The xkeyval package *

Hendri Adriaens
http://stuwww.uvt.nl/ hendri

v2.5d (2005/08/12)

Abstract

This package is an extension of the keyval package and offers more flexible macros
for defining and setting keys. The package provides a pointer and a preset system.
Furthermore, it supplies macros to allow class and package options to contain op-
tions of the key=value form. A IAIgX kernel patch is provided to avoid premature
expansions of macros in class or package options. A specialized system for setting
PSTricks keys is provided by the pst-xkey package.

Contents

1 Introduction
2 Loading xkeyval

3 Defining and managing keys
3.1 Ordinary keys
3.2 Command keys
3.3 Choice keys
3.4 Booleankeys.........
3.5 Checkingkeys
3.6 Disablingkeys

4 Setting keys
4.1 The userinterface
4.2 Afew details

5 Pointers
5.1 Saving values
5.2 Using saved values

6 Presetting keys
7 Package option processing
8 List of macro structures

9 Warnings and errors

*This package can be downloaded from the CTAN mirrors: /macros/latex/contrib/xkeyval.

O 0N W

=)

11
11
13

15

17

19

21

10 Category codes
11 Known issues

12 Additional packages
12.1 xkvview
12.2 xkvltxp
123 pst-xkey

13 Examples and documentation

14 Implementation
14.1 xkeyval.tex
14.2 xkeyval.sty
143 keyval.tex
14.4 xkvtxhdr.tex
14.5 xkvview.sty
14.6 xkvltxp.sty
14.7 pst-xkey.tex
14.8 pst-xkey.sty

References
Acknowledgements
Version history

Index

22

23

24
24
25
26

27

28
28
55
58
59
60
64
66
67

67

68

68

69

See

xkeyval.dtx for information on installing xkeyval into your TgX or IAIgX distribution and for the license of

this package.

1 Introduction

This package is an extension of the keyval package by David Carlisle [3] and offers more
flexible and robust macros for defining and setting keys. Using keys in macro defini-
tion has the advantage that the 9 arguments maximum can easily be avoided and that
it reduces confusion in the syntax of your macro when compared to using a lot of (op-
tional) arguments. Compare for instance the following possible syntaxes of the macro
\mybox which might for instance use its arguments to draw some box containing text.

\mybox [5pt] [20pt] {some text} [red] [white] [blue]
\mybox [text=red,background=white,frame=blue,left=5pt,right=20pt]{some text}

Notice that, to be able to specify the frame color in the first example, the other colors
need to be specified as well. This is not necessary in the second example and these
colors can get preset values. The same thing holds for the margins.

The idea is that one first defines a set of keys using the tools presented in section 3
in the document preamble or in a package or class. These keys can perform a function
with the user input. The way to submit user input to these key macros, is by using
one of the user interfaces described in sections 4, 5 and 6. The main user interface is
provided by the \setkeys command. Using these interfaces, one can simplify macro
syntax and for instance define the \mybox macro above as follows.

\def ine@key{mybox}{left}{\setlength\myleft{#1}}
\define@key{mybox}{background}{\def\background{#1}}
% and some other keys
\def \mybox{\@ifnextchar [\@mybox{\@mybox []1}}
\def\@mybox [#1]#2{%

\setkeys{mybox}{#11}/,

% some operations to typeset #2

}

Notice that the combination of the two definitions \mybox and \@mybox can be re-
placed by \newcommand\mybox [2] [1{. . .} when using BTEX.

Both keys defined using the keyval and xkeyval can be set by this package. The
xkeyval macros allow for scanning multiple sets (called ‘families’) of keys. This can, for
instance, be used to create local families for macros and environments which may not
access keys meant for other macros and environments, while at the same time, allow-
ing the use of a single command to (pre)set all of the keys from the different families
globally.

The package is compatible to plain TgX and redefines several keyval macros to pro-
vide an easy way to switch between using keyval and xkeyval. This might be useful for
package writers that cannot yet rely on the availability of xkeyval in a certain distribu-
tion. After loading xkeyval, loading keyval is prevented to make sure that the extended
macros of xkeyval will not be redefined. Some internal keyval macros are supplied in
keyval.tex to guarantee compatibility to packages that use those macros. Section 11
provides more information about this issue.

The organization of this documentation is as follows. Section 2 discusses how to
load xkeyval and what the package does when it is loaded. Section 3 will discuss the
macros available to define and manage keys. Section 4 will continue with describing
the macros that can set the keys. Section 5 explains special syntax which will allow
saving and copying key values. In section 6, the preset system will be introduced. Sec-
tion 10 will explain how xkeyval protects itself for catcode changes of the comma and
the equality sign by other packages. The xkeyval package also provides commands

\XKV@documentclass

\XKV@classoptionslist

to declare and process class and package options that can take values. These will be
discussed in section 7. Section 8 provides an overview of structures used to create
xkeyval internal macros used for keys, values, presets, etcetera. Sections 9 and 11 dis-
cuss feedback that xkeyval might give and known issues, respectively. Section 12 dis-
cusses several additional packages that come with the xkeyval bundle. Section 12.1
presents a viewer utility which produces overviews of defined keys. An extension of
the BIEX 2¢ kernel with respect to the class and package options system is discussed
in section 12.2. This extension provides a way to use expandable macros in package
options. Section 12.3 presents the pst-xkey package, which provides an options system
based on xkeyval, but which is specialized in setting PSTricks keys.

Throughout this documentation, you will find some examples with a short descrip-
tion. More examples can be found in the example files that come with this package.
See section 13 for more information. This section also provides the information how
to generate the full documentation from the source.

2 Loading xkeyval

To load the xkeyval package,'! plain TgX users do \input xkeyval. KIEX users do
one of the following: \usepackage{xkeyval} or \RequirePackage{xkeyval}. The
package does not have options. It is mandatory for IBIEX users to load xkeyval at any
point after the \documentclass command. Loading xkeyval from the class which is
the document class itself is possible. The package will use the £-TgX engine when avail-
able. In particular, \ifcsname is used whenever possible to avoid filling TgX’s hash
tables with useless entries, for instance when searching for keys in families.

If xkeyval is loaded by \RequirePackage or \usepackage, the package per-
forms two action immediately. These require xkeyval to be loaded at any point after
\documentclass or by the document class itself.

First, it retrieves the document class of the document at hand and stores that (in-
cluding the class extension) into the following macro.

\XKV@documentclass

This macro could, for instance, contain article.cls and can be useful when using
\ProcessOptionsX* in a class. See page 18.

Secondly, the global options submitted to the \documentclass command and
stored by BIEX in \@classoptionslist are copied to the following macro.

\XKV@classoptionslist

This macro will be used by \ProcessOptionsX. Options containing an equality sign
are deleted from the original list in \@classoptionslist to avoid packages, which do
not use xkeyval and which are loaded later, running into problems when trying to copy
global options using BIEX’s \ProcessOptions.

3 Defining and managing keys

This section discusses macros to define keys and some tools to manage keys. A use-
ful extension to xkeyval is the xkvview package. This packages defines commands to
generate overviews of defined keys. See section 12.1 for more information.

1The xkeyval package consists of the files xkeyval . tex, xkeyval.sty, keyval . tex, xkvtxhdr . tex.

\define@key

3.1 Ordinary keys
This section describes how to define ordinary keys.

\define®@key [(prefix)] {(family) > {(key)} [(defaulty]{{function)}

This defines a macro of the form \ (prefix)@(family)@(key) with one argument holding
(function). The default value for (prefix) is KV. This is the standard throughout the
package to simplify mixing keyval and xkeyval keys. When (key) is used in a \setkeys
command (see section 4) containing key=value, the macro \(prefix)@(family)@(key)
receives value as its argument and will be executed. The argument can be accessed
by (function) by using #1 inside the function.

‘ \define@key{family}{key}{The input is: #1} ‘

xkeyval will generate an error when the user omits =value for a key in the options list of
\setkeys (see section 4). To avoid this, the optional argument can be used to specify
a default value.

‘ \define@key{family}{key} [none]l {The input is: #1} ‘

This will additionally define a macro \(prefix)@(family)@(key)@default as a macro
with no arguments and definition \{prefix)@(family)@({key){none} which will be used
when =value is missing for key in the options list. So, the last example comes down to
doing

\def\KVefamily@key#1{The input is: #1}
\def\KV@family@key@default{\KV@family@key{nonel}}

When (prefix) is specified and empty, the macros created by \define@key will
have the form \(family)@(key). When (family) is empty, the resulting form will be
\(prefix)@(key). When both (prefix) and (family) are empty, the form is \(key). This
combination of prefix and family will be called the header. The rules to create the
header will be applied to all commands taking (optional) prefix and family arguments.

The intended use for (family) is to create distinct sets of keys. This can be used
to avoid a macro setting keys meant for another macro only. The optional (prefix)
can be used to identify keys specifically for your package. Using a package specific
prefix reduces the probability of multiple packages defining the same key macros. This
optional argument can also be used to set keys of some existing packages which use a
system based on keyval.?

We now define some keys to be used in examples throughout this documentation.

\def ine@key [my]{familya}{keyal} [default] {#1}
\define@key [my] {familya}{keyb}{#1}
\define@key [my]{familyb}{keyb}{#1}
\define@key [my] {familya}{keyc}{#1}

3.2 Command keys

Command keys are specialized keys that, before executing any code, save the user in-
put to a macro.

2Like PSTricks, which uses a system originating from keyval, but which has been modified to use no
families and psset as prefix.

\define@cmdkey

\define@cmdkeys

\define@choicekey
\define@choicekey*

\def ine@cmdkey [{prefix)] {{family)} [(mp)]1{(key)} [(defaulty]{{function)}

This has the effect of defining a key macro of the form \(prefix)@(family)@(key) that,
when used, first saves the user input to a macro of the form \ (mp)(key) and then exe-
cutes (function). (mp) is the macro prefix. If (mp) is not specified, the usual combina-
tion of (prefix) and (family), together with the extra prefix cmd, will be used to create
the macro prefix, namely \ cmd(prefix)@(family)@.3 The two keys in the following ex-
ample hence do exactly the same thing.*

\def ine@cmdkey{fam}{key} [nonel{value: \cmdKV@fam@keyl}
\define@key{fam}{key} [nonel]{\def\cmdKVOfam@key{#1}value: \cmdKV@fam@key}

The value none is again the default value that will be submitted to the key macro when
the user didn’t supply a value. (See also section 3.1 for more information.)
The following two lines also implement a key with the same key macro.

\define@cmdkey{fam} [my@] {key} [none] {value: \my@keyl}
\def ine@key{fam}{key} [none] {\def\my@key{#1}value: \my@keyl}

Note that the key macro itself in the examples above is still \KV@fam@key, just as in the
previous example.

A lot of packages define keys that only save their value to a macro so that it can be
used later. Using the macro above, one can save some tokens in the package. Some
more tokens can be saved by using the following macro.

\define@cmdkeys [(prefix)] {{family)} [(mp)]{{keys)} [(default)]

This repeatedly calls (an internal of) \define@cmdkey for all keys in the list of (keys).
Note that it is not possible to specify a custom key function for the keys created by this
command. The only function of those keys is to save user input in a macro. The first
line and the last two lines of the following example create keys with the same internal
key macro.

\define@cmdkeys{fam} [my@] {keya,keyb} [nonel
\def ine@key{fam}{keya} [none] {\def\my@keya{#1}}
\define@key{fam}{keyb} [none] {\def\myCkeyb{#1}}

3.3 Choice keys

Choice keys allow only a limited number of different values for user input. These keys
are defined as follows.

\define@choicekey [{(pre)] {(fam)}{(key)} [(bin)]{(al)} [{dft)]{(func)}
\define@choicekeyx* [(pre)] {({fam)}{{key)} [{bin)]1{({aly} [{dft)] {{func)}

The keys work the same as ordinary keys, except that, before executing anything, it
is verified whether the user input #1 is present in the comma separated list (al). The
starred version first converts the input in #1 and (al) to lowercase before performing
the check. If the input is not allowed, an error is produced and the key macro (func)

3Remember that some rules are applied when creating the header, the combination of (prefix) and
(header). See section 3.1.

4Notice however, that the first key will be listed as a ‘command key’ by xkvview and the second as an
‘ordinary key’. See section 12.1.

\define@choicekey+
\def ine@choicekey*+

\XKV@cc
\XKV@cc*
\XKV@cc+

\XKV@ccx*+

will not be executed. If the input is allowed, the key macro (func) will be executed.
(dft) is submitted to the key macro when the user didn’t supply a value for the key. (See
also section 3.1.)

The optional (bin) should contain either one or two control sequences (macros).
The first one will be used to store the user input used in the input check (hence, in
lowercase when the starred version was used). The original user input will always be
available in #1. The second (if present) will contain the number of the input in the (al)
list, starting from 0. The number will be set to -1 if the input was not allowed. The
number can, for instance, be used in a \if case statement in (func).

\define@choicekey*{fam}{align}[\val\nrl{left,center,right}{%
\ifcase\nr\relax
\raggedright
\or
\centering
\or
\raggedleft
\fi
}

The example above only allows input values 1eft, center and right. Notice that we
don’t need a \else case in the key macro above as the macro will not be executed when
the input was not allowed.

\define@choicekey+ [{pre)]1{(fam)}{(key)} [{bin)] {{ah} {df) I {{fDIH {2}
\def ine@choicekey*+ [(pre)] {{fam)}{(key)} [{bin)]1{(ah} [{dft)] {{D)H {2+

These macros operate as their counterparts without the +, but allow for specifying two
key macros. {fI) will be executed when the input was correct and (f2) will be executed
when the input was not allowed. Again, the starred version executes the check after
converting user input and (al) to lowercase.

\define@choicekey*+{fam}{align}[\val\nr]{left,center,right}{J
\ifcase\nr\relax
\raggedright
\or
\centering
\or
\raggedleft
\fi
H%
\PackageWarning{mypack}{erroneous input ignored}/,

}

The example above defines a key that is similar as the one in the previous example,
but when input is not allowed, it will not generate a standard xkeyval warning, but will
execute a custom function, which, in this case, generates a warning.

\XKV@cc [(biny] {({input)}{{a }H (func)}
\XKV@ccx* [(bin)] {(input)}{{al) I {func)}
\XKV@cc+ [(bin)] {{input)}{(al) }H (funcl) H{{func2)}

\XKVQccx+ [(bin)] {(input) }H (al) H (funcI)} {{func2)}

Choice keys work by adding (an internal version® of) the \XKV@cc macro to key
macros. This macro has similar arguments as the \define@choicekey macro and

5See section 14 for details of the implementation of choice keys.

\def ine@boolkey
\define@boolkey+

the optional * and + have the same meaning. (input) holds the input that should be
checked, namely, whether it is (in lowercase if * was used) in the list (al). One can use
this macro to create custom choice keys. See an example below.

\def ine@key{fam}{key}{%
I will first check your input, please wait.\\
\XKV@cc*+[\val] {#1}{true,false}{%
The input \val\ was correct, we proceed.\\
Hi
The input \val\ was incorrect and was ignored.\\
Yh
I finished the input check.
}

Try to find out why this key cannot be defined with \def ine@boolkey which is intro-
duced in the next section.

3.4 Boolean keys

This section describes boolean keys which can be either true or false. Aboolean key is a
special version of a choice key (see section 3.3), where (al) takes the value true,false
and comparisons are always done in lowercase mode (so, True is allowed input).

\def ine@boolkey [(pre)]{(fam)} [{(mp)]1{{key)} [{default)]{{func)}
\define®@boolkey+ [(pre)]{{fam)} [{(mp)]{({key)} [{default)] {{funcl)}{(func2)}

This creates a boolean of the form \if (pre)@(family)@{key)> if (mp) is not specified,
using \newif’ (which initiates the conditional to \iffalse) and a key macro of the
form \(pre)@(family)@(key) which first checks the validity of the user input. If the input
was valid, it uses it to set the boolean and afterwards, it executes (func). If the input
was invalid, it will not set the boolean and xkeyval will generate an error. If (mp) is
specified, it will create boolean of the form \if(mp)(key) (compare to command keys
in section 3.2). The value (default) will be used by the key macro when the user didn’t
submit a value to the key. (See also section 3.1.)

If the + version of the macro is used, one can specify two key macros. If user input
is valid, the macro will set the boolean and executes (funcl). Otherwise, it will not set
the boolean and execute (func2).

\def ine@boolkey{fam} [my@] {frame}{}
\def ine@boolkey+{fam}{shadow}{/

\ifKVefam@shadow
\PackageInfo{mypack}{turning shadows onl}/,
\else
\PackageInfo{mypack}{turning shadows off}J
\fi
H
\PackageWarning{mypack}{erroneous input ignored}’

}

6When you want to use this macro directly, either make sure that neither of the input parameters con-
tain characters with a catcode different from 11 (hence no - for instance), reset the catcode of the offend-
ing characters internally to 11 or use \csname. . .\endcsname to construct macro names, (for instance,
\csname ifpre@some-fam@key\endcsname). See for more information section 8.

"The WIgX of implementation \newif is used because it can be used in the replacement text of a macro,
whereas the plain TgX \newif is defined \outer.

\define@boolkeys

\key@ifundefined

\disable@keys

The first example creates the boolean \ifmy@frame and defines the key macro

\KV@fam@frame to only set the boolean (if input is correct). The second key informs

the user about changed settings or produces a warning when input was incorrect.
One can also define multiple boolean keys with a single command.

\define@boolkeys [(pre)] {(fam)} [(mp)] {{keys)} [(default)]

This macro creates a boolean key for every entry in the list (keys). As with the command
\def ine@cmdkeys, the individual keys cannot have a custom function. The boolean
keys created with this command are only meant to set the state of the boolean using
the user input. Concluding,

\define@boolkeys{fam} [my@] {keya,keyb,keyc}

is an abbreviation for

\define@boolkey{fam} [my@]{keyal}{}
\define@boolkey{fam} [my@] {keyb}{}
\define@boolkey{fam} [my@] {keyc}{}

3.5 Checking keys

\key@ifundefined [{prefix)] {{families) }{(key) }{(undefined)}{(defined)}

This macro executes (undefined) when (key) is not defined in a family listed in
(families) using (prefix) (which is KV by default) and (defined) when it is. If (defined)
is executed, \XKV@tfam holds the first family in the list (families) that holds (key). If
(undefined) is executed, \XKV@tfam contains the last family of the list (families).

‘ \key@ifundefined [my]{familya,familyb}{keya}{‘keya’ not defined}{‘keya’ defined} ‘

This example results in ‘keya’ defined and \XKV@tfam holds familya.

3.6 Disabling keys
It is also possible to disable keys after use as to prevent the key from being used again.

\disable@keys [(prefix)] {(family)}{{keys)}

When you disable a key, the use of this key will produce a warning in the log file. Dis-
abling a key that hasn't been defined will result in an error message.

‘ \disable@keys [my] {familya}{keya,keyb}

This would make keya and keyb produce a warning when one tries to set these keys.

4 Setting keys

4.1 The user interface

This section describes the available macros for setting keys. All of the macros in this
section have an optional argument (prefix) which determines part of the form of the
keys that the macros will be looking for. See section 3. This optional argument takes
the value KV by default.

\setkeys

\setkeysx*

\setkeys [(prefix)] {(families)} [{nay] {(keys)}

This macro sets keys of the form \(prefix)@{family)@(key)*> where (family) is an ele-
ment of the list (families) and key is an element of the options list (keys) and not of
(nay. The latter list can be used to specify keys that should be ignored by the macro.
If a key is defined by more families in the list (families), the first family from the list
defining the key will set it. No errors are produced when (keys) is empty. If (family) is
empty, the macro will set keys of the form \(prefix)@(key). If {prefix) is specified and
empty, the macro will set keys of the form \ (family)@(key). If both (prefix) and (family)
are empty, the macro will set keys of the form \ (key).

\setkeys [my] {familya,familyb}{keya=test}
\setkeys [my] {familya,familyb}{keyb=test}
\setkeys [my] {familyb,familya}{keyb=test}

In the example above, line 1 will set keya in family familya. This effectively means
that the value test will be submitted to the key macro \my@familya®@keya. The next
line will set keyb in familya. The last one sets keyb in family familyb. As the keys
used here, directly output their value, the above code results in typesetting the word
test three times.

When input is lacking for a key, \setkeys will check whether there is a default
value for that key that can be used instead. If that is not the case, an error message will
be generated. See also section 3.

\setkeys [my] {familya}{keya}
\setkeys [my] {familya}{keyb}

The first line of the example above does not generate an error as this key has been
defined with a default value (see section 3.1). The second line does generate an error
message. See also section 9 for all possible error messages generated by xkeyval.

When you want to use commas or equality signs in the value of a key, surround the
value by braces, as shown in the example below.

\setkeys [my] {familya}{keya={some=text,other=text}}

It is possible to nest \setkeys commands in other \setkeys commands or in key
definitions. The following, for instance,

\define@key [my]{familyb}{keyc}{#1}
\setkeys [my]{familyb}{keyc=a\setkeys [my]{familya}{keya="and b},keyb="and c}

returnsa and b and c.

\setkeysx* [(prefix)] {(families)} [{(na)] {{keys)}

The starred version of \setkeys sets keys which it can locate in the given families and
will not produce errors when it cannot find a key. Instead, these keys and their values
will be appended to a list of remaining keys in the macro \XKV@rm after the use of
\setkeys*. Keys listed in (na) will be ignored fully and will not be appended to the
\XKV@rm list.

\setkeys*[my]{familyb}{keya=test}

Since keya is not defined in familyb, the value in the example above will be stored in
\XKV@rm (so \XKV@rm expands to keya=test) for later use and no errors are raised.

\setrmkeys [(prefix)] {(families)} [(na)]

\setrmkeys The macro \setrmkeys sets the remaining keys given by the list \XKV@rm stored previ-
ously by a \setkeys* (or \setrmkeys*) command in (families). (na) again lists keys
that should be ignored. It will produce an error when a key cannot be located.

\setrmkeys [my] {familya}

This submits keya=test from the previous \setkeys* command to familya. keya
will be set.

