GNU Texinfo

Texinfo

The GNU Documentation Format
for Texinfo version 4.7, 9 April 2004

Robert J. Chassell
Richard M. Stallman

This manual is for GNU Texinfo (version 4.7, 9 April 2004), a documentation system that
can produce both online information and a printed manual from a single source.

Copyright (C) 1988, 1990, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
2003, 2004 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Published by the Free Software Foundation
59 Temple Place Suite 330

Boston, MA 02111-1307

USA

ISBN 1-882114-67-1

Cover art by Etienne Suvasa.

Short Contents

Texinfo Copying Conditions « v v v v v v v v v e vt v v eenonenns 2
1 Overviewof Texinfo . o oo v v v v i i iiiieennnn 3
2 Using TexinfoMode. ... oo v v i enn. 15
3 Beginning a Texinfo File. oo oo i v i i e e oot 27
4 Endinga TexinfoFile00iia.. 44
5 Chapter Structuring . ..o oo v e v v eeennns 46
6 NOdeS oo v v i it iiiii it e eeeeeeeesoseoosseenens 52
T MenUS e v veeeeeeeeeeeesossssoenssossssoosssss 59
8 CrossReferences . ..o oo v i i i ieeennns 63
9 Marking Words and Phrases . v oo e v e v v v v i e, 73
10 Quotations and Examples. o v v v v v v v e e eeeoons 83
11 Listsand Tables ¢ oo oo v v v e e i it i i i i iiiiiieeennnnn 91
12 Special Displays ¢ e e oo oo v v o vttt e eeeeeoeosooeens 99
13 Indices . v oo v v v i i i e et e eeeeneeeeeeoooeeenns 105
14 Special InSertionsS. o« o o v v v v v v v oo ooessoeeeeeons 110
15 Forcing and Preventing Breaks 120
16 Definition CommandS . « o o o o o v v v v v v v v e eeoooosssss 124
17 Conditionally Visible Text + o oo v v v v vvve oo eeeennn. 137
18 Internationalizationcovviiieeennn. 144
19 Defining New Texinfo Commands. . v v v v v v v e v v v v venn. 147
20 Formatting and Printing Hardcopy « « o o o o e e e v v v v v v v 152
21 Creating and Installing Info Files. 163
22 Generating HTML . . .o oot i ittt et iiiiienns 177
A QCommand List e o o v v v v v v e s s v s eeesseeeennossss 184
B Tipsand HINtS v v v v v e e e et e i i eneeeeeeeeenns 204
C Sample Texinfo Files . . . oo v v v v e i iiinn.. 209
D IncludeFiles....vvevennnnnneeeeiiieennnnnnnns 215
E PageHeadings.....ooeeeeeeeeeeeennnnnnennnnns 219
F Formatting Mistakes « oo vvvvneee e iiiinnnnnnn. 223
G Copying ThisManual . . oo v v v eennn. 230
Command and VariableIndexci0vena... 237

Concept Index o v v v v v v v vt e s i eeeeeeeesosensosnnsns 238

Table of Contents

Texinfo Copying Conditions 2
1 Overview of Texinfo........................ 3
1.1 Reporting Bugso 3
1.2 Using Texinfo..........o 3
1.3 Output Formats.......... 4
1.4 Info Fileso 5
1.5 Printed Books. 7
1.6 @Q-commands.iiiiinit 8
1.7 General Syntactic Conventions 9
1.8 Comments 9
1.9 What a Texinfo File Must Have 10
1.10 Six Parts of a Texinfo File 11
1.11 A Short Sample Texinfo File 12
112 HistOry ..ot 14

2 Using Texinfo Mode 15
2.1 Texinfo Mode Overview.ooouiiiiieiiinen .. 15
2.2 The Usual GNU Emacs Editing Commands 15
2.3 Inserting Frequently Used Commands........................ 16
2.4 Showing the Section Structure of a File 18
2.5 Updating Nodes and Menus................................. 18
2.5.1 The Updating Commandscoon.... 18

2.5.2 Updating Requirements 21

2.5.3 Other Updating Commands 21

2.6 Formatting for Info....... 22
2.7 Printing o 23
2.8 Texinfo Mode Summaryooiiiiiiiiiiii.... 24

3 Beginning a Texinfo File 27
3.1 Sample Texinfo File Beginning 27
3.2 Texinfo File Header i 28
3.2.1 The First Line of a Texinfo File......................... 29

3.2.2 Start of Header............ ... i, 29

3.2.3 @setfilename: Set the output file name................. 29

3.2.4 @settitle: Set the document title...................... 30

3.25 EndofHeader.......... 31

3.3 Document Permissions. 31
3.3.1 @copying: Declare Copying Permissions................. 31

3.3.2 @insertcopying: Include Permissions Text.............. 32

3.4 Title and Copyright Pages 32

341 Qtitlepageo 33

3.4.2 @titlefont, Gcenter,and @sSp ..., 33
3.4.3 @title, @subtitle, and @author 34
3.4.4 Copyright Page.......... o 35
3.4.5 Heading Generation................ ... 36
3.4.6 The Gheadings Command.............................. 36
3.5 Generating a Table of Contents.............................. 37
3.6 The ‘Top’ Node and Master Menu........................... 38
3.6.1 Top Node Example i, 39
3.6.2 Parts of a Master Menu................................ 39
3.7 Global Document Commands 40
3.7.1 @documentdescription: Summary Text................. 40
3.7.2 @setchapternewpage:............couuunmeeiuuneeennnnan. 40
3.7.3 G@paragraphindent: Paragraph Indenting................ 41
3.7.4 @firstparagraphindent: Indenting After Headings...... 42
3.7.5 Qexampleindent: Environment Indenting................ 42
3.8 Software Copying Permissions 43
Ending a Texinfo File..................... 44
4.1 Printing Indices and Menus 44
4.2 @bye File Ending..............o 45
Chapter Structuring 46
5.1 Tree Structure of Sections................ 46
5.2 Structuring Command Types.......... 46
0.3 OLOD . 47
D4 QChapter 47
5.5 Qunnumbered and @appendiX...............iiiiiaaii.. 48
5.6 G@majorheading, @chapheading.............................. 48
D7 @SECEIOM . ..ottt 48
5.8 Ounnumberedsec, Qappendixsec, Gheading 49
5.9 The @subsection Command 49
5.10 The @subsection-like Commands 49
5.11 The ‘subsub’ Commands. 50
5.12 @raisesections and @lowersections...................... 50
Nodes....oooviiiiiiiiiiiiiiiiiiiiiiennnn. 52
6.1 Two Paths...... 52
6.2 Node and Menu Hlustration............ 52
6.3 The @node Command.............. ..., 54
6.3.1 Choosing Node and Pointer Names...................... 54
6.3.2 How to Write an @node Line............................ 55
6.3.3 @node Line Tips.........ooiiiii i 55
6.3.4 @node Line Requirements............................... 56
6.3.5 The First Node....... 56
6.3.6 The @top Sectioning Command 57
6.4 Creating Pointers with makeinfo o7

6.5 @anchor: Defining Arbitrary Cross-reference Targets.......... 58

iii

T Menuscoviiiiiiiineeinneneeennnnns 59
7.1 Menu Location........ 59
7.2 Writinga Menu........... 59
7.3 ThePartsofaMenu 60
7.4 Less Cluttered Menu Entry 60
7.5 A MenuExample 60
7.6 Referring to Other Info Files................................ 61

Cross References 63
8.1 What References Are For 63
8.2 Different Cross Reference Commands 63
8.3 Parts of a Cross Reference 64
. ORIl ..o 65

8.4.1 What a Reference Looks Like and Requires.............. 65
8.4.2 @xref with One Argument 65
8.4.3 @xref with Two Arguments 66
8.4.4 @xref with Three Arguments........................... 66
8.4.5 @xref with Four and Five Arguments 67
8.5 Naming a ‘Top” Node..........ooviiiiii ... 69
8.0 Oref ... 69
8.7 @pxref ... 70
8.8 @inforef 71
8.9 Qurl, Guref{url[, text][, replacement]} 71
Marking Words and Phrases............... 73
9.1 Indicating Definitions, Commands, etc. 73
9.1.1 Highlighting Commands are Useful...................... 73
9.1.2 @code{sample-code} 74
9.1.3 @kbd{keyboard-characters}c.ccuioon... 75
9.1.4 @key{key-namel}........ 76
9.1.5 @samp{text}.o 76
9.1.6 @verb{<char>text<char>} 77
9.1.7 @var{metasyntactic-variable}................. 7
9.1.8 @env{environment-variable} 78
9.1.9 efile{file-name}00, 78
9.1.10 @command{command-name>} 79
9.1.11 @option{option-name} 79
9.1.12 @dfn{term} 79
9.1.13 Qcite{reference} 79
9.1.14 @acronym{acronym|, meaning|}........................ 80
9.1.15 @indicateurl{uniform-resource-locator}............... 80
9.1.16 @email{email-address|, displayed-text|} 80
9.2 Emphasizing Text 81
9.2.1 @emph{text} and @strong{text} 81
9.2.2 @sc{text}: The Small Caps Font........................ 81

9.2.3 Fonts for Printing, Not Info 82

v

10 Quotations and Examples................ 83

10.1 Block Enclosing Commands................................ 83
10.2 @quotation: Block quotations 84
10.3 @example: Example Text 84
10.4 @verbatim: Literal Text 85
10.5 @verbatiminclude file: Include a File Verbatim............. 86
10.6 @lisp: Marking a Lisp Example............................ 86
10.7 @small... Block Commands............................... 87
10.8 @display and @smalldisplay.............ccoeveeeeeennnnnn. 87
10.9 @format and @smallformat.................oviuneennao... 87
10.10 @exdent: Undoing a Line’s Indentation 88
10.11 @flushleft and @flushright 88
10.12 @noindent: Omitting Indentation 89
10.13 @indent: Forcing Indentation.......................... ... 90
10.14 @cartouche: Rounded Rectangles Around Examples........ 90
11 Listsand Tables......................... 91
11.1 Introducing Lists.............. i 91
11.2 @itemize: Making an Itemized List 92
11.3 @enumerate: Making a Numbered or Lettered List........... 93
11.4 Making a Two-column Table............................... 94
11.4.1 Using the @table Command........................... 95
11.4.2 @ftable and @vtable............ootniiiinnneennnnan.. 96
1143 @IitemX ..ot 96
11.5 G@multitable: Multi-column Tables......................... 96
11.5.1 Multitable Column Widths 97
11.5.2 Multitable Rows 97
12 Special Displays 99
12,1 Floats 99
12.1.1 @float [type|[,Jabel]: Floating material................. 99
12.1.2 G@caption & @shortcaption................c.ovu..... 100
12.1.3 @listoffloats: Tables of contents for floats........... 100
12.2 Imserting Images i 101
12.2.1 Image Syntaxcoeriee e 101
12.2.2 TImage Scaling ..., 102
12.3 Footnotes.o 103
12.3.1 Footnote Commands........... ..., 103
12.3.2 Footnote Styles......... ... i 103
13 Indices........cciiiiiiiiiiiinnnnn. 105
13.1 Making Index Entries.......... 105
13.2 Predefined Indices.......... ... 105
13.3 Defining the Entries of an Index........................... 106
13.4 Combining Indices i 107
13.4.1 @syncodeindex............. i 107
13.4.2 @synindeX.............iiiiiiiii 108

13.5 Defining New Indices........... 108

14 Special Insertions....................... 110

14.1 Imserting @ and {}and ,........ 110
14.1.1 Inserting ‘@ with @@............. 110
14.1.2 Inserting ‘{’ and ‘}’ with@{ and @} 110
14.1.3 Inserting ¢, with @comma{}............ 110

14.2 Inserting SPaceoouriin e 111
14.2.1 Not Ending a Sentence............................... 111
14.2.2 Ending a Sentence.............. 111
14.2.3 Multiple Spacescovviiiii 112
14.2.4 @dmn{dimension}: Format a Dimension................ 112

14.3 Inserting Accents............uireiiiii 113

14.4 Inserting Ellipsis and Bullets.............................. 114
14.4.1 @dots{} (...) and @enddots{} (...) 114
14.4.2 @bullet{} (®).....coouuuiiiii .. 114

14.5 Inserting TEX and Legal Symbols: (0, ® 114
14.5.1 @TeX{} (TEX) and @LaTeX{} (LTREX)v.... 114
14.5.2 @copyright{} (©) ..« e o 114
14.5.3 Qregisteredsymbol{} (®) 115

