Using external EPS graphics in
METAPOST

The exteps module
Version 0.1

Palle Jorgensen

10th August 2005
Contents
1. Introduction 1
‘2. Using exteps 2
21, Settings e 3
22. Specialvalues 3
23. Drawing commands 3
3. Limitations of exteps 4
4. Comments and Bug Reports 4
A. Source code of exteps‘ 5

1. Introduction

This document describes the use of the exteps module for inclusion of exter-
nal eps figures in METAPOST figures. Unlike the previous attempt (epsincl) it
make no use external programmes; it is solely written in METAPOST.

The EPS graphics is included using the special command in METAPOST.

2. Using exteps

To illustrate the use of the exteps module an example is given below. Between
the begineps and endeps commands both settings can be set, as well as special
drawing commands can be added. The output of the example can be seen in
figure(1/and the original picture.

input exteps

beginfig(1);
begineps "pallej.eps”;

%

base := (25,25);

width=10cm;
clip := true;
grid := true;

epsdrawdot(36pct,80pct) withpen pencircle scaled 10pct
withcolor blue;

epsdrawdot (60.5pct,80pct) withpen pencircle scaled 10pct
withcolor blue;

endeps;
draw origin withpen pencircle scaled 50 withcolor red + green;
endfig;

end.

Figure 1: The original (left) and the with exteps modified picture

2.1. Settings

The parameters of the settings and their defaults can be seen the table below.

Parameter Type Default Description.

angle numeric 0 The counterclockwise rotation of the
EPS figure.

clip boolean false If true, the EPS figure is clipped to its
bounding box.

base pair (0,0) The offset of the lower left corner of
the EPS picture.

scale pair (1,1) The scale of the picture.

width numeric No default Specify the width of the picture; over-
rules the scale setting.

height numeric No default Specify the height of the picture; over-
rules the scale setting.

grid boolean false If true a grid is draw on top of the

picture; mostly (only?) meant to help
when drawing on top of the EPS fig-
ure.

gridstep numeric 10 The distance in percent between the
lines of the grid.

2.2. Special values

begineps saves the original bounding box of the EPS picture in the values 11x,
11y, urx and urx. These values can be used in the settings, and for drawing
commands. Furthermore a numeric value pct is set. This is a length that is
one percent of the width of the picture.

If for instance one wants the picture to be placed at the same place on the
page as the original picture it is simply typing

base:=(1lx,1ly);

between begineps and endeps.

2.3. Drawing commands

When begineps is called a special picture, epspicture, is created. To draw on
this picture, and whence drawing on the EPS picture the special commands
epsdraw, epsfill, epsfilldraw, epsdrawdot and epslabel are defined. They
work as the normal drawing commands, but now adds to the epspicture.

At endeps the epspicture is scaled, rotated and translated in the same way
as the included EPS figure.

3. Limitations of exteps

e As the eps files are included without any special wrapping some Post-
Script commands may cause trouble, especially the showpage command.
However, when included into other documents, e.g. a TEX document,
this is not a problem.

If you have to get the picture out as it is, I can recommend the pro-
gramme mps2eps written by Jon Edvardsson. mps2eps can be found at
http://www.ida.liu.se/~ joned/download/mps2eps/.

e Furthermore exteps only looks at the first line in the document that says
%%BoundingBox: ...

Whence it will cause trouble if this line does not provide the bounding
box; some PostScript drivers may write %%BoundingBox: (atend). This
is not supported.

e As the modlue makes it possible to include external EPS pictures it may
not possible to use the output with PDFTEX.

4. Comments and Bug Reports

All comments, questions and bug reports, both on the module itself as well as
this document may be sent to Palle Jorgensen, hamselv@pallej .dk.

http://www.ida.liu.se/~joned/download/mps2eps/
hamselv@pallej.dk

A. Source code of exteps

picture epspicture;

%% String handling tool
string string_split[];
def splitstring expr S =

begingroup
save __splitctr; numeric __splitctr; __splitctr = 0;
save __prevchar; string __prevchar, __currentchar;
__prevchar =" ";
for i = 0 upto infinity:
__currentchar := substring (i, i+1) of S;
if (__currentchar = " ") and (__prevchar = " "):
relax;
elseif (__currentchar <> " ") and (__prevchar = " "):
string_split[__splitctr] := __currentchar;
elseif (__currentchar <> " ") and (__prevchar <> " "):
string_split[__splitctr] := string_split[__splitctr
] & __currentchar;
elseif (__currentchar = " ") and (__prevchar <> " "):
__splitctr := __splitctr+1;
fi
__prevchar := __currentchar;
endfor
endgroup;
enddef;
%%End string handling tool
def begineps text F =
begingroup ;
save file; string file; file = F;
save angle; numeric angle; angle = 0;
save clip; boolean clip; clip = false
save scale; pair scale; scale
=(1,1);
save base; pair base; base =
origin;
save __bbxfound ; boolean __bbxfound; __bbxfound
= false;
save grid; boolean grid ; grid = false