\setrmkeysx* [(prefix)] {(families)} [(na)]

\setrmkeys* The macro \setrmkeys* acts as the \setrmkeys macro but now, as with \setkeysx,
it ignores keys that it cannot find and puts them again on the list stored in \XKV@rm.
Keys listed in (na) will be ignored fully and will not be appended to the list in \XKV@rm.

\setkeys* [my]{familyb}{keya=test}
\setrmkeys* [my] {familyb}
\setrmkeys [my] {familya}

In the example above, the second line tries to set keya in familyb again and no errors
are generated on failure. The last line finally sets keya.

The combination of \setkeys* and \setrmkeys can be used to construct com-
plex macros in which, for instance, a part of the keys should be set in multiple families
and the rest in another family or set of families. Instead of splitting the keys or the
inputs, the user can supply all inputs in a single argument and the two macros will
perform the splitting and setting of keys for your macro, given that the families are
well chosen.

\setkeys+ [(prefix)] {(families)} [{na)] {{keys)}
\setkeysx*+ [(prefix)] {(families)} [(na)] {({keys)}
\setrmkeys+ [(prefix)] {(families)} [(na)]
\setrmkeys*+ [{prefix)] {(families)} [{na)]

\setkeys+ These macros act as their counterparts without the +. However, when a key in (keys) is
\setkeys*+ defined by multiple families, this key will be set in all families in (families). This can,

\setkeys+ for instance, be used to set keys defined by your own package and by another package
\setkeys*+ yith the same name but in different families with a single command.

\setkeys+[my]{familya,familyb}{keyb=test}

The example above sets keyb in both families.

4.2 Afew details

Several remarks should be made with respect to processing the user input. Assuming
that keya up to keyd are properly defined, one could do the following.

\setkeys{family}{keya= test a, keyb={test b,c,d}, , keyc=end}

10

\savevalue

From values consisting entirely of a { } group, the outer braces will be stripped off
internally.® This allows the user to ‘hide’ any commas or equality signs that appear in
the value of a key. This means that when using braces around value, xkeyval will not
terminate the value when it encounters a comma in value. For instance, see the value
of keyb in the example above. The same holds for the equality sign. Notice further that
any spaces around the characters = and , (in the top level group) are removed and that
empty entries will silently be ignored. This makes the example above equivalent to the
example below.

\setkeys{family}{keya=test a,keyb={test b,c,d},keyc=end}

Further, when executing a key macro, the following xkeyval internals are available.

\XKV@prefix
The prefix, for instance my.

\XKVefams
The list of families to search, for instance familya,familyb.

\XKVetfam
The current family, for instance familya.

\XKV@header
The header which is a combination of the prefix and the current family, for in-
stance my@familya®.

\XKV@tkey
The current key name, for instance keya.

\XKV@na
The keys that should not be set, for instance keyc ,keyd.

You can use these internals and create, for example, dynamic options systems in which
user input to \setkeys will be used to create new keys which can be used in the very
same \setkeys command. The extract package [1] provides an example for this.

5 Pointers

The xkeyval package provides a pointer mechanism. Pointers can be used to copy val-
ues of keys. Hence, one can reuse the value that has been submitted to a particular key
in the value of another key. This section will first describe how xkeyval can be made to
save key values. After that, it will explain how to use these saved values again. Notice
already that the commands \savevalue, \gsavevalue and \usevalue can only be
used in \setkeys commands.

5.1 Saving values

Saving a value for a particular key can be accomplished by using the \savevalue com-
mand with the key name as argument.

8xkeyval actually strips off 3 levels of braces: one by using keyval’s \KV@@sp@def and two in internal
parsings. keyval strips off only 2 levels: one by using \KV@@sp@def and one in internal parsings. This dif-
ference has not yet been shown to cause problems for existing packages or new implementations. If this
appears to be a problem in the future, effort will be done to solve it.

11

\gsavevalue

\savekeys
\gsavekeys

\delsavekeys
\gdelsavekeys
\unsavekeys
\gunsavekeys

\setkeys [my] {familya}{\savevalue{keya}=test}

This example will set keya as we have seen before, but will additionally define the
macro \XKV@my@familya@keya@value to expand to test. This macro can be used
later on by xkeyval to replace pointers. In general, values of keys will be stored in
macros of the form \XKV@(prefix)@(family)@(key)@value. This implies that the pointer
system can only be used within the same family (and prefix). We will come back to that
in section 5.2.

Using the global version of this command, namely \gsavevalue, will define the
value macro \XKV@my@family@key@value globally. In other words, the value macro
won't survive after a \begingroup. . . \endgroup construct (for instance, an environ-
ment), when it has been created in this group using \savevalue and it will survive
afterwards if \gsavevalue is used.

\setkeys [my] {familya}{\gsavevalue{keyalt=test}

This example will globally define \XKV@my@f amilya@keya@value to expand to test.

Actually, in most applications, package authors do not want to require users to use
the \savevalue form when using the pointer system internally. To avoid this, the xkey-
val package also supplies the following commands.

\savekeys [(prefix)] {{family)}{{keys)}
\gsavekeys [(prefix)] {{family) }{ (keys)}

The \savekeys macro stores a list of keys for which the values should always be saved
to a macro of the form \XKV@(prefix)@(family)@save. This will be used by \setkeys
to check whether a value should be saved or not. The global version will define this
internal macro globally so that the settings can escape groups (and environments).
The \savekeys macro works incrementally. This means that new input will be added
to an existing list for the family at hand if it is not in yet.

\savekeys [my]{familya}{keya,keyc}
\savekeys [my]{familya}{keyb,keyc}

The first line stores keya, keyc to \XKV@my@familya@save. The next line changes the
content of this macro to keya, keyc, keyb.

\delsavekeys [(prefix)] {(family)}{ (keys)}
\gdelsavekeys [(prefix)] {(family) }{({keys)}
\unsavekeys [(prefix)] {(family)}
\gunsavekeys [(prefix)] {(family)}

The \delsavekeys macro can be used to remove some keys from an already defined
list of save keys. No errors will be raised when one of the keys in the list (keys) was not
in the list. The global version \gdelsavekeys does the same as \delsavekeys, but
will also make the resulting list global. The \unsavekeys macro can be used to clear
the entire list of key names for which the values should be saved. The macro will make
\XKV@(prefix)@(family)@save undefined. \gunsavekeys is similar to \unsavekeys
but makes the internal macro undefined globally.

\savekeys [my]{familya}{keya,keyb,keyc}
\delsavekeys [my] {familya}{keyb}
\unsavekeys [my]{familya}

12

\global

\usevalue

The first line of this example initializes the list to contain keya,keyb, keyc. The sec-
ond line removes keyb from this list and hence keya,keyc remains. The last line
makes the list undefined and hence clears the settings for this family.

It is important to notice that the use of the global version \gsavekeys will only
have effect on the definition of the macro \XKV@(prefix)@(family)@save. It will not
have an effect on how the key values will actually be saved by \setkeys. To achieve
that a particular key value will be saved globally (like using \gsavevalue), use the
\global specifier in the \savekeys argument.

\savekeys [my] {familya}{keya, \global{keyc}}

This example does the following. The argument keya, \global{keyc} is saved (lo-
cally) to \XKV@my@familya@save. When keyc is used in a \setkeys command, the
associated value will be saved globally to \XKV@my@familya@keya@value. When
keya is used, its value will be saved locally.

All macros discussed in this section for altering the list of save keys only look at
the key name. If that is the same, old content will be overwritten with new content,
regardless whether \global has been used in the content. See the example below.

\savekeys [my]{familya}{\global{keyb},keyc}
\delsavekeys [my] {familya}{keyb}

The first line changes the list in \XKV@my@familya®@save from keya, \global{keyc}
to keya,keyc, \global{keyb}. The second line changes the list to keya,keyc.

5.2 Using saved values

The syntax of a pointer is \usevalue{keyname} and can only be used inside \setkeys
and friends. xkeyval will replace a pointer by the value that has been saved for the key
that the pointer is pointing to. If no value has been saved for this key, an error will be
raised. The following example will demonstrate how to use pointers (using the keys
defined in section 3.1).

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\usevalue{keya}t}

The value submitted to keyb points to keya. This has the effect that the value recorded
for keya will replace \usevalue{keya} and this value (here test) will be submitted
to the key macro of keyb.

Since the saving of values is prefix and family specific, pointers can only locate
values that have been saved for keys with the same prefix and family as the key for
which the pointer is used. Hence this

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familyb}{keyb=\usevalue{keya}t}

will never work. An error will be raised in case a key value points to a key for which the
value cannot be found or has not been stored.
It is possible to nest pointers as the next example shows.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{\savevalue{keyb}=\usevalue{keyal}}
\setkeys [my] {familya}{keyc=\usevalue{keybl}}

13

This works as follows. First xkeyval records the value test in a macro. Then, keyb uses
that value. Besides that, the value submitted to keyb, namely \usevalue{keya} will
be recorded in another macro. Finally, keyc will use the value recorded previously for
keyb, namely \usevalue{keya}. That in turn points to the value saved for keya and
that value will be used.

It is important to stress that the pointer replacement will be done before TgX or
KIEX performs the expansion of the key macro and its argument (which is the value
that has been submitted to the key). This allows pointers to be used in almost any
application. (The exception is grouped material, to which we will come back later.)
When programming keys (using \define@key and friends), you won't have to worry
about the expansion of the pointers which might be submitted to your keys. The value
that will be submitted to your key macro in the end, will not contain pointers. These
have already been expanded and been replaced by the saved values.

A word of caution is necessary. You might get into an infinite loop if pointers are
not applied with care, as the examples below show. The first example shows a direct
back link.

\setkeys [my] {familya}{\savevalue{keya}=\usevalue{keya}}

The second example shows an indirect back link.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{\savevalue{keyb}=\usevalue{keyal}}
\setkeys [my] {familya}{\savevalue{keya}=\usevalue{keyb}}

In these cases, an error will be issued and further pointer replacement is canceled.

As mentioned already, pointer replacement does not work inside grouped material,
{. ..}, if this group is not around the entire value (since that will be stripped off, see
section 1). The following, for instance, will not work.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\parbox{2cm}{\usevalue{keya}}}

The following provides a working alternative for this situation.

\setkeys [my]{familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\begin{minipage}{2cm}\usevalue{keya}t\end{minipagel}}

In case there is no appropriate alternative, we can work around this restriction, for
instance by using a value macro directly.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\parbox{2cm}{\XKV@my@familya@keya@value}}

When no value has been saved for keya, the macro \XKV@my@f amilya@keya@value is
undefined. Hence one might want to do a preliminary check to be sure that the macro
exists.

Pointers can also be used in default values. We finish this section with an example
which demonstrates this.

\def ine@key{fam}{keya}{keya: #1}
\define@key{fam}{keyb} [\usevalue{keya}]{keyb: #1}
\def ine@key{fam}{keyc}[\usevalue{keyb}]{keyc: #1}
\setkeys{fam}{\savevalue{keya}=test}
\setkeys{fam}{\savevalue{keybl}}
\setkeys{fam}{keyc}

14

\presetkeys
\gpresetkeys

\delpresetkeys
\gdelpresetkeys

Since user input is lacking in the final two commands, the default value defined for
those keys will be used. In the first case, the default value points to keya, which results
in the value test. In the second case, the pointer points to keyb, which points to keya
(since its value has been saved now) and hence also in the final command, the value
test will be submitted to the key macro of keyc.

6 Presetting keys

In contrast to the default value system where users are required to specify the key with-
out a value to assign it its default value, the presetting system does not require this.
Keys which are preset will be set automatically by \setkeys when the user didn't use
those keys in the \setkeys command. When users did use the keys which are also pre-
set, \setkeys will avoid setting them again. This section again uses the key definitions
of section 3.1 in examples.

\presetkeys [(prefix)] {{family) }{(head keys)}{(tail keys)}
\gpresetkeys [(prefix)] {{family)}{(head keys) }{{tail keys)}

This macro will save (head keys) to \XKV@({prefix)@(family)@preseth and (tail keys) to
\XKV@(prefix)@{family)@presett. Savings are done locally by \presetkeys and glob-
ally by \gpresetkeys (compare \savekeys and \gsavekeys, section 5.1). The saved
macros will be used by \setkeys, when they are defined, whenever (family) is used in
the (families) argument of \setkeys. Head keys will be set before setting user keys, tail
keys will be set afterwards. However, if a key appears in the user input, this particular
key will not be set by any of the preset keys.

The macros work incrementally. This means that new input for a particular key
replaces already present settings for this key. If no settings were present yet, the new
input for this key will be appended to the end of the existing list. The replacement
ignores the fact whether a \savevalue or an = has been specified in the key input. We
could do the following.

\presetkeys{fam}{keya=red, \savevalue{keyb},keyc}{}
\presetkeys{fam}{\savevalue{keya},keyb=red,keyd}{}

After the first line of the example, the macro \XKVOKV@fam@preseth will contain
keya=red, \savevalue{keyb},keyc. After the second line of the example, the
macro will contain \savevalue{keya},keyb=red,keyc,keyd. The (tail keys) re-
main empty throughout the example.

\delpresetkeys [(prefix)] {(family) }{(head keys)}{ (tail keys)}
\gdelpresetkeys [(prefix)] {{family) }{{head keys)}{ (tail keys)}

These commands can be used to (globally) delete entries from the presets by specify-
ing the key names for which the presets should be deleted. Continuing the previous
example, we could do the following.

\delpresetkeys{fam}{keya,keyb}{}

This redefines the list of head presets \XKV@KV@fam@preseth to contain keyc, keyd.
As can be seen from this example, the exact use of a key name is irrelevant for success-
ful deletion.

15

\unpresetkeys
\gunpresetkeys

\unpresetkeys [(prefix)] {(family)}
\gunpresetkeys [(prefix)] {{family)}

These commands clear the presets for (family) and works just as \unsavekeys. It
makes \XKVQ(prefix)@(family)@preseth and \XKVQ(prefix)@(family)@presett unde-
fined. The global version will make the macros undefined globally.

Two type of problems in relation to pointers could appear when specifying head
and tail keys incorrectly. This will be demonstrated with two examples. In the first ex-
ample, we would like to set keya to blue and keyb to copy the value of keya, also when
the user has changed the preset value of keya. Say that we implement the following.

\savekeys [my]{familya}{keya}
\presetkeys [my] {familya}{keya=blue,keyb=\usevalue{keya}}{}
\setkeys [my] {familya}{keya=red}

This will come down to executing

\savekeys [my]{familya}{keyal}
\setkeys [my] {familya}{keyb=\usevalue{keyal},keya=red}

since keya has been specified by the user. At best, keyb will copy a probably wrong
value of keya. In the case that no value for keya has been saved before, we get an error.
We observe that the order of keys in the simplified \setkeys command is wrong. This
example shows that the keyb=\usevalue{keya} should have been in the tail keys, so
that it can copy the user input to keya.

The following example shows what can go wrong when using presets incorrectly
and when \setkeys contains pointers.

\savekeys [my]{familya}{keya}
\presetkeys [my] {familya}{}{keya=red}
\setkeys [my] {familya}{keyb=\usevalue{keyal}}

This will come down to executing the following.

\savekeys [my] {familya}{keya}
\setkeys [my] {familya}{keyb=\usevalue{keyal},keya=red}

This results in exactly the same situation as we have seen in the previous example and
hence the same conclusion holds. In this case, we conclude that the keya=red argu-
ment should have been specified in the head keys of the \presetkeys command so
that keyb can copy the value of keya.

For most applications, one could use the rule of thumb that preset keys containing
pointers should go in the tail keys. All other keys should go in head keys. There might,
however, be applications thinkable in which one would like to implement the preset
system as shown in the two examples above, for instance to easily retrieve values used
in the last use of a macro or environment. However, make sure that keys in that case
receive an initialization in order to avoid errors of missing values.

For completeness, the working examples are below.

\savekeys [my] {familya}{keya}

\presetkeys [my] {familya}{keya=blue}{keyb=\usevalue{keyal}}
\setkeys [my] {familya}{keya=red}
\presetkeys [my] {familya}{keya=red}{}

\setkeys [my] {familya}{keyb=\usevalue{keyal}}

Other examples can be found in the example files. See section 13.

16

\DeclareOptionX

7 Package option processing

The macros in this section can be used to build BIEX class or package options systems
using xkeyval. These are comparable to the standard BIgX macros without the trailing
X. See for more information about these IBIgX macros the documentation of the source
[2] or a BTgX manual (for instance, the KIEX Companion [4]). The macros in this section
have been built using \def ine@key and \setkeys and are not available to TgX users.

The macros below allow for specifying the (family) (or (families)) as an optional
argument. This could be useful if you want to define global options which can be
reused later (and set locally by the user) in a macro or environment that you define.
If no (family) (or (families)) is specified, the macro will insert the default family name
which is the filename of the file that is calling the macros. The macros in this section
also allow for setting an optional prefix. When using the filename as family, uniqueness
of key macros is already guaranteed. In that case, you can omit the optional {prefix).
However, when you use a custom prefix for other keys in your package and you want
to be able to set all of the keys later with a single command, you can use the custom
prefix also for the class or package options system.

Note that both [(arg)] and <(arg)> denote optional arguments to the macros in
this section. This syntax is used to identify the different optional arguments when they
appear next to each other.

\DeclareOptionX [(prefix)] <(family)>{(key)} [{default)] {{function)}

Declares an option (i.e.,, a key, which can also be used later on in the package
in \setkeys and friends). This macro is comparable to the standard BIEX macro
\DeclareOption, but with this command, the user can pass a value to the option
as well. Reading that value can be done by using #1 in (function). This will contain
(default) when no value has been specified for the key. The value of the optional argu-
ment (default) is empty by default. This implies that when the user does not assign a
value to (key) and when no default value has been defined, no error will be produced.
The optional argument (family) can be used to specify a custom family for the key.
When the argument is not used, the macro will insert the default family name.

\newif\iflandscape
\DeclareOptionX{landscape}{\landscapetrue}
\DeclareOptionX{parindent}[20pt]{\setlength\parindent{#1}}

Assuming that the file containing the example above is called myclass.cls, the ex-
ample is equivalent to

\newif\iflandscape
\def ine@key{myclass.cls}{landscape} []{\landscapetrue}
\define@key{myclass.cls}{parindent} [20pt]{\setlength\parindent{#1}}

Notice that an empty default value has been inserted by xkeyval for the landscape
option. This allows for the usual BIEX options use like

\documentclass[landscape] {myclass}

without raising No value specified for key ‘landscape’ errors.

These examples also show that one can also use \define@key (or friends, see sec-
tion 3) to define class or package options. The macros presented here are supplied
for the ease of package programmers wanting to convert the options section of their
package to use xkeyval.

17

\DeclareOptionXx

\ExecuteOptionsX

\ProcessOptionsX

\ProcessOptionsX*

\DeclareOptionX*{(function)t

This macro can be used to process any unknown inputs. It is comparable to the BIEX
macro \DeclareOption*. Use \CurrentOption within this macro to get the entire
input from which the key is unknown, for instance unknownkey=value or somevalue.
These values (possibly including a key) could for example be passed on to another class
or package or could be used as an extra class or package option specifying for instance
a style that should be loaded.

\DeclareOptionX*{\PackageWarning{mypackage}{‘\CurrentOption’ ignored}}

The example produces a warning when the user issues an option that has not been
declared.

\ExecuteOptionsX [{prefix)] <(families)> [{na)] {{keys)}

This macro sets keys created by \DeclareOptionX and is basically a copy of \setkeys.
The optional argument (na) specifies keys that should be ignored. The optional argu-
ment (families) can be used to specify a list of families which define (keys). When the
argument is not used, the macro will insert the default family name. This macro will
not use the declaration done by \DeclareOptionX* when undeclared options appear
in its argument. Instead, in this case the macro will raise an error. This mimics BIEX’s
\ExecuteOptions’ behavior.

\ExecuteOptionsX{parindent=0pt}

This initializes \parindent to Opt.

\ProcessOptionsX [(prefix)] <(families)> [(na)]

This macro processes the keys and values passed by the user to the class or package.
The optional argument (na) can be used to specify keys that should be ignored. The
optional argument (families) can be used to specify the families that have been used
to define the keys. Note that this macro will not protect macros in the user inputs (like
\thepage) as will be explained in section 12.2. When used in a class file, this macro
will ignore unknown keys or options. This allows the user to use global options in the
\documentclass command which can be copied by packages loaded afterwards.

\ProcessOptionsX* [(prefix)] <(families)> [(na)]

The starred version works like \ProcessOptionsX except that it also copies user in-
put from the \documentclass command. When the user specifies an option in the
document class which also exists in the local family (or families) of the package is-
suing \ProcessOptionsX#, the local key will be set as well. In this case, #1 in the
\DeclareOptionX macro will contain the value entered in the \documentclass com-
mand for this key. First the global options from \documentclass will set local keys
and afterwards, the local options, specified with \usepackage, \RequirePackage or
\LoadClass (or friends), will set local keys, which could overwrite the global options
again, depending on the way the options sections are constructed. This macro reduces
to \ProcessOptionsX only when issued from the class which forms the document
class for the file at hand to avoid setting the same options twice, but not for classes
loaded later using for instance \LoadClass. Global options that do not have a coun-
terpart in local families of a package or class will be skipped.

18

It should be noted that these implementations differ from the IBIgX implemen-
tations of \ProcessOptions and \ProcessOptions*. The difference is in copy-
ing the global options. The BIgX commands always copy global options if possible.
As a package author doesn’t know beforehand which document class will be used
and with which options, the options declared by the author might show some un-
wanted interactions with the global options. When the class and the package share
the same option, specifying this option in the \documentclass command will force
the package to use that option as well. With \ProcessOptionsX, xkeyval offers a
package author to become fully independent of the global options and be sure to
avoid conflicts with any class. Have a look at the example class, style and .tex file
below and observe the effect of changing to \ProcessOptionsX#* in the style file.®

% myclass.cls % mypack.sty

\RequirePackage{xkeyval} \define@boolkey{mypack.sty}’

\def ine@boolkey{myclass.cls}/, [pkgl{bool}{}
[c1ls]{bool}{} \ProcessOptionsX

\ProcessOptionsX

\LoadClass{article

% test.tex

\documentclass [bool=true] {myclass}

\usepackage{mypack}

\begin{document}\parindentOpt

\ifclsbool class boolean true \else class boolean false\fi\\

\ifpkgbool package boolean true \else package boolean false\fi

\end{document}

See section 13 for more examples.