14.6 @pounds{} (£): Pounds Sterling 115

14.7 @minus{} (—): Inserting a Minus Sign 115

14.8 ©@math: Inserting Mathematical Expressions 115

14.9 Glyphs for Examples 116
14.9.1 Glyphs Summary 116
14.9.2 @result{} (=): Indicating Evaluation 116
14.9.3 @expansion{} (—): Indicating an Expansion.......... 116
14.9.4 @print{} (H): Indicating Printed Output............. 117
14.9.5 @error{} ([error]): Indicating an Error Message 117
14.9.6 Q@equiv{} (=): Indicating Equivalence 118
14.9.7 @point{} (x): Indicating Point in a Buffer............. 118

15 Forcing and Preventing Breaks.......... 120

15.1 Break Commandsiiiiiiii .. 120

15.2 @* and @/: Generate and Allow Line Breaks................ 120

15.3 @- and @hyphenation: Helping TEX Hyphenate............ 121

15.4 @w{text}: Prevent Line Breaks............................ 121

15.5 @tie{}: Inserting an Unbreakable Space................... 122

15.6 @sp n: Insert Blank Lines.......... 122

15.7 @page: Start aNew Page 122

15.8 @group: Prevent Page Breaks 122

15.9 G@need mils: Prevent Page Breaks......................... 123

16 Definition Commands................... 124
16.1 The Template for a Definition............................. 124
16.2 Definition Command Continuation Lines................... 125
16.3 Optional and Repeated Arguments 126
16.4 Two or More ‘First’ Lines................................. 126
16.5 The Definition Commands 127

16.5.1 Functions and Similar Entities........................ 127
16.5.2 Variables and Similar Entities 128
16.5.3 Functions in Typed Languages........................ 129
16.5.4 Variables in Typed Languages 130
16.5.5 Data Typescovuii 131
16.5.6 Object-Oriented Programming........................ 132
16.5.6.1 Object-Oriented Variables 132
16.5.6.2 Object-Oriented Methods........................ 133

16.6 Conventions for Writing Definitions........................ 134
16.7 A Sample Function Definition............................. 135

17 Conditionally Visible Text 137
17.1 Conditional Commands................ 137
17.2 Conditional Not Commands............................... 138
17.3 Raw Formatter Commands 138
17.4 @set, @clear,and @valueovrrrerennnnnnn.. 139

1741 @setand @ualueviierinennnennnnnn.. 140
17.4.2 @ifset and @ifclear..............coviiiieinnnnn. . 141
17.4.3 @value Example............. 142
17.5 Conditional Nesting i, 143

18 Internationalization..................... 144
18.1 @documentlanguage cc: Set the Document Language....... 144
18.2 @documentencoding enc: Set Input Encoding.............. 145

19 Defining New Texinfo Commands........ 147
19.1 Defining Macros. ..o 147
19.2 Invoking Macrosoouimiiii i 148
19.3 Macro Details. ... 149
19.4 ‘@alias new=existing’iiiiiiiiiiiiiiii. 150

19.5 ‘definfoenclose’: Customized Highlighting 150

vii

20 Formatting and Printing Hardcopy 152
20.1 Use TREX . oo 152
20.2 Format with tex and texindex 152
20.3 Format with texi2dvi 154
20.4 Shell Print Using 1pr -d............... 154
20.5 From an Emacs Shell 155
20.6 Formatting and Printing in Texinfo Mode 155
20.7 Using the Local Variables List............................. 157
20.8 TgX Formatting Requirements Summary 157
20.9 Preparing for TEX 158
20.10 Overfull “hboxes” 159
20.11 Printing “Small” Books............ 160
20.12 Printing on Ad Paper............... i 160
20.13 @pagesizes [width]|[, height]: Custom Page Sizes.......... 160
20.14 Cropmarks and Magnification............................ 161
20.15 PDF Output...... ... 162
20.16 How to Obtain TRX ... 162

21 Creating and Installing Info Files........ 163
21.1 Creatingan Info File......., 163

21.1.1 makeinfo Preferred................ 163
21.1.2 Running makeinfo from a Shell....................... 163
21.1.3 Options for makeinfo................ 163
21.1.4 Pointer Validation 167
21.1.5 Running makeinfo Within Emacs..................... 168
21.1.6 The texinfo-format... Commands.................. 169
21.1.7 Batch Formatting............, 170
21.1.8 Tag Files and Split Files 170
21.2 Installing an Info File 171
21.2.1 The Directory File ‘dir’............... 171
21.2.2 Listinga New Info File................ 172
21.2.3 Info Files in Other Directories 172
21.2.4 Installing Info Directory Files......................... 174
21.2.5 Invoking install-info..............ciiiinaa.. 175

22 Generating HTML...................... 177
22.1 HTML Translation, 177
22.2 HTML Splitting. 177
22.3 HTML CSS .. 178
22.4 HTML Cross-references..............coiiiiiiiniin.. 179

22.4.1 HTML Cross-reference Link Basics.................... 179
22.4.2 HTML Cross-reference Node Name Expansion 180
22.4.3 HTML Cross-reference Command Expansion........... 181
22.4.4 HTML Cross-reference 8-bit Character Expansion. 182

22.4.5 HTML Cross-reference Mismatch 183

viii

Appendix A @-Command List............. 184
A1l @-Command Syntaxc..oiieeerieiiiinnnnae... 203
Appendix B Tipsand Hints 204
Appendix C Sample Texinfo Files.......... 209
C.1 Short Sample. ... 209
C.2 GNU Sample Textsot 210
C.3 Verbatim Copying License.................. ..., 213
C.4 All-permissive Copying License 214
Appendix D Include Files 215
D.1 How to Use Include Files.......... 215
D.2 texinfo-multiple-files-update......................... 215
D.3 Include Files Requirements 216
D.4 Sample File with @include............. 217
D.5 Evolution of Include Files 217
Appendix E Page Headings................ 219
E.1 Headings Introduced 219
E.2 Standard Heading Formats 219
E.3 Specifying the Type of Heading 220
E.4 How to Make Your Own Headings.......................... 221
Appendix F Formatting Mistakes.......... 223
F.1 makeinfo Find Errors............ 223
F.2 Catching Errors with Info Formatting 223
F.3 Catching Errors with TEX Formatting...................... 224
F.4 Using texinfo-show-structure........................... 226
Fb Using ocCur....ovii e 227
F.6 Finding Badly Referenced Nodes........................... 227
F.6.1 Running Info-validate...................vooun. .. 228
F.6.2 Creating an Unsplit File 228
F.6.3 Tagifyinga File....... 229
F.6.4 Splitting a File Manually.............................. 229
Appendix G Copying This Manual 230
G.1 GNU Free Documentation License 230
G.1.1 ADDENDUM: How to use this License for your documents
... 236
Command and Variable Index 237

ix

Documentation is like sex: when it is good, it is very, very good; and when it
is bad, it is better than nothing. —Dick Brandon

Texinfo Copying Conditions

The programs currently being distributed that relate to Texinfo include makeinfo, info,
texindex, and ‘texinfo.tex’. These programs are free; this means that everyone is free to
use them and free to redistribute them on a free basis. The Texinfo-related programs are not
in the public domain; they are copyrighted and there are restrictions on their distribution,
but these restrictions are designed to permit everything that a good cooperating citizen
would want to do. What is not allowed is to try to prevent others from further sharing any
version of these programs that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to Texinfo, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and
that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone
else of these rights. For example, if you distribute copies of the Texinfo related programs,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for the programs that relate to Texinfo. If these programs are modified
by someone else and passed on, we want their recipients to know that what they have is
not what we distributed, so that any problems introduced by others will not reflect on our
reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to Texinfo are found in the General Public Licenses that accompany them. This
manual specifically is covered by the GNU Free Documentation License (see Section G.1
[GNU Free Documentation License], page 230).

Chapter 1: Overview of Texinfo 3

1 Overview of Texinfo

Texinfo' is a documentation system that uses a single source file to produce both online
information and printed output. This means that instead of writing two different documents,
one for the online information and the other for a printed work, you need write only one
document. Therefore, when the work is revised, you need revise only that one document.

1.1 Reporting Bugs

We welcome bug reports and suggestions for any aspect of the Texinfo system, programs,
documentation, installation, anything. Please email them to bug-texinfo@gnu.org. You
can get the latest version of Texinfo from ftp://ftp.gnu.org/gnu/texinfo/ and its mir-
rors worldwide.

For bug reports, please include enough information for the maintainers to reproduce
the problem. Generally speaking, that means:

e the version number of Texinfo and the program(s) or manual(s) involved.

e hardware and operating system names and versions.

e the contents of any input files necessary to reproduce the bug.

e a description of the problem and samples of any erroneous output.

e any unusual options you gave to configure.

e anything else that you think would be helpful.

When in doubt whether something is needed or not, include it. It’s better to include

too much than to leave out something important.

Patches are most welcome; if possible, please make them with ‘diff -c’ (see section
“Overview” in Comparing and Merging Files) and include ‘ChangeLog’ entries (see section
“Change Log” in The GNU Emacs Manual).

When sending patches, if possible please do not encode or split them in any way; it’s
much easier to deal with one plain text message, however large, than many small ones.
GNU shar is a convenient way of packaging multiple and/or binary files for email.

1.2 Using Texinfo

Using Texinfo, you can create a printed document (via the TEX typesetting system) the
normal features of a book, including chapters, sections, cross references, and indices. From
the same Texinfo source file, you can create an Info file with special features to make
documentation browsing easy. You can also create from that same source file an HTML
output file suitable for use with a web browser, or an XML file. See the next section (see
Section 1.3 [Output Formats|, page 4) for details and the exact commands to generate
output from the source.

L The first syllable of “Texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation is derived
from, but is not the same as, the pronunciation of TEX. In the word TEX, the ‘X’ is actually the Greek
letter “chi” rather than the English letter “ex”. Pronounce TEX as if the ‘X’ were the last sound in the
name ‘Bach’; but pronounce Texinfo as if the ‘x” were a ‘k’. Spell “Texinfo” with a capital “T” and
the other letters in lower case.

mailto:bug-texinfo@gnu.org
ftp://ftp.gnu.org/gnu/texinfo/
ftp://ftp.gnu.org/gnu/sharutils/

Chapter 1: Overview of Texinfo 4

TEX works with virtually all printers; Info works with virtually all computer terminals;
the HTML output works with virtually all web browsers. Thus Texinfo can be used by
almost any computer user.

A Texinfo source file is a plain AscCII file containing text interspersed with @-commands
(words preceded by an ‘@) that tell the typesetting and formatting programs what to do.
You can edit a Texinfo file with any text editor, but it is especially convenient to use GNU
Emacs since that editor has a special mode, called Texinfo mode, that provides various
Texinfo-related features. (See Chapter 2 [Texinfo Mode], page 15.)

You can use Texinfo to create both online help and printed manuals; moreover, Texinfo
is freely redistributable. For these reasons, Texinfo is the official documentation format of
the GNU project. More information is available at the GNU documentation web page.

1.3 Output Formats

Here is a brief overview of the output formats currently supported by Texinfo.

Info (Generated via makeinfo.) This format is essentially a plain text transliteration
of the Texinfo source. It adds a few control characters to separate nodes and
provide navigational information for menus, cross-references, indices, and so on.
See the next section (see Section 1.4 [Info Files|, page 5) for more details on
this format. The Emacs Info subsystem (see section “Getting Started” in Info),
and the standalone info program (see section “Info Standalone” in GNU Info),
among others, can read these files. See Chapter 21 [Creating and Installing Info
Files|, page 163.

Plain text (Generated via makeinfo --no-headers.) This is almost the same as Info
output, except the navigational control characters are omitted.

HTML (Generated via makeinfo --html.) This is the Hyper Text Markup Language
that has become the most commonly used language for writing documents on
the World Wide Web. Web browsers, such as Mozilla, Lynx, and Emacs-W3,
can render this language online. There are many versions of HI'ML; makeinfo
tries to use a subset of the language that can be interpreted by any common
browser. For details of the HTML language and much related information, see
http://www.w3.org/MarkUp/. See Chapter 22 [Generating HTML], page 177.

DVI (Generated via texi2dvi.) This DeVice Independent binary format is output

by the TEX typesetting program (http://tug.org). This is then read
by a DVI ‘driver’, which writes the actual device-specific commands that
can be viewed or printed, notably Dvips for translation to PostScript (see
section “Invoking Dvips” in Dvips) and Xdvi for viewing on an X display
(http://sourceforge.net/projects/xdvi/). See Chapter 20 [Hardcopy],
page 152.
Be aware that the Texinfo language is very different from and much stricter
than TEX’s usual languages, plain TEX and ITEX. For more information on
TEX in general, please see the book TEX for the Impatient, available from
http://savannah.gnu.org/projects/teximpatient.

