 255. But this would make the code
even more complex so I skipped it in the current
implementation.

Now we use LATEX’s standard output mecha-
nism.13 Admittedly this is a funny way to do it.

421 \setbox\@cclv\vbox{\unvbox\partial@page

422 \page@sofar}%

The macro \@makecol adds all floats assigned for
the current page to this page. \@outputpage ships
out the resulting box. Note that it is just possible
that such floats are present even if we do not allow
any inside a multicols environment.

423 \@makecol\@outputpage

After the page is shipped out we have to pre-
pare the kept marks for the following page.
\kept@firstmark and \kept@botmark reinitilized
by setting them to \@empty. The value of \botmark
is then assigned to \kept@topmark.

424 \global\let\kept@topmark\botmark

425 \global\let\kept@firstmark\@empty

426 \global\let\kept@botmark\@empty

427 〈∗marktrace〉
428 \mult@info\tw@

429 {(Re)Init top mark:\MessageBreak

430 \meaning\kept@topmark

431 \@gobbletwo}%

432 〈/marktrace〉
Now we reset \@colroom to \@colht which is
LATEX’s saved value of \textheight.

433 \global\@colroom\@colht

Then we process deferred floats waiting for their
chance to be placed on the next page.

434 \process@deferreds

435 \@whilesw\if@fcolmade\fi{\@outputpage

436 \global\@colroom\@colht

437 \process@deferreds}%

If the user is interested in statistics we inform him
about the amount of space reserved for floats.

438 \mult@info\@ne

439 {Colroom:\MessageBreak

440 \the\@colht\space

441 after float space removed

442 = \the\@colroom \@gobble}%

Having done all this we must prepare to tackle the
next page. Therefore we assign a new value to
\vsize. New, because \partial@page is now empty
and \@colroom might be reduced by the space re-
served for floats.

443 \set@mult@vsize \global

The \footins skip register will be adjusted when
the output group is closed.

444 \fi}

This macro is used to subtract the amount of space
occupied by footnotes for the current space from the
space available for the current column. The space
current column is stored in \dimen@. See above for
the description of the default action.

445 \def\leave@mult@footins{%

446 \advance\dimen@-\skip\footins

447 \advance\dimen@-\ht\footins

448 }

We left out two macros: \process@deferreds and
\speci@ls.

449 \def\speci@ls{%

450 \ifnum\outputpenalty <-\@Mi

If the document ends in the middle of a mul-
ticols environment, e.g., if the user forgot the
\end{multicols}, TEX adds a very negative
penalty to the end of the galley which is intended
to signal the output routine that it is time to pre-
pare for shipping out everything remaining. Since
inside multicols the output routine of LATEX is dis-
abled sometimes we better check for this case: if
we find a very negative penalty we produce an error

13This will produce a lot of overhead since both output routines are held in memory. The correct solution would be to
redesign the whole output routine used in LATEX.

17

message and run the default output routine for this
case.

451 \ifnum \outputpenalty<-\@MM

452 \PackageError{multicol}{Document end

453 inside multicols environment}\@ehd

454 \@specialoutput

455 \else

For the next block of code see comments in sec-
tion 7.2.

456 〈∗colbreak〉
457 \ifnum\outputpenalty = -\@Mv

458 \mult@info\@ne{Forced column

459 break seen}%

460 \global\advance\vsize-\pagetotal

461 \global\setbox\colbreak@box

462 \vbox{\ifvoid\colbreak@box

463 \else

464 \unvbox\colbreak@box

465 \penalty-\@Mv

466 \fi

467 \unvbox\@cclv}

468 \reinsert@footnotes

469 \else

470 〈/colbreak〉

If we encounter a float or a marginpar in the cur-
rent implementation we simply warn the user that
this is not allowed. Then we reinsert the page and
its footnotes.

471 \PackageWarningNoLine{multicol}%

472 {Floats and marginpars not

473 allowed inside ‘multicols’

474 environment!}

475 \unvbox\@cclv\reinsert@footnotes

Additionally we empty the \@currlist to avoid
later error messages when the LATEX output routine
is again in force. But first we have to place the
boxes back onto the \@freelist. (\@elts default is
\relax so this is possible with \xdef.)

476 \xdef\@freelist{\@freelist\@currlist}%

477 \gdef\@currlist{}%

478 〈∗colbreak〉
479 \fi

480 〈/colbreak〉
481 \fi

If the penalty is −10001 it will come from a
\clearpage and we will execute \@doclearpage to
get rid of any deferred floats.