The use of \ProcessOptionsX* in a class file might be tricky since the class could
also be used as a basis for another package or class using \LoadClass. In that case,
depending on the options system of the document class, the behavior of the class
loaded with \LoadClass could change compared to the situation when it is loaded
by \documentclass. But since it is technically possible to create two classes that co-
operate, the xkeyval package allows for the usage of \ProcessOptionsX* in class files.
Notice that using BIgX’s \ProcessOptions or \ProcessOptions*, a class file cannot
copy document class options.

In case you want to verify whether your class is loaded with \documentclass or
\LoadClass, you can use the \XKV@documentclass macro which contains the cur-
rent document class.

A final remark concerns the use of expandable macros in class or package options
values. Due to the construction of the BIEX option processing mechanism, this is
not possible. However, the xkeyval bundle includes a patch for the BIEX kernel which
solves this problem. See section 14.6 for more information.

8 List of macro structures

This section provides a list of all reserved internal macro structures used for key
processing. Here pre denotes a prefix, fam denotes a family and key denotes a key.
These vary per application. The other parts in internal macro names are constant. The
macros with additional XKV prefix are protected in the sense that all xkeyval macros

9See section 3.4 for information about \def ine@boolkey

19

disallow the use of the XKV prefix. Package authors using xkeyval are responsible for
protecting the other types of internal macros.

\pre@fam@key
Key macro. This macro takes one argument. This macro will execute the
(function) of \define@key (and friends) on the value submitted to the key
macro through \setkeys.

\cmdpre@fam@key
The macro which is used by \define@cmdkey to store user input in when no
custom macro prefix was specified.

\ifpre@fam@key, \pre@fam@keytrue, \pre@fam@keyfalse
The conditional created by \define@boolkey with parameters pre, fam and
key if no custom macro prefix was specified. The true and false macros are
used to set the conditional to \iftrue and \iffalse respectively.

\pre@fam@key@default
Default value macro. This macro expands to \pre@fam@key{default value}.
This macro is defined through \def ine@key and friends.

\XKV@pre@fam@keyQvalue
This macro is used to store the value that has been submitted through \setkeys
to the key macro (without replacing pointers).

\XKV@pre@fam@save
Contains the names of the keys that should always be saved when they appear
in a \setkeys command. This macro is defined by \savekeys.

\XKV@pre@fam@preseth
Contains the head presets. These will be submitted to \setkeys before setting
user input. Defined by \presetkeys.

\XKV@pre@fam@presett
Contains the tail presets. These will be submitted to \setkeys after setting user
input. Defined by \presetkeys.

An important remark should be made. Most of the macros listed above will be con-
structed by xkeyval internally using \csname. . . \endcsname. Hence almost any input
to the macros defined by this package is possible. However, some internal macros
might be used outside xkeyval macros as well, for instance the macros of the form
\ifpre@fam@key and \cmdpre@fam@key. To be able to use these macros yourself,
none of the input parameters should contain non-letter characters. If you feel that this
is somehow necessary anyway, there are several strategies to make things work.

Let us consider as example the following situation (notice the hyphen - in the fam-
ily name).

\define@boolkey{some-fam}{myif}
\setkeys{some-fam}{myif=false}

Using these keys in a \setkeys command is not a problem at all. However, if you want
to use the \ifKV@some-fam@myif command itself, you can do either

20

\edef\savedhyphencatcode{\the\catcode‘\-1}/,
\catcode ‘\-=11\relax
\def\mymacro{Y
\ifKV@some-fam@myif
% true case
\else
% false case
\fi}
\catcode ‘\-=\savedhyphencatcode

or

\def\mymacro{/
\csname ifKV@some-fam@myif\endcsname
% true case
\else
% false case

\fi}

9 Warnings and errors

There are several points where xkeyval performs a check and could produce a warn-
ing or an error. All possible warnings or and error messages are listed below with an
explanation. Here pre denotes a prefix, name denotes the name of a key, fam denotes
a family, fams denotes a list of families and val denotes some value. These vary per
application. Note that messages 1 to 7 could result from erroneous key setting through
\setkeys, \setrmkeys, \ExecuteOptionsX and \ProcessOptionsX.

1) value ‘val’ is not allowed (error)
The value that has been submitted to a key macro is not allowed. This error can
be generated by either a choice or a boolean key.

2) ‘name’ undefined in families ‘fams’ (error)
The key name is not defined in the families in fams. Probably you mistyped name.

3) no key specified for value ‘val’ (error)
xkeyval found a value without a key, for instance something like =value, when
setting keys.

4) no value recorded for key ‘name’ (error)

You have used a pointer to a key for which no value has been saved previously.

5) back linking pointers; pointer replacement canceled (error)
You were back linking pointers. Further pointer replacements are canceled to
avoid getting into an infinite loop. See section 5.2.

6) no value specified for key ‘name’ (error)
You have used the key ‘name’ without specifying any value for it (namely,
\setkeys{fam}{name} and the key does not have a default value. Notice that
\setkeys{fam}{name=} submits the empty value to the key macro and that this
is considered a legal value.

7) key ‘name’ has been disabled (warning)
The key that you try to set has been disabled and cannot be used anymore.

21

8) ‘XKV’ prefix is not allowed (error)
You were trying to use the XKV prefix when defining or setting keys. This error
can be caused by any xkeyval macro having an optional prefix argument.

9) key ‘name’ undefined (error)
This error message is caused by trying to disable a key that does not exist. See
section 3.6.

10) no save keys defined for ‘pre@fam@’ (error)
You are trying to delete or undefine save keys that have not been defined yet. See
section 5.1.

11) no presets defined for ‘pre@fam@’ (error)
You are trying to delete or undefine presets that have not been defined yet. See
section 6.

12) xkeyval loaded before \documentclass (error)

Load xkeyval after \documentclass (or in the class that is the document class).
See section 7.

10 Category codes

Some packages change the catcode of the equality sign and the comma. This is a prob-
lem for keyval as it then does not recognize these characters anymore and cannot parse
the input. This problem can play up on the background. Consider for instance the fol-
lowing example and note that the graphicx package is using keyval and that Turkish
babel will activate the equality sign for shorthand notation.

\documentclass{article}
\usepackage{graphicx}

\usepackage [turkish] {babel}
\begin{document}
\includegraphics[scale=.5]{rose.eps}
\end{document}

The babel package provides syntax to temporarily reset the catcode of the equality sign
and switch shorthand back on after using keyval (in the \includegraphics com-
mand), namely \shorthandoff{=} and \shorthandon{=}. But having to do this
every time keyval is invoked is quite cumbersome. Besides that, it might not always
be clear to the user what the problem is and what the solution.

For these reasons, xkeyval performs several actions with user input before trying
to parse it.!% First of all, it performs a check whether the characters = and , appear in
the input with unexpected catcodes. If so, the \@selective@sanitize macro is used
to sanitize these characters only in the top level. This means that characters inside
(a) group(s), { }, will not be sanitized. For instance, when using Turkish babel, it is
possible to use = shorthand notation even in the value of a key, as long as this value is
inside a group.

\documentclass{article}
\usepackage{graphicx}

10Notice that temporarily resetting catcodes before reading the input to \setkeys won't suffice, as it will
not help solving problems when input has been read before and has been stored in a token register or a
macro.

22

\usepackage [turkish] {babel}
\usepackage{xkeyvall}

\makeatletter

\def ine@key{fam}{key{#1}
\begin{document}
\includegraphics[scale=.5]{rose.eps}
\setkeys{fam}{key={some =textl}}
\end{document}

In the example above, the \includegraphics command does work. Further, the first
equality sign in the \setkeys command will be sanitized, but the second one will be
left untouched and will be typeset as babel shorthand notation.

The commands \savekeys and \disable@keys are protected against catcode
changes of the comma. The commands \setkeys and \presetkeys are protected
against catcode changes of the comma and the equality sign. Note that BIgX option
macros (see section 7) are not protected as BIEX does not protect them either.

11 Known issues

This package redefines keyval’s \define@key and \setkeys. This is risky in general.
However, since xkeyval extends the possibilities of these commands while still allowing
for the keyval syntax and use, there should be no problems for packages using these
commands after loading xkeyval. The package prevents keyval to be loaded afterwards
to avoid these commands from being redefined again into the simpler versions. For
packages using internals of keyval, like \KV@@sp@def, \KV@do and \KV@errx, these
are provided separately in keyval. tex.

The advantage of redefining these commands instead of making new commands
is that it is much easier for package authors to start using xkeyval instead of keyval.
Further, it eliminates the confusion of having multiple commands doing similar things.

A potential problem lies in other packages that redefine either \define®@key or
\setkeys or both. Hence particular care has been spend to check packages for this.
Only one package has been found to do this, namely pst-key. This package implements
a custom version of \setkeys which is specialized to set PSTricks [5, 6] keys of the
form \psset@somekey. xkeyval also provides the means to set these kind of keys (see
page 4) and work is going on to convert PSTricks packages to be using a specialization
of xkeyval instead of pst-key. This specialization is available in the pst-xkey package,
which is distributed with the xkeyval bundle and is described in section 12.3. How-
ever, since a lot of authors are involved and since it requires a change of policy, the
conversion of PSTricks packages might take some time. Hence, at the moment of writ-
ing, xkeyval will conflict with pst-key and the PSTricks packages using pst-key, which
are pst-circ, pst-eucl, pst-fr3d, pst-geo, pst-gr3d, pst-labo, pst-lens, pst-ob3d, pst-optic,
pst-osci, pst-poly, pst-stru, pst-uml and pst-vue3d.

Have a look at the PSTricks website [5] to find out if the package that you want
to use has been converted already. If not, load an already converted package (like
pstricks-add) after loading the old package to make them work.

23

\xkvview

options
prefix
family

type
default

option
columns

option
vlabels

options
file
wcolsep
weol

12 Additional packages

12.1 xkvview

The xkeyval bundle includes a viewer utility, called xkvview,'! which keeps track of the
keys that are defined. This utility is intended for package programmers who want to
have an overview of the keys defined in their package(s). All keys defined after loading
the package will be recorded in a database. It provides the following commands to
display (part of) the database.

\xkvview{(options)}

When (options) is empty, the entire database will be typeset in a table created with the
longtable package. The columns will, respectively, contain the key name, the prefix,
the family, the type (ordinary, command, choice or boolean) and the presence of a
default value for every key defined after loading xkvview.

There are several options to control the output of this command. This set of op-
tions can be used to set up criteria for the keys that should be displayed. If a key does
not satisfy one or more of them, it won’t be included in the table. For instance, the fol-
lowing example will display all keys with family fama, that do not have a default value.
Notice that xkvview codes ‘no default value’ with [none].

\documentclass{article}
\usepackage{xkvview}

\makeatletter
\define@key{famal}{keyal} [default]{}
\def ine@cmdkey{fama}{keyb}{}
\define@choicekey{famb}{keyc}{a,b}{}
\def ine@boolkey{famb}{keyd}{}
\makeatother

\begin{document}
\xkvview{family=fama,default=[nonel}
\end{document}

In the following examples in this section, the same preamble will be used, but will not
be displayed explicitly in the examples.

One can select the columns that should be included in the table using the columns
option. The following example includes the columns prefix and family in the table
(additional to the key name column).

\xkvview{columns={prefix,family}}

The remaining columns are called type and default.
If you want to refer to an option, \xkvview can automatically generate labels using
the scheme (prefix) - (family) - (keyname). Here is an example.

\xkvview{vlabels=true}
Find more information about the keya
option on page~\pageref{KV-fama-keyal}.

The package can also write (part of) the database to a file. The selection of the
information happens in the same way as discussed above. When specifying a filename
with the option file, the body of the table that is displayed, will also be written to
this file. Entries will be separated by wcolsep which is & by default and every row

HThe xkvview package is contained in the file xkvview.sty.

24

option
wlabels

option
view

will be concluded by weol which is \\ by default. The output in the file can then be
used as basis for a custom table, for instance in package documentation. The following
displays a table in the dvi and also writes the body to out . tex.

\xkvview{file=out}

out.tex contains

keya&KV&fama&ordinary&default\\
keyb&KV&fama&command& [none] \\
keyc&KV&famb&choice& [none]\\
keyd&KV&famb&boolean& [none] \\

The following example generates a table with entries separated by a space and no
end-of-line content.

\xkvview{file=out,wcolsep=\space,weol=1}

Now out . tex contains

keya KV fama ordinary default
keyb KV fama command [none]
keyc KV famb choice [none]
keyd KV famb boolean [none]

When post-processing the table generated in this way, one might want to re-
fer to entries again as well. When setting wlabels to true, the labels with names
(prefix) - (family) - (keyname) will be in the output file. The following

\xkvview{file=out,wlabels=true}

will result in the following content in out . tex

keya&KV&fama&ordinary&default\label{KV-fama-keya}\\
keyb&KV&fama&command& [none] \1abel{KV-fama-keyb}\\
keyc&KV&famb&choice& [none] \1label{KV-famb-keyc}\\
keyd&KV&famb&boolean& [none] \label{KV-famb-keyd}\\

Finally, when you only want to generate a file and no output to the dvi, set the view
option to false.

\xkvview{file=out,view=false}

This example only generate out . tex and does not put a table in the dvi.

12.2 xkvltxp

The package and class option system of BIEX contained in the kernel performs some
expansions while processing options. This prevents doing for instance

\documentclass[title=My title,author=\textsc{Me}]{myclass}

given that myclass uses xkeyval and defines the options title and author.

This problem can be overcome by redefining certain kernel commands. These re-
definitions are contained in the xkvltxp package.'? If you want to allow the user of your
class to be able to specify expandable macros in the package options, the user will have

12The xkvltxp package consists of the file xkvltxp.sty

25

to do \RequirePackage{xkvltxpl} on the first line of the KIEX file. If you want to of-
fer this functionality in a package, the user can use the package in the ordinary way
with \usepackage{xkvltxpl}. This package then has to be loaded before loading the
package which will use this functionality. A description of the patch can be found in
the source code documentation.

The examples below summarize this information. The first example shows the case
in which we want to allow for macros in the \documentclass command.

\RequirePackage{xkvltxp}

\documentclass[title=My title,author=\textsc{Me}]{myclass}
\begin{document}

\end{document}

The second example shows the case in which we want to allow for macros in a
\usepackage command.

\documentclass{article}
\usepackage{xkvltxp}

\usepackage [footer=page~\thepage.]{mypack}
\begin{document}

\end{document}

Any package or class using xkeyval and xkvltxp to process options can take options
that contain macros in their value without expanding them prematurely. However,
you can of course not use macros in options which are not of the key=value form
since they might in the end be passed on to or copied by a package which is not using
xkeyval to process options, which will then produce errors. Options of the key=value
form will be deleted from \@classoptionslist (see section 7) and form no threat
for packages loaded later on. Finally, make sure not to pass options of the key=value
form to packages not using xkeyval to process options since they cannot process them.
For examples see section 13.

12.3 pst-xkey

The pst-xkey package!® implements a specialized version of the options system of
xkeyval designed for PSTricks [5, 6]. This system gives additional freedom to PSTricks
package authors since they won't have to worry anymore about potentially redefining
keys of one of the many other PSTricks packages. The command \psset is redefined
to set keys in multiple families. Reading the documentation of the xkeyval package
(especially section 11) first is recommended.

Keys defined in the original distribution of PSTricks have the macro structure
\psset@somekey (where psset is literal). These can be (re)defined by

\def ine@key [psset] {}{somekey}{function}

Notice especially that these keys are located in the so-called ‘empty family’. For more
information about \def ine@key and friends, see section 3.

When writing a PSTricks package, let’s say pst-new, you should locate keys in a
family which contains the name of your package. If you only need one family, you
should define keys using

\define@key [psset] {pst-new}{somekey}{function}

13The pst-xkey package consists of the files pst-xkey.tex and pst-xkey.sty. To load pst-xkey TgX
users do \input pst-xkey, IKIEX users do \RequirePackage{pst-xkeyl} or \usepackage{pst-xkey}.

26

\pst@addfams
\pst@famlist

\psset

If you want to use multiple families in your package, you can do

\define@key [psset]{pst-new-a}{somekey}{function}
\def ine@key [psset] {pst-new-b}{anotherkey}{function}

It is important that you add all of the families that you use in your package to the
listin \pst@famlist. This list of families will be used by \psset to scan for keys to set
user input. You can add your families to the list using

\pst@addfams{(families)}

For instance

‘ \pst@addfams{pst-new} ‘

or

‘ \pst@addfams{pst-new-a,pst-new-b}

Only one command is needed to set PSTricks keys.

\psset [(families)] {(keys)}

This command will set (keys) in (families) using \setkeys+ (see section 4). When
(families) is not specified, it will set (keys) in all families in \pst@famlist (which in-
cludes the empty family for original PSTricks keys).

\psset{somekey=red, anotherkey}
\psset [pst-new-b] {anotherkey=green}

13 Examples and documentation

To generate the package and example files from the source, find the source of this pack-
age, the file xkeyval.dtx, in your local TgX installation or on CTAN and run it with

BTEX.

latex xkeyval.dtx

This will generate the package files (xkeyval.tex, xkeyval.sty, xkvltxp.sty,
keyval.tex, xkvtxhdr.tex xkvview.sty, pst-xkey.tex and pst-xkey.sty) and
the example files.

The file xkvex1.tex provides an example for TgX users for the macros described
in sections 3, 4, 5 and 6. The file xkvex2.tex provides an example for BIgX users
for the same macros. The files xkvex3.tex, xkveca.cls, xkvecb.cls, xkvesa.sty,
xkvesb.sty and xkvesc.sty together form an example for the macros described
in section 7. The set of files xkvex4.tex, xkveca.cls, xkvecb.cls, xkvesa.sty,
xkvesb.sty and xkvesc. sty provides an example for sections 7 and 12.2. These files
also demonstrate the possibilities of interaction between packages or classes not using
xkeyval and packages or classes that do use xkeyval to set options.

To (re)generate this documentation, perform the following steps.

latex xkeyval.dtx

latex xkeyval.dtx

bibtex xkeyval

makeindex -s gglo.ist -o xkeyval.gls xkeyval.glo
makeindex -s gind.ist -o xkeyval.ind xkeyval.idx

27

latex xkeyval.dtx
latex xkeyval.dtx

14 Implementation

14.1 xkeyval.tex

Avoid loading xkeyval . tex twice.

1%<*xkvtex>
2\csname XKeyValLoaded\endcsname
3\1let\XKeyValLoaded\endinput

Adjust some catcodes to define internal macros.

4\edef\XKVcatcodes{

\catcode ‘\noexpand\@\the\catcode‘\@\relax
\catcode ‘\noexpand\=\the\catcode‘\=\relax
\catcode ‘\noexpand\, \the\catcode‘\,\relax
\catcode ‘\noexpand\:\the\catcode‘\:\relax
9 \let\noexpand\XKVcatcodes\relax

10}

11 \catcode‘\@11\relax

12\catcode‘\=12\relax

13\catcode‘\,12\relax

14\catcode‘\:12\relax

® N o G

Initializations. This package uses a private token to avoid conflicts with other packages
that use BTEX scratch token registers in key macro definitions (for instance, graphicx,
keys angle and scale).

15 \newtoks\XKV@toks
16 \newcount\XKV@depth
17 \newif \ifXKV@st

18 \newif \ifXKV@sg

19 \newif\ifXKV@pl

20 \newif \ifXKV@knf

21 \newif\ifXKVerkv

22 \newif\ifXKV@inpox
23 \newif\ifXKV@preset
24 \1et\XKVOrm\Q@empty

Load BIgX primitives if necessary and provide information.

25 \ifx\ProvidesFile\Qundefined

26 \message{2005/08/12 v2.5d key=value parser (HA)}

27 \input xkvtxhdr

28 \else

29 \ProvidesFile{xkeyval.tex}[2005/08/12 v2.5d key=value parser (HA)]
30 \@addtofilelist{xkeyval.tex}

31\fi

\efirstoftwo Two utility macros from the latex.1ltx needed for executing \XKV@ifundefined in
\@secondoftwo the sequel.

32\long\def\@firstoftwo#1#2{#1}
33 \long\def\@secondoftwo#1#2{#2}

28

\XKV@afterfi
\XKV@afterelsefi

\XKV@ifundefined

\@ifnextcharacter
\@ifncharacter

Two utility macros to move execution of content of a conditional branch after the \fi.
This avoids nesting conditional structures too deep.

34\long\def\XKV@afterfi#1\fi{\fi#1}
35 \long\def\XKVQ@afterelsefi#l\else#2\fi{\fi#1}

{{csname)}{{undefined) }{ (defined) }

Executes (undefined) if the control sequence with name (csname) is undefined, else it
executes (defined). This macro uses e-TgX if possible to avoid filling TgX’s hash when
checking control sequences like key macros in the rest of the package. The use of
\XKV@afterelsefi is necessary here to avoid TgX picking up the second \fi as end
of the main conditional when \ifcsname is undefined. For \XKV@afterelsefi this
\f1i is hidden in the group used to define \XKV@ifundefined in branch of the case
that \ifcsname is defined. Notice the following. Both versions of the macro leave the
tested control sequence undefined. However, the first version will execute (undefined)
if the control sequence is undefined or \relax, whereas the second version will only
execute (undefined) if the control sequence is undefined. This is no problem for the
applications in this package.

36 \ifx\ifcsname\@undefined\XKVQ@afterelsefi

37 \def\XKV@ifundefined#1{}

38 \begingroup\expandafter\expandafter\expandafter\endgroup
39 \expandafter\ifx\csname#1\endcsname\relax
40 \expandafter\Q@firstoftwo

41 \else

42 \expandafter\@secondoftwo

43 \fi

4 }

45\else

46 \def\XKV@ifundefined#1{/

47 \if csname#1\endcsname

48 \expandafter\@secondoftwo

49 \else

50 \expandafter\@firstoftwo

51 \fi

52}

53\fi

Check whether keyval has been loaded and if not, load keyval primitives and prevent
keyval from being loaded after xkeyval.