PDF (Generated via texi2dvi --pdf.) This format, based on PostScript, was
developed by Adobe Systems for document interchange. It is intended to be

http://www.gnu.org/doc/
http://www.w3.org/MarkUp/
http://tug.org
http://sourceforge.net/projects/xdvi/
http://savannah.gnu.org/projects/teximpatient

Chapter 1: Overview of Texinfo 5

platform-independent and easily viewable, among other design goals; for a dis-
cussion, see http://tug.org/tugboat/Articles/tb22-3/tb72beebel.pdf.
Texinfo uses the pdftex program, a variant of TEX, to output pdf; see
http://tug.org/applications/pdftex. See Section 20.15 [PDF Output],
page 162.

XML (Generated via makeinfo --xml.) XML is a generic syntax specification us-
able for any sort of content (see, for example, http://www.w3.org/XML/). The
makeinfo xml output, unlike all the formats above, interprets very little of the
Texinfo source. Rather, it merely translates the Texinfo markup commands
into XML syntax, for processing by further XML tools. The particular syn-
tax output is defined in the file ‘texinfo.dtd’ included in the Texinfo source
distribution.

Docbook (Generated via makeinfo --docbook.) This is an XML-based format
developed some years ago, primarily for technical documentation. It
therefore bears some resemblance, in broad outlines, to Texinfo. See
http://wuw.docbook.org. If you want to convert from Docbook to Texinfo,
please see http://docbook2X.sourceforge.net.

From time to time, proposals are made to generate traditional Unix man pages from
Texinfo source. However, because man pages have a very strict conventional format, gen-
erating a good man page requires a completely different source than the typical Texinfo
applications of writing a good user tutorial and/or a good reference manual. This makes
generating man pages incompatible with the Texinfo design goal of not having to document
the same information in different ways for different output formats. You might as well just
write the man page directly.

Man pages still have their place, and if you wish to support them, you may find the
program help2man to be useful; it generates a traditional man page from the ‘--help’
output of a program. In fact, this is currently used to generate man pages for the programs
in the Texinfo distribution. It is GNU software written by Brendan O’Dea, available from
ftp://ftp.gnu.org/gnu/help2man/.

If you are a programmer and would like to contribute to the GNU project by imple-
menting additional output formats for Texinfo, that would be excellent. But please do not
write a separate translator texi2foo for your favorite format foo! That is the hard way to
do the job, and makes extra work in subsequent maintenance, since the Texinfo language is
continually being enhanced and updated. Instead, the best approach is modify makeinfo
to generate the new format.

1.4 Info Files

An Info file is a Texinfo file formatted so that the Info documentation reading program can
operate on it. (makeinfo and texinfo-format-buffer are two commands that convert a
Texinfo file into an Info file.)

Info files are divided into pieces called nodes, each of which contains the discussion of
one topic. Each node has a name, and contains both text for the user to read and pointers
to other nodes, which are identified by their names. The Info program displays one node
at a time, and provides commands with which the user can move to other related nodes.

http://tug.org/tugboat/Articles/tb22-3/tb72beebeI.pdf
http://tug.org/applications/pdftex
http://www.w3.org/XML/
http://www.docbook.org
http://docbook2X.sourceforge.net
ftp://ftp.gnu.org/gnu/help2man/

Chapter 1: Overview of Texinfo 6

See section “Top” in GNU Info, for more information about using Info.

Each node of an Info file may have any number of child nodes that describe subtopics
of the node’s topic. The names of child nodes are listed in a menu within the parent node;
this allows you to use certain Info commands to move to one of the child nodes. Generally,
an Info file is organized like a book. If a node is at the logical level of a chapter, its child
nodes are at the level of sections; likewise, the child nodes of sections are at the level of
subsections.

All the children of any one parent are linked together in a bidirectional chain of ‘Next’
and ‘Previous’ pointers. The ‘Next’ pointer provides a link to the next section, and the
‘Previous’ pointer provides a link to the previous section. This means that all the nodes
that are at the level of sections within a chapter are linked together. Normally the order in
this chain is the same as the order of the children in the parent’s menu. Each child node
records the parent node name as its ‘Up’ pointer. The last child has no ‘Next’ pointer, and
the first child has the parent both as its ‘Previous’ and as its ‘Up’ pointer.?

The book-like structuring of an Info file into nodes that correspond to chapters, sections,
and the like is a matter of convention, not a requirement. The ‘Up’, ‘Previous’, and ‘Next’
pointers of a node can point to any other nodes, and a menu can contain any other nodes.
Thus, the node structure can be any directed graph. But it is usually more comprehensible
to follow a structure that corresponds to the structure of chapters and sections in a printed
book or report.

In addition to menus and to ‘Next’, ‘Previous’, and ‘Up’ pointers, Info provides pointers
of another kind, called references, that can be sprinkled throughout the text. This is usually
the best way to represent links that do not fit a hierarchical structure.

Usually, you will design a document so that its nodes match the structure of chapters
and sections in the printed output. But occasionally there are times when this is not right
for the material being discussed. Therefore, Texinfo uses separate commands to specify the
node structure for the Info file and the section structure for the printed output.

Generally, you enter an Info file through a node that by convention is named ‘Top’.
This node normally contains just a brief summary of the file’s purpose, and a large menu
through which the rest of the file is reached. From this node, you can either traverse the
file systematically by going from node to node, or you can go to a specific node listed in
the main menu, or you can search the index menus and then go directly to the node that
has the information you want. Alternatively, with the standalone Info program, you can
specify specific menu items on the command line (see section “Top” in Info).

If you want to read through an Info file in sequence, as if it were a printed manual,
you can hit repeatedly, or you get the whole file with the advanced Info command g
*. (See Info file ‘info’, node ‘Advanced’.)

The ‘dir’ file in the ‘info’ directory serves as the departure point for the whole Info
system. From it, you can reach the ‘Top’ nodes of each of the documents in a complete Info
system.

If you wish to refer to an Info file in a URI, you can use the (unofficial) syntax exem-
plified in the following. This works with Emacs/W3, for example:

2 In some documents, the first child has no ‘Previous’ pointer. Occasionally, the last child has the node
name of the next following higher level node as its ‘Next’ pointer.

Chapter 1: Overview of Texinfo 7

info:///usr/info/emacs#Dissociated’%20Press
info:emacs#Dissociated’,20Press
info://localhost/usr/info/emacs#Dissociated%20Press

The info program itself does not follow URI’s of any kind.

1.5 Printed Books

A Texinfo file can be formatted and typeset as a printed book or manual. To do this, you
need TEX, a powerful, sophisticated typesetting program written by Donald Knuth.?

A Texinfo-based book is similar to any other typeset, printed work: it can have a
title page, copyright page, table of contents, and preface, as well as chapters, numbered or
unnumbered sections and subsections, page headers, cross references, footnotes, and indices.

You can use Texinfo to write a book without ever having the intention of converting it
into online information. You can use Texinfo for writing a printed novel, and even to write
a printed memo, although this latter application is not recommended since electronic mail
is so much easier.

TEX is a general purpose typesetting program. Texinfo provides a file ‘texinfo.tex’
that contains information (definitions or macros) that TEX uses when it typesets a Texinfo
file. (‘texinfo.tex’ tells TEX how to convert the Texinfo @-commands to TEX commands,
which TEX can then process to create the typeset document.) ‘texinfo.tex’ contains the
specifications for printing a document. You can get the latest version of ‘texinfo.tex’
from ftp://ftp.gnu.org/gnu/texinfo/texinfo.tex.

In the United States, documents are most often printed on 8.5 inch by 11 inch pages
(216 mm by 280 mm); this is the default size. But you can also print for 7 inch by 9.25 inch
pages (178 mm by 235 mm, the @smallbook size; or on A4 or A5 size paper (@afourpaper,
@afivepaper). (See Section 20.11 [Printing “Small” Books|, page 160. Also, see Sec-
tion 20.12 [Printing on A4 Paper], page 160.)

By changing the parameters in ‘texinfo.tex’, you can change the size of the printed
document. In addition, you can change the style in which the printed document is formatted;
for example, you can change the sizes and fonts used, the amount of indentation for each
paragraph, the degree to which words are hyphenated, and the like. By changing the
specifications, you can make a book look dignified, old and serious, or light-hearted, young
and cheery.

TEX is freely distributable. It is written in a superset of Pascal called WEB and can
be compiled either in Pascal or (by using a conversion program that comes with the TEX
distribution) in C. (See section “TEX Mode” in The GNU Emacs Manual, for information

about TEX.)

TEX is very powerful and has a great many features. Because a Texinfo file must be
able to present information both on a character-only terminal in Info form and in a typeset
book, the formatting commands that Texinfo supports are necessarily limited.

To get a copy of TEX, see Section 20.16 [How to Obtain TgX]|, page 162.

3 You can also use the texi2roff program if you do not have TEX; since Texinfo is designed for use with
TEX, texi2roff is not described here. texi2roff is not part of the standard GNU distribution and is
not maintained or up-to-date with all the Texinfo features described in this manual.

ftp://ftp.gnu.org/gnu/texinfo/texinfo.tex
ftp://tug.org/texi2roff.tar.gz

Chapter 1: Overview of Texinfo 8

1.6 @-commands

In a Texinfo file, the commands that tell TEX how to typeset the printed manual and
tell makeinfo and texinfo-format-buffer how to create an Info file are preceded by ‘@’;
they are called @-commands. For example, @node is the command to indicate a node and
@chapter is the command to indicate the start of a chapter.

Note: Almost all @ command names are entirely lower case.

The Texinfo @-commands are a strictly limited set of constructs. The strict limits make
it possible for Texinfo files to be understood both by TEX and by the code that converts
them into Info files. You can display Info files on any terminal that displays alphabetic
and numeric characters. Similarly, you can print the output generated by TEX on a wide
variety of printers.

Depending on what they do or what arguments® they take, you need to write @-
commands on lines of their own or as part of sentences:

e Write a command such as @quotation at the beginning of a line as the only text on
the line. (@quotation begins an indented environment.)

e Write a command such as @chapter at the beginning of a line followed by the com-
mand’s arguments, in this case the chapter title, on the rest of the line. (@chapter
creates chapter titles.)

e Write a command such as @dots{} wherever you wish but usually within a sentence.
(@dots{} creates dots .. .)

e Write a command such as @code{sample-code} wherever you wish (but usually within
a sentence) with its argument, sample-code in this example, between the braces. (@code
marks text as being code.)

e Write a command such as @example on a line of its own; write the body-text on
following lines; and write the matching @end command, @end example in this case, on
a line of its own after the body-text. (@example ... @end example indents and typesets
body-text as an example.) It’s usually ok to indent environment commands like this,
but in complicated and hard-to-define circumstances the extra spaces cause extra space
to appear in the output, so beware.

As a general rule, a command requires braces if it mingles among other text; but it does
not need braces if it starts a line of its own. The non-alphabetic commands, such as @:, are
exceptions to the rule; they do not need braces.

As you gain experience with Texinfo, you will rapidly learn how to write the different
commands: the different ways to write commands actually make it easier to write and
read Texinfo files than if all commands followed exactly the same syntax. See Section A.1
[-Command Syntax]|, page 203, for all the details.

4 The word argument comes from the way it is used in mathematics and does not refer to a dispute
between two people; it refers to the information presented to the command. According to the Oxford
English Dictionary, the word derives from the Latin for to make clear, prove; thus it came to mean
‘the evidence offered as proof’, which is to say, ‘the information offered’, which led to its mathematical
meaning. In its other thread of derivation, the word came to mean ‘to assert in a manner against which
others may make counter assertions’, which led to the meaning of ‘argument’ as a dispute.

Chapter 1: Overview of Texinfo 9

1.7 General Syntactic Conventions

This section describes the general conventions used in all Texinfo documents.

e All printable Ascii characters except ‘@, ‘{’ and ‘}’ can appear in a Texinfo file and
stand for themselves. ‘@’ is the escape character which introduces commands, while
‘{’ and ‘}’ are used to surround arguments to certain commands. To put one of these
special characters into the document, put an ‘@ character in front of it, like this: ‘@@,
‘e{’, and ‘@}’.

e Separate paragraphs with one or more blank lines. Currently Texinfo only recognizes
newline characters as end of line, not the CRLF sequence used on some systems; so a
blank line means exactly two consecutive newlines. Sometimes blank lines are useful
or convenient in other cases as well; you can use the @noindent to inhibit paragraph
indentation if required (see Section 10.12 [@noindent], page 89).

e Use doubled single-quote characters to begin and end quotations: ¢ ¢...°?. TEX con-
verts two single quotes to left- and right-hand doubled quotation marks, “like this”,
and Info converts doubled single-quote characters to ASCIl double-quotes: ¢‘...7°
becomes "...".