482 \else \@doclearpage \fi

483 }

\process@deferreds is a simplified version of
LATEX’s \@startpage. We first call the macro
\@floatplacement to save the current user parame-
ters in internal registers. Then we start a new group

and save the \@deferlist temporarily in the macro
\@tempb.

484 \def\process@deferreds{%

485 \@floatplacement

486 \@tryfcolumn\@deferlist

487 \if@fcolmade\else

488 \begingroup

489 \let\@tempb\@deferlist

Our next action is to (globally) empty \@deferlist
and assign a new meaning to \@elt. Here
\@scolelt is a macro that looks at the boxes in
a list to decide whether they should be placed on
the next page (i.e. on \@toplist or \@botlist) or
should wait for further processing.

490 \gdef\@deferlist{}%

491 \let\@elt\@scolelt

Now we call \@tempb which has the form

\@elt〈box register〉\@elt〈box register〉. . .

So \@elt (i.e. \@scolelt) will distribute the boxes
to the three lists.

492 \@tempb \endgroup

493 \fi}

The \raggedcolumns and \flushcolumns declara-
tions are defined with the help of a new \if...
macro.

494 \newif\ifshr@nking

The actual definitions are simple: we just switch to
true or false depending on the desired action. To
avoid extra spaces in the output we enclose these
changes in \@bsphack. . . \@esphack.

495 \def\raggedcolumns{%

496 \@bsphack\shr@nkingtrue\@esphack}

497 \def\flushcolumns{%

498 \@bsphack\shr@nkingfalse\@esphack}

Now for the last part of the show: the column bal-
ancing output routine. Since this code is called with
an explicit penalty (\eject) there is no need to
check for something special (eg floats). We start
by balancing the material gathered.

499 \def\balance@columns@out{%

For this we need to put the contents of box 255 into
\mult@box.

500 〈−colbreak〉 \setbox\mult@box

501 〈−colbreak〉 \vbox{\unvbox\@cclv}%

For the next block of code see comments in sec-
tion 7.2.

502 〈∗colbreak〉
503 \setbox\mult@box\vbox{%

504 \ifvoid\colbreak@box\else

505 \unvbox\colbreak@box\break

18

506 \mult@info\@ne{Re-adding

507 forced break(s) in balancing}%

508 \fi

509 \unvbox\@cclv}%

510 〈/colbreak〉
511 \balance@columns

This will bring us into the position to apply
\page@sofar. But first we have to set \vsize to
a value suitable for one column output.

512 \global\vsize\@colroom

513 \global\advance\vsize\ht\partial@page

Then we \unvbox the \partial@page (which may
be void if we are not prcessing the first page of this
multicols environment.

514 \unvbox\partial@page

Then we return the first and bottom mark and the
gathered material to the main vertical list.

515 \return@nonemptymark{first}\kept@firstmark

516 \return@nonemptymark{bot}\kept@botmark

517 \page@sofar

We need to add a penalty at this point which allows
to break at this point since calling the output rou-
tine may have removed the only permissible break
point thereby “glueing” any following skip to the
balanced box. In case there are any weird settings
for \multicolsep etc. this could produce funny re-
sults.

518 \penalty\z@

519 }

As we already know, reinserting of footnotes will be
done in the macro \endmulticols.

This macro now does the actual balancing.
520 \def\balance@columns{%

We start by setting the kept marks by updating
them with any marks from this box. This has to
be done before we add a penalty of −10000 to the
top of the box, otherwise only an empty box will be
considered.

521 \get@keptmarks\mult@box

We then contine by resetting trying to remove any
discardable stuff at the end of \mult@box. This is
rather experimental. We also add a forced break
point at the very beginning, so that we can split the
box to height zero later on, thereby adding a known
\splittopskip glue at the beginning.

522 \setbox\mult@box\vbox{%

523 \penalty-\@M

524 \unvbox\mult@box

525 \remove@discardable@items

526 }%

Then follow values assignments to get the
\vsplitting right. We use the natural part of
\topskip as the natural part for \splittopskip
and allow for a bit of undershoot and overshoot by
adding some stretch and shrink.