54 \XKV@ifundefined{ver@keyval.sty}{

55 \input keyval

56 \expandafter\def\csname ver@keyval.sty\endcsname{1999/03/16}

57 H}

Check the next character independently of its catcode. This will be used to safely per-
form \@ifnextcharacter+and \@ifnextcharacter*. This avoids errors in case any
other package changes the catcode of these characters.

Contributed by Donald Arseneau.

58 \long\def\@ifnextcharacter#1#2#3{/

59 \@ifnextchar\bgroup

60 {\@ifnextchar{#1}{#2}{#3}}%

61 {\@ifncharacter{#1}{#2}{#3}}%

62}

29

\XKV@fore@n

\XKVefer

\XKV@for@break

\XKVe@for@o

\XKV@for@en

\XKV@for@eo

63 \long\def\@ifncharacter#1#2#3#4{J,
64 \if\string#1\string#4J,

65 \expandafter\@firstoftwo
66 \else

67 \expandafter\@secondoftwo
68 \fi

69 {#2}{#3}#4%

70}

{(list)}(cmd){{function)}

Fast for-loop. (list) is not expanded. Entries of (list) will be stored in (cmd) and at every
iteration (function) is executed.

Contributed by Morten Hegholm.

71 \long\def\XKV@foren#1#2#3{Y,

72 \def#2{#1}Y

73 \ifx#2\Q@empty

74 \XKV@for@break

75 \else

76 \expandafter\XKVefor
77 \fi

78 #2{#3}#1,\0nil,’

79}
(cmd){{function)}(entry),
Looping macro.

80 \long\def \XKVe@fQr#1#2#3,{%
81 \def#1{#3}%
82 \ifx#1\@nnil
83 \expandafter\Qgobbletwo

84 \else

85 #2\expandafter\XKVefer
86 \fi

87 #1{#2}V

88

(text)\@nil,

Macro to stop the for-loop.
89 \long\def\XKV@for@break #1\@nil,{\fi}

(listemd){cmd){{function)}
(listemd) is expanded once before starting the loop.

90 \long\def \XKV@for@o#1{\expandafter\XKV@for@n\expandafter{#1}}

{ist)}(cmd){{function)}
As \XKV@for@n, but this macro will execute (functiony also when (list) is empty. This
is done to support packages that use the ‘empty family’, like PSTricks.

91 \long\def \XKV@for@en#1#2#3{\XKVefer#2{#3}#1,\@nil,}

(listemd) (cmd){(function)}
As \XKV@for@o, but this macro will execute (function) also when (listcmd) is empty.

92 \long\def \XKV@for@eo#1#2#3{/
93 \def#2{\XKVef@r#2{#3}}\expandafter#2#1,\Cnil,%
94}

30

\XKV@whilist

\XKV@wh@list

\XKV@wh@1l@st

\XKV@addtomacro®@n

\XKV@addtomacro®@o

(listemd){cmd) (if)\ £ i{(function)}

(listemd) is expanded once. Execution of (function) stops when either the list has ran
out of elements or (if) is not true anymore. When using \iftrue for (if), the execution
of the macro is the same as that of \XKV@for@o, but contains an additional check at
every iteration and is hence less efficient than \XKV@for@o in that situation.

95 \1long\def \XKV@whilist#1#2#3\fi#4{Y,

Check whether the condition is true and start iteration.

96 #3\expandafter\XKV@wh@list#1,\@nil, \@nil\@o#2#3\fi{#4}{}\fi
97}

(entry) , (texty)\Q@@(cmd) (if)\f i{(function) }{(previous)}

Performs iteration and checks extra condition. This macro is not optimized for the case
that the list contains a single element. At the end of every iteration, the current {(entry)
will be stored in (previous) for the next iteration. The previous entry is necessary when
stepping out of the loop.

98 \long\def \XKV@wh@list#1,#2\0O#3#4\fi#5#6{%

Define the running (cmd).

99 \def#3{#1}/,

If we find the end of the list, stop.
100 \ifx#3\@nnil
101 \def#3{#6}\expandafter\XKVOwh@1l@st
102 \else

If the condition is met, execute (function) and continue. Otherwise, define the running
command to be the previous entry (which inflicted the condition becoming false) and

stop.

103 #4%

104 #5\expandafter\expandafter\expandafter\XKV@wh@list

105 \else

106 \def#3{#6}\expandafter\expandafter\expandafter\XKVewh@10@st
107 \fi

108 \fi

109 #2\@o#3#4\fi{#5}{#11}/,

110 }

(texty\@@{cmd) (if)\f i{(function) }{(previous)}
Macro to gobble remaining input.

111 \long\def \XKV@wh@1@st#1\Q0#2#3\fi#4#5{}

{macroy{{content)}

Adds (content) to (macro) without expanding it.

112 \def\XKV@addtomacro@n#1#2{%

113 \expandafter\def\expandafter#1l\expandafter{#1#2}/,
114 }

{macroy{{content)}

Adds (content) to (macro) after expanding the first token of (content) once. Often used
to add the content of a macro to another macro.

115 \def \XKV@addtomacroQo#1#2{%

116 \expandafter\expandafter\expandafter\def

117 \expandafter\expandafter\expandafter#1l\expandafter

31

\XKV@addtolist@n

\XKV@addtolist@o

\XKV@addtolist@x

\@selective@sanitize
\@s@lective@sanitize

118 \expandafter\expandafter{\expandafter#1#2}J
19}

(cmdy{{content)}

Adds (content) to the list in (cmd) without expanding (content). Notice that it is as-
sumed that (cmd) is not undefined.

120 \def\XKV@addtolist@n#1#2{%

121 \ifx#1\@empty

122 \XKV@addtomacro@n#1{#2}/

123 \else

124 \XKV@addtomacro@n#i{,#2}

125 \fi

126 }

(cmd){{content)}

Adds (content) to the list in (cmd) after expanding the first token in (content) once.
127 \def\XKV@addtolist@o#1#2{%

128 \ifx#1\@empty

129 \XKV@addtomacroQo#1#2%

130 \else

131 \XKV@addtomacroQo#1{\expandafter, #2}/

132 \fi

133}

(cmdy{{content)}
Adds {content) to the list in (cmd) after a full expansion of both (cmd) and {content).

134 \def \XKV@addtolist@x#1#2{\edef#1{#1\ifx#1\Q@empty\else, \fi#2}}

[(levely]{{character string)}{{cmd)}

Converts selected characters, given by (character string), within the first-level expan-
sion of (cmd) to category code 12, leaving all other tokens (including grouping braces)
untouched. Thus, macros inside {cmd) do not lose their function, as it is the case with
\@onelevel@sanitize. The resulting token list is again saved in (cmd).

Example: \def\cs{ ~{\fi}"} and \@selective®@sanitize{!~}\cs will change the
catcode of ‘~’ to other within \cs, while \fi and ‘~’ will remain unchanged. As the ex-
ample shows, unbalanced conditionals are allowed.

Remarks: (cmd) should not contain the control sequence \bgroup; however, \csname
bgroup\endcsname and \egroup are possible. The optional (level) command con-
trols up to which nesting level sanitizing takes place inside groups; 0 will only sanitize
characters in the top level, 1 will also sanitize within the first level of braces (but not in
the second), etc. The default value is 10000.

135 \def\@selective@sanitize{\@testopt\@s@lective@sanitize\OM}

136 \def\@s@lective@sanitize [#1]#2#3{}

137 \begingroup

138 \count@#1\relax\advance\count@\@ne

139 \XKV@toks\expandafter{#3}J

140 \def#3{#2}\@onelevel@sanitize#3Y,

141 \edef#3{{#3}{\the\XKV@toks}}/

142 \expandafter\@s@l@ctive@sanitize\expandafter#3#3J,

143 \expandafter\endgroup\expandafter\def\expandafter#3\expandafter{#31}/,
144 }

32

\@s@l@ctive@sanitize

{{cmd)}{{sanitized character string)}{ (token list)}

Performs the main work. Here, the characters in (sanitized character string) are al-
ready converted to catcode 12, (token list) is the first-level expansion of the original
contents of (¢cmd). The macro basically steps through the (foken list), inspecting each
single token to decide whether it has to be sanitized or passed to the result list. Special
care has to be taken to detect spaces, grouping characters and conditionals (the latter
may disturb other expressions). However, it is easier and more efficient to look for TgX
primitives in general — which are characterized by a \meaning that starts with a back-
slash — than to test whether a token equals specifically \if, \else, \f1i, etc. Note that
\@s@l@ctive@sanitize is being called recursively if (foken list) contains grouping
braces.

145 \def\@s@lQ@ctive@sanitize#1#2#3{/,

146 \def\@i{\futurelet\@@tok\@iil}}

147 \def\@ii{%

148 \expandafter\@iii\meaning\@@tok\relax

149 \ifx\Q@Qtok\@s@lQctive@sanitize

150 \let\@@cmd\Qgobble

151 \else

152 \ifx\@@tok\@sptoken

153 \XKV@toks\expandafter{#1}\edef#1{\the\XKVQtoks\spacely,
154 \def\@@cmd{\afterassignment\@i\let\@0tok= 1}/
155 \else

156 \let\@Qcmd\@iv

157 \fi

158 \fi

159 \@@cmd

160}

161 \def\@iii##1##2\relax{\if##1\@backslashchar\let\@0tok\relax\fil}%
162 \def\@iv##1{%

163 \toks@\expandafter{#1}\XKVQtoks{##1}/

164 \ifx\@@tok\bgroup

165 \advance\count@\m@ne

166 \ifnum\count@>\z@

167 \begingroup

168 \def#1{\expandafter\@s@l@ctive@sanitize

169 \csname\string#1\endcsname{#2}1}/,

170 \expandafter#1\expandafter{\the\XKV@toks}/,
171 \XKV@toks\expandafter\expandafter\expandafter
172 {\csname\string#1\endcsname}%

173 \edef#1{\noexpand\XKV@toks{\the\XKV@toks}}%
174 \expandafter\endgroup#1Y%

175 \fi

176 \edef#1{\the\toks@{\the\XKVQtoksl}}%

177 \advance\count@\@ne

178 \let\@@cmd\@i

179 \else

180 \edef#1{\expandafter\string\the\XKV@toks}’

181 \expandafter\in@\expandafter{#1}{#2}/,

182 \edef#1{\the\toks@\ifin@#1\else

183 \ifx\@@tok\@sptoken\space\else\the\XKV@toks\fi\fi}}
184 \edef\@@cmd{\noexpand\@i\ifx\@A@tok\@sptoken\the\XKV@toks\fil}}
185 \fi

186 \@@cmd

33

\XKV@checksanitizea

\XKV@checksanitizeb

\XKV@ch@cksanitize

\XKV@sp@deflist

187 }h
188 \let#1\Q@empty\Q@i#3\@s@lOctive@sanitize
189 }

{{content)}{cmd)

Check whether (content), to be saved to macro (cmd) unexpanded, contains the char-
acters = or , with wrong catcodes. If so, it sanitizes them before saving (content) to
(cmd).

190 \def\XKV@checksanitizea#1#2{Y%

191 \XKV@ch@cksanitize{#1}#2=Y

192 \ifin@\else\XKV@ch@cksanitize{#1}#2,\fi

193 \ifin@\@selective@sanitize [0]{,=}#2\fi

194 }

{{content)}{cmd)

Similar to \XKV@checksanitizea, but only checks commas.
195 \def\XKV@checksanitizeb#1#2{%

196 \XKV@ch@cksanitize{#1}#2,%

197 \ifin@\@selective@sanitize[0],#2\fi

198 }

{{character string)}{cmd)(token)

This macro first checks whether at least one (token) is in (character string). If that
is the case, it checks whether the character has catcode 12. Note that the macro will
conclude that the character does not have catcode 12 when it is used inside a group
{3}, but that is not a problem, as we don't expect (foken) (namely , or =) inside a group,
unless this group is in a key value. But we won’t worry about those characters anyway
since the relevant user key macro will have to process that. Further, it is assumed that
all occurrences of (token) in (character string) have the same catcode. {(cmd) is used as
a temporary macro and will contain (character string) at the end of the macro.

199 \def\XKV@ch@cksanitize#1#2#3{/

200 \def#2{#1}%

201 \@onelevel@sanitize#2,

Check whether there is at least one = present.
202 \@expandtwoargs\in@#3{#21}J,
203 \ifin@

If so, try to find it. If we can't find it, the character(s) has (or have) the wrong catcode.
In that case sanitizing is necessary. This actually occurs, because the input was read by
TgX before (and for instance stored in a macro or token register).

204 \def#2##1#3##2\Onil{%

205 \def#2{##2},

206 \ifx#2\@empty\else\in@false\fi
207 iy

208 #2#1#3\0nil

209 \fi

210 \def#2{#1}Y

211}

(cmd){{token list)}

Defines (cmd) as (token list) after removing spaces surrounding elements of the list in
(token list). So, keya, key b becomes keya,key b. This is used to remove spaces

34

\XKV@merge

from around elements in a list. Using \zap@space for this job, would also remove the
spaces inside elements and hence changing key or family names with spaces. This
method is slower, but does allow for spaces in key and family names, just as keyval did.
We need this algorithm at several places to be able to perform \in@{,key,}{,...,},
without having to worry about spaces in between commas and key names.

212 \def\XKV@sp@deflist#1#2{J,

213 \let#1\@empty

214 \XKVO@for@n{#2}\XKV@resa{’

215 \expandafter\KV@@sp@def\expandafter\XKV@resa\expandafter{\XKV@resa}’
216 \XKV@addtomacro@o#1{\expandafter, \XKV@resal/,

217 Y

218 \ifx#1\@empty\else

219 \def\XKVQ@resa, ##1\O0nil{\def#1{##1}}7

220 \expandafter\XKV@resa#1\@nil

221 \fi

222}

(listy{{new items)}(filter)

This is a merging macro. For a given new item, the old items are scanned. If an old
item key name matches with a new one, the new one will replace the old one. If not,
the old one will be appended (and might be overwritten in a following loop). If, at the
end of the old item loop the new item has not been used, it will be appended to the
end of the list. This macro works irrespective of special syntax. The (filter) is used to
filter the key name from the syntax, eg \global{key}. All occurrences of a particu-
lary key in the existing list will be overwritten by the new item. This macro is used
to make \savekeys and \presetkeys incremental. The (filter) is \XKV@getsg and
\XKV@getkeyname respectively.

223 \def \XKV@merge#1#2#3{/,

224 \XKV@checksanitizea{#2}\XKV@tempa

Start the loop over the new presets. At every iteration, one new preset will be compared
with old presets.

225 \XKV@for@o\XKV@tempa\XKV@tempa{’,
226 \XKV@pltrue

Retrieve the key name of the new item at hand.
227 #3\XKV@tempa\XKV@tempb
Store the (partially updated) old list in a temp macro and empty the original macro.

228 \let\XKVQtempc#1,
229 \let#1\@empty

Start a loop over the old list.
230 \XKV@for@o\XKV@tempc\XKV@tempc{/,
Retrieve the key name of the old key at hand.

231 #3\XKV@tempc\XKV@tempd
232 \ifx\XKV@tempb\XKV@tempd

If the key names are equal, append the new item to the list and record that this key
should not be added to the end of the presets list.

233 \XKV@plfalse
234 \XKV@addtolist@o#1\XKV@tempa
235 \else

35

\XKV@delete

\XKV@warn
\XKV@err
\KV@err
\KV@errx

\XKV@ifstar
\XKV@ifplus

If the key names are not equal, then just append the current item to the list.

236 \XKV@addtolist@o#1\XKV@tempc
237 \fi
238 Y

If, after checking the old item, no old item has been overwritten then append the new
item to the end of the existing list.

239 \1fXKV@pl\XKV@addtolist@o#1\XKV@tempa\fi

240 Y

If requested, save the new list globally.

241 \ifXKV@st\global\let#1#1\fi
242}

(listy{(delete) }{filter)

Delete entries (delete) by key name from a (list) of presets or save keys using (filter).
For \delpresetkeys, this is the macro \XKV@getkeyname and for \delsavekeys, it
is the macro \XKV@getsg.

243 \def\XKV@delete#1#2#3{},

Sanitize comma’s.

244 \XKV@checksanitizeb{#2}\XKV@tempa
Copy the current list and make the original empty:.
245 \let\XKV@tempb#17,

246 \let#1\Qempty

Run over the current list.

247 \XKVQ@for@o\XKV@tempb\XKVQtempb{7

Get the key name to identify the current entry.

248 #3\XKV@tempb\XKV@tempc

If the current key name is in the list, do not add it anymore.

249 \@expandtwoargs\in@{, \XKV@tempc, }{, \XKVQ@tempa, }%
250 \ifin@\else\XKVQ@addtolist@o#1\XKV@tempb\fi

251 }h

Save globally is necessary.

252 \ifXKV@st\global\let#1#1\fi
253

Warning and error macros. We redefine the keyval error macros to use the xkeyval ones.
This avoids redefining them again when we redefine the \XKV@warn and \XKV@err
macros in xkeyval.sty.

254 \def\XKV@warn#1{\message{xkeyval warning: #1}}

255 \def\XKV@err#1{\errmessage{xkeyval error: #1}}

256 \def \KV@errx{\XKV@err}

257 \1et\KV@err\KV@errx

Checks whether the following token is a * or +. Use \XKV@ifnextchar to perform the
action safely and ignore catcodes.

258 \def \XKV@ifstar#i1{\@ifnextcharacter*{\@firstoftwo{#1}}}
259 \def\XKV@ifplus#1{\@ifnextcharacter+{\@firstoftwo{#1}}}

36

\XKV@makepf

\XKV@makehd

\XKV@srstate

\XKV@testopta
\XKV@t@stopta

\XKV@testoptb
\XKV@t@stoptb

{(prefix)}

This macro creates the prefix, like prefix@ in \prefix@family@key. First it deletes
spaces from the input and checks whether it is empty. If not empty, an @-sign is added.
The use of the XKV prefix is forbidden to protect internal macros and special macros
like saved key values.

260 \def \XKV@makepf#1{},

261 \KV@@sp@def\XKV@prefix{#11}

262 \def\XKV@resa{XKV1}/,

263 \ifx\XKV@prefix\XKV@resa

264 \XKV@err{‘XKV’ prefix is not allowedl}%

265 \let\XKV@prefix\Qempty

266 \else

267 \edef\XKV@prefix{\ifx\XKV@prefix\@empty\else\XKV@prefix @\fil}J,

268 \fi

269 }

{(family)}

Creates the header, like prefix@family@ in \prefix@family@key. If (family) is
empty, the header reduces to prefix@.

270 \def \XKV@makehd#1{Y,

271 \expandafter\KV@@sp@def \expandafter\XKV@header\expandafter{#1}/,

272 \edef\XKV@header{’,

273 \XKV@prefix\ifx\XKV@header\@empty\else\XKV@header @\fi

274 Yh

275}

{(postfixI) I {postfix2)}

Macro to save and restore xkeyval internals to allow for nesting \setkeys com-
mands. It executes a for loop over a set of xkeyval internals and does, for instance,
\1let\XKV@na@i\XKV@na to prepare for stepping a level deeper. If (prefix2) is empty,
we step a level deeper. If (prefix1) is empty, we go a level up. The non-empty argument
is always @\romannumeral\XKV@depth. Notice that this also helps to keep changes to
boolean settings (for instance by \XKV@cc*+) local to the execution of that key.

276 \def \XKV@srstate#1#2{/,

277 \ifx\Q@empty#2\Qempty\advance\XKV@depth\@ne\fi

278 \XKV@for@n{XKV@prefix,XKV@fams,XKVOna,ifXKV@st,ifXKV@pl,ifXKV@knfl}/,

279 \XKV@resa{\expandafter\let\csname\XKV@resa#l\expandafter

280 \endcsname\csname\XKVQresa#2\endcsname

281 }%h

282 \ifx\@empty#1\Q@empty\advance\XKV@depth\m@ne\fi

283}

{{function)}

Tests for the presence of an optional star or plus and executes {function) afterwards.
284 \def\XKVQ@testopta#1{}

285 \XKV@ifstar{\XKV@sttrue\XKV@t@stopta{#1}}%

286 {\XKV@stfalse\XKV@t@stopta{#1}}/,

287}

288 \def\XKV@t@stopta#1{\XKV@ifplus{\XKV@pltrue#1}{\XKV@plfalse#1}}

{{function)}
First check for an optional prefix. Afterwards, set the (prefix), set the header, remove
spaces from the (family) and execute (function).

37

\XKV@testoptc
\XKV@t@stoptc

\XKV@testoptd
\XKVet@stoptd

\XKV@ifcmd
\XKV@Qifcmd

289 \def \XKV@testoptb#1{\Ctestopt{\XKVet@stoptb#1}{KV}}
290 \def\XKV@t@stoptb#1 [#2] #3{/

Set prefix.

291 \XKV@makepf{#2}V,

Set header.

292 \XKV@makehd{#3}/

Save family name for later use.
293 \KV@@sp@def\XKVOtfam{#3}/,

204 #1Y
295 }

{{function)}

Test for an optional (prefix). Then, set the (prefix), sanitize comma’s in the list of
(families) and remove redundant spaces from this list. Finally, check for optional key
names that should not be set and execute (function).

296 \def\XKV@testoptc#1{\Q@testopt{\XKV@t@stoptc#1}{KV}}

297 \def \XKV@t@stoptc#l [#2]#3{},

298 \XKV@makepf{#2}%

299 \XKVQ@checksanitizeb{#3}\XKV@fams

300 \expandafter\XKV@sp@deflist\expandafter

301 \XKVefams\expandafter{\XKVefams}/,

302 \Q@testopt#1{1}}

303+

{(function)}

Use \XKV@testoptb first to find (prefix) and the (family). Then check for optional
(mp) (‘macro prefix’). Next eat the (key) name and check for an optional (default)
value.