You may occasionally need to produce two consecutive single quotes; for example, in
documenting a computer language such as Maxima where ’’ is a valid command. You
can do this with the input >@w{}’; the empty @w command stops the combination into
the double-quote characters.

The left quote character (¢, ASCII code 96) used in Texinfo is a grave accent in ANSI
and ISO character set standards. We use it as a quote character because that is how
TEX is set up, by default. We hope to eventually support the various quotation
characters in Unicode.

e Use three hyphens in a row, ‘===", to produce a long dash—Tlike this (called an em dash),
used for punctuation in sentences. Use two hyphens, ‘-=’, to produce a medium dash—
like this (called an en dash), used to separate numeric ranges. Use a single hyphen, ‘-,
to produce a standard hyphen used in compound words. For display on the screen, Info
reduces three hyphens to two and two hyphens to one (not transitively!). Of course,
any number of hyphens in the source remain as they are in literal contexts, such as

@code and @example.

e Caution: Last and most important, do not use tab characters in a Texinfo file (except
in verbatim modes)! TEX uses variable-width fonts, which means that it is impractical
at best to define a tab to work in all circumstances. Consequently, TEX treats tabs like
single spaces, and that is not what they look like in the source. Furthermore, makeinfo
does nothing special with tabs, and thus a tab character in your input file will usually
appear differently in the output.

To avoid this problem, Texinfo mode causes GNU Emacs to insert multiple spaces when
you press the key.

Also, you can run untabify in Emacs to convert tabs in a region to multiple spaces,
or use the unexpand command from the shell.

Chapter 1: Overview of Texinfo 10

1.8 Comments

You can write comments in a Texinfo file that will not appear in either the Info file or the
printed manual by using the @comment command (which may be abbreviated to @c). Such
comments are for the person who revises the Texinfo file. All the text on a line that follows
either @comment or @c is a comment; the rest of the line does not appear in either the Info
file or the printed manual.

Often, you can write the @comment or @c in the middle of a line, and only the text that
follows after the @comment or @c command does not appear; but some commands, such as
@settitle and @setfilename, work on a whole line. You cannot use @comment or @c in a
line beginning with such a command.

You can write long stretches of text that will not appear in either the Info file or the
printed manual by using the @ignore and @end ignore commands. Write each of these
commands on a line of its own, starting each command at the beginning of the line. Text
between these two commands does not appear in the processed output. You can use @ignore
and @end ignore for writing comments.

Text enclosed by @ignore or by failing @ifset or @ifclear conditions is ignored in
the sense that it will not contribute to the formatted output. However, TEX and makeinfo
must still parse the ignored text, in order to understand when to stop ignoring text from
the source file; that means that you may still get error messages if you have invalid Texinfo
commands within ignored text.

1.9 What a Texinfo File Must Have

By convention, the namea of a Texinfo file ends with (in order of preference) one of the
extensions ‘.texinfo’, ‘.texi’, ‘.txi’, or ‘.tex’. The longer extensions are preferred since
they describe more clearly to a human reader the nature of the file. The shorter extensions
are for operating systems that cannot handle long file names.
In order to be made into a printed manual and an Info file, a Texinfo file must begin

with lines like this:

\input texinfo

O@setfilename info-file-name

O@settitle name-of-manual
The contents of the file follow this beginning, and then you must end a Texinfo file with a
line like this:

Q@bye
Here’s an explanation:

e The ‘\input texinfo’ line tells TEX to use the ‘texinfo.tex’ file, which tells TEX
how to translate the Texinfo @-commands into TEX typesetting commands. (Note the
use of the backslash, ‘\’; this is correct for TEX.)

e The @setfilename line provides a name for the Info file and tells TEX to open auxiliary
files. All text before @setfilename is ignored!

e The @settitle line specifies a title for the page headers (or footers) of the printed man-
ual, and the default document description for the ‘<head>’ in HTML format. Strictly

speaking, @settitle is optional—if you don’t mind your document being titled ‘Unti-
tled’.

Chapter 1: Overview of Texinfo 11

e The @bye line at the end of the file on a line of its own tells the formatters that the file
is ended and to stop formatting.

Typically, you will not use quite such a spare format, but will include mode setting
and start-of-header and end-of-header lines at the beginning of a Texinfo file, like this:

\input texinfo @c -*-texinfo-*-
Q@c %**start of header
@setfilename info-file-name
@settitle name-of-manual

@c %**end of header

In the first line, ‘-*-texinfo-*-’ causes Emacs to switch into Texinfo mode when you edit
the file.

The @c lines which surround the @setfilename and @settitle lines are optional, but
you need them in order to run TEX or Info on just part of the file. (See Section 3.2.2 [Start
of Header], page 29.)

Furthermore, you will usually provide a Texinfo file with a title page, indices, and the
like, all of which are explained in this manual. But the minimum, which can be useful for
short documents, is just the three lines at the beginning and the one line at the end.

1.10 Six Parts of a Texinfo File

Generally, a Texinfo file contains more than the minimal beginning and end described in
the previous section—it usually contains the six parts listed below. These are described
fully in the following sections.

1. Header The Header names the file, tells TEX which definitions file to use, and other
such housekeeping tasks.

2. Summary and Copyright
The Summary and Copyright segment describes the document and contains
the copyright notice and copying permissions. This is done with the @copying
command.

3. Title and Copyright
The Title and Copyright segment contains the title and copyright pages for the
printed manual. The segment must be enclosed between @titlepage and @end
titlepage commands. The title and copyright page appear only in the printed
manual.

4. ‘Top’ Node and Master Menu
The ‘Top’ node starts off the online output; it does not appear in the printed
manual. We recommend including the copying permissions here as well as the
segments above. And it contains at least a top-level menu listing the chapters,
and possibly a Master Menu listing all the nodes in the entire document.

5. Body The Body of the document is typically structured like a traditional book or
encyclopedia, but it may be free form.

6. End The End segment contains commands for printing indices and generating the
table of contents, and the @bye command on a line of its own.

Chapter 1: Overview of Texinfo 12

1.11 A Short Sample Texinfo File

Here is a very short but complete Texinfo file, in the six conventional parts enumerated
in the previous section, so you can see how Texinfo source appears in practice. The first
three parts of the file, from ‘\input texinfo’ through to ‘@end titlepage’, look more
intimidating than they are: most of the material is standard boilerplate; when writing a
manual, you simply change the names as appropriate.

See Chapter 3 [Beginning a File], page 27, for full documentation on the commands
listed here. See Section C.2 [GNU Sample Texts|, page 210, for the full texts to be used in
GNU manuals.

In the following, the sample text is indented; comments on it are not. The complete
file, without interspersed comments, is shown in Section C.1 [Short Sample Texinfo File],
page 209.

Part 1: Header

The header does not appear in either the Info file or the printed output. It sets various
parameters, including the name of the Info file and the title used in the header.

\input texinfo @c -*-texinfo-*-

@c %**start of header

O@setfilename sample.info

O@settitle Sample Manual 1.0

@c %**end of header

Part 2: Summary Description and Copyright

A real manual includes more text here, according to the license under which it is distributed.
See Section C.2 [GNU Sample Texts], page 210.

Q@copying

This is a short example of a complete Texinfo file, version 1.0.

Copyright @copyright{} 2004 Free Software Foundation, Inc.
Q@end copying

Part 3: Titlepage, Contents, Copyright

The titlepage segment does not appear in the online output, only in the printed manual.
We use the @insertcopying command to include the permission text from the previous
section, instead of writing it out again; it is output on the back of the title page. The
@contents command generates a table of contents.

@titlepage

Otitle Sample Title

@c The following two commands start the copyright page.
Gpage

Ovskip Opt plus 1filll

Q@insertcopying

Q@end titlepage

Chapter 1: Overview of Texinfo 13

Oc Output the table of contents at the beginning.
Q@contents

Part 4: ‘Top’ Node and Master Menu

The ‘Top’ node contains the master menu for the Info file. Since the printed manual uses
a table of contents rather than a menu, it excludes the ‘Top’ node. We also include the
copying text again for the benefit of online readers. Since the copying text begins with a
brief description of the manual, no other text is needed in this case. The ‘@top’ command
itself helps makeinfo determine the relationships between nodes.

@ifnottex
OGnode Top
@top Short Sample

Q@insertcopying
@end ifnottex

Gmenu
* First Chapter:: The first chapter is the

only chapter in this sample.
* Index:: Complete index.

@end menu

Part 5: The Body of the Document

The body segment contains all the text of the document, but not the indices or table of
contents. This example illustrates a node and a chapter containing an enumerated list.

Onode First Chapter
Q@chapter First Chapter

Q@cindex chapter, first

This is the first chapter.
Q@cindex index entry, another

Here is a numbered list.

Q@enumerate
Q@item
This is the first item.

Q@item
This is the second item.
@end enumerate

Part 6: The End of the Document

The end segment contains commands for generating an index in a node and unnumbered
chapter of its own, and the @bye command that marks the end of the document.

Chapter 1: Overview of Texinfo 14

Onode Index
Qunnumbered Index

O@printindex cp
Qbye

Some Results
Here is what the contents of the first chapter of the sample look like:

This is the first chapter.
Here is a numbered list.
1. This is the first item.

2. This is the second item.

1.12 History

Richard M. Stallman invented the Texinfo format, wrote the initial processors, and created
Edition 1.0 of this manual. Robert J. Chassell greatly revised and extended the manual,
starting with Edition 1.1. Brian Fox was responsible for the standalone Texinfo distribution
until version 3.8, and wrote the standalone makeinfo and info programs. Karl Berry has
continued maintenance since Texinfo 3.8 (manual edition 2.22).

Our thanks go out to all who helped improve this work, particularly the indefatigable
Eli Zaretskii and Andreas Schwab, who have provided patches beyond counting. Frangois
Pinard and David D. Zuhn, tirelessly recorded and reported mistakes and obscurities. Zack
Weinberg did the impossible by implementing the macro syntax in ‘texinfo.tex’. Special
thanks go to Melissa Weisshaus for her frequent reviews of nearly similar editions. Dozens
of others have contributed patches and suggestions, they are gratefully acknowledged in the
‘ChangeLog’ file. Our mistakes are our own.

A bit of history: in the 1970’s at CMU, Brian Reid developed a program and format
named Scribe to mark up documents for printing. It used the @ character to introduce
commands, as Texinfo does. Much more consequentially, it strived to describe document
contents rather than formatting, an idea wholeheartedly adopted by Texinfo.

Meanwhile, people at MIT developed another, not too dissimilar format called Bolio.
This then was converted to using TEX as its typesetting language: BoTEX. The earliest
BoTEX version seems to have been 0.02 on October 31, 1984.

BoTEX could only be used as a markup language for documents to be printed, not for
online documents. Richard Stallman (RMS) worked on both Bolio and BoTgX. He also
developed a nifty on-line help format called Info, and then combined BoTEX and Info to
create Texinfo, a mark up language for text that is intended to be read both online and as
printed hard copy.

Chapter 2: Using Texinfo Mode 15

2 Using Texinfo Mode

You may edit a Texinfo file with any text editor you choose. A Texinfo file is no different
from any other Ascil file. However, GNU Emacs comes with a special mode, called Texinfo
mode, that provides Emacs commands and tools to help ease your work.

This chapter describes features of GNU Emacs’ Texinfo mode but not any features of
the Texinfo formatting language. So if you are reading this manual straight through from
the beginning, you may want to skim through this chapter briefly and come back to it after
reading succeeding chapters which describe the Texinfo formatting language in detail.

2.1 Texinfo Mode Overview

Texinfo mode provides special features for working with Texinfo files. You can:
e Insert frequently used @-commands.
e Automatically create @node lines.
e Show the structure of a Texinfo source file.
e Automatically create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node.
e Automatically create or update menus.
e Automatically create a master menu.
e Format a part or all of a file for Info.

e Typeset and print part or all of a file.

Perhaps the two most helpful features are those for inserting frequently used
@-commands and for creating node pointers and menus.

2.2 The Usual GNU Emacs Editing Commands

In most cases, the usual Text mode commands work the same in Texinfo mode as they
do in Text mode. Texinfo mode adds new editing commands and tools to GNU Emacs’
general purpose editing features. The major difference concerns filling. In Texinfo mode,
the paragraph separation variable and syntax table are redefined so that Texinfo commands
that should be on lines of their own are not inadvertently included in paragraphs. Thus, the
M-q (fill-paragraph) command will refill a paragraph but not mix an indexing command
on a line adjacent to it into the paragraph.