527 \@tempdima\topskip

528 \splittopskip\@tempdima

529 \@plus\multicolundershoot

530 \@minus\multicolovershoot

531 \splitmaxdepth\maxdepth

The next step is a bit tricky: when TEX assem-
bles material in a box, the first line isn’t preceded
by interline glue, i.e. there is no parameter like
\boxtopskip in TEX. This means that the baseline
of the first line in our box is at some unpredictable
point depending on the height of the largest charac-
ter in this line. But of course we want all columns
to align properly at the baselines of their first lines.
For this reason we have opened \mult@box with a
\penalty -10000. This will now allow us to split
off from \mult@box a tiny bit (in fact nothing since
the first possible break-point is the first item in the
box). The result is that \splittopskip is inserted
at the top of \mult@box which is exactly what we
like to achieve.

532 \setbox\@tempboxa\vsplit\mult@box to\z@

Next we try to find a suitable starting point for
the calculation of the column height. It should be
less than the height finally chosen, but large enough
to reach this final value in only a few iterations.
The formula which is now implemented will try to
start with the nearest value which is a multiple of
\baselineskip. The coding is slightly tricky in TEX
and there are perhaps better ways . . .

533 \@tempdima\ht\mult@box

534 \advance\@tempdima\dp\mult@box

535 \divide\@tempdima\col@number

The code above sets \@tempdima to the length of
a column if we simply divide the whole box into
equal pieces. To get to the next lower multiple of
\baselineskip we convert this dimen to a num-
ber (the number of scaled points) then divide this
by \baselineskip (also in scaled points) and then
multiply this result with \baselineskip assigning
the result to \dimen@. This makes \dimen@ ≤ to
\@tempdimena.

536 \count@\@tempdima

537 \divide\count@\baselineskip

538 \dimen@\count@\baselineskip

Next step is to correct our result by taking
into account the difference between \topskip and
\baselineskip. We start by adding \topskip; if

19

this makes the result too large then we have to sub-
tract one \baselineskip.

539 \advance\dimen@\topskip

540 \ifdim \dimen@ >\@tempdima

541 \advance\dimen@-\baselineskip

542 \fi

At the user’s request we start with a higher value (or
lower, but this usually only increases the number of
tries).

543 \advance\dimen@\c@unbalance\baselineskip

We type out statistics if we were asked to do so.
544 \mult@info\@ne

545 {Balance columns\on@line:

546 \ifnum\c@unbalance=\z@\else

547 (off balance=\number\c@unbalance)\fi

548 \@gobbletwo}%

But we don’t allow nonsense values for a start.
549 \ifnum\dimen@<\topskip

550 \mult@info\@ne

551 {Start value

552 \the\dimen@ \space ->

553 \the\topskip \space (corrected)}%

554 \dimen@\topskip

555 \fi

Now we try to find the final column height. We start
by setting \vbadness to infinity (i.e. 10000) to sup-
press underfull box reports while we are trying to
find an acceptable solution. We do not need to do
it in a group since at the end of the output routine
everything will be restored. The setting of the final
columns will nearly always produce underfull boxes
with badness 10000 so there is no point in warning
the user about it.

556 \vbadness\@M

We also allow for overfull boxes while we trying to
split the columns.

557 \vfuzz \col@number\baselineskip

The variable \last@try will hold the dimension
used in the previous trial splitting. We initialize
it with a negative value.

558 \last@try-\p@

559 \loop

In order not to clutter up TEX’s valuable main
memory with things that are no longer needed, we
empty all globally used box registers. This is neces-
sary if we return to this point after an unsuccessful
trial. We use \process@cols for this purpose, start-
ing with \mult@grightbox. Note the extra braces
around this macro call. They are needed since
Plain TEX’s \loop. . . \repeat mechanism cannot
be nested on the same level of grouping.

560 {\process@cols\mult@grightbox

561 {\global\setbox\count@

562 \box\voidb@x}}%

The contents of box \mult@box are now copied glob-
ally to box \mult@grightbox. (This will be the
right-most column, as we shall see later.)

563 \global\setbox\mult@grightbox

564 \copy\mult@box

We start with the assumption that the trial will be
successful. If we end up with a solution that is too
bad we set too@bad to true.

565 〈∗badness〉
566 \global\too@badfalse

567 〈/badness〉
Using \vsplit we extract the other columns from
box register \mult@grightbox. This leaves box reg-
ister \mult@box untouched so that we can start over
again if this trial was unsuccessful.