304 \def \XKV@testoptd#1#2{/

305 \XKVQ@testoptb{/

306 \edef\XKVQ@tempa{#2\XKV@headerl}y,

307 \def\XKV@tempb{\@testopt{\XKV@t@stoptd#1}}%

308 \expandafter\XKV@tempb\expandafter{\XKV@tempaly,

309 Yh

310}

311 \def\XKV@t@stoptd#1 [#2] #3{}

\1ifXKV@st gives the presence of an optional default value.

312 \Q@ifnextchar [{\XKV@sttrue#l1{#2}{#3}}{\XKVe@stfalse#t1{#2}{#3}[1}%
313 }

{(tokens)}{(macro)}{{cmd)}{(yes)}{(no)}

This macro checks whether the (tokens) contains the macro specification (macro). If
so, the argument to this macro will be saved to (cmd) and (yes) will be executed. Other-
wise, the content of (tokens) is saved to {cmd) and (no) is executed. This macro will, for
instance, be used to distinguish key and \global{key} and retrieve key in the latter
case.

314 \def \XKVQifcmd#1#2#3{/,

315 \def\XKVQQifcmd##1#2##2##3\0nil##4{),

316 \def##4{##2}\ifx##4\Onnil

317 \def##4{##1}\expandafter\@secondoftwo

38

\XKVQ@getkeyname

\XKV@g@tkeyname

\XKV@getsg

\XKV@define@default

\define@key

\XKV@defineQkey

318 \else

319 \expandafter\@firstoftwo
320 \fi

321 }h

322 \XKV@@ifcmd#1#2{\@nil}\@nil#3Y,
323}

(keyvalue){bin)

Utility macro to retrieve the key name from (keyvalue) which is of the form key=value,
\savevalue{key}=value or \gsavevalue{key}=value, possibly without value.
\ifXKVerkv will record whether this particular value should be saved. \ifXKV@sg
will record whether this value should be saved globally or not. The key name will be
stored in {(bin).

324 \def\XKV@getkeyname#1#2{\expandafter\XKV@g@tkeyname#1=\0nil#2}

(key)=(value)\@nil(bin)
Use \XKV@ifcmd several times to check the syntax of (value). Save (key) to (bin).
325 \def \XKVQ@g@tkeyname#1=#2\0@nil#3{/,

326 \XKV@ifcmd{#1}\savevalue#3{\XKV@rkvtrue\XKV@sgfalse}{/
327 \XKV@ifcmd{#1}\gsavevalue#3J,

328 {\XKV@rkvtrue\XKV@sgtrue}{\XKV@rkvfalse\XKV@sgfalse}’,
329 Yh

330}

(key){bin)

Utility macro to check whether key or \global{key} has been specified in (key). The
key name is saved to (bin)

331 \def\XKVogetsg#1#2{%

332 \expandafter\XKV@ifcmd\expandafter{#1}\global#2\XKV@sgtrue\XKV@sgfalse
333}

{(key)}{(default)}

Defines the default value macro for (key) and given \XKV@header.

334 \def \XKV@define@default#1#2{%

335 \expandafter\def\csname\XKV@header#1@default\expandafter

336 \endcsname\expandafter{\csname\XKV@header#1\endcsname{#2}1}7,
337}

[prefix)]{{family) }

Macro to define a key in a family. Notice the use of the KV prefix as default prefix. This
is done to allow setting both keyval and xkeyval keys with a single command. This top
level command first checks for an optional (prefix) and the mandatory (family).

338 \def\define@key{\XKVQ@testoptb\XKV@define@key}

{(key)}

Check for an optional default value. If none present, define the key macro, else con-
tinue to eat the default value.

339 \def\XKV@define@key#1{/

340 \@ifnextchar [{\XKV@define@kQy{#1}}{/

341 \expandafter\def\csname\XKV@header#1\endcsname####1},

342 Y

343 >

39

\XKV@d@efine@key

\define@cmdkey

\XKV@def ine@cmdkey

\define@cmdkeys

\XKV@def ine@cmdkeys

\define@choicekey

\XKV@define@choicekey

\XKV@define@choicekey

{(key)} [(default)]

Defines the key macro and the default value macro.

344 \def\XKVedefine@k@y#1 [#2] {

345 \XKV@define@default{#1}{#2}),

346 \expandafter\def\csname\XKV@header#1\endcsname##17,
347}

[prefix)] {(family)} [{mp)1 {{key)}
Define a command key. Test for optional {prefix), mandatory (family), optional (mp)
‘macro prefix’ and mandatory (key) name.

348 \def\define@cmdkey{\XKVOtestoptd\XKV@defineQ@cmdkey{cmd}}

{(mp)}H(key)} [defaulr)] {{function)}

Define the default value macro and the key macro. The key macro first defines the
control sequence formed by the (mp) and (key) to expand to the user input and then
executes the (function).

349 \def\XKV@define@cmdkey#1#2 [#3] #4{7

350 \ifXKV@st\XKV@define@default{#2}{#3}\fi

351 \def\XKV@tempa{\expandafter\def\csname\XKV@header#2\endcsname####1}/,
352 \begingroup\expandafter\endgroup\expandafter\XKVQ@tempa\expandafter
353 {\expandafter\def\csname#1#2\endcsname{##1}#4}/

354}

[prefix)] {{family)} [{mp)1 {{keys)}

Define multiple command keys.
355 \def\define@cmdkeys{\XKV@testoptd\XKV@define@cmdkeys{cmd}}

{(mp) I (keys)} [(default)]

Loop over (keys) and define a command key for every entry.

356 \def \XKV@define@cmdkeys#1#2 [#3]{/

357 \XKV@sp@deflist\XKV@tempa{#2}/

358 \XKVQ@for@o\XKV@tempa\XKV@tempa{

359 \edef\XKV@tempa{\noexpand\XKV@def ine@cmdkey{#1}{\XKV@tempal}1}’
360 \XKV@tempa [#3]1{}%

361 %

362 }

*+ [(prefix)] {{family)}

Choice keys. First check optional star, plus and prefix and store the family.
363 \def\define@choicekey{\XKV@testopta{\XKV@testoptb\XKV@define@choicekey}}

{(key)}
Check for optional storage bins for the input and the number of the input in the list of
allowed inputs.

364 \def \XKV@define@choicekey#1{\Otestopt{\XKV@d@fine@choicekey{#1}}{}}

{(key)} [{bin)] {{allowed)}

Store the storage bin and the list of allowed inputs for later use. After that, check for an
optional default value.

365 \def \XKV@d@fineQchoicekey#1 [#2]#3{},

366 \toks@{#2}%

367 \XKV@sp@deflist\XKV@tempa{#3}\XKV@toks\expandafter{\XKV@tempaly,

40

\XKV@d@f ine@ch@icekey

\XKV@d@f ine@ch@ic@key

\XKV@dQf0@ne@ch@icQkey

\XKV@d@fOne@ch@ic@kQy

\XKV@d@fOn@Qch@ic@kQy

\define@boolkey

\XKV@def ine@boolkey

368 \@ifnextchar [{\XKV@d@fine@ch@icekey{#1}}{\XKV@dQfine@ch@icCkey{#1}}/,
369+

{(key)} [{default)]

Define the default value macro if a default value was specified.

370 \def \XKV@d@fine@ch@icekey#1 [#2] {/
371 \XKV@define@default{#1}{#2}/
372 \XKV@d@fine@ch@ic@key{#l}%

373}

{(key)}

Eat correct number of arguments.

374 \def\XKV@d@fine@ch@ic@key#1{Y

375 \ifXKV@pl\XKV@afterelsefi

376 \expandafter\XKV@dQf@ne@ch@ic@kQy
377 \else\XKV@afterfi

378 \expandafter\XKV@d@f@ne@ch@icQkey

379 \fi
380 \csname\XKV@header#1\endcsname
381}

(key macroy{(function)}
Eat one argument and pass it on to the macro that will define the key macro.

382 \def \XKV@d@f@ne@ch@ic@key#1#2{\XKVQ@d@fO@n@GchAicOk@y#1{{#2}}}

(key macroy{(functionl)}{{function2)}
Eat two arguments and pass these on to the macro that will define the key macro.
(fucntionl) will be executed on correct input, (function2) on incorrect input.

383 \def \XKV@d@f @ne@ch@ic@k@y#1#2#3{\XKV@d0fO@n0Achic@kOy#1{{#2}{#3}}}

(key macro){(function)}

Create the key macros. \XKV@checkchoice will be used to check the choice and exe-
cute one of its mandatory arguments.

384 \def \XKV@dQf @n@Ach@ic@kAy#1#2{%

385 \edef#1##1{J,

386 \1fXKV@st\noexpand\XKV@sttrue\else\noexpand\XKVO@stfalse\fi
387 \1fXKV@pl\noexpand\XKV@pltrue\else\noexpand\XKV@plfalse\fi
388 \noexpand\XKV@checkchoice [\the\toks@] {##1}{\the\XKVQtoks}/
389}

390 \def\XKV@tempa{\def#1####1}),

391 \expandafter\XKV@tempa\expandafter{#1{##1}#2}/,

392}

+ [(prefix)] {{family)} [(mp)] {{key)}
Define a boolean key. This macro checks for an optional +, an optional (prefix), the
mandatory (family), an optional (mp) (‘macro prefix’) and the mandatory (key) name.

393 \def\define@boolkey{\XKV@t@stopta{\XKV@testoptd\XKV@define@boolkey{}}}

{(mp)}Hkey)} [{default)]
Decide to eat 1 or 2 mandatory arguments for the key macro. Further, construct the
control sequence for the key macro and the one for the if.

394 \def \XKV@define@boolkey#1#2 [#3]{}

41

\XKV@def ine@boolkey

\XKV@d@f@ne@boolkey

\XKV@d@f@ne@b@olkey

\define@boolkeys

\XKV@define@boolkeys

395 \ifXKV@pl\XKV@afterelsefi

396 \expandafter\XKV@d0f@ne@boolkey
397 \else\XKV@afterfi

398 \expandafter\XKV@dofine@boolkey

399 \fi
400 \csname\XKV@header#2\endcsname{#2}{#1#2}{#3},
401}

(key macroy{(key)}{ (if name)}{ (default)}{{function) >

Eat one mandatory key function and pass it. Insert ‘setting the if".
402 \def \XKV@d@fine@boolkey#1#2#3#4#5{7,

403 \XKV@d@f@ne@bQolkey#1{#2}{#3}{#4}%

404 {{\csname#3\XKV@resa\endcsname#5}1}%

405 >

(key macroy{(key) } (if name) }{{default) }{{funcl) }H{(func2)}

Eat two mandatory key functions and pass them. Insert ‘setting the if’.
406 \def \XKV@d@fO@ne@boolkey#1#2#3#4#5#6{%

407 \XKV@d@fOne@bQolkey#1{#2}{#3}{#4}%

408 {{\csname#3\XKV@resa\endcsname#5}{#6}1}/

409 >

(key macro){{key) }{ (if name)}{{default)}{{function)}

Create the if, the default value macro (if a default value was present) and the key macro.
We use \XKV@checkchoice internally to check the input and \XKV@resa to store the
user input and pass it to setting the conditional.

410 \def \XKVQdQf @ne@bQolkey#1#2#3#4#5{7,

411 \expandafter\newif\csname if#3\endcsname

412 \ifXKV@st\XKV@define@default{#2}{#4}\fi

413 \ifXKVe@pl

414 \def#1##1{\XKV@pltrue\XKV@sttrue

415 \XKV@checkchoice [\XKV@resa] {##1}{true,false}#5%
416 iy

417 \else

418 \def#1##1{\XKV@plfalse\XKV@sttrue

419 \XKV@checkchoice [\XKV@resa] {##1}{true,false}#5%
420 Yh

421 \fi

422}

[prefix)] {{family)} [{mp)]1 {{keys)}
Define multiple boolean keys without user specified key function. The key will, of
course, still set the if with user input.

423 \def\define@boolkeys{\XKV@plfalse\XKVQtestoptd\XKV@define@boolkeys{}}

{(mp)}{(keys)} [{default)]

Loop over the list of (keys) and create a boolean key for every entry.

424 \def\XKV@define@boolkeys#1#2 [#3]{/

425 \XKV@sp@deflist\XKV@tempa{#21}7

426 \XKV@for@o\XKV@tempa\XKV@tempa{’

427 \expandafter\XKV@def ine@boolkeys\expandafter{\XKVQ@tempa}{#1}{#3}/
428 Y}

429}

42

\XKV@def ine@boolkeys

\XKV@cc

\XKV@checkchoice

\XKV@ch@ckchoice

\XKV@ch@ckch@ice

{(key) Y (mp) I (default)}

Use \XKV@d@f@ne@bGolkey internally to define the if, the default value macro (if
present) and the key macro.

430 \def \XKV@dQf ine@boolkeys#1#2#3{/,

431 \expandafter\XKV@d@f@ne@bQolkey\csname\XKV@header#1\endcsname

432 {#1}{#2#1 H{#3}{{\csname#2#1\XKV@resa\endcsname} 1}/,

433}

This macro is used inside key macros to perform input checks. This is the user interface
to \XKV@checkchoice and we only use the latter internally to avoid slow parsings of
optional * and +.

434 \def\XKV@cc{\XKV@testopta{\@testopt\XKV@checkchoice{}}}

[(biny]1{(input) }H (allowed)}

Checks whether (bin) contains at least one control sequence and converts (input) and
(allowed) to lowercase if requested. If (bin) is empty, perform the fast \in@ check im-
mediately. Else, determine whether the bin contains one or two tokens. For the first
alternative, we can still use the fast \in®@ check. Notice that this macro uses settings
for \ifXKV@st and \ifXKVepl.

435 \def \XKV@checkchoice [#1] #2#3{%

436 \def\XKV@tempa{#1}J

437 \ifXKV@st\lowercase{\fi

438 \1fx\XKV@tempa\Qempty

439 \def\XKV@tempa{\XKV@ch@ckch@ice\@nil{#2}{#3}}%

440 \else

441 \def\XKV@tempa{\XKV@ch@ckchoice#1\@nil{#2}{#3}}%
442 \fi

443 \1fXKV@st}\fi\XKV@tempa

444}

(binly(bin2)\@nil{(input)}{(allowed)}

Check whether (bin2) is empty. In that case, only the (input) should be saved and
we can continue with the fast \in@ check. If not, also the number of the input in the
(allowed) list should be saved and we need to do a slower while type of loop.

445 \def \XKV@ch@ckchoice#1#2\0nil#3#4{%

446 \def\XKV@tempa{#2}V

447 \ifx\XKV@tempa\Q@empty\XKV@afterelsefi

448 \XKV@ch@ckch@ice#1{#3}{#41}

449 \else\XKV@afterfi

450 \XKV@@ch@ckchoice#1#2{#3}{#41}/

451 \fi

452}

(bimy{(input)}{{allowed)}

Checks whether (input) is in the list {(allowed) and perform actions accordingly.
453 \def \XKV@ch@ckch@ice#1#2#3{%

454 \def\XKV@tempa{#1}%

If we have a (bin), store the input there.

455 \1ifx\XKV@tempa\@nnil\let\XKV@tempa\@empty\else

456 \def\XKV@tempa{\def#1{#2}}/,

457 \fi

458 \ino{,#2,}{,#3,}V

459 \ifin@

43

\XKV@@ch@ckchoice

The (input) is allowed.
460 \ifXKVepl
If we have a +, there are two functions. Execute the first.

461 \XKV@addtomacro@n\XKVQ@tempa\@firstoftwo
462 \else

Else, we have one function; execute it.

463 \XKV@addtomacro@n\XKVQtempa\@firstofone
464 \fi
465 \else

If we have a +, there are two functions. Execute the second.

466 \ifXKVepl
467 \XKV@addtomacro@n\XKV@tempa\@secondoftwo
468 \else

Else, raise an error and gobble the one function.

469 \XKV@toks{#2}/

470 \XKV@err{value ‘\the\XKV@toks’ is not allowed}’,
471 \XKV@addtomacro@n\XKV@tempa\@gobble

472 \fi

473 \fi

474 \XKV@tempa

475}

(binl){bin2y{(input)}{{allowed)}

Walk over the (allowed) list and compare each entry with the (input). The input is
saved in (binl), the number of the (input) in the (allowed) list (starting at zero) is saved
in (bin2). If the (input) is not allowed, (bin2) will be defined to contain -1.

476 \def \XKVQ@Q@chQckchoice#1#2#3#4{Y

Save the current value of the counter as to avoid disturbing it. We don’t use a group as
that takes a lot of memory and requires some more tokens (for global definitions).

477 \edef\XKV@tempa{\the\count@}\count@\z@

The input.

478 \def\XKV@tempb{#3}/

Define the while loop.

479 \def\XKV@tempc##1,{}
480 \def#1{##1}%
481 \ifx#1\@nnil

The (input) was not in (allowed). Set the number to -1.

482 \def#1{#3}\def#2{-1}\count@\XKV@tempa

483 \ifXKVepl

Execute the macro for the case that input was not allowed.
484 \let\XKV@tempd\@secondoftwo

485 \else

If that function does not exist, raise a generic error and gobble the function to be exe-
cuted on good input.

486 \XKV@toks{#3}%
487 \XKV@err{value ‘\the\XKV@toks’ is not allowed}’
488 \let\XKV@tempd\@gobble

44

489 \fi

490 \else

491 \ifx#1\XKV@tempb

We found (input) in (allowed). Save the number of the (input) in the list {(allowed).
492 \edef#2{\the\count@}\count@\XKV@tempa

193 \ifXKVepl

494 \1let\XKV@tempd\XKV@@ch@ckch@ice

495 \else

496 \let\XKV@tempd\XKV@@ch@ckch@ic@

497 \fi

498 \else

Increase counter and check next item in the list {(allowed).

499 \advance\count@\@ne

500 \let\XKVOtempd\XKVOtempc
501 \fi

502 \fi

503 \XKV@tempd

504 }%

Start the while loop.

505 \XKVQ@tempc#4,\@nil,?%

506 }

\XKV@@ch@ckch@ice (fext)\@nil,
\XKV@@ch@ckch@ic@ Gobble remaining (fext) and execute the proper key function.

507 \def \XKV@@ch@ckch@ice#1\@nil, {\@firstoftwo}
508 \def \XKV@@ch@ckch@ic@#1\@nil,{\@firstofone}

\key@ifundefined This macro allows checking if a key is defined in a family from a list of families. Check
for an optional prefix.

509 \def\key@ifundefined{\@testopt\XKV@keyQ@ifundefined{KV}}

\XKV@keyQ@ifundefined [(prefix)]{(fams)}
This macro is split in two parts so that \XKV@p@x can use only the main part of the
macro. First we save the prefix and the list of families.
510 \def\XKV@key@ifundefined [#1]#2{}
511 \XKV@makepf{#11}Y,
512 \XKVQ@checksanitizeb{#2}\XKV@fams
513 \expandafter\XKV@sp@deflist\expandafter
514 \XKVefams\expandafter{\XKVQfams}
515 \XKV@key@if@ndefined
516 +

\XKV@key@if@ndefined {(key)}
Loop over the list of families until we find the key in a family.

517 \def \XKV@keyQ@ifOndefined#1{/
518 \XKV@knftrue
519 \KV@@sp@def\XKVOtkey{#1}/,

Loop over possible families.

520 \XKV@whilist\XKV@fams\XKV@tfam\ifXKVQknf\fi{}
Set the header.

521 \XKV@makehd\XKV@tfam

45

\disable@keys

\XKV@disable@keys

\presetkeys
\gpresetkeys

\XKV@presetkeys

Check whether the macro for the key is defined.

522 \XKV@ifundefined{\XKV@header\XKV@tkey}{}{\XKV@knffalsel}y,
523 }%h

Execute one of the final two arguments depending on state of \XKV@knf.
524 \ifXKV@knf

525 \expandafter\@firstoftwo
526 \else
527 \expandafter\@secondoftwo
528 \fi
529+

[(prefix)]1 {{family)}

Macro that make a key produce a warning on use.
530 \def\disable@keys{\XKV@testoptb\XKV@disable@keys}

{(keys)}

Workhorse for \disable@keys which redefines a list of key macro to produce a warn-
ing.

531 \def\XKV@disable@keys#1{/,

532 \XKV@checksanitizeb{#1}\XKV@tempa

533 \XKVQ@for@o\XKV@tempa\XKVQtempa{¥

534 \XKV@ifundefined{\XKV@header\XKV@tempa}{’,

535 \XKV@err{key ‘\XKV@tempa’ undefined}’

536 Hi

537 \edef\XKV@tempb{’,

538 \noexpand\XKV@warn{key ‘\XKV@tempa’ has been disabled}},
539 Y

540 \XKV@ifundefined{\XKV@header\XKV@tempa @defaultl}{%

541 \edef\XKV@tempc{\noexpand\XKV@def ine@key{\XKV@tempal}}%
542 H%

543 \edef\XKV@tempc{\noexpand\XKV@define@key{\XKV@tempa} [11}7
544 Y

545 \expandafter\XKV@tempc\expandafter{\XKVQ@tempbl}7,

546 Y

547 Y}

548 }

[(prefix)] {{family)}

This provides the presetting system. The macro works incrementally: keys that have
been preset before will overwrite the old preset values, new ones will be added to the
end of the preset list.

549 \def\presetkeys{\XKV@stfalse\XKV@testoptb\XKV@presetkeys}
550 \def \gpresetkeys{\XKV@sttrue\XKV@testoptb\XKV@presetkeys}

{(head presets)}{(tail presets)}

Execute the merging macro \XKV@pr@setkeys for both head and tail presets.
551 \def \XKV@presetkeys#1#2{J,

552 \XKV@pr@setkeys{#1}{presethl}y

553 \XKVQ@pr@setkeys{#2}{presettl}

554 %

46

\XKV@pr@setkeys

\delpresetkeys
\gdelpresetkeys

\XKV@delpresetkeys

\XKV@d@lpresetkeys

\unpresetkeys
\gunpresetkeys

\XKV@unpresetkeys

{({presets) }{(postfix)}

Check whether presets have already been defined. If not, define them and do not start
the merging macro. Otherwise, create the control sequence that stores these presets
and start merging.