In addition, Texinfo mode sets the page-delimiter variable to the value of texinfo-
chapter-level-regexp; by default, this is a regular expression matching the commands for
chapters and their equivalents, such as appendices. With this value for the page delimiter,
you can jump from chapter title to chapter title with the C-x] (forward-page) and C-x
[(backward-page) commands and narrow to a chapter with the C-x p (narrow-to-page)
command. (See section “Pages” in The GNU Emacs Manual, for details about the page
commands.)

You may name a Texinfo file however you wish, but the convention is to end a Texinfo
file name with one of the extensions ‘.texinfo’, ‘.texi’, ‘.txi’, or ‘.tex’. A longer exten-
sion is preferred, since it is explicit, but a shorter extension may be necessary for operating
systems that limit the length of file names. GNU Emacs automatically enters Texinfo mode
when you visit a file with a ‘.texinfo’, ‘.texi’ or ‘.txi’ extension. Also, Emacs switches

Chapter 2: Using Texinfo Mode 16

to Texinfo mode when you visit a file that has ‘~*-texinfo-*-"in its first line. If ever you
are in another mode and wish to switch to Texinfo mode, type M-x texinfo-mode.

Like all other Emacs features, you can customize or enhance Texinfo mode as you wish.
In particular, the keybindings are very easy to change. The keybindings described here are
the default or standard ones.

2.3 Inserting Frequently Used Commands

Texinfo mode provides commands to insert various frequently used @-commands into the
buffer. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the
@-command:

C-cC-cc
M-x texinfo-insert-Qcode
Insert @code{} and put the cursor between the braces.

C-c C-cd
M-x texinfo-insert-Q@dfn
Insert @dfn{} and put the cursor between the braces.

C-cC-ce

M-x texinfo-insert—-Qend
Insert @end and attempt to insert the correct following word, such as ‘example’
or ‘table’. (This command does not handle nested lists correctly, but inserts
the word appropriate to the immediately preceding list.)

C-cC-c1i
M-x texinfo-insert-Qitem
Insert @item and put the cursor at the beginning of the next line.

C-c C-ck
M-x texinfo-insert—-Qkbd
Insert @kbd{} and put the cursor between the braces.

C-cC-cn

M-x texinfo-insert—-@node
Insert @node and a comment line listing the sequence for the ‘Next’, ‘Previous’,
and ‘Up’ nodes. Leave point after the @node.

C-cC-co
M-x texinfo-insert—-@noindent
Insert @noindent and put the cursor at the beginning of the next line.

C-cC-cs
M-x texinfo-insert-Qsamp
Insert @samp{} and put the cursor between the braces.

C-cC-ct
M-x texinfo-insert-Qtable
Insert @table followed by a and leave the cursor after the (SPC).

Chapter 2: Using Texinfo Mode 17

C-cC-cv
M-x texinfo-insert-Qvar
Insert @var{} and put the cursor between the braces.

C-c C-c x
M-x texinfo-insert—-Qexample
Insert @example and put the cursor at the beginning of the next line.

C-c C-c{
M-x texinfo-insert-braces
Insert {} and put the cursor between the braces.

C-c C-c }

C-c C-c]

M-x up-list
Move from between a pair of braces forward past the closing brace. Typing
C-c C-c] is easier than typing C-c C-c }, which is, however, more mnemonic;
hence the two keybindings. (Also, you can move out from between braces by
typing C-£.)

To put a command such as @code{. ..} around an ezisting word, position the cursor in
front of the word and type C-u 1 C-c C-c c. This makes it easy to edit existing plain text.
The value of the prefix argument tells Emacs how many words following point to include
between braces—‘1’ for one word, ‘2’ for two words, and so on. Use a negative argument to
enclose the previous word or words. If you do not specify a prefix argument, Emacs inserts
the @-command string and positions the cursor between the braces. This feature works only
for those @-commands that operate on a word or words within one line, such as @kbd and
Qvar.

This set of insert commands was created after analyzing the frequency with which
different @-commands are used in the GNU Emacs Manual and the GDB Manual. If you
wish to add your own insert commands, you can bind a keyboard macro to a key, use
abbreviations, or extend the code in ‘texinfo.el’.

C-c C-c C-d (texinfo-start-menu-description) is an insert command that works
differently from the other insert commands. It inserts a node’s section or chapter title in
the space for the description in a menu entry line. (A menu entry has three parts, the
entry name, the node name, and the description. Only the node name is required, but a
description helps explain what the node is about. See Section 7.3 [The Parts of a Menu],
page 60.)

To use texinfo-start-menu-description, position point in a menu entry line and
type C-c C-c C-d. The command looks for and copies the title that goes with the node
name, and inserts the title as a description; it positions point at beginning of the inserted
text so you can edit it. The function does not insert the title if the menu entry line already
contains a description.

This command is only an aid to writing descriptions; it does not do the whole job. You
must edit the inserted text since a title tends to use the same words as a node name but a
useful description uses different words.

Chapter 2: Using Texinfo Mode 18

2.4 Showing the Section Structure of a File

You can show the section structure of a Texinfo file by using the C-c C-s command
(texinfo-show-structure). This command shows the section structure of a Texinfo file
by listing the lines that begin with the @-commands for @chapter, @section, and the like.
It constructs what amounts to a table of contents. These lines are displayed in another
buffer called the ‘*Occur*’ buffer. In that buffer, you can position the cursor over one of
the lines and use the C-c¢ C-c command (occur-mode-goto-occurrence), to jump to the
corresponding spot in the Texinfo file.

C-c C-s
M-x texinfo-show-structure
Show the @chapter, @section, and such lines of a Texinfo file.

C-c C-c

M-x occur-mode-goto-occurrence
Go to the line in the Texinfo file corresponding to the line under the cursor in
the ‘*0ccur*’ buffer.

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s,
it will list not only those lines with the @-commands for @chapter, @section, and the like,
but also the @node lines. You can use texinfo-show-structure with a prefix argument to
check whether the ‘Next’, ‘Previous’, and ‘Up’ pointers of an @node line are correct.

Often, when you are working on a manual, you will be interested only in the structure
of the current chapter. In this case, you can mark off the region of the buffer that you
are interested in by using the C-x n n (narrow-to-region) command and texinfo-show-
structure will work on only that region. To see the whole buffer again, use C-x n w
(widen). (See section “Narrowing” in The GNU Emacs Manual, for more information
about the narrowing commands.)

In addition to providing the texinfo-show-structure command, Texinfo mode sets
the value of the page delimiter variable to match the chapter-level @-commands. This enables
you to use the C-x] (forward-page) and C-x [(backward-page) commands to move
forward and backward by chapter, and to use the C-x p (narrow-to-page) command to
narrow to a chapter. See section “Pages” in The GNU Emacs Manual, for more information
about the page commands.

2.5 Updating Nodes and Menus

Texinfo mode provides commands for automatically creating or updating menus and node
pointers. The commands are called “update” commands because their most frequent use is
for updating a Texinfo file after you have worked on it; but you can use them to insert the
‘Next’, ‘Previous’, and ‘Up’ pointers into an @node line that has none and to create menus
in a file that has none.

If you do not use the updating commands, you need to write menus and node pointers
by hand, which is a tedious task.

2.5.1 The Updating Commands

You can use the updating commands to:

e insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,

Chapter 2: Using Texinfo Mode 19

e insert or update the menu for a section, and

e create a master menu for a Texinfo source file.

You can also use the commands to update all the nodes and menus in a region or in a
whole Texinfo file.

The updating commands work only with conventional Texinfo files, which are struc-
tured hierarchically like books. In such files, a structuring command line must follow closely
after each @node line, except for the ‘Top’ @node line. (A structuring command line is a
line beginning with @chapter, @section, or other similar command.)

You can write the structuring command line on the line that follows immediately after
an @node line or else on the line that follows after a single @comment line or a single @ifinfo
line. You cannot interpose more than one line between the @node line and the structuring
command line; and you may interpose only an @comment line or an @ifinfo line.

Commands which work on a whole buffer require that the ‘Top’ node be followed by a
node with an @chapter or equivalent-level command. The menu updating commands will
not create a main or master menu for a Texinfo file that has only @chapter-level nodes!
The menu updating commands only create menus within nodes for lower level nodes. To
create a menu of chapters, you must provide a ‘Top’ node.

The menu updating commands remove menu entries that refer to other Info files since
they do not refer to nodes within the current buffer. This is a deficiency. Rather than use
menu entries, you can use cross references to refer to other Info files. None of the updating
commands affect cross references.

Texinfo mode has five updating commands that are used most often: two are for
updating the node pointers or menu of a single node (or a region); two are for updating
every node pointer and menu in a file; and one, the texinfo-master-menu command, is
for creating a master menu for a complete file, and optionally, for updating every node and
menu in the whole Texinfo file.

The texinfo-master-menu command is the primary command:

C-c C-um

M-x texinfo-master—-menu
Create or update a master menu that includes all the other menus (incorporat-
ing the descriptions from pre-existing menus, if any).

With an argument (prefix argument, C-u, if interactive), first create or update
all the nodes and all the regular menus in the buffer before constructing the
master menu. (See Section 3.6 [The Top Node and Master Menu], page 38, for
more about a master menu.)

For texinfo-master-menu to work, the Texinfo file must have a ‘Top’ node
and at least one subsequent node.

After extensively editing a Texinfo file, you can type the following;:

C-u M-x texinfo-master-menu
or
C-u C-c C-um

This updates all the nodes and menus completely and all at once.

Chapter 2: Using Texinfo Mode 20

The other major updating commands do smaller jobs and are designed for the person
who updates nodes and menus as he or she writes a Texinfo file.

The commands are:

C-c C-u C-n

M-x texinfo-update-node
Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for the node that point is within
(i.e., for the @node line preceding point). If the @node line has pre-existing
‘Next’, ‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and new
ones inserted. With an argument (prefix argument, C-u, if interactive), this
command updates all @node lines in the region (which is the text between point
and mark).

C-c C-u C-m

M-x texinfo-make—-menu
Create or update the menu in the node that point is within. With an argument
(C-u as prefix argument, if interactive), the command makes or updates menus
for the nodes which are either within or a part of the region.

Whenever texinfo-make-menu updates an existing menu, the descriptions from
that menu are incorporated into the new menu. This is done by copying de-
scriptions from the existing menu to the entries in the new menu that have the
same node names. If the node names are different, the descriptions are not
copied to the new menu.

C-c C-u C-e

M-x texinfo-every-node-update
Insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers for every node in the
buffer.

C-c C-u C-a

M-x texinfo-all-menus-update
Create or update all the menus in the buffer. With an argument (C-u as prefix
argument, if interactive), first insert or update all the node pointers before
working on the menus.

If a master menu exists, the texinfo-all-menus-update command updates it;
but the command does not create a new master menu if none already exists.
(Use the texinfo-master-menu command for that.)

When working on a document that does not merit a master menu, you can type
the following:

C-u C-c C-u C-a
or

C-u M-x texinfo-all-menus-update

This updates all the nodes and menus.

The texinfo-column-for-description variable specifies the column to which menu
descriptions are indented. By default, the value is 32 although it is often useful to reduce
it to as low as 24. You can set the variable via customization (see section “Changing an
Option” in The GNU Emacs Manual) or with the M-x set-variable command (see section
“Examining and Setting Variables” in The GNU Emacs Manual).

Chapter 2: Using Texinfo Mode 21

Also, the texinfo-indent-menu-description command may be used to indent exist-
ing menu descriptions to a specified column. Finally, if you wish, you can use the texinfo-
insert-node-lines command to insert missing @node lines into a file. (See Section 2.5.3
[Other Updating Commands]|, page 21, for more information.)

2.5.2 Updating Requirements

To use the updating commands, you must organize the Texinfo file hierarchically with
chapters, sections, subsections, and the like. When you construct the hierarchy of the
manual, do not ‘jump down’ more than one level at a time: you can follow the ‘Top’ node
with a chapter, but not with a section; you can follow a chapter with a section, but not with
a subsection. However, you may ‘jump up’ any number of levels at one time—for example,
from a subsection to a chapter.

Each @node line, with the exception of the line for the ‘Top’ node, must be followed by
a line with a structuring command such as @chapter, @section, or @unnumberedsubsec.

Each @node line/structuring-command line combination must look either like this:

O@node Comments, Minimum, Conventions, Overview
Q@Qcomment mnode-name, next, previous, up
@section Comments

or like this (without the @comment line):

Onode Comments, Minimum, Conventions, Overview
@section Comments

or like this (without the explicit node pointers):

Onode Comments
@section Comments

In this example, ‘Comments’ is the name of both the node and the section. The next node is
called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section is
within the ‘Overview’ node, which is specified by the ‘Up’ pointer. (Instead of an @comment
line, you may also write an @ifinfo line.)