4

save gridstep; numeric gridstep ; gridstep

=10;
save __base; pair __base;
save __eps__currentline; string __eps__currentline;
save __bbxline ; string __bbxline;
save llx , lly, urx, ury; numeric llx, Illy, urx, ury;
save pct; numeric pct;
save width; numeric width;
save height; numeric height;
%% Finding the bounding box
forever:
__eps__currentline := readfrom F;
if substring (0,14) of __eps__currentline ="%%
BoundingBox:":

__bbxline := substring (14, infinity) of
__eps__currentline;
__bbxfound := true;
splitstring __bbxline;
I1x = scantokens string_split[0];
lly = scantokens string_split[1];
urx = scantokens string_split[2];
ury = scantokens string_split[3];
fi
exitif __bbxfound;
endfor
closefrom F;
__base = —(11x,1ly);
pct = (urx — 1lIx)/100;
%% To ensure the right bounding box of the output file
%%a picture with the same size as the eps figure is added.
epspicture := nullpicture;
setbounds epspicture to ((0,0) ——(0,ury—Illy)——(urx—I1lx ,ury—
11y)——(urx—1lx ,0)—cycle);
enddef;

def endeps =
%% Drawing the grid
if grid:
for i = 0 step gridstepxpct until (urx — 1lx):
epsdraw (i,0)——(i,ury — lly);
epslabel .bot (((decimal.(i/pct) & "%") infont defaultfont
) rotated —90, (i,0));

endfor
for i = 0 step gridstep*pct until (epsilon + ury — lly):
epsdraw (0,i)——(urx — Ilx ,i);

epslabel. 1ft (((decimal.(i/pct) & "%") infont defaultfont
), (0,1));
endfor
fi
%% Calculating scale if width and/or height is known
if (known width) and (known height):
scale := (width/(urx — 1llx) , height/(ury — lly));
elseif known width:
scale := (width/(urx — 1lx) ,width/(urx — 11x));
elseif known height:
scale := (height/(ury — lly), height/(ury — lly));
fi
%% The graphics inclusion commands
special "gsave";
if base <> origin:
special decimal.xpart.base & " " & decimal.ypart.base & "
translate ";

fi
if scale <> (1,1):
special decimal xpart.scale & " " & decimal ypart.scale
& " scale";
fi

if angle <> 0:
special decimal angle & " rotate";

epspicture := epspicture rotatedaround(origin) (angle);
fi
if __base <> origin:
special decimal.xpart.__base & " " & decimal.ypart.__base
& " translate";
fi
if scale <> (1,1):
epspicture := epspicture scaled xpart.scale
if xpart.scale <> ypart.scale:
yscaled (ypart.scale/xpart.scale)
fi;
fi
if clip:
special "newpath ";
special decimal 1llx & " " & decimal lly & " moveto";
special decimal 1llx & " " & decimal ury & " lineto";
special decimal urx & " " & decimal ury & " lineto";
special decimal urx & " " & decimal lly & " lineto";
special decimal llx & " " & decimal lly & " lineto";
special "closepath clip";
fi

special "%%BeginDocument: " & file;

forever:
__eps__currentline := readfrom file;
exitunless __eps__currentline <> EOF;
special __eps__currentline;

endfor

special "%%EndDocument: " & file;
special "grestore";

closefrom file;

if base <> (0,0):

epspicture := epspicture shifted base;
fi
addto currentpicture also epspicture;
endgroup;
enddef;

%% Special drawing commands
def epsfill expr ¢ = addto epspicture contour c _op_ enddef;

def epsdraw expr p =
addto epspicture
if picture p:
also p
else:
doublepath p withpen currentpen
fi
op
enddef;
def epsfilldraw expr c =
addto epspicture contour c withpen currentpen
op enddef;
def epsdrawdot expr z =
addto epspicture contour makepath currentpen shifted z
op enddef;
def epslabel = epsdraw thelabel enddef;

endinput

	Introduction
	Using exteps
	Settings
	Special values
	Drawing commands

	Limitations of exteps
	Comments and Bug Reports
	Source code of exteps