555 \def \XKV@prQ@setkeys#1#2{/,

556 \XKV@ifundefined{XKV@\XKV@header#2}{Y

557 \XKV@checksanitizea{#1}\XKV@tempa

558 \ifXKV@st\expandafter\global\fi\expandafter\def\csname

559 XKV@\XKV@header#2\expandafter\endcsname\expandafter{\XKV@tempa}
s60 %

561 \expandafter\XKV@merge\csname XKV@\XKV@header

562 #2\endcsname{#1}\XKV@getkeyname

563 }%h

564

[prefix)]{{family) }

Macros to remove entries from presets.

565 \def\delpresetkeys{\XKV@stfalse\XKVQtestoptb\XKV@delpresetkeys}
566 \def \gdelpresetkeys{\XKV@sttrue\XKV@testoptb\XKV@delpresetkeys}

{(head key list)}{(tail key list)}

Run the main macro for both head and tail presets.
567 \def \XKV@delpresetkeys#1#2{J,

568 \XKV@d@lpresetkeys{#1}{presethl}y,

569 \XKV@d@lpresetkeys{#2}{presettl}/

570

{(key list)}{(postfix)}

Check whether presets have been saved and if so, start deletion algorithm. Supply the
macro \XKV@getkeyname to retrieve key names from entries.

571 \def \XKV@dQ@lpresetkeys#1#2{J,

572 \XKVQ@ifundefined{XKV@\XKV@header#2}{Y

573 \XKV@err{no presets defined for ‘\XKV@header’},

574 Y
575 \expandafter\XKV@delete\csname XKVO@\XKV@header
576 #2\endcsname{#1}\XKV@getkeyname
577 Yh
578 }
[prefix)] {{family)}

Removes presets for a particular family.

579 \def \unpresetkeys{\XKV@stfalse\XKV@testoptb\XKV@unpresetkeys}
580 \def\gunpresetkeys{\XKV@sttrue\XKV@testoptb\XKVQunpresetkeys}

Undefine the preset macros. We make them undefined since this will make them ap-
pear undefined to both versions of the macro \XKV@ifundefined. Making the macros
\relax would work in the case that no e-TgX is available (hence using \ifx\csname),
but doesn’t work when e-TgX is used (and using \if csname).

581 \def \XKV@unpresetkeys{%

582 \XKVQ@ifundefined{XKV@\XKV@header presethl}{’

583 \XKV@err{no presets defined for ‘\XKV@header’},

584 U

47

\savekeys
\gsavekeys

\XKV@savekeys

\delsavekeys
\gdelsavekeys

\XKV@delsavekeys

\unsavekeys
\gunsavekeys

\XKV@unsavekeys

585 \ifXKV@st\expandafter\global\fi\expandafter\let

586 \csname XKV@\XKV@header preseth\endcsname\Qundefined
587 \ifXKV@st\expandafter\global\fi\expandafter\let

588 \csname XKV@\XKV@header presett\endcsname\@undefined
589 }%

590 }

[(prefix)] {{family)}

Store a list of keys of a family that should always be saved. The macro works incremen-
tally and avoids duplicate entries in the list.

591 \def \savekeys{\XKV@stfalse\XKV@testoptb\XKV@savekeys}
592 \def\gsavekeys{\XKV@sttrue\XKVO@testoptb\XKV@savekeys}

{(key list) >
Check whether something has been saved before. If not, start merging.

593 \def \XKV@savekeys#1{}

594 \XKV@ifundefined{XKV@\XKV@header save}{)

595 \XKV@checksanitizeb{#1}\XKV@tempa

596 \ifXKV@st\expandafter\global\fi\expandafter\def\csname XKVQ},

597 \XKV@header save\expandafter\endcsname\expandafter{\XKV@tempaly,
598 %

599 \expandafter\XKV@merge\csname XKVO\XKVG@header

600 save\endcsname{#1}\XKV@getsg

601 }%

602 }

[(prefix)] {{family)}

Remove entries from the list of save keys.

603 \def\delsavekeys{\XKV@stfalse\XKV@testoptb\XKV@delsavekeys}
604 \def\gdelsavekeys{\XKV@sttrue\XKVO@testoptb\XKV@delsavekeys}

{(key list)}

Check whether save keys are defined and if yes, start deletion algorithm. Use the macro
\XKVQ@getsg to retrieve key names from entries.

605 \def \XKV@delsavekeys#1{%

606 \XKV@ifundefined{XKV@\XKV@header savel}{

607 \XKV@err{no save keys defined for ¢\XKV@header’l}},

608 }{%
609 \expandafter\XKV@delete\csname XKVO@\XKV@header
610 save\endcsname{#1}\XKV@getsg
611 }%
612}
[(prefix)]1 {{family)}

Similar to \unpresetkeys, but removes the ‘save keys list’ for a particular family.

613 \def \unsavekeys{\XKV@stfalse\XKV@testoptb\XKV@unsavekeys}
614 \def\gunsavekeys{\XKV@sttrue\XKV@testoptb\XKVQunsavekeys}

Workhorse for \unsavekeys.

615 \def \XKV@unsavekeys{%

616 \XKV@ifundefined{XKV@\XKV@header save}{)

617 \XKV@err{no save keys defined for ¢\XKV@header’}}
618 %

48

619 \ifXKV@st\expandafter\global\fi\expandafter\let
620 \csname XKV@\XKV@header save\endcsname\@undefined
621 }h

622 }

\setkeys *+[(prefix)]{(families)}
Set keys. The starred version does not produce errors, but appends keys that cannot
be located to the list in \XKV@rm. The plus version sets keys in all families that are
supplied.

623 \def\setkeys{\XKV@testopta{\XKVQ@testoptc\XKV@setkeysl}}

\XKVesetkeys [(na)]{(key=value list)}
Workhorse for \setkeys.
624 \def\XKV@setkeys [#1]1#2{%
625 \XKVQ@checksanitizea{#2}\XKV@resb
626 \let\XKV@naa\@empty

Retrieve a list of key names from the user input.

627 \XKV@for@o\XKV@resb\XKV@tempa{’

628 \expandafter\XKV@g@tkeyname\XKV@tempa=\@nil\XKV@tempa
629 \XKV@addtolist@x\XKV@naa\XKV@tempa

630 }%

Initialize the remaining keys.

631 \let\XKV@rm\@empty

Now scan the list of families for preset keys and set user input keys.
632 \XKV@usepresetkeys{#1}{preseth}/,

633 \expandafter\XKV@s@tkeys\expandafter{\XKV@resb}{#1},

634 \XKVQ@usepresetkeys{#1}{presett}y
635}

\XKV@usepresetkeys {(na)}{(postfix)}
Loop over the list of families and check them for preset keys. If present, set them right
away, taking into account the keys which are set by the user, available in the \XKV@naa
list.

636 \def \XKVQusepresetkeys#1#2{/,

637 \XKV@presettrue

638 \XKV@for@eo\XKVOfams\XKV@tfam{7

639 \XKV@makehd\XKV@tfam

640 \XKV@ifundefined{XKV@\XKV@header#2}{}{’%

641 \XKV@toks\expandafter\expandafter\expandafter
642 {\csname XKV@\XKV@header#2\endcsname},

643 \Q@expandtwoargs\XKV@sOtkeys{\the\XKVQtoks}/
644 {\XKV@naa\ifx\XKV@naa\@empty\else, \fi#1}/
645 jyA

646 }h

647 \XKV@presetfalse

648 ;

\XKVesotkeys {(key=value list)}{(na)}
This macro starts the loop over the key=value list. Do not set keys in the list (na).

649 \def \XKV@s@tkeys#1#2{/,

49

\XKV@s@tkQys

Define the list of key names which should be ignored.
650 \XKV@sp@deflist\XKV@na{#21}7

Loop over the key=value list.

651 \XKV@for@n{#1}\CurrentOption{’

Split key and value.

652 \expandafter\XKV@s@tk@ys\CurrentOption==\0@nil
653 }%
654 %

(key)=(value)=#3\0nil

Split key name and value (if present). If #3 non-empty, there was no =(value).

655 \def \XKV@s@tkQys#1=#2=#3\@nil{/,

Check for \savevalue and \gsavevalue and remove spaces from around the key
name.

656 \XKVOgO@tkeyname#1=\0nil\XKV@tkey

657 \expandafter\KV@@sp@def\expandafter\XKV@tkey\expandafter{\XKVetkey}/
If the key is empty and a value has been specified, generate an error.

658 \ifx\XKVOtkey\Qempty
659 \XKV@toks{#2}%
660 \ifcat$\the\XKV@toks$\else

661 \XKV@err{no key specified for value ‘\the\XKV@toks’}J
662 \fi
663 \else

If in the \XKV@na list, ignore the key.
664 \@expandtwoargs\in@{, \XKV@tkey, }{, \XKV@na, }%

665 \ifin@\else

666 \XKV@knftrue

667 \KV@@sp@def\XKVQtempa{#2}/

668 \ifXKV@preset\XKV@s@tkQys@{#3}\else
669 \1fXKV@pl

If a command with a + is used, set keys in all families on the list.
670 \XKV@for@eo\XKV@fams\XKV@tfam{
671 \XKV@makehd\XKV@tfam

672 \XKV@s@tkQyse{#3}/,

673 Y

674 \else

Else, scan the families on the list but stop when the key is found or when the list has
run out.

675 \XKV@whilist\XKV@fams\XKV@tfam\ifXKV@knf\fi{%
676 \XKV@makehd\XKV@tfam

677 \XKV@s@tk@yse{#3}}

678 Y

679 \fi

680 \fi

681 \ifXKV@knf

682 \1ifXKV@inpox

We are in the options section. Try to use the macro defined by \DeclareOptionXx.
683 \ifx\XKV@doxs\relax

50

\XKV@sQtkQys@

For classes, ignore unknown (possibly global) options. For packages, raise the standard

BIEX error.

684 \ifx\Q@currext\@clsextension\else

685 \let\CurrentOption\XKV@tkey\Qunknownoptionerror
686 \fi

Pass the option through \DeclareOptionXx*.

687 \else\XKV@doxs\fi

688 \else

If not in the options section, raise an error or add the key to the list in \XKV@rm when
\setkeys* has been used.

689 \ifXKV@st

690 \global\XKV@addtolist@o\XKV@rm\CurrentOption

691 \else

692 \XKV@err{‘\XKV@tkey’ undefined in families ‘\XKV@fams’}/,
693 \fi

694 \fi

695 \else

Remove global options set by the document class from \@unusedoptionlist. Global
options set by other packages or classes will be removed by \ProcessOptionsXx*.

696 \ifXKV@inpox\ifx\XKV@testclass\XKV@documentclass

697 \expandafter\XKV@useoption\expandafter{\CurrentOption}y

698 \fi\fi

699 \fi

700 \fi

701 \fi

702}

{ind)}

This macro coordinates the work of setting a key. (ind) is an indicator for the presence
of a user submitted value for the key. If empty, no value was present.

703 \def \XKV@s@tkOys0#1{/,

Check whether the key macro exists.

704 \XKV@ifundefined{\XKV@header\XKV@tkey}{}{%
705 \XKV@knffalse

Check global setting by \savekeys to know whether or not to save the value of the key
at hand.

706 \XKV@ifundefined{XKV@\XKV@header savel}{}{%

707 \expandafter\XKV@testsavekey\csname XKVO@\XKV@header
708 save\endcsname\XKV@tkey
709 Y

Save the value of a key.
710 \ifXKVerkv

711 \ifXKV@sg\expandafter\global\fi\expandafter\let
712 \csname XKVO\XKVO@header\XKV@tkey @value\endcsname\XKV@tempa
713 \fi

Replace pointers by saved values.
714 \expandafter\XKV@replacepointers\expandafter{\XKV@tempaly

51

\XKV@testsavekey

\XKV@replacepointers
\XKV@r@placepointers

If no value was present, use the default value macro, if one exists. Otherwise, issue an
€error.

715 \ifx\Q@empty#1\@empty\XKV@afterelsefi

716 \XKV@ifundefined{\XKV@header\XKVO@tkey @default}{’

717 \XKV@err{no value specified for key ‘\XKV@tkey’l}J

718 Ho

719 \expandafter\expandafter\expandafter\XKV@default

720 \csname\XKV@header\XKV@tkey @default\endcsname\@nil
721 jyA

722 \else\XKV@afterfi

Save state in case the key executes \setkeys or \XKVQcc.

723 \XKV@srstate{@\romannumeral \XKV@depth}{1}%
Execute the key.

724 \csname\XKV@header\XKV@tkey\expandafter

725 \endcsname\expandafter{\XKV@tempa}\relax
Restore the current state.

726 \XKV@srstate{}{@\romannumeral\XKV@depthl}/,
727 \fi

728 }h

729}

(save key list)(key name)

This macro checks whether the key in macro (key name) appears in the save list in
macro (save key list). Furthermore, it checks whether or not to save the key globally. In
other words, that \global{key} is in the list.

730 \def\XKV@testsavekey#1#2{/,

731 \ifXKV@rkv\else
732 \XKV@forQo#1\XKV@resa{

733 \expandafter\XKV@ifcmd\expandafter{\XKV@resa}\global\XKV@resa{’
734 \ifx#2\XKVQresa

735 \XKV@rkvtrue\XKV@sgtrue
736 \fi

737 H%

738 \ifx#2\XKV@resa

739 \XKVe@rkvtrue\XKV@sgfalse
740 \fi

741 Yh

742 Y

743 \fi

744}

{(key=value list)}

Replaces all pointers by their saved values. The result is stored in \XKV@tempa. We
feed the replacement and the following tokens again to the macro to replace nested
pointers. It stops when no pointers are found anymore. We keep a list of pointers
replaced already for this key in \XKV@resa so we can check whether we are running in
circles.

745 \def\XKV@replacepointers#1{/,

746 \let\XKV@tempa\@empty

747 \let\XKV@resa\@empty

748 \XKV@r@placepointers#1l\usevalue\@nil

52

\XKV@default

749}

750 \def \XKV@r@placepointers#1\usevalue#2{Y

751 \XKV@addtomacro@n\XKV@tempa{#1}/

752 \def\XKV@tempb{#2}/

753 \ifx\XKV@tempb\@nnil\else\XKVQafterfi

754 \XKV@ifundefined{XKV@\XKV@header#2@value}{/

755 \XKV@err{no value recorded for key ‘#2’; ignored}/

756 \XKV@r@placepointers

757 H

758 \@expandtwoargs\in@{,#2,}{,\XKVQresa, }/

759 \ifin@\XKVQ@afterelsefi

760 \XKV@err{back linking pointers; pointer replacement canceledl}’
761 \else\XKV@afterfi

762 \XKV@addtolist@x\XKV@resa{#2}/

763 \expandafter\expandafter\expandafter\XKVQ@r@placepointers
764 \csname XKVO@\XKV@header#2@value\endcsname

765 \fi

766 Y

767 \fi

768

(token)(tokens)

This macro checks the \prefix@fam@key@default macro. If the macro has the form
as defined by keyval or xkeyval, it is possible to extract the default value and safe that
(if requested) and replace pointers. If the form is incorrect, just execute the macro and
forget about possible pointers. The reason for this check is that certain packages (like
fancyvrb) abuse the ‘default value system’ to execute code instead of setting keys by
redefining default value macros. These macros do not actually contain a default value
and trying to extract that would not work.

769 \def\XKV@default#1#2\0nil{}

Retrieve the first token in the macro.

770 \expandafter\edef\expandafter\XKV@tempa

771 \expandafter{\expandafter\Qgobble\string#11}/,

Construct the name that we expect on the basis of the keyval and xkeyval syntax of
default values.

772 \edef\XKV@tempb{\XKV@header\XKVQtkey}/,
Sanitize \XKV@tempb to reset catcodes for comparison with \XKV@tempa.

773 \Qonelevel@sanitize\XKV@tempb
774 \ifx\XKV@tempa\XKV@tempb

Ifit is safe, extract the value. We temporarily redefine the key macro to save the default
value in a macro. Saving the default value itself directly to a macro when defining keys
would of course be easier, but a lot of packages rely on this system created by keyval,
so we have to support it here.

775 \begingroup

776 \expandafter\def\csname\XKV@header\XKVOtkey\endcsname##1{Y
777 \gdef\XKVQ@tempa{##1}J

778 Y

779 \csname\XKV@header\XKV@tkey @default\endcsname

780 \endgroup

53

\setrmkeys

\XKV@setrmkeys

Save the default value to a value macro if either the key name has been entered in a
\savekeys macro or the starred form has been used.

781 \XKV@ifundefined{XKV@\XKV@header savel}{}{%

782 \expandafter\XKVQtestsavekey\csname XKV@\XKV@header

783 save\endcsname\XKV@tkey

784 Y

785 \ifXKVerkv

786 \1fXKV@sg\expandafter\global\fi\expandafter\let

787 \csname XKV@\XKVO@header\XKV@tkey @value\endcsname\XKV@tempa
788 \fi

Replace the pointers.

789 \expandafter\XKV@replacepointers\expandafter
790 {\XKV@tempa}\XKVQafterelsefi

Save internal state.

791 \XKV@srstate{@\romannumeral \XKV@depth}{1}%
Execute the key with the (possibly changed) default value.
792 \expandafter#1\expandafter{\XKV@tempal}\relax
Restore internal state.

793 \XKV@srstate{}{@\romannumeral\XKV@depthl}y,
794 \else\XKV@afterfi

Save internal state.

795 \XKV@srstate{@\romannumeral\XKV@depth}{1}%

Execute the key with the default value.
796 \csname\XKV@header\XKV@tkey @default\endcsname\relax

Restore the state.

797 \XKV@srstate{}{@\romannumeral\XKV@depthl}y,
798 \fi

799 }

*+ [(prefix)] {{families)}

Set remaining keys stored in \XKV@rm. The starred version creates a new list in
\XKV@rm in case there are still keys that cannot be located in the families specified.
Care is taken again not to expand fragile macros. Use \XKV@testopa again to handle
optional arguments.

800 \def \setrmkeys{\XKV@testopta{\XKV@testoptc\XKV@setrmkeys}}

[(na)]
Submits the keys in \XKV@rm to \XKV@setkeys.

801 \def \XKV@setrmkeys [#1]{%

802 \def\XKV@tempa{\XKV@setkeys [#1]1}/

803 \expandafter\XKV@tempa\expandafter{\XKVOrm}
804 }

Reset catcodes.

805 \XKVcatcodes
806 {/xkvtex)

54

\XKV@warn
\XKV@err

14.2 xkeyval.sty

Initialize the package.

807 h<*xkvlatex>

808 \NeedsTeXFormat{LaTeX2e} [1995/12/01]

809 \ProvidesPackage{xkeyval}

810 [2005/08/12 v2.5d package option processing (HA)]

Initializations. Load xkeyval.tex, adjust some catcodes to define internal macros
and initialize the \DeclareOptionX* working macro.

811 \ifx\XKeyValLoaded\endinput\else\input xkeyval \fi
812 \edef\XKVcatcodes{’

813 \catcode‘\noexpand\=\the\catcode‘\=\relax

814 \catcode‘\noexpand\, \the\catcode‘\,\relax

815 \let\noexpand\XKVcatcodes\relax

816 +

817 \catcode‘\=12\relax

818 \catcode‘\,12\relax

819 \let\XKV@doxs\relax

Warning and error macros.

820 \def \XKV@warn#1{\PackageWarning{xkeyval}{#1}}
821 \def\XKV@err#1{\PackageError{xkeyval}{#1}\@ehc}

Retrieve the document class from \@filelist. This is the first filename in the list
with a class extension. Use a while loop to scan the list and stop when we found the
first filename which is a class. Also stop in case the list is scanned fully.

822 \XKV@whilist\@filelist\XKV@tempa\ifx\XKV@documentclass\Qundefined\fi{},

823 \filename@parse\XKV@tempa
824 \ifx\filename@ext\@clsextension

825 \XKV@ifundefined{opt@\filename@area\filename@base.\filename@ext
826 H%

827 \edef\XKV@documentclass{)

828 \filename@area\filename@base.\filename@ext

829 Y

830 Iy

831 \fi

832}

If we didn’t find the document class, raise an error, otherwise filter global options.

833 \1fx\XKV@documentclass\Qundefined

834 \XKVQ@err{xkeyval loaded before \protect\documentclassl}y,
835 \let\XKV@documentclass\@empty

836 \let\XKV@classoptionslist\@empty

837 \else

838 \let\XKV@classoptionslist\@classoptionslist

Code to filter key=value pairs from \@classoptionslist without expanding op-
tions.
839 \def\XKV@tempa#1{/

840 \let\@classoptionslist\Qempty
841 \XKV@foren{#1}\XKV@tempa{’,

842 \expandafter\in@\expandafter=\expandafter{\XKV@tempaly,
843 \ifin@\else\XKV@addtolist@o\@classoptionslist\XKV@tempa\fi
844 hyA

55

\XKV@testopte
\XKV@t@stopte
\XKV@t@st@pte
\XKV@Qt0st@pte

\DeclareOptionX

\XKV@dox

\XKVedex
\XKVeedex
\XKVeeedeox

\ExecuteOptionsX

845 }
846 \expandafter\XKV@tempa\expandafter{\Q@classoptionslist}
847 \f1i

{{function)}

Macros for \ExecuteOptionsX and \ProcessOptionsX for testing for optional argu-
ments and inserting default values. Execute (function) after preforming the checks.
848 \def \XKV@testopte#1{/

849 \XKV@ifstar{\XKV@sttrue\XKV@t@stopte#1}{\XKV@stfalse\XKVQ@t@stopte#1}},
850 }

851 \def \XKV@t@stopte#1{\Otestopt{\XKVOt@st@pte#1}{KV}}

852 \def \XKVet@st@pte#1 [#2] {%

853 \XKVemakepf{#2}/,

854 \@ifnextchar<{\XKV@Ot@st@pte#1}/,

855 {\XKV@etO@st@pte#1<\Q@currname.\Q@currext>1}y,

856 }

857 \def \XKV@Ot@st@pte#1<#2>{/,

858 \XKV@sp@deflist\XKV@fams{#21}}

859 \@testopt#1{}%

860 }

Macros for class and package writers. These are mainly shortcuts to \define@key
and \setkeys. The BIEX macro \@fileswith@pti@ns is set to generate an error.
This is the case when a class or package is loaded in between \DeclareOptionX and
\ProcessOptionsX commands.