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the
file.

The menu updating commands create a menu of sections within a chapter, a menu of
subsections within a section, and so on. This means that you must have a ‘Top’ node if you
want a menu of chapters.

Incidentally, the makeinfo command will create an Info file for a hierarchically orga-
nized Texinfo file that lacks ‘Next’, ‘Previous’ and ‘Up’ pointers. Thus, if you can be sure
that your Texinfo file will be formatted with makeinfo, you have no need for the update
node commands. (See Section 21.1 [Creating an Info File], page 163, for more informa-
tion about makeinfo.) However, both makeinfo and the texinfo-format-... commands
require that you insert menus in the file.

2.5.3 Other Updating Commands

In addition to the five major updating commands, Texinfo mode possesses several less
frequently used updating commands:

Chapter 2: Using Texinfo Mode 22

M-x texinfo-insert-node-lines
Insert @node lines before the @chapter, @section, and other sectioning com-
mands wherever they are missing throughout a region in a Texinfo file.

With an argument (C-u as prefix argument, if interactive), the texinfo-
insert-node-lines command not only inserts @node lines but also inserts the
chapter or section titles as the names of the corresponding nodes. In addition,
it inserts the titles as node names in pre-existing @node lines that lack names.
Since node names should be more concise than section or chapter titles, you
must manually edit node names so inserted.

For example, the following marks a whole buffer as a region and inserts @node
lines and titles throughout:

C-x h C-u M-x texinfo-insert-node-lines

This command inserts titles as node names in @node lines; the texinfo-start-
menu-description command (see Section 2.3 [Inserting], page 16) inserts titles
as descriptions in menu entries, a different action. However, in both cases, you
need to edit the inserted text.

M-x texinfo-multiple-files-update

Update nodes and menus in a document built from several separate files. With
C-u as a prefix argument, create and insert a master menu in the outer file.
With a numeric prefix argument, such as C-u 2, first update all the menus
and all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included files before
creating and inserting a master menu in the outer file. The texinfo-multiple-
files-update command is described in the appendix on @include files. See
Section D.2 [texinfo-multiple-files-update], page 215.

M-x texinfo-indent-menu-description
Indent every description in the menu following point to the specified column.
You can use this command to give yourself more space for descriptions. With an
argument (C-u as prefix argument, if interactive), the texinfo-indent-menu-
description command indents every description in every menu in the region.
However, this command does not indent the second and subsequent lines of a
multi-line description.

M-x texinfo-sequential-node-update

Insert the names of the nodes immediately following and preceding the current
node as the ‘Next’ or ‘Previous’ pointers regardless of those nodes’ hierarchical
level. This means that the ‘Next’ node of a subsection may well be the next
chapter. Sequentially ordered nodes are useful for novels and other documents
that you read through sequentially. (However, in Info, the g * command lets you
look through the file sequentially, so sequentially ordered nodes are not strictly
necessary.) With an argument (prefix argument, if interactive), the texinfo-
sequential-node-update command sequentially updates all the nodes in the
region.

Chapter 2: Using Texinfo Mode 23

2.6 Formatting for Info

Texinfo mode provides several commands for formatting part or all of a Texinfo file for Info.
Often, when you are writing a document, you want to format only part of a file—that is, a
region.

You can use either the texinfo-format-region or the makeinfo-region command
to format a region:

C-c C-e C-r
M-x texinfo-format-region
C-c C-m C-r
M-x makeinfo-region
Format the current region for Info.

You can use either the texinfo-format-buffer or the makeinfo-buffer command
to format a whole buffer:

C-c C-e C-b
M-x texinfo-format-buffer
C-c C-m C-b
M-x makeinfo-buffer
Format the current buffer for Info.

For example, after writing a Texinfo file, you can type the following:
C-u C-c C-um
or
C-u M-x texinfo-master-menu

This updates all the nodes and menus. Then type the following to create an Info file:
C-c C-m C-b

or
M-x makeinfo-buffer

For TEX or the Info formatting commands to work, the file must include a line that
has @setfilename in its header.

See Section 21.1 [Creating an Info File], page 163, for details about Info formatting.

2.7 Printing

Typesetting and printing a Texinfo file is a multi-step process in which you first create
a file for printing (called a DVI file), and then print the file. Optionally, you may also
create indices. To do this, you must run the texindex command after first running the
tex typesetting command; and then you must run the tex command again. Or else run
the texi2dvi command which automatically creates indices as needed (see Section 20.3
[Format with texi2dvi], page 154).

Often, when you are writing a document, you want to typeset and print only part
of a file to see what it will look like. You can use the texinfo-tex-region and related
commands for this purpose. Use the texinfo-tex-buffer command to format all of a
buffer.

Chapter 2: Using Texinfo Mode 24

C-c C-t C-b

M-x texinfo-tex-buffer
Run texi2dvi on the buffer. In addition to running TEX on the buffer, this
command automatically creates or updates indices as needed.

C-cC-t C-r
M-x texinfo-tex-region
Run TEX on the region.

C-c C-t C-1

M-x texinfo-texindex
Run texindex to sort the indices of a Texinfo file formatted with texinfo-
tex-region. The texinfo-tex-region command does not run texindex au-
tomatically; it only runs the tex typesetting command. You must run the
texinfo-tex-region command a second time after sorting the raw index files
with the texindex command. (Usually, you do not format an index when
you format a region, only when you format a buffer. Now that the texi2dvi
command exists, there is little or no need for this command.)

C-cC-t C-p

M-x texinfo-tex-print
Print the file (or the part of the file) previously formatted with texinfo-tex-
buffer or texinfo-tex-region.

For texinfo-tex-region or texinfo-tex-buffer to work, the file must start with a
“\input texinfo’ line and must include an @settitle line. The file must end with @bye on
a line by itself. (When you use texinfo-tex-region, you must surround the @settitle
line with start-of-header and end-of-header lines.)

See Chapter 20 [Hardcopy], page 152, for a description of the other TEX related
commands, such as tex-show-print-queue.

2.8 Texinfo Mode Summary

In Texinfo mode, each set of commands has default keybindings that begin with the same
keys. All the commands that are custom-created for Texinfo mode begin with C-c. The
keys are somewhat mnemonic.

Insert Commands

The insert commands are invoked by typing C-c twice and then the first letter of the @-
command to be inserted. (It might make more sense mnemonically to use C-c C-i, for
‘custom insert’, but C-c C-c is quick to type.)

C-c C-c ¢ Insert ‘@code’.
Insert ‘@dfn’.
Insert ‘@end’.
Insert ‘@item’.
Insert ‘@node’ .
Insert ‘@samp’.
Insert ‘@var’.
Insert braces.

A B H 0 Q

Chapter 2: Using Texinfo Mode 25

C-c C-c]
C-c C-c } Move out of enclosing braces.
C-c C-c C-d Insert a node’s section title

in the space for the description
in a menu entry line.

Show Structure

The texinfo-show-structure command is often used within a narrowed region.

C-c C-s List all the headings.

The Master Update Command
The texinfo-master-menu command creates a master menu; and can be used to update
every node and menu in a file as well.
C-c C-um
M-x texinfo-master-menu
Create or update a master menu.

C-u C-c C-um With C-u as a prefix argument, first
create or update all nodes and regular
menus, and then create a master menu.

Update Pointers

The update pointer commands are invoked by typing C-c C-u and then either C-n for
texinfo-update-node or C-e for texinfo-every-node-update.

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus

Invoke the update menu commands by typing C-c C-u and then either C-m for texinfo-
make-menu or C-a for texinfo-all-menus-update. To update both nodes and menus at
the same time, precede C-c C-u C-a with C-u.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all
menus in a buffer.

C-u C-c C-u C-a With C-u as a prefix argument,
first create or update all nodes and
then create or update all menus.

Format for Info

The Info formatting commands that are written in Emacs Lisp are invoked by typing C-c
C-e and then either C-r for a region or C-b for the whole buffer.

Chapter 2: Using Texinfo Mode 26

The Info formatting commands that are written in C and based on the makeinfo
program are invoked by typing C-c C-m and then either C-r for a region or C-b for the

whole buffer.

Use the texinfo-format... commands:
C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.
Use makeinfo:
C-c C-m C-r Format the region.
C-c C-m C-b Format the buffer.
C-c C-m C-1 Recenter the makeinfo output buffer.
C-c C-m C-k Kill the makeinfo formatting job.

Typeset and Print

The TEX typesetting and printing commands are invoked by typing C-c C-t and then
another control command: C-r for texinfo-tex-region, C-b for texinfo-tex-buffer,

and so on.

OOOOCI)OOOO
O o0 o0 o0 o0 o o0 o0
5
ct
OOOOCI)OOOO
H X N Qs o R

Run TEX on the region.

Run texi2dvi on the buffer.

Run texindex.

Print the DVI file.

Show the print queue.

Delete a job from the print queue.

Kill the current TEX formatting job.

Quit a currently stopped TEX formatting job.
Recenter the output buffer.

Other Updating Commands

The remaining updating commands do not have standard keybindings because they are

rarely used.

M-x texinfo-

M-x texinfo-

M-x texinfo-

M-x texinfo-

insert-node-lines
Insert missing @node lines in region.
With C-u as a prefix argument,
use section titles as node names.

multiple-files-update
Update a multi-file document.
With C-u 2 as a prefix argument,
create or update all nodes and menus
in all included files first.

indent-menu-description
Indent descriptions.

sequential-node-update
Insert node pointers in strict sequence.

Chapter 3: Beginning a Texinfo File 27

3 Beginning a Texinfo File

Certain pieces of information must be provided at the beginning of a Texinfo file, such as
the name for the output file(s), the title of the document, and the Top node. A table of
contents is also generally produced here.

This chapter expands on the minimal complete Texinfo source file previously given (see
Section 1.10 [Six Parts|, page 11). It describes the numerous commands for handling the
traditional frontmatter items in Texinfo.

Straight text outside of any command before the Top node should be avoided. Such
text is treated differently in the different output formats: visible in TEX and HTML, by
default not shown in Info readers, and so on.

3.1 Sample Texinfo File Beginning

The following sample shows what is needed. The elements given here are explained in more
detail in the following sections. Other commands are often included at the beginning of
Texinfo files, but the ones here are the most critical.

See Section C.2 [GNU Sample Texts|, page 210, for the full texts to be used in GNU
manuals.

\input texinfo @c -*-texinfo—*-
Q@c %**start of header
O@setfilename infoname.info
O@settitle name-of-manual version
@c Y%*xend of header

Q@copying
This manual is for program, version version.

Copyright @copyright{} years copyright-owner.

@quotation

Permission is granted to ...
Q@end quotation

Q@end copying

Otitlepage

Otitle name-of-manual-when-printed
Osubtitle subtitle-if-any
@subtitle second-subtitle

Q@author author

@c The following two commands
@c start the copyright page.
OGpage

Ovskip Opt plus 1filll
O@insertcopying

Chapter 3: Beginning a Texinfo File 28

Published by ...
Q@end titlepage

Oc So the toc is printed at the start.
Qcontents

@ifnottex
Gnode Top
@top title

Q@insertcopying
Q@end ifnottex

Omenu
* First Chapter:: Getting started ...
* Second Chapter::

* Copying:: Your rights and freedoms.
Q@end menu

Onode First Chapter
@chapter First Chapter

Ocindex first chapter
Ocindex chapter, first

3.2 Texinfo File Header

Texinfo files start with at least three lines that provide Info and TEX with necessary
information. These are the \input texinfo line, the @settitle line, and the @setfilename
line.

Also, if you want to format just part of the Texinfo file, you must write the @settitle
and @setfilename lines between start-of-header and end-of-header lines. The start- and
end-of-header lines are optional, but they do no harm, so you might as well always include
them.

Any command that affects document formatting as a whole makes sense to include in
the header. @synindex (see Section 13.4.2 [synindex|, page 108), for instance, is another
command often included in the header. See Section C.2 [GNU Sample Texts|, page 210, for
complete sample texts.

Thus, the beginning of a Texinfo file generally looks like this:

\input texinfo @c -*-texinfo-*-
Q@c Y**start of header
Osetfilename sample.info
Osettitle Sample Manual 1.0

Q@c %*xend of header

Chapter 3: Beginning a Texinfo File 29

3.2.1 The First Line of a Texinfo File

Every Texinfo file that is to be the top-level input to TEX must begin with a line that looks
like this:

\input texinfo @c -*-texinfo-*-
This line serves two functions:

1. When the file is processed by TEX, the ‘\input texinfo’ command tells TEX to load
the macros needed for processing a Texinfo file. These are in a file called ‘texinfo.tex’,
which should have been installed on your system along with either the TEX or Texinfo
software. TEX uses the backslash, ‘\’, to mark the beginning of a command, exactly
as Texinfo uses ‘@’. The ‘texinfo.tex’ file causes the switch from ‘\’ to ‘@’; before the
switch occurs, TEX requires ‘\’, which is why it appears at the beginning of the file.