568 {\process@cols\mult@firstbox{%

569 \global\setbox\count@

570 \vsplit\mult@grightbox to\dimen@

After every split we check the badness of the result-
ing column, normally the amount of extra white in
the column.

571 〈∗badness〉
572 \ifnum\c@tracingmulticols>\@ne

573 \@tempcnta\count@

574 \advance\@tempcnta-\mult@grightbox

575 \divide\@tempcnta \tw@

576 \message{^^JColumn

577 \number\@tempcnta\space

578 badness: \the\badness\space}%

579 \fi

If this badness is larger than the allowed column
badness we reject this solution by setting too@bad
to true.

580 \ifnum\badness>\c@columnbadness

581 \ifnum\c@tracingmulticols>\@ne

582 \message{too bad

583 (>\the\c@columnbadness)}%

584 \fi

585 \global\too@badtrue

586 \fi

587 〈/badness〉
588 }}%

There is one subtle point here: while all other con-
structed boxes have a depth that is determined by
\splitmaxdepth the last box will get a natural
depth disregarding the original setting and the value
of \splitmaxdepth or \boxmaxdepth. This means
that we may end up with a very large depth in box
\mult@grightbox which would make the result of
the testing incorrect. So we change the value by
unboxing the box into itself.

20

589 \boxmaxdepth\maxdepth

590 \global\setbox\mult@grightbox

591 \vbox{\unvbox\mult@grightbox}%

We also save a copy \mult@firstbox at its “natu-
ral” size for later use.

592 \setbox\mult@nat@firstbox

593 \vbox{\unvcopy\mult@firstbox}%

After \process@cols has done its job we have the
following situation:

box \mult@rightbox ←− all material
box \mult@gfirstbox ←− first column

box \mult@gfirstbox + 2 ←− second column
...

...
box \mult@grightbox ←− last column

We report the height of the first column, in brackets
the natural size is given.

594 \ifnum\c@tracingmulticols>\@ne

595 \message{^^JFirst column

596 = \the\dimen@\space

597 (\the\ht\mult@nat@firstbox)}\fi

If \raggedcolumns is in force older releases of this
file also shrank the first column to its natural height
at this point. This was done so that the first col-
umn doesn’t run short compared to later columns
but it is actually producing incorrect results (over-
printing of text) in boundary cases, so since version
v1.5q \raggedcolumns means allows for all columns
to run slightly short.

598 % \ifshr@nking

599 % \global\setbox\mult@firstbox

600 % \copy\mult@nat@firstbox

601 % \fi

Then we give information about the last column.14

602 \ifnum\c@tracingmulticols>\@ne

603 \message{<> last column =

604 \the\ht\mult@grightbox^^J}%

Some tracing code that we don’t compile into the
production version unless asked for. It will produce
huge listings of the boxes involved in balancing in
the transcript file.

605 〈∗debug〉
606 \ifnum\c@tracingmulticols>4

607 {\showoutput

608 \batchmode

609 \process@cols\@ne

610 {\showbox\count@}}%

611 \errorstopmode

612 \fi

613 〈/debug〉
614 \fi

We check whether our trial was successful. The test
used is very simple: we merely compare the first and
the last column. Thus the intermediate columns
may be longer than the first if \raggedcolumns
is used. If the right-most column is longer than
the first then we start over with a larger value for
\dimen@.

615 \ifdim\ht\mult@grightbox >\dimen@

If the height of the last box is too large we mark this
trial as unsuccessful.

616 〈∗badness〉
617 \too@badtrue

618 \ifnum\c@tracingmulticols>\@ne

619 \typeout{Rejected: last

620 column too large!}%

621 \fi

622 \else

To ensure that there isn’t a forced break in the last
column we try to split off a box of size \maxdimen
from \mult@grightbox (or rather from a copy of it).
This should result in a void box after the split, un-
less there was a forced break somewhere within the
column in which case the material after the break
would have stayed in the box.

623 〈∗colbreak〉
624 \setbox\@tempboxa

625 \copy\mult@grightbox

626 \setbox\z@\vsplit\@tempboxa to\maxdimen

627 \ifvoid\@tempboxa

628 〈/colbreak〉
Thus if \@tempboxa is void we have a valid solution.
In this case we take a closer look at the last column
to decide if this column should be made as long as
all other columns or if it should be allowed to be
shorter. For this we first have to rebox the column
into a box of the appropriate height. If tracing is
enabled we then display the badness for this box.