*
Declare a package or class option.

861 \def\DeclareOptionX{%

862 \let\@fileswith@pti@ns\@badrequireerror
863 \XKVQ@ifstar\XKV@dox\XKV@dex

864 ;

This macro defines \XKV@doxs to be used for unknown options.
865 \long\def \XKV@dox#1{\XKV@toks{#1}\edef \XKV@doxs{\the\XKV@toks}}

Insert default prefix and family name (which is the filename of the class or package)
and add empty default value if none present. Execute \def ine@key.

866 \def \XKVedox{\@testopt\XKVeQdOex{KV}}

867 \def \XKVeedex [#1]{%

868 \Q@ifnextchar<{\XKvVeeedex [#1]}{\XKVeeedex [#1]<\@currname.\@currext>}/
869 }

870 \def \XKV0QQdox [#1] <#2>#3{\@testopt{\defineCkey [#1] {#2}{#3}}{}}

[(prefix)] {{families)} [{na)] {{key=value list)}

This macro sets keys to specified values and uses \XKV@setkeys to do the job. In-
sert default prefix and family name if none provided. Use \XKV@t@stopte to handle
optional arguments and reset \ifXKV@st and \ifXKV@pl first to avoid unexpected
behavior when \setkeys*+ (or a friend) has been used before \ExecuteOptionsX.

871 \def \ExecuteOptionsX{\XKV@stfalse\XKV@plfalse\XKVO@t@stopte\XKV@setkeys}

56

\ProcessOptionsX

\XKV@pox

* [(prefix)] {{families)}

Processes class or package using xkeyval. The starred version copies class options sub-
mitted by the user as well, given that they are defined in the local families which are
passed to the macro. Use \XKVQ@testopte to handle optional arguments.

872 \def \ProcessOptionsX{\XKV@plfalse\XKV@testopte\XKV@pox}

[nay]

Workhorse for \ProcessOptionsX and \ProcessOptionsXx.

873 \def \XKV@pox [#1]{%
874 \let\XKV@tempa\@empty

Set \XKV@inpox: indicates that we are in \ProcessOptionsX to invoke a special rou-
tine in \XKV@s@tkeys.

875 \XKVQ@inpoxtrue
Set \@fileswith@pti@ns again in case no \DeclareOptionX has been used. This
will be used to identify a call to \setkeys from \ProcessOptionsX.

876 \let\@fileswith@pti@ns\@badrequireerror
877 \edef\XKV@testclass{\@currname.\@currext}/,

If xkeyval is loaded by the document class, initialize \@unusedoptionlist.
878 \1fx\XKV@testclass\XKV@documentclass

879 \let\@unusedoptionlist\XKV@classoptionslist
880 \XKV@ifundefined{ver@xkvltxp.sty+{}{/

881 \@onelevel@sanitize\@Qunusedoptionlist

882 Yh

883 \else

Else, if the starred version is used, copy global options in case they are defined in local
families. Do not execute this in the document class to avoid setting keys twice.

884 \ifXKV@st

885 \def \XKV@tempb##1,{/

886 \def\CurrentOption{##11}7,

887 \ifx\CurrentOption\@nnil\else

888 \XKV@g@tkeyname##1=\0nil\CurrentOption
889 \XKV@key@if@ndefined{\CurrentOption}{}{%

If the option also exists in local families, add it to the list for later use and remove it
from \@unusedoptionlist.

890 \XKV@useoption{##1}J

891 \XKV@addtolist@n\XKV@tempa{##1}/,

892 Y

893 \expandafter\XKV@tempb

894 \fi

895 Y%

896 \expandafter\XKV@tempb\XKV@classoptionslist,\@nil,%
897 \fi

898 \fi

Add current package options to the list.

899 \expandafter\XKV@addtolist®@o\expandafter

900 \XKV@tempa\csname opt@\@currname.\Q@currext\endcsname

Set options. We can be certain that global options can be set since the definitions of lo-
cal options have been checked above. Note that \DeclareOptionX* will not consume
global options when \ProcessOptionsXx* is used.

57

\XKV@useoption

901 \def\XKV@tempb{\XKV@setkeys [#1]}%
902 \expandafter\XKV@tempb\expandafter{\XKVQ@tempaly

Reset the macro created by \DeclareOptionX* to avoid processing future unknown
keys using \XKV@doxs.

903 \let\XKV@doxs\relax

Reset the \XKV@rm macro to avoid processing remaining options with \setrmkeys.
904 \let\XKVO@rm\Qempty

Reset \ifXKV@inpox: not in \ProcessOptionsX anymore.

905 \XKVQ@inpoxfalse

Reset \@fileswith@pti@us to allow loading of classes or packages again.

906 \let\@fileswith@pti@ns\@@fileswith@pti@ns
907 \AtEndOfPackage{\let\Qunprocessedoptions\relax}/,
908 }

{{option)}

Removes an option from \Qunusedoptionlist.
909 \def\XKV@useoption#1{},

910 \def\XKV@resa{#1}/

911 \XKV@ifundefined{ver@xkvltxp.sty}t{}{%

912 \@onelevel@sanitize\XKVQresa

913 }%

914 \Q@expandtwoargs\@removeelement{\XKV@resaly,
915 {\@unusedoptionlist}\@unusedoptionlist
916 }

The options section. Postponed to the end to allow for using xkeyval options macros.
All options are silently ignored.

917 \DeclareOptionX*{%

918 \PackageWarning{xkeyval}{Unknown option ¢\CurrentOption’}},

919}

920 \ProcessOptionsX

Reset catcodes.

921 \XKVcatcodes
922 (/xkvlatex)

14.3 keyval.tex

Since the xkeyval macros handle input in a very different way than keyval macros, it
is not wise to redefine keyval primitives (like \KV@do and \KV@split) used by other
packages as a back door into \setkeys. Instead, we load the original primitives here
for compatibility to existing packages using (parts of) keyval. Most of the code is orig-
inal, but slightly adapted to xkeyval. See the keyval documentation for information
about the macros below.

923 fi<xxkvkeyval>

924 %%

925%% Based on keyval.sty.
926 %%

927 \def \XKV@tempa#1{/

928 \def \KV@@sp@def##1##2{%

58

929 \futurelet\XKVQ@resa\KV@@sp@d##2\@nil\@nil#1\Onil\relax##1}},
930 \def \KV@@sp@d{%

931 \ifx\XKV@resa\@sptoken

932 \expandafter\KV@Asp@b

933 \else

934 \expandafter\KV@@sp@b\expandafter#1y,
935 \fi}}

936 \def \KV@@sp@b#1##1 \@nil{\KV@@sp@c##11}/,
937 }

938 \XKV@tempa{ }

939 \def \KV@@spQ@c#1\0nil#2\relax#3{\XKVOtoks{#1}\edef#3{\the\XKVQ@toksl}}
940 \def \KvVedo#1,{/

941 \ifx\relax#1\@empty\else

942 \KV@split#l==\relax

943 \expandafter\KV@do\fi}

944 \def\KVOsplit#1=#2=#3\relax{/,

945 \KV@@sp@def\XKV@tempa{#1}/

946 \ifx\XKV@tempa\@empty\else

947 \expandafter\let\expandafter\XKV@tempc

948 \csname\KV@prefix\XKVQ@tempa\endcsname
949 \ifx\XKV@tempc\relax

950 \XKV@err{ ‘\XKV@tempa’ undefined},

951 \else

952 \ifx\Q@empty#3\Qempty

953 \KV@default

954 \else

955 \KV@@sp@def \XKVQ@tempb{#2}/,

956 \expandafter\XKV@tempc\expandafter{\XKVQ@tempb}\relax
957 \fi

958 \fi

959 \fi}

960 \def\KV@default{}

961 \expandafter\let\expandafter\XKV@tempb

962 \csname\KV@prefix\XKV@tempa Q@default\endcsname

963 \ifx\XKVQ@tempb\relax

964 \XKV@err{No value specified for key ‘\XKV@tempa’l}J

965 \else
966 \XKV@tempb\relax
967 \fil}

968 (/xkvkeyval)

14.4 xkvtxhdr.tex

This section generates xkvtxhdr.tex which contains some standard BIEX macros
taken from latex.1tx. This will only be loaded when not using xkeyval.sty.

969 J,<*xkvheader>

970 %%

971%% Taken from latex.ltx.

972 %o

973 \message{2005/02/22 v1.1 xkeyval TeX header (HA)}
974 \def\@nnil{\@nil}

975 \def\Qempty{}

976 \def \newif#1{Y

59

977 \count@\escapechar \escapechar\m@ne
978 \let#1\iffalse

979 \@if#1\iftrue

980 \@if#1\iffalse

981 \escapechar\count@}

982 \def\@if#1#2{%

983 \expandafter\def\csname\expandafter\@gobbletwo\string#1/,

984 \expandafter\Qgobbletwo\string#2\endcsname
985 {\let#1#2}}

986 \long\def\@ifnextchar#1#2#3{J
987 \let\reserved@d=#1Y,

988 \def\reserved@a{#2}/

989 \def\reserved@b{#31}Y

990 \futurelet\@let@token\@ifnch}
991 \def\@ifnch{%

992 \ifx\@let@token\@sptoken

993 \let\reserved@c\@xifnch
994 \else
995 \ifx\@let@token\reserved@d
996 \let\reserved@c\reserved@a
997 \else
998 \let\reserved@c\reserved@b
999 \fi

1000 \fi

1001 \reserved@c}

1002 \def\:{\let\@sptoken= } \: 7 this makes \@sptoken a space token
1003 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
1004 \let\kernel@ifnextchar\@ifnextchar

1005 \1long\def\Qtestopt#1#2{%

1006 \kernel@ifnextchar [{#1}{#1[{#2}]1}}

1007 \long\def\@firstofone#1{#1}

1008 \long\def \@gobble #1{}

1009 \long\def \@gobbletwo #1#2{}

1010 \def\Q@expandtwoargs#1#2#3{%

1011 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}
1012 \edef\@backslashchar{\expandafter\@gobble\string\\}
1013 \newif\ifin®@

1014 \def\in@#1#2{%

1015 \def\inQ@@##1#1##2##3\in00{/,

1016 \ifx\inO@##2\in@false\else\in@true\fi}y

1017 \in@@#2#1\in@\in@A@}

1018 \def\strip@prefix#1>{}

1019 \def \Qonelevel@sanitize #1{%

1020 \edef #1{\expandafter\strip@prefix

1021 \meaning #13}J,

1022 }

1023 {/xkvheader)

14.5 xkvview.sty

This section provides a small utility for package developers. It provides several macros
to generate overviews of the keys that are defined in a package or a collection of pack-
ages. It is possible to get an overview for a specific family, but also to get a complete

60

\XKVV@tabulate
\XKVV@t@bulate

\XKV@defineQkey
\XKV@def ine@kQy
\XKV@def ine@cmdkey
\XKV@def ine@ch@icekey
\XKV@dQf ine@ch@ic@key
\XKV@d@fOne@bQolkey

overview of all keys that have been defined after loading this package.

1024 %<*#xkvview>

1025 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

1026 \ProvidesPackage{xkvviewl}/,

1027 [2005/07/10 v1.4a viewer utility for xkeyval (HA)]

1028 \RequirePackage{xkeyvall}

1029 \RequirePackage{longtable}

1030 \DeclareOptionX*{%

1031 \PackageWarning{xkvview}{Unknown option ‘\CurrentOption’l}}
1032 }

1033 \ProcessOptionsX

Initializations.

1034 \newif \ifXKVV@vwkey
1035 \newif \ifXKVV@colii
1036 \newif \ifXKVV@coliii
1037 \newif \ifXKVV@coliv
1038 \newif\ifXKVV@colv

1039 \newwrite\XKVV@out

1040 \1et\XKVV@db\@empty

Setup options and presets.

1041 \def ine@cmdkeys [XKVV] {xkvview} [XKVV@] {/

1042 prefix,family,type,default,file,columns,wcolsep,weol}[\@nil]

1043 \define@boolkeys [XKVV]{xkvview} [XKVV@] {view,vlabels,wlabels} [true]
1044 \presetkeys [XKVV] {xkvview}{prefix,family,type,default,file,?

1045 columns,wcolsep=&,weol=\\,view,vlabels=false,wlabels=false}{}

{(key) Y type)}{(defaulr)}
Adds the input information to the main database in \XKVV@db.

1046 \def \XKVV@tabulate#1#2#3{J,

1047 \def\XKV@tempa{#3}/

1048 \@onelevel@sanitize\XKV@tempa

1049 \XKV@addtolist@x\XKVV@db{#1=\expandafter

1050 \XKVV@t@bulate\XKV@prefix=\XKVOtfam=#2=\XKVQ@tempal}’
1051 }

1052 \def \XKVV@t@bulate#1@{#1}

Redefine the internals of key defining macros to record information in the database.

1053 \def \XKV@def ine@key#1{/,

1054 \@ifnextchar [{\XKV@d@fine@kQy{#1}}{/

1055 \XKVV@tabulate{#1}{ordinary}{[nonel}’

1056 \expandafter\def\csname\XKV@header#1\endcsname####1/,
1057 Yh

1058 }

1059 \def \XKVedefine@k@y#1 [#2] {%

1060 \XKVV@tabulate{#1}{ordinary}{#2}/,

1061 \XKV@define@default{#1}{#2}%

1062 \expandafter\def\csname\XKV@header#1\endcsname##1,
1063 }

1064 \def \XKV@defineQ@cmdkey#1#2 [#3]#4{%

1065 \1ifXKV@st

1066 \XKVV@tabulate{#2}{command}{#3}/

1067 \XKV@define@default{#2}{#3}%

61

\xkvview

1068 \else

1069 \XKVV@tabulate{#2}{command}{ [nonel }%

1070 \fi

1071 \def\XKV@tempa{\expandafter\def\csname\XKV@header#2\endcsname####11}7,
1072 \begingroup\expandafter\endgroup\expandafter\XKVQ@tempa\expandafter
1073 {\expandafter\def\csname#1#2\endcsname{##1}#4}J,

1074 }

1075 \def \XKV@dQf ine@ch@icekey#1 [#2] {/,

1076 \XKVV@tabulate{#1}{choice}{#2}/,

1077 \XKV@define@default{#1}{#2}%

1078 \XKV@d@fine@ch@ic@key{#1}/,

1079 }

1080 \def \XKV@d@f ine@ch@ic@key#1{%

1081 \XKVV@tabulate{#1}{choice}{[nonel}%

1082 \ifXKV@pl\XKVO@afterelsefi

1083 \expandafter\XKV@d@f@ne@ch@ic@kQy

1084 \else\XKV@afterfi

1085 \expandafter\XKV@dQfOne@ch@iclkey

1086 \fi
1087 \csname\XKV@header#1\endcsname
1088 }

1089 \def \XKV@d@fOne@bQolkey#1#2#3#4#5{7,

1090 \expandafter\newif\csname if#3\endcsname

1091 \ifXKV@st

1092 \XKVV@tabulate{#2}{boolean}{#41}J

1093 \XKV@define@default{#2}{#4}%

1094 \else

1095 \XKVV@tabulate{#2}{boolean}{ [nonel]}%

1096 \fi

1097 \ifXKVepl

1098 \def#1##1{\XKV@pltrue\XKV@sttrue

1099 \XKV@checkchoice [\XKV@resa] {##1}{true,false}#5%
1100 jyA

1101 \else

1102 \def#1##1{\XKV@plfalse\XKV@sttrue

1103 \XKV@checkchoice [\XKV@resa] {##1}{true,false}#5%
1104 Y%

1105 \fi

1106 }

{{options)}
The main macro. Produces a long table and/or writes to a target file.

1107 \def \xkvview#1{/
Process all options.

1108 \setkeys [XKVV] {xkvview}{#1}%
1109 \ifx\XKVV@default\@nnil\else\@onelevel@sanitize\XKVV@default\fi

If no column information, display all columns.

1110 \ifx\XKVV@columns\@nnil

1111 \count@5

1112 \XKVV@coliitrue\XKVV@coliiitrue\XKVV@colivtrue\XKVV@colvtrue
1113 \else

Check how much and which columns should be displayed.

62

1114 \count@\@ne

1115 \@expandtwoargs\in@{,prefix, }{, \XKVVQ@columns, }7

1116 \ifin@\advance\count@\@ne\XKVV@coliitrue\else\XKVV@coliifalse\fi
1117 \@expandtwoargs\in@{,family, }{, \XKVV@columns, }%

1118 \ifin@\advance\count@\@ne\XKVV@coliiitrue\else\XKVV@coliiifalse\fi
1119 \@expandtwoargs\in@{,type, }{, \XKVV@columns, }%

1120 \ifin@\advance\count@\@ne\XKVV@colivtrue\else\XKVV@colivfalse\fi
1121 \Q@expandtwoargs\in@{,default,}{, \XKVV@columns, }%

1122 \ifin@\advance\count@\@ne\XKVV@colvtrue\else\XKVV@colvfalse\fi
1123 \fi

1124 \ifXKVV@view

Construct long table header.
1125 \protected@edef\XKVQ@tempa{\noexpand\begin{longtable} [1]{%

1126 *x\the\count@ 1}\normalfont Key\ifXKVV@colii&\normalfont Prefixy,
1127 \fi\ifXKVV@coliii&\normalfont Family\fi\ifXKVV@coliv&\normalfont
1128 Type\fi\ifXKVVQ@colv&\normalfont Default\fi\\\noexpand\hline

1129 \noexpand\endfirsthead\noexpand\multicolumn{\the\count@}{1}{%
1130 \normalfont\emph{Continued from previous page}}\\\noexpand\hline
1131 \normalfont Key\ifXKVV@colii&\normalfont Prefix\fi\ifXKVV@coliii
1132 &\normalfont Family\fi\ifXKVV@coliv&\normalfont Type\fi

1133 \1fXKVV@colv&\normalfont Default\fi\\\noexpand\hline\noexpand
1134 \endhead\noexpand\hline\noexpand\multicolumn{\the\count@}{r}{%
1135 \normalfont\emph{Continued on next pagel}}\\\noexpand\endfoot

1136 \noexpand\hline\noexpand\endlastfoot

1137 hyA

1138 \XKV@toks\expandafter{\XKV@tempaly,

139 \fi

Open the target file for writing if a file name has been specified.
1140 \ifx\XKVV@file\Onnil\else\immediate\openout\XKVVQout\XKVV@file\fi
Parse the entire database to find entries that match the criteria.

1141 \XKV@for@o\XKVV@db\XKV@tempa{’
1142 \XKVV@vwkeytrue\expandafter\XKVV@xkvview\XKV@tempa\@nil
1143 }%

Finish the long table and typeset it.

1144 \ifXKVV@view
1145 \addto@hook\XKV@toks{\end{longtable}}/
1146 \begingroup\ttfamily\the\XKV@toks\endgroup
1147 \fi
Close the target file.

1148 \ifx\XKVV@file\@nnil\else\immediate\closeout\XKVV@out\fi
1149 }

\XKVVexkvview (key)=(prefix)=(family)=(type)=(default)\0nil
Parse a row in the database to get individual column entries. Select the requested
columns and store the table row in the token or write it to the target file.
1150 \def \XKVVOxkvview#1=#2=#3=#4=#5\0nil{},
Check whether the current entry satisfies all criteria.

1151 \ifx\XKVV@prefix\@nnil\else
1152 \def\XKV@tempa{#2}/,
1153 \ifx\XKV@tempa\XKVV@prefix\else\XKVV@vwkeyfalse\fi

63

1154 \fi

1155 \ifx\XKVV@family\@nnil\else

1156 \def\XKVetempa{#3}/,

1157 \ifx\XKV@tempa\XKVV@family\else\XKVV@vwkeyfalse\fi
1158 \fi

1159 \ifx\XKVV@type\@nnil\else

1160 \def\XKV@tempa{#4}Y

1161 \ifx\XKV@tempa\XKVV@type\else\XKVVQvwkeyfalse\fi
1162 \fi

1163 \ifx\XKVV@default\Onnil\else

1164 \def\XKV@tempa{#5}

1165 \ifx\XKV@tempa\XKVV@default\else\XKVV@vwkeyfalse\fi
1166 \fi

1167 \ifXKVVQvwkey

If output should go to the dvi, construct the table row and add it to the token.
1168 \ifXKVV@view

1169 \edef\XKV@tempa{,

1170 #1\ifXKVV@colii\fi\ifXKVV@coliii\fi
1171 \ifXKVV@coliv\fi\ifXKVV@colv\fi

1172 \ifXKVV@vlabels\noexpand\label{#2-#3-#1}\fi
1173 Yh

1174 \expandafter\addto@hook\expandafter

1175 \XKV@toks\expandafter{\XKV@tempa\\1}%

1176 \fi

1177 \ifx\XKVV@file\@nnil\else

When writing, construct the line and write it to file. Notice that xkeyval removes
braces and spaces, so wcolsep={ } won't make a space between column entries, but
wcolsep=\space will.

1178 \immediate\write\XKVVQout{/

1179 #1\ifXKVV@colii\XKVV@wcolsep#2\fi
1180 \1ifXKVV@coliii\XKVV@wcolsep#3\fi
1181 \ifXKVV@coliv\XKVV@wcolsep#4\fi
1182 \1ifXKVV@colv\XKVV@wcolsep#5\fi
1183 \1fXKVV@wlabels\string\label{#2-#3-#1}\fi
1184 \expandafter\noexpand\XKVV@weol
1185 Yh

1186 \fi

1187 \fi

1188 }

1189 {/xkvview)

14.6 xkvltxp.sty

This section redefines some kernel macros as to avoid expansions of options at several
places to allow for macros in key values in class and package options. It uses a tempo-
rary token register and some careful expansions. Notice that \@unusedoptionlist is
sanitized after creation by xkeyval to avoid \@removeelement causing problems with
macros and braces. See for more information about the original versions of the macros
below the kernel source documentation [2].