2. When the file is edited in GNU Emacs, the ‘-*-texinfo-*-’ mode specification tells
Emacs to use Texinfo mode.

3.2.2 Start of Header

A start-of-header line is a Texinfo comment that looks like this:
Q@c Yxxstart of header

Write the start-of-header line on the second line of a Texinfo file. Follow the start-of-
header line with @setfilename and @settitle lines and, optionally, with other commands
that globally affect the document formatting, such as @synindex or @footnotestyle; and
then by an end-of-header line (see Section 3.2.5 [End of Header], page 31).

The start- and end-of-header lines allow you to format only part of a Texinfo file for
Info or printing. See Section 21.1.6 [texinfo-format commands], page 169.

The odd string of characters, ‘%**’, is to ensure that no other comment is accidentally
taken for a start-of-header line. You can change it if you wish by setting the tex-start-
of-header and/or tex-end-of-header Emacs variables. See Section 20.6 [Texinfo Mode
Printing], page 155.

3.2.3 @setfilename: Set the output file name

In order to serve as the primary input file for either makeinfo or TEX, a Texinfo file must
contain a line that looks like this:

@setfilename info-file-name

Write the @setfilename command at the beginning of a line and follow it on the same
line by the Info file name. Do not write anything else on the line; anything on the line
after the command is considered part of the file name, including what would otherwise be
a comment.

The Info formatting commands ignore everything written before the @setfilename
line, which is why the very first line of the file (the \input line) does not show up in the
output.

The @setfilename line specifies the name of the output file to be generated. This
name must be different from the name of the Texinfo file. There are two conventions for
choosing the name: you can either remove the extension (such as ‘.texi’) entirely from the
input file name, or, preferably, replace it with the ‘.info’ extension.

Chapter 3: Beginning a Texinfo File 30

Although an explicit ‘.info’ extension is preferable, some operating systems cannot
handle long file names. You can run into a problem even when the file name you specify is
itself short enough. This occurs because the Info formatters split a long Info file into short
indirect subfiles, and name them by appending ‘-1, *=2’, ..., ‘*=10’, ‘*=11’, and so on, to the
original file name. (See Section 21.1.8 [Tag and Split Files|, page 170.) The subfile name
‘texinfo.info-10’, for example, is too long for old systems with a 14-character limit on
filenames; so the Info file name for this document is ‘texinfo’ rather than ‘texinfo.info’.
When makeinfo is running on operating systems such as MS-DOS which impose severe
limits on file names, it may remove some characters from the original file name to leave
enough space for the subfile suffix, thus producing files named ‘texin-10’, ‘gcc.i12’, etc.

When producing HTML output, makeinfo will replace any extension with ‘html’, or
add ‘.html’ if the given name has no extension.

The @setfilename line produces no output when you typeset a manual with TEX,
but it is nevertheless essential: it opens the index, cross-reference, and other auxiliary files
used by Texinfo, and also reads ‘texinfo.cnf’ if that file is present on your system (see
Section 20.9 [Preparing for TEX], page 158).

3.2.4 O@settitle: Set the document title

In order to be made into a printed manual, a Texinfo file must contain a line that looks like
this:

@settitle title

Write the @settitle command at the beginning of a line and follow it on the same line
by the title. This tells TEX the title to use in a header or footer. Do not write anything else
on the line; anything on the line after the command is considered part of the title, including
what would otherwise be a comment.

The @settitle command should precede everything that generates actual output. The
best place for it is right after the @setfilename command (see the previous section).

In the HTML file produced by makeinfo, title serves as the document ‘<title>’.
It also becomes the default document description in the ‘<head>’ part (see Section 3.7.1
[documentdescription], page 40).

The title in the @settitle command does not affect the title as it appears on the title
page. Thus, the two do not need not match exactly. A practice we recommend is to include
the version or edition number of the manual in the @settitle title; on the title page, the
version number generally appears as a @subtitle so it would be omitted from the @title.
See Section 3.4.1 [titlepage], page 33.

Conventionally, when TEpX formats a Texinfo file for double-sided output, the title is
printed in the left-hand (even-numbered) page headings and the current chapter title is
printed in the right-hand (odd-numbered) page headings. (TEX learns the title of each
chapter from each @chapter command.) By default, no page footer is printed.

Even if you are printing in a single-sided style, TEX looks for an @settitle command
line, in case you include the manual title in the heading.

TEX prints page headings only for that text that comes after the @end titlepage
command in the Texinfo file, or that comes after an @headings command that turns on
headings. (See Section 3.4.6 [The @headings Command], page 36, for more information.)

Chapter 3: Beginning a Texinfo File 31

You may, if you wish, create your own, customized headings and footings. See Appen-
dix E [Headings|, page 219, for a detailed discussion of this.

3.2.5 End of Header

Follow the header lines with an end-of-header line, which is a Texinfo comment that looks
like this:

Q@c %**end of header

See Section 3.2.2 [Start of Header|, page 29.

3.3 Document Permissions

The copyright notice and copying permissions for a document need to appear in several
places in the various Texinfo output formats. Therefore, Texinfo provides a command
(@copying) to declare this text once, and another command (@insertcopying) to insert
the text at appropriate points.

3.3.1 @copying: Declare Copying Permissions

The @copying command should be given very early in the document; the recommended
location is right after the header material (see Section 3.2 [Texinfo File Header]|, page 28).
It conventionally consists of a sentence or two about what the program is, identification of
the documentation itself, the legal copyright line, and the copying permissions. Here is a
skeletal example:

Q@copying

This manual is for program (version version, updated

date), which ...

Copyright Qcopyright{} years copyright-owner.

Qquotation

Permission is granted to ...
@end quotation

Q@end copying

The @quotation has no legal significance; it’s there to improve readability in some
contexts.

See Section C.2 [GNU Sample Texts|, page 210, for the full text to be used in GNU
manuals. See Section G.1 [GNU Free Documentation License]|, page 230, for the license
itself under which GNU and other free manuals are distributed. You need to include the
license as an appendix to your document.

The text of @copying is output as a comment at the beginning of Info, HTML, and
XML output files. It is not output implicitly in plain text or TEX; it’s up to you to use
@insertcopying to emit the copying information. See the next section for details.

The @copyright{} command generates a ‘c’ inside a circle in output formats that
support this (print and HTML). In the other formats (Info and plain text), it generates
‘(C)’. The copyright notice itself has the following legally defined sequence:

Copyright (©) years copyright-owner.

Chapter 3: Beginning a Texinfo File 32

The word ‘Copyright’ must always be written in English, even if the document is
otherwise written in another language. This is due to international law.

The list of years should include all years in which a version was completed (even if it
was released in a subsequent year). Ranges are not allowed; each year must be written out
individually and in full, separated by commas.

The copyright owner (or owners) is whoever holds legal copyright on the work. In the
case of works assigned to the FSF, the owner is ‘Free Software Foundation, Inc.’.

The copyright ‘line’ may actually be split across multiple lines, both in the source
document and in the output. This often happens for documents with a long history, having
many different years of publication.

See section “Copyright Notices” in GNU Maintenance Instructions, for additional in-
formation.

3.3.2 @insertcopying: Include Permissions Text

The @insertcopying command is simply written on a line by itself, like this:
O@insertcopying

This inserts the text previously defined by @copying. To meet legal requirements, it
must be used on the copyright page in the printed manual (see Section 3.4.4 [Copyright],
page 35).

We also strongly recommend using @insertcopying in the Top node of your manual
(see Section 3.6 [The Top Node|, page 38), although it is not required legally. Here’s why:

The @copying command itself causes the permissions text to appear in an Info file
before the first node. The text is also copied into the beginning of each split Info output
file, as is legally necessary. This location implies a human reading the manual using Info
does not see this text (except when using the advanced Info command g *). Therefore, an
explicit @insertcopying in the Top node makes it apparent to readers that the manual is
free.

Similarly, the @copying text is automatically included at the beginning of each HTML
output file, as an HTML comment. Again, this text is not visible (unless the reader views
the HTML source). And therefore again, the @insertcopying in the Top node is valuable
because it makes the copying permissions visible and thus promotes freedom.

The permissions text defined by @copying also appears automatically at the beginning
of the XML output file.

3.4 Title and Copyright Pages

In hard copy output, the manual’s name and author are usually printed on a title page.
Copyright information is usually printed on the back of the title page.

The title and copyright pages appear in the printed manual, but not in the Info file.
Because of this, it is possible to use several slightly obscure TEX typesetting commands
that cannot be used in an Info file. In addition, this part of the beginning of a Texinfo file
contains the text of the copying permissions that appears in the printed manual.

You may wish to include titlepage-like information for plain text output. Simply place
any such leading material between @ifplaintext and @end ifplaintext; makeinfo in-
cludes this when writing plain text (‘--no-headers’), along with an @insertcopying.

Chapter 3: Beginning a Texinfo File 33

3.4.1 Qtitlepage

Start the material for the title page and following copyright page with @titlepage on a
line by itself and end it with @end titlepage on a line by itself.

The @end titlepage command starts a new page and turns on page numbering. (See
Appendix E [Page Headings], page 219, for details about how to generate page headings.)
All the material that you want to appear on unnumbered pages should be put between
the @titlepage and @end titlepage commands. You can force the table of contents to
appear there with the @setcontentsaftertitlepage command (see Section 3.5 [Contents],
page 37).

By using the @page command you can force a page break within the region delineated
by the @titlepage and @end titlepage commands and thereby create more than one
unnumbered page. This is how the copyright page is produced. (The @titlepage command
might perhaps have been better named the @titleandadditionalpages command, but that
would have been rather long!)

When you write a manual about a computer program, you should write the version of
the program to which the manual applies on the title page. If the manual changes more
frequently than the program or is independent of it, you should also include an edition
number! for the manual. This helps readers keep track of which manual is for which version
of the program. (The ‘Top’ node should also contain this information; see Section 3.6 [The
Top Node], page 38.)

Texinfo provides two main methods for creating a title page. One method uses the
@titlefont, @sp, and Gcenter commands to generate a title page in which the words on
the page are centered.

The second method uses the @title, @subtitle, and @author commands to create a
title page with black rules under the title and author lines and the subtitle text set flush
to the right hand side of the page. With this method, you do not specify any of the actual
formatting of the title page. You specify the text you want, and Texinfo does the formatting.

You may use either method, or you may combine them; see the examples in the sections
below.

For extremely simple documents, and for the bastard title page in traditional book
frontmatter, Texinfo also provides a command @shorttitlepage which takes the rest of
the line as the title. The argument is typeset on a page by itself and followed by a blank
page.

3.4.2 @titlefont, @center, and @sp
You can use the @titlefont, @sp, and @center commands to create a title page for a
printed document. (This is the first of the two methods for creating a title page in Texinfo.)

Use the @titlefont command to select a large font suitable for the title itself. You
can use @titlefont more than once if you have an especially long title.

For HTML output, each @titlefont command produces an <hl1> heading, but the
HTML document <title> is not affected. For that, you must put an @settitle command
before the @titlefont command (see Section 3.2.4 [settitle|, page 30).

1 We have found that it is helpful to refer to versions of independent manuals as ‘editions’ and versions
of programs as ‘versions’; otherwise, we find we are liable to confuse each other in conversation by
referring to both the documentation and the software with the same words.

Chapter 3: Beginning a Texinfo File 34

For example:
Otitlefont{Texinfo}

Use the @center command at the beginning of a line to center the remaining text on
that line. Thus,

@center Q@titlefont{Texinfo}
centers the title, which in this example is “Texinfo” printed in the title font.
Use the @sp command to insert vertical space. For example:
Osp 2

This inserts two blank lines on the printed page. (See Section 15.6 [@sp|, page 122, for more
information about the @sp command.)
A template for this method looks like this:

Otitlepage

G@sp 10

Q@center Qtitlefont{name-of-manual-when-printed}

@sp 2

Q@center subtitle-if-any

Gsp 2

Qcenter author

Q@end titlepage
The spacing of the example fits an 8.5 by 11 inch manual.

You can in fact use these commands anywhere, not just on a title page, but since they
are not logical markup commands, we don’t recommend them.