629 \global\setbox\mult@grightbox

630 \vbox to\dimen@

631 {\unvbox\mult@grightbox}%

632 \ifnum\c@tracingmulticols>\@ne

633 \message{Final badness:

634 \the\badness}%

635 \fi

We then compare this badness with the allowed bad-
ness for the final column. If it does not exceed this
value we use the box, otherwise we rebox it once
more and add some glue at the bottom.

636 \ifnum\badness>\c@finalcolumnbadness

637 \global\setbox\mult@grightbox

638 \vbox to\dimen@

639 {\unvbox\mult@grightbox\vfill}%

14With TEX version 3.141 it is now possible to use LATEX’s \newlinechar in the \message command, but people with older
TEX versions will now get ^^J instead of a new line on the screen.

21

640 \ifnum\c@tracingmulticols>\@ne

641 \message{ setting natural

642 (> \the\c@finalcolumnbadness)}%

643 \fi

644 \fi

If \@tempboxa above was not void our trial was un-
successful and we report this fact and try again.

645 〈∗colbreak〉
646 \else

647 \too@badtrue

648 \ifnum\c@tracingmulticols>\@ne

649 \typeout{Rejected: unprocessed

650 forced break(s) in last column!}%

651 \fi

652 \fi

653 \fi

654 〈/colbreak〉
If the natural height of the first box is smaller than
the current trial size but is larger than the previous
trial size it is likely that we have missed a potien-
tially better solution. (This could have happened if
for some reason our first trial size was too high.) In
that case we dismiss this trial and restart using the
natural height for the next trial.

655 \ifdim\ht\mult@nat@firstbox<\dimen@

656 \ifdim\ht\mult@nat@firstbox>\last@try

657 \too@badtrue

658 \ifnum\c@tracingmulticols>\@ne

659 \typeout{Retry: using natural

660 height of first column!}%

661 \fi

662 \dimen@\ht\mult@nat@firstbox

663 \last@try\dimen@

664 \advance\dimen@-\p@

665 \fi

666 \fi

Finally the switch too@bad is tested. If it was made
true either earlier on or due to a rightmost column
being too large we try again with a slightly larger
value for \dimen@.

667 \iftoo@bad

668 〈/badness〉
669 \advance\dimen@\p@

670 \repeat

At that point \dimen@ holds the height that was de-
termined by the balancing loop. If that height for
the columns turns out to be larger than the available
space (which is \@colroom) we sqeeze the columns
into the space assuming that they will have enough
shrinkability to allow this.15 However, this squeez-
ing should only be done if we are balancing columns
on the main galley and not if we are building a boxed
multicol (in the latter case the current \@colroom is
irrelevant since the produced box might be moved
anywhere at a later stage).

671 \if@boxedmulticols\else

672 \ifdim\dimen@>\@colroom

673 \dimen@\@colroom

674 \fi

675 \fi

Then we move the contents of the odd-numbered
box registers to the even-numbered ones, shrinking
them if requested. We have to use \vbox not \vtop
(as it was done in the first versions) since otherwise
the resulting boxes will have no height (TEXbook
page 81). This would mean that extra \topskip
is added when the boxes are returned to the page-
builder via \page@sofar.

676 \process@cols\mult@rightbox

677 {\@tempcnta\count@

678 \advance\@tempcnta\@ne

679 \setbox\count@\vbox to\dimen@

680 {%

681 \vskip \z@

682 \@plus-\multicolundershoot

683 \@minus-\multicolovershoot

684 \unvbox\@tempcnta

685 \ifshr@nking\vfill\fi}}%

686 }

4.5 The box allocations

Early releases of these macros used the first box
registers 0, 2, 4,. . . for global boxes and 1, 3, 5,. . .
for the corresponding local boxes. (You might still
find some traces of this setup in the documentation,
sigh.) This produced a problem at the moment we
had more than 5 columns because then officially allo-
cated boxes were overwritten by the algorithm. The
new release now uses private box registers

687 \newbox\mult@rightbox

688 \newbox\mult@grightbox

689 \newbox\mult@gfirstbox

690 \newbox\mult@firstbox

691 \newbox\@tempa\newbox\@tempa

692 \newbox\@tempa\newbox\@tempa

693 \newbox\@tempa\newbox\@tempa

694 \newbox\@tempa\newbox\@tempa

695 \newbox\@tempa\newbox\@tempa

696 \newbox\@tempa\newbox\@tempa

697 \newbox\@tempa\newbox\@tempa

15This might be wrong, since the shrinkability that accounts for the amount of material might be present only in some
columns. But it is better to try then to give up directly.