1190 %<*xkvltxpatch>

1191 %%
1192 %% Based on latex.ltx.

64

1193 %

1194 \NeedsTeXFormat{LaTeX2e} [1995/12/01]

1195 \ProvidesPackage{xkvltxp} [2004/12/13 v1.2 LaTeX2e kernel patch (HA)]
1196 \def \@pass@ptions#1#2#3{%

1197 \def\reserved@a{#2}%

1198 \def\reserved@b{\CurrentOptionl}’,

1199 \ifx\reserved@a\reserved@b

1200 \@ifundefined{opt@#3.#1}{\@temptokena\expandafter{#2}}{%

1201 \@temptokena\expandafter\expandafter\expandafter
1202 {\csname opt@#3.#1\endcsname},

1203 \@temptokena\expandafter\expandafter\expandafter{’,
1204 \expandafter\the\expandafter\@temptokena\expandafter,#2}/
1205 iyA

1206 \else

1207 \@ifundefined{opt@#3.#1}{\@temptokena{#2}}{/

1208 \@temptokena\expandafter\expandafter\expandafter
1209 {\csname opt@#3.#1\endcsnamel},

1210 \@temptokena\expandafter{\the\@temptokena,#2}J,

1211 hyA

1212 \fi

1213 \expandafter\xdef\csname opt@#3.#1\endcsname{\the\@temptokenaly,
1214}

1215 \def \OptionNotUsed{%

1216 \ifx\@currext\@clsextension

1217 \let\reserved@a\CurrentOption

1218 \@onelevel@sanitize\reservedQa

1219 \xdef\Qunusedoptionlist{y

1220 \ifx\Qunusedoptionlist\@empty\else\@unusedoptionlist,\fi
1221 \reserved@al

1222 \fi

1223 }

1224 \def \Q@use@ption{},

1225 \let\reserved@a\CurrentOption

1226 \@onelevel@sanitize\reserved@a

1227 \@expandtwoargs\@removeelement\reserved@a
1228 \Qunusedoptionlist\@unusedoptionlist

1229 \csname ds@\CurrentOption\endcsname

1230 }

1231 \def\@fileswith@ptiGns#1 [#2]#3 [#4]{Y%

1232 \ifx#1\@clsextension

1233 \ifx\@classoptionslist\relax

1234 \@temptokena{#2}/,

1235 \xdef\Q@classoptionslist{\the\@temptokenaly,
1236 \def\reserved@a{’,

1237 \@onefilewithoptions#3[#2] [#4]1#1%

1238 \@documentclasshook}’

1239 \else

1240 \def\reserved@a{’,

1241 \Qonefilewithoptions#3[#2] [#4]1#11}

1242 \fi

1243 \else

1244 \@temptokena{#2}/,

1245 \def\reserved@b##1,{/

1246 \ifx\@nil##1\relax\else

65

\pst@famlist

\pst@addfams

\psset
\pss@t

1247 \ifx\relax##1\relax\else

1248 \noexpand\@onefilewithoptions##1

1249 [\the\@temptokena] [#4]\noexpand\@pkgextension

1250 \fi

1251 \expandafter\reserved@b

1252 \fi}

1253 \edef\reserved@a{\zap@space#3 \Qemptyl}

1254 \edef\reserved@a{\expandafter\reserved@b\reserved@a,\@nil, }/
1255 \fi

1256 \reserved@a}
1257 \let\@@fileswith@ptiOns\@fileswith@ptilns
1258 (/xkvltxpatch)

14.7 pst-xkey.tex

Avoid loading pst-xkey . tex twice.

1259 J,<*pxktex>

1260 \csname PSTXKeyLoaded\endcsname

1261 \1et\PSTXKeyLoaded\endinput

1262 \edef \PSTXKeyCatcodes{/,

1263 \catcode‘\noexpand\@\the\catcode‘\@\relax
1264 \let\noexpand\PSTXKeyCatcodes\relax

1265 }

1266 \catcode ‘ \@=11\relax

Load xkeyval when not already done by pst-xkey. sty and provide information.

1267 \ifx\ProvidesFile\@undefined

1268 \message{2005/02/22 v1.5 PSTricks specialization of xkeyval (HA)}
1269 \ifx\XKeyValloaded\endinput\else\input xkeyval \fi

1270 \else

1271 \ProvidesFile{pst-xkey.tex}

1272 [2005/02/22 v1.5 PSTricks specialization of xkeyval (HA)]

1273 \@addtofilelist{pst-xkey.tex}

1274 \RequirePackage{xkeyval}

1275 \fi

Initialize the list of families.
1276 \def \pst@famlist{}

Adds the family to \pst@famlist if it was not in yet.

1277 \def \pst@addfams#1{%

1278 \XKV@for@n{#1}\XKV@tempa{y,

1279 \@expandtwoargs\in@{, \XKV@tempa, }{, \pst@famlist, }%

1280 \ifin@\else\edef\pst@famlist{\pst@famlist, \XKV@tempal}\fi
1281}

1282 }

Set keys. Uses xkeyval’s \setkeys+.

1283 \def \psset{%

1284 \expandafter\Q@testopt\expandafter\pss@t\expandafter{\pst@famlist}/,
1285}

1286 \def \pss@t [#1] {\setkeys+[psset]{#1}}

66

\@psset This macro defined by pstricks.tex is internally used as a shortcut. We have to re-
define this as well to avoid problems.

1287\
1288
1289
1290 }

def\@psset#1,\@nil{},
\edef\XKVO@tempa{\noexpand\setkeys+[psset] {\pst@famlist}}},
\XKV@tempa{#1}’

Finalize.

1291 \

PSTXKeyCatcodes

1292 (/ pxktex)

14.

8 pst-xkey.sty

Initialize the package.

1293 %
1294 \
1295 \
1296

Loa

1297\

<*pxklatex>
NeedsTeXFormat{LaTeX2e}[1995/12/01]
ProvidesPackage{pst-xkey}

[2005/02/22 v1.5 package wrapper for pst-xkey.tex (HA)]
d required package.

ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi

Ignore options.

1298 \
1299

1300 }
1301 \

DeclareOptionX*{J
\PackageWarning{pst-xkey}{Unknown option ‘\CurrentOption’}

ProcessOptionsX

1302 {/ pxklatex)

References

(1]
(2]

Hendri Adriaens. extract package. CTAN: /macros/latex/contrib/extract.

Johannes Braams, David Carlisle, Alan Jeffrey, Leslie Lamport, Frank Mittelbach,
Chris Rowley, and Rainer Schopf. The BIEX2¢ sources. CTAN:/macros/latex/
base, 2003.

David Carlisle. keyval package, v1.13, 1999/03/16. CTAN:/macros/latex/
required/graphics.

Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris
Rowley. The BTgX Companion, Second Edition. Addison-Wesley, 2004.

Herbert VoB8. PSTricks website. http://www.pstricks.de.

Timothy Van Zandt et al. PSTricks package, v1.04, 2004/06/22. CTAN: /graphics/
pstricks.

67

Acknowledgements

The author is grateful to Josselin Noirel, Till Tantau, Herbert VoB, Carsten Heinz and
Heiko Oberdiek for help and suggestions. Thanks go to Donald Arseneau for contribut-
ing the robust \@ifnextcharacter macro and to Morten Hogholm for contributing
a fast for-loop macro. Special thanks go to Uwe Kern for his ideas for improving the
functionality of this package, a lot of useful comments on the package and the docu-
mentation and for contributing the \@selective®@sanitize macro.

Version history

This version history displays recent changes only.

v2.0 (2005/01/30)
General: Made \setkeysmnestable i, 1
\XKV@addtolist@n: Simplified i 32
\XKV@addtolist@o: Simplified 32
\XKV@default: Repaired adding extra braces when executing defaultvalue 53
\XKV@ifundefined: Made none e-TgX version not leave \relax 29
\XKV@r@placepointers: Simplified i, 52

v2.1 (2005/02/08)
General: Added ‘immediate’ versions of severalmacros 1

v2.2 (2005/02/14)
General: Added viewer utility e 1

Improved nestingmechanism i i 1

v2.3 (2005/02/22)

General: Added choice keys 1
Increased efficiency ofloops 1
Updated viewer utilityt 1

v2.4 (2005/03/31)

General: Added ‘default value’ column to xkvview tables 1
Added nesting protection for conditionals oL 1
Changed \define@boolkey to have akey function 1
Extended booleankeys 1
Extended choice keys i 1
Inserted pst-xkey in xkeyvalsource i, 1
Removed commandkeys i 1
Revised documentation and examples i . 1
Simplified some code e 1
Updated XKVVIEW . .. oot e 1

\XKV@s@tkQys: Added \global to make \XKV@rm survive when \setkeys executed in

AGTOUPD. .« ot ittt e 50

\XKV@wh@list: Avoid using groupingc.oiiiniiniineninunnnnnn... 31

v2.5 (2005/05/07)

General: Added \define@boolkeys, \define@cmdkey and \define@cmdkeys 1
Restructured documentationiittiiti e 1
Simplified \setkeysinternalsttt 1
Solved small bug in \setkeys which allowed other families to take over save key or

preset key settings if the key was defined in multiple families 1
Updated XKVVIEW . . .ot 1
\XKV@d@fOne@boolkey: Removed \relaxouviuiuniniinennenennann. 42
\XKV@d@fine@boolkey: Removed \relaxuvuinuenennenneneenennn. 42

68

v2.5

General: Added default value examples to docs
Reimplemented xkvview and added several options

v2.5a
\@s@lective@sanitize: Added missing
v2.5b

General: Made retrieving document class more robust

v2.5¢

\XKV@def ine@cmdkey: Avoid initializing control sequence as \relax

v2.5d

A%!

(2005/05/21)

32

(2005/07/10)
........... 40, 61
(2005/08/12)

General: Added missing \f ilename@area in document class retrieval in xkeyval.sty . 1

Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition; numbers in roman refer to

the code lines where the entry is used.

Symbols
\@@fileswith@ptins 906, 1257
\@badrequireerror 862, 876
\@classoptionslist

838, 840, 843, 846, 1233, 1235

\@clsextension 684, 824,1216, 1232
\@currext ... 684,855,868, 877,900, 1216
\@currname 855, 868, 877, 900
\@documentclasshook 1238
\@filelist 822
\@fileswith@pti@ns

......... 862, 876, 906, 1231, 1257
\@firstofone 463, 508, 1007
\@firstoftwo 32,

40, 50, 65, 258, 259, 319, 461, 507, 525
\@ifncharacter 58
\@ifnextcharacter 58, 258, 259
\@onefilewithoptions . 1237, 1241, 1248
\@onelevel@sanitize . 140,201,773,

881,912, 1019, 1048, 1109, 1218, 1226

\@pass@ptions 1196
\@pkgextension 1249
\@pssetiiiiiiii.. 1287
\@removeelement 914, 1227
\@s@l@ctive@sanitize 142,145
\@s@lective@sanitize 135
\@secondoftwo
... 32,42,48,67,317, 467, 484, 527
\@selective@sanitize 135,193,197
\@unknownoptionerror 685
\@unprocessedoptions 907
\@unusedoptionlist
..... 879, 881, 915, 1219, 1220, 1228
\Quse@ption 1224

69

columns (option)
\CurrentOption 651,
652, 685, 690, 697, 886-889, 918,
1031, 1198, 1217, 1225, 1229, 1299

D
\DeclareOptionX 17,861,917,1030, 1298
\DeclareOptionX* 18
default (option) 24
\define@boolkey 7,393
\define@boolkey+ 7
\define@boolkeys 8,423,1043
\define@choicekey 5,363
\define@choicekey* 5
\define@choicekey*+ 6
\define@choicekey+ 6
\define@cmdkey 5,348
\define@cmdkeys 5,355, 1041
\define@key 4,338,870
\delpresetkeys 15,565
\delsavekeys 12,603
\disable@keys 8,530
\documentclass 834

E
\ExecuteOptionsX 18,871

F
family (option) 24
file(option) 24
\filename@area 825, 828
\filename@base 825, 828
\filename@ext 824, 825, 828
\filename@parse 823

\gdelpresetkeys 15, 565
\gdelsavekeys 12,603
\global ...t 13
\gpresetkeys 15,549
\gsavekeys 12,591
\gsavevalue 12,327
\gunpresetkeys 16,579
\gunsavekeys 12,613
I
\ifXKV@inpox 22,682, 696
\ifXKV@knf 20, 520, 524, 675, 681

\ifXKVepl . 19,239, 375, 387, 395, 413,
460, 466, 483, 493, 669, 1082, 1097

\ifXKV@preset 23, 668
\ifXKV@rkv 21,710,731, 785
\ifXKV@sg 18,711, 786
\ifXKV@st 17, 241, 252,

350, 386, 412, 437, 443, 558, 585,

587, 596, 619, 689, 884, 1065, 1091
\ifXKVV@colii 1035,1126,1131,1170,1179
\ifXKVV@coliii

...... 1036, 1127, 1131, 1170, 1180
\ifXKVV@coliv 1037,1127,1132,1171,1181
\ifXKVV@colv 1038,1128,1133,1171,1182

\ifXKVVeview 1124, 1144, 1168
\ifXKVV@vlabels 1172
\ifXKVVO@vwkey 1034, 1167
\ifXKVV@wlabels 1183
\immediate 1140, 1148, 1178
K
\key@ifundefined 8,509
\KV@@sp@b 932, 934, 936
\KVOOSPOC ... 936, 939
\KV@@sp@d 929, 930
\KVe@@sp@def 215, 261,
271, 293, 519, 657, 667, 928, 945, 955
\KV@default 953, 960
\KV@doooviunnn.. 940, 943
\NKV@errcouiuiuinennn 254
\KVO@errxcccvuuo... 254
\KV@prefix 948, 962
\KVOsplit 942, 944
(4]
\OptionNotUsed 1215
options:
columnsiiiiiiinn. 24
default 24
family 24
File i 24

type ... 24
view ... 25
vlabels 24
Wcolsep ... 24
Weol ... 24
wlabels 25
P
\PackageError 821
\PackageWarning ... 820,918, 1031, 1299
prefix (option) 24
\presetkeys 15,549, 1044
\ProcessOptionsX 18 872,920, 1033, 1301
\ProcessOptionsX* 18
\pss@t 1283
\psset 27,1283
\pst@addfams 27,1277
\pst@famlist
.... 27,1276, 1279, 1280, 1284, 1288
\PSTXKeyLoaded 1261, 1297
S
\savekeys 12,591
\savevalueouvuun.. 11,326
\setkeys 9,623, 1108, 1286, 1288
\setkeys* 9
\setkeys*+ii... 10
\setkeys+c..iiiiiiiii.. 10
\setrmkeys 10, 800
\setrmkeys*c....... 10
T
type (option), 24
U
\unpresetkeys 16,579
\unsavekeys 12,613
\usevalue 13,748, 750
\'
view (option) 25
vlabels (option) 24
w
wcolsep (option) 24
weol (option), 24
wlabels (option) 25
\write 1178
X
\XKeyValLoaded 3,811, 1269
\XKVOOQ@AOXcovuueunn.. 866
\XKV@@ch@ckch@ic@ 496, 507
\XKV@@ch@ckch@ice 494, 507
\XKV@@ch@ckchoice 450, 476

\XKV@@AOXccovunneenn.. 866
\XKV@@ifemd 314
\XKV@O@t@st@pte 848
\XKV@addtolistOn 120, 891
\XKV@addtolist@o

127, 234, 236, 239, 250, 690, 843, 899
\XKV@addtolist@x ... 134,629,762, 1049
\XKV@addtomacro@n

112,122, 124, 461, 463, 467, 471, 751

\XKV@addtomacro@o . 115,129, 131, 216
\XKV@afterelsefi 34,

36, 375, 395, 447, 715, 759, 790, 1082
\XKV@afterfi 34,

377,397, 449, 722, 753, 761, 794, 1084
\XKV@CC . ..ooviiii i 6,434
\XKV@CC*\, 6
\XKV@CCH*+ . oo iii i, 6
\KKVOCCH . ovvii e 6
\XKV@ch@ckch@ice 439, 448, 453
\XKV@ch@ckchoice 441, 445
\XKV@ch@cksanitize .. 191,192, 196, 199
\XKV@checkchoice

.. 388,415,419, 434, 435, 1099, 1103
\XKV@checksanitizea . 190, 224, 557, 625
\XKV@checksanitizeb

195, 244, 299, 512, 532, 595
\XKV@classoptionslist
3, 836, 838, 879, 896

\XKV@d@f@n@Q@ch@icOkQy ... 382,383,384

\XKV@d@f@ne@bQolkey
.......... 403, 407, 410, 431, 1053

\XKV@d@f@ne@boolkey 396, 406

\XKV@d@fOne@ch@ic@kQy
\XKV@d@fOne@ch@iclkey
\XKV@def ine@boolkey

\XKVedef ine@boolkeys
\XKV@def ine@ch@iclkey

. 376, 383, 1083
. 378,382, 1085
398, 402
427, 430

368, 372, 374, 1053
.. 368,370, 1053

\XKV@d@ef ine@ch@icekey

\XKV@define@choicekey 364, 365
\XKV@dQfineQkQy 340, 344, 1053
\XKVed@fine@key 344
\XKV@d@lpresetkeys 568, 569, 571
\XKV@AOX 863, 866
\XKV@default 719, 769
\XKV@define@boolkey 393, 394
\XKV@define@boolkeys 423,424
\XKV@define@choicekey 363, 364
\XKV@define@cmdkey . 348,349, 359, 1053
\XKV@define@cmdkeys 355, 356
\XKV@define@default 334, 345,

350, 371, 412, 1061, 1067, 1077, 1093
\XKVe@defineGkey 338,339, 541,543, 1053
\XKV@delete 243,575, 609

71

\XKV@delpresetkeys 565, 566, 567
\XKV@delsavekeys 603, 604, 605
\XKV@depth 16,
277, 282, 723, 726, 791, 793, 795, 797
\XKV@disable@keys 530, 531
\XKV@documentclass
...... 3, 696, 822, 827, 833, 835, 878
\XKV@dOXccoun... 863, 865
\XKV@doxs 683, 687, 819, 865, 903
\XKV@err 254, 264, 470,

487, 535, 573, 583, 607, 617, 661,
692, 717, 755, 760, 820, 834, 950, 964

\XKVOf@r 76, 80, 91, 93
\XKV@fams 299, 301,
512, 514, 520, 638, 670, 675, 692, 858
\XKV@for@break 74,89
\XKV@for@en 91
\XKV@for@eo 92, 638, 670

\XKV@for@n 71,90, 214,278,651, 841,1278
\XKV@for@o 90, 225,
230, 247, 358, 426, 533, 627, 732, 1141

\XKV@g@tkeyname 324, 325, 628, 656, 888
\XKV@getkeyname 324,562,576
\XKV@getsg 331, 600, 610
\XKv@ifcmd 314, 326, 327, 332, 733
\XKV@ifplus 258,288
\XKV@ifstar 258, 285, 849, 863

\XKV@ifundefined 36, 54, 522, 534, 540,
556, 572, 582, 594, 606, 616, 640,
704, 706, 716, 754, 781, 825, 880, 911

\XKV@key@if@ndefined 515,517,889
\XKV@key@ifundefined 509, 510
\XKV@makehd .. 270,292, 521, 639, 671, 676
\XKV@makepf 260, 291, 298, 511, 853
\XKV@merge 223,561, 599
\XKV@na 650, 664
\XKV@naa 626, 629, 644
\XKVOPOXovvvueunn.. 872,873
\XKV@pr@setkeys 552, 553, 555
\XKV@prefix . 261, 263, 265, 267, 273, 1050
\XKV@presetkeys 549, 550, 551
\XKV@r@placepointers 745
\XKV@replacepointers 714,745,789
\XKV@rm 24,631, 690, 803, 904
\XKV@s@tkOyS 652, 655
\XKV@s@tkQys@ 668, 672, 677, 703
\XKV@s@tkeys 633, 643, 649
\XKV@savekeys 591, 592, 593
\XKV@setkeys 623, 624, 802, 871, 901
\XKV@setrmkeys 800, 801
\XKV@sp@deflist

212, 300, 357, 367, 425, 513, 650, 858
\XKV@srstate

.... 276,723,726,791,793, 795, 797

\XKV@tOst@pte 848
\XKV@t@stopta 284,393
\XKV@t@stoptb 289
\XKV@tOstoptc 296
\XKV@t@stoptd 304
\XKV@t@stopte 848, 871
\XKV@testclass 696, 877, 878
\XKV@testopta ... 284,363,434, 623,800
\XKV@testoptb 289, 305,

338, 363, 530, 549, 550, 565, 566,
579, 580, 591, 592, 603, 604, 613, 614

\XKV@testoptc 296, 623, 800
\XKV@testoptd ... 304, 348, 355, 393, 423
\XKV@testopte 848,872
\XKV@testsavekey 707,730, 782
\XKV@unpresetkeys 579, 580, 581
\XKV@unsavekeys 613,614, 615
\XKV@useoption 697, 890, 909
\XKV@usepresetkeys 632, 634, 636

72

\XKV@warn 254, 538, 820
\XKV@wh@1l@st 101, 106, 111
\XKVOwh@list 96, 98
\XKV@whilist 95, 520, 675, 822

\XKVV@columns 1110, 1115,1117,1119, 1121

\XKVVe@db 1040, 1049, 1141
\XKVVedefault 1109, 1163, 1165
\XKVVefamily 1155, 1157
\XKVVefile 1140, 1148, 1177
\XKVV@out 1039, 1140, 1148, 1178
\XKVV@prefix 1151, 1153
\XKVV@t@bulate 1046
\XKVV@tabulate ... 1046, 1055, 1060,
1066, 1069, 1076, 1081, 1092, 1095
\XKVVOLYPE ..., 1159, 1161
\XKVV@uwcolsep 1179-1182
\XKVVOWeolcuonon.. 1184
\XKVVe@xkvview 1142, 1150
\xkvview 24,1107