22

698 \newbox\@tempa\newbox\@tempa

699 \newbox\@tempa

700 \let\@tempa\relax

5 New macros and hacks for version 1.2

If we don’t use TEX 3.0 \emergencystretch is un-
defined so in this case we simply add it as an unused
〈dimen〉 register.

701 \@ifundefined{emergencystretch}

702 {\newdimen\emergencystretch}{}

My tests showed that the following for-
mula worked pretty well. Nevertheless the
\setemergencystretch macro also gets \hsize as
second argument to enable the user to try different
formulae.

703 \def\setemergencystretch#1#2{%

704 \emergencystretch 4pt

705 \multiply\emergencystretch#1}

Even if this should be used as a hook we use a @ in
the name since it is more for experts.

706 \def\set@floatcmds{%

707 \let\@dblfloat\@dbflt

708 \def\end@dblfloat{\par

709 \vskip\z@

710 \egroup

711 \color@endbox

712 \@largefloatcheck

713 \outer@nobreak

This is cheap (defering the floats until after the cur-
rent page) but any other solution would go deep into
LATEX’s output routine and I don’t like to work on it
until I know which parts of the output routine have
to be reimplemented anyway for LATEX3.

714 \ifnum\@floatpenalty<\z@

We have to add the float to the \@deferlist be-
cause we assume that outside the multicols environ-
ment we are in one column mode. This is not en-
tirely correct, I already used the multicols environ-
ment inside of LATEXs \twocolumn declaration but
it will do for most applications.

715 \@cons\@deferlist\@currbox

716 \fi

717 \ifnum\@floatpenalty=-\@Mii

718 \@Esphack

719 \fi}}

5.1 Maintaining the mark registers

This section contains the routines that set the marks
so that they will be handled correctly. They have
been introduced with version 1.4.

First thing we do is to reserve three macro names
to hold the replacement text for TEX’s primitives
\firstmark, \botmark and \topmark. We initial-
ize the first two to be empty and \kept@topmark to
contain two empty pair of braces. This is necessary
since \kept@topmark is supposed to contain the last
mark from a preceding page and in LATEX any “real”
mark must contain two parts representing left and
right mark information.

720 \def\kept@topmark{{}{}}

721 \let\kept@firstmark\@empty

722 \let\kept@botmark\@empty

Sometimes we want to return the value of a
“kept” mark into a \mark node on the main
vertical list. This is done by the function
\return@nonemptymark. As the name suggests it
only acts if the replacement text of the kept mark is
non-empty. This is done to avoid adding an empty

mark when no mark was actually present. If we
would nevertheless add such a mark it would be re-
garded as a valid \firstmark later on.

723 \def\return@nonemptymark#1#2{%

724 \ifx#2\@empty

725 \else

For debugging purposes we take a look at the value
of the kept mark that we are about to return. This
code will get stripped out for production.

726 〈∗marktrace〉
727 \mult@info\tw@

728 {Returned #1 mark:\MessageBreak

729 \meaning#2}%

730 % \nobreak

731 % \fi

732 〈/marktrace〉
Since the contents of the mark may be arbitrary
LATEX code we better make sure that it doesn’t get
expanded any further. (Some expansion have been
done already during the execution of \markright or
\markboth.) We therefore use the usual mechanism
of a toks register to prohibit expansion.16

16Due to the current definition of \markright etc. it wouldn’t help to define the \protect command to prohibit expansion
as any \protect has already vanished due to earlier expansions.

23

733 \toks@\expandafter{#2}%

734 \mark{\the\toks@}%

We don’t want any breakpoint between such a re-
turned mark and the following material (which is
usually just the box where the mark came from).

735 \nobreak

736 \fi}

If we have some material in a box register we may
want to get the first and the last mark out of this
box. This can be done with \get@keptmarks which
takes one argument: the box register number or its
nick name defined by \newbox.

737 \def\get@keptmarks#1{%

For debugging purposes we take a look at the cur-
rent dimensions of the box since in earlier versions
of the code I made some mistakes in this area.

738 〈∗debug〉
739 \typeout{Mark box #1 before:

740 ht \the\ht#1, dp \the\dp#1}%

741 〈/debug〉
Now we open a new group an locally copy the box to
itself. As a result any operation, i.e. \vsplit, will
only have a local effect. Without this trick the box
content would get lost up to the level where the last
assignment to the box register was done.

742 \begingroup

743 \vbadness\@M

744 \setbox#1\copy#1%

Now we split the box to the maximal possible di-
mension. This should split off the full contents of
the box so that effectively everything is split off. As
a result \splitfirstmark and \splitbotmark will
contain the first and last mark in the box respec-
tively.

745 \setbox#1\vsplit#1to\maxdimen

Therefore we can now set the kept marks which is
a global operation and afterwards close the group.
This will restore the original box contents.

746 \set@keptmarks

747 \endgroup

For debugging we take again a look at the box di-
mension which shouldn’t have changed.

748 〈∗debug〉
749 \typeout{Mark box #1 \space after:

750 ht \the\ht#1, dp \the\dp#1}%

751 〈/debug〉
752 }

The macro \set@keptmarks is responsible for set-
ting \kept@firstmark and \kept@botmark, by
checking the current values for \splitfirstmark
and \splitbotmark.

753 \def\set@keptmarks{%

If \kept@firstmark is empty we assume that it
isn’t set. This is strictly speaking not correct as
we loose the ability to have marks that are explic-
itly empty, but for standard LATEX application it is
sufficient. If it is non-empty we don’t change the
value—within the output routines it will then be re-
stored to \@empty.

754 \ifx\kept@firstmark\@empty

We now put the contents of \splitfirstmark into
\kept@firstmark. In the case that there wasn’t
any mark at all \kept@firstmark will not change
by that operation.

755 \expandafter\gdef\expandafter

756 \kept@firstmark

757 \expandafter{\splitfirstmark}%

When debugging we show the assignment but only
when something actually happened.

758 〈∗marktrace〉
759 \ifx\kept@firstmark\@empty\else

760 \mult@info\tw@

761 {Set kept first mark:\MessageBreak

762 \meaning\kept@firstmark%

763 \@gobbletwo}%

764 \fi

765 〈/marktrace〉
766 \fi

We always try to set the bottom mark to the
\splitbotmark but of course only when there has
been a \splitbotmark at all. Again, we assume
that an empty \splitbotmark means that the split
off box part didn’t contain any marks at all.

767 \expandafter\def\expandafter\@tempa

768 \expandafter{\splitbotmark}%

769 \ifx\@tempa\@empty\else

770 \global\let\kept@botmark\@tempa

771 〈∗marktrace〉
772 \mult@info\tw@

773 {Set kept bot mark:\MessageBreak

774 \meaning\kept@botmark%

775 \@gobbletwo}%

776 〈/marktrace〉
777 \fi}%

The \prep@keptmarks function is used to initialize
the kept marks from the contents of \partial@page,
i.e. the box that holds everything from the top of the
current page prior to starting the multicols environ-
ment. However, such a box is only available if we
are not producing a boxed multicols.

778 \def\prep@keptmarks{%

779 \if@boxedmulticols \else

780 \get@keptmarks\partial@page

781 \fi}

24

782 \def\remove@discardable@items{%

783 〈∗debug〉
784 \edef\@tempa{s=\the\lastskip,

785 p=\the\lastpenalty,

786 k=\the\lastkern}%

787 \typeout\@tempa

788 〈/debug〉
789 \unskip\unpenalty\unkern

790 〈∗debug〉
791 \edef\@tempa{s=\the\lastskip,

792 p=\the\lastpenalty,

793 k=\the\lastkern}%

794 \typeout\@tempa

795 〈/debug〉
796 \unskip\unpenalty\unkern

797 〈∗debug〉
798 \edef\@tempa{s=\the\lastskip,

799 p=\the\lastpenalty,

800 k=\the\lastkern}%

801 \typeout\@tempa

802 〈/debug〉
803 \unskip\unpenalty\unkern

804 〈∗debug〉
805 \edef\@tempa{s=\the\lastskip,

806 p=\the\lastpenalty,

807 k=\the\lastkern}%

808 \typeout\@tempa

809 〈/debug〉

810 \unskip\unpenalty\unkern

811 }

812 〈∗badness〉
813 \newif\iftoo@bad

814 \newcount\c@columnbadness

815 \c@columnbadness=10000

816 \newcount\c@finalcolumnbadness

817 \c@finalcolumnbadness=9999

818

819 \newdimen\last@try

820

821 \newdimen\multicolovershoot

822 \newdimen\multicolundershoot

823 \multicolovershoot=0pt

824 \multicolundershoot=2pt

825 \newbox\mult@nat@firstbox

826 〈/badness〉

A helper for producing info messages
827 \def\mult@info#1#2{%

828 \ifnum\c@tracingmulticols>#1%

829 \GenericWarning

830 {(multicol)\@spaces\@spaces}%

831 {Package multicol: #2}%

832 \fi

833 }

6 Fixing the \columnwidth

If we store the current column width in
\columnwidth we have to redefine the internal
\@footnotetext macro to use \textwidth for the
width of the footnotes rather then using the original
definition.

Starting with version v1.5r this is now done in a
way that the original definition is still used, execpt
that locally \columnwidth is set to \textwidth.

This solves two problems: first redefinitions of

\@footnotetext done by a class will correctly
survive and second if multicols is used inside
a minipage environment the special definition of
\@footnotetext in that environment will be picked
up and not the one for the main galley (the lat-
ter would result in all footnotes getting lost in that
case).

See the definition of the \multicols command
further up for the exact code.

7 Further extensions

This section does contain code for extensions added
to this package over time. Not all of them may be
active, some might sit dormant and wait for being
activated in some later release.

7.1 Not balancing the columns

This is fairly trivial to implement. we just have to
disable the balancing output routine and replace it
by the one that ships out the other pages.

The code for this environment was suggested by
Matthias Clasen.

834 〈∗nobalance〉
835 \@namedef{multicols*}{%

If we are not on the main galley, i.e., inside a box
of some sort, that approach will not work since we
don’t have a vertical size for the box so we better
warn that we balance anyway.

836 \ifinner

25

837 \PackageWarning{multicol}%

838 {multicols* inside a box does

839 not make sense.\MessageBreak

840 Going to balance anyway}%

841 \else

842 \let\balance@columns@out

843 \multi@column@out

844 \fi

845 \begin{multicols}

846 }

When ending the environment we simply end the in-
ner multicols environment, except that we better
also stick in some stretchable vertical glue so that
the last column still containing text is not vertically
stretched out.

847 \@namedef{endmulticols*}{\vfill

848 \end{multicols}}

849 〈/nobalance〉

7.2 Manual column breaking

The problem with manual page breaks within multi-
cols is the fact that during collection of material for
all columns a page-forcing penalty (i.e. -10000 or
higher) would stop the collecting pass which is not
quite what is desired. On the other hand, using a
penalty like -9999 would mean that there would be
occasions where the \vspliting operations within
multicols would ignore that penalty and still choose
a different break point.

For this reason the current implementation uses
a completely different approach. In a nutshell it
extends the LATEX output routine handling by in-
troducing an additional penalty flag (i.e., a penalty
which is forcing but higher than -10000 so that the
output routine can look at this value and thus knows
why it has been called).

Inside the output routine we test for this value
and if it appears we do two things: save the galley
up to this point in a special box for later use and re-
duce the \vsize by the height of the material seen.
This way the forcing penalty is now hidden in that
box and we can restart the collection process for
the remaining columns. (This is done in \speci@ls
above.)

In the output routines that do the \vsplitting
either for balancing or for a full page we simply com-
bine box 255 with the saved box thus getting a single
box for splitting which now contains forcing breaks
in the right positions.

\columnbreak is modelled after \pagebreak except
that we generate a penalty -10005.

850 〈∗colbreak〉

851 \mathchardef\@Mv=10005

852 \def\columnbreak{%

We have to ensure that it is only used within a mul-
ticols environment since if that penalty would be
seen by the unmodified LATEX output routine strange
things would happen.

853 \ifnum\col@number<\tw@

854 \PackageError{multicol}%

855 {\noexpand\columnbreak outside multicols}%

856 {This command can only be used within

857 a multicols or multicols* environment.}%

858 \else

859 \ifvmode

860 \penalty -\@Mv\relax

861 \else

862 \@bsphack

863 \vadjust{\penalty -\@Mv\relax}%

864 \@esphack

865 \fi

866 \fi}

Need a box to collect the galley up to the column
break.

867 \newbox\colbreak@box

868 〈/colbreak〉
869 〈/package〉

26