3.4.3 Otitle, @subtitle, and @author

You can use the @title, @subtitle, and @author commands to create a title page in which
the vertical and horizontal spacing is done for you automatically. This contrasts with the
method described in the previous section, in which the @sp command is needed to adjust
vertical spacing.

Write the @title, @subtitle, or @author commands at the beginning of a line followed
by the title, subtitle, or author. These commands are only effective in TEX output; it’s an
error to use them anywhere except within @titlepage.

The @title command produces a line in which the title is set flush to the left-hand
side of the page in a larger than normal font. The title is underlined with a black rule. Only
a single line is allowed; the @* command may not be used to break the title into two lines.
To handle very long titles, you may find it profitable to use both @title and @titlefont;
see the final example in this section.

The @subtitle command sets subtitles in a normal-sized font flush to the right-hand
side of the page.

The @author command sets the names of the author or authors in a middle-sized font
flush to the left-hand side of the page on a line near the bottom of the title page. The
names are underlined with a black rule that is thinner than the rule that underlines the

Chapter 3: Beginning a Texinfo File 35

title. (The black rule only occurs if the @author command line is followed by an @page
command line.)

There are two ways to use the @author command: you can write the name or names
on the remaining part of the line that starts with an @author command:

@author by Jane Smith and John Doe
or you can write the names one above each other by using two (or more) @author commands:

Q@author Jane Smith
Q@author John Doe

(Only the bottom name is underlined with a black rule.)

A template for this method looks like this:
Otitlepage
Otitle name-of-manual-when-printed
Osubtitle subtitle-if-any
@subtitle second-subtitle
Q@author author
Opage

Q@end titlepage
You may also combine the @titlefont method described in the previous section and

@title method described in this one. This may be useful if you have a very long title. Here
is a real-life example:

Otitlepage

Otitlefont{GNU Software}

Gsp 1

@title for MS-Windows and MS-DOS

@subtitle Edition @value{e} for Release @value{cde}

Q@author by Daniel Hagerty, Melissa Weisshaus

Q@author and Eli Zaretskii

(The use of @value here is explained in Section 17.4.3 [value Example|, page 142.

3.4.4 Copyright Page

By international treaty, the copyright notice for a book must be either on the title page
or on the back of the title page. When the copyright notice is on the back of the title
page, that page is customarily not numbered. Therefore, in Texinfo, the information on the
copyright page should be within @titlepage and @end titlepage commands.

Use the @page command to cause a page break. To push the copyright notice and
the other text on the copyright page towards the bottom of the page, use the following
incantantion after @page:

Ovskip Opt plus 1filll
This is a TEX command that is not supported by the Info formatting commands. The
Q@vskip command inserts whitespace. The ‘Opt plus 1filll’ means to put in zero points

of mandatory whitespace, and as much optional whitespace as needed to push the following
text to the bottom of the page. Note the use of three ‘1’s in the word ‘£i111’; this is correct.

Chapter 3: Beginning a Texinfo File 36

To insert the copyright text itself, write @insertcopying next (see Section 3.3 [Docu-
ment Permissions], page 31):

O@insertcopying

Follow the copying text by the publisher, ISBN numbers, cover art credits, and other
such information.

Here is an example putting all this together:
@titlepage

Gpage
Ovskip Opt plus 1filll
Q@insertcopying

Published by ...

Cover art by ...
Q@end titlepage

3.4.5 Heading Generation

The @end titlepage command must be written on a line by itself. It not only marks the
end of the title and copyright pages, but also causes TEX to start generating page headings
and page numbers.

To repeat what is said elsewhere, Texinfo has two standard page heading formats, one
for documents which are printed on one side of each sheet of paper (single-sided printing),
and the other for documents which are printed on both sides of each sheet (double-sided
printing). You can specify these formats in different ways:

e The conventional way is to write an @setchapternewpage command before the title
page commands, and then have the @end titlepage command start generating page
headings in the manner desired. (See Section 3.7.2 [setchapternewpage], page 40.)

e Alternatively, you can use the @headings command to prevent page headings from
being generated or to start them for either single or double-sided printing. (Write
an @headings command immediately after the @end titlepage command. See Sec-
tion 3.4.6 [The @headings Command]|, page 36, for more information.)

e Or, you may specify your own page heading and footing format. See Appendix E [Page
Headings|, page 219, for detailed information about page headings and footings.

Most documents are formatted with the standard single-sided or double-sided format,
using @setchapternewpage odd for double-sided printing and no @setchapternewpage
command for single-sided printing.

3.4.6 The Gheadings Command

The @headings command is rarely used. It specifies what kind of page headings and footings
to print on each page. Usually, this is controlled by the @setchapternewpage command.
You need the @headings command only if the @setchapternewpage command does not do
what you want, or if you want to turn off pre-defined page headings prior to defining your
own. Write an @headings command immediately after the @end titlepage command.

You can use @headings as follows:

Chapter 3: Beginning a Texinfo File 37

QGheadings off
Turn off printing of page headings.

OGheadings single
Turn on page headings appropriate for single-sided printing.

QGheadings double

Q@headings on
Turn on page headings appropriate for double-sided printing. The two com-
mands, @headings on and @headings double, are synonymous.

Oheadings singleafter

OGheadings doubleafter
Turn on single or double headings, respectively, after the current page is
output.

QGheadings on
Turn on page headings: single if ‘@setchapternewpage on’, double otherwise.

For example, suppose you write @setchapternewpage off before the @titlepage com-
mand to tell TEX to start a new chapter on the same page as the end of the last chapter.
This command also causes TEX to typeset page headers for single-sided printing. To
cause TEX to typeset for double sided printing, write @headings double after the @end
titlepage command.

You can stop TEX from generating any page headings at all by writing @headings off
on a line of its own immediately after the line containing the @end titlepage command,
like this:

Q@end titlepage

Q@headings off
The @headings off command overrides the @end titlepage command, which would oth-
erwise cause TEX to print page headings.

You can also specify your own style of page heading and footing. See Appendix E [Page
Headings|, page 219, for more information.

3.5 Generating a Table of Contents

The @chapter, @section, and other structuring commands (see Chapter 5 [Structuring],
page 46) supply the information to make up a table of contents, but they do not cause
an actual table to appear in the manual. To do this, you must use the @contents and/or
@summarycontents command(s).

Qcontents
Generates a table of contents in a printed manual, including all chapters, sec-
tions, subsections, etc., as well as appendices and unnumbered chapters. Head-
ings generated by @majorheading, @chapheading, and the other @...heading
commands do not appear in the table of contents (see Section 5.2 [Structuring
Command Types|, page 46).

Oshortcontents

Osummarycontents

(@summarycontents is a synonym for @shortcontents.)

Chapter 3: Beginning a Texinfo File 38

Generates a short or summary table of contents that lists only the chapters, ap-
pendices, and unnumbered chapters. Sections, subsections and subsubsections
are omitted. Only a long manual needs a short table of contents in addition to
the full table of contents.

Both contents commands should be written on a line by themselves, and are best
placed near the beginning of the file, after the @end titlepage (see Section 3.4.1 [titlepage],
page 33). The contents commands automatically generate a chapter-like heading at the
top of the first table of contents page, so don’t include any sectioning command such as
Qunnumbered before them.

Since an Info file uses menus instead of tables of contents, the Info formatting com-
mands ignore the contents commands. But the contents are included in plain text output
(generated by makeinfo --no-headers), unless makeinfo is writing its output to standard
output.

When makeinfo writes a short table of contents while producing html output, the links
in the short table of contents point to corresponding entries in the full table of contents
rather than the text of the document. The links in the full table of contents point to the
main text of the document.

In the past, the contents commands were sometimes placed at the end of the file, after
any indices and just before the @bye, but we no longer recommend this.

However, since many existing Texinfo documents still do have the @contents at the end
of the manual, if you are a user printing a manual, you may wish to force the contents to be
printed after the title page. You can do this by specifying @setcontentsaftertitlepage
and/or @setshortcontentsaftertitlepage. The first prints only the main contents after
the @end titlepage; the second prints both the short contents and the main contents. In
either case, any subsequent @contents or @shortcontents is ignored (unless, erroneously,
no @end titlepage is ever encountered).

You need to include the @set...contentsaftertitlepage commands early in the
document (just after @setfilename, for example). We recommend using texi2dvi (see
Section 20.3 [Format with texi2dvi], page 154) to specify this without altering the source
file at all. For example:

texi2dvi --texinfo=0setcontentsaftertitlepage foo.texi

3.6 The ‘Top’ Node and Master Menu

The ‘Top’ node is the node in which a reader enters an Info manual. As such, it should begin
with the @insertcopying command (see Section 3.3 [Document Permissions|, page 31)
to provide a brief description of the manual (including the version number) and copying
permissions, and end with a master menu for the whole manual. Of course you should
include any other general information you feel a reader would find helpful.

It is also conventional to write an @top sectioning command line containing the title of
the document immediately after the @node Top line (see Section 6.3.6 [The @top Sectioning
Command], page 57).

The contents of the ‘Top’ node should appear only in the online output; none of it
should appear in printed output, so enclose it between @ifnottex and @end ifnottex
commands. (TEX does not print either an @node line or a menu; they appear only in

Chapter 3: Beginning a Texinfo File 39

Info; strictly speaking, you are not required to enclose these parts between @ifnottex and
@end ifnottext, but it is simplest to do so. See Chapter 17 [Conditionally Visible Text],
page 137.)

3.6.1 Top Node Example

Here is an example of a Top node.

@ifnottex
Gnode Top
Otop Sample Title

Q@insertcopying
Additional general information.

Omenu
* First Chapter::
* Second Chapter::

* Index::
@end menu

3.6.2 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a file.

A master menu is enclosed in @menu and @end menu commands and does not appear in
the printed document.

Generally, a master menu is divided into parts.

e The first part contains the major nodes in the Texinfo file: the nodes for the chapters,
chapter-like sections, and the appendices.

e The second part contains nodes for the indices.

e The third and subsequent parts contain a listing of the other, lower level nodes, often
ordered by chapter. This way, rather than go through an intermediary menu, an
inquirer can go directly to a particular node when searching for specific information.
These menu items are not required; add them if you think they are a convenience. If
you do use them, put @detailmenu before the first one, and @end detailmenu after
the last; otherwise, makeinfo will get confused.

Each section in the menu can be introduced by a descriptive line. So long as the line
does not begin with an asterisk, it will not be treated as a menu entry. (See Section 7.2
[Writing a Menu|, page 59, for more information.)

For example, the master menu for this manual looks like the following (but has many
more entries):

Omenu
* Copying Conditions:: Your rights.
* Overview:: Texinfo in brief.

Chapter 3: Beginning a Texinfo File 40

* Command and Variable Index::
* Concept Index::

@detailmenu
--— The Detailed Node Listing ---

Overview of Texinfo

* Reporting Bugs::

Beginning a Texinfo File
* Sample Beginning::

@end detailmenu
@end menu

3.7 Global Document Commands

Besides the basic commands mentioned in the previous sections, here are additional com-
mands which affect the document as a whole. They are generally all given before the Top
node, if they are given at all.

3.7.1 @documentdescription: Summary Text

When producing HTML output for a document, makeinfo writes a ‘<meta>’ element in the
‘<head>’ to give some idea of the content of the document. By default, this description is
the title of the document, taken from the @settitle command (see Section 3.2.4 [settitle],
page 30). To change this, use the @documentdescription environment, as in:

O@documentdescription
descriptive text.
@end documentdescription

This will produce the following output in the ‘<head>’ of the HTML:
<meta name=description content="descriptive text.">

@documentdescription must be specified before the first node of the document.

3.7.2 @setchapternewpage:

In an officially bound book, text is usually printed on both sides of the paper, chapters start
on right-hand pages, and right-hand pages have odd numbers. But in short reports, text
often is printed only on one side of the paper. Also in short reports, chapters sometimes
do not start on new pages, but are printed on the same page as the end of the preceding
chapter, after a small amount of vertical whitespace.

You can use the @setchapternewpage command with various arguments to specify
how TEX should start chapters and whether it should format headers for printing on one
or both sides of the paper (single-sided or double-sided printing).

Chapter 3: Beginning a Texinfo File 41

Write the @setchapternewpage command at the beginning of a line followed by its
argument.

For example, you would write the following to cause each chapter to start on a fresh
odd-numbered page:

O@setchapternewpage odd

You can specify one of three alternatives with the @setchapternewpage command:

Osetchapternewpage off
Cause TEX to typeset a new chapter on the same page as the last chapter, after
skipping some vertical whitespace. Also, cause TEX to format page headers for
single-sided printing.

Osetchapternewpage on
Cause TEX to start new chapters on new pages and to format page headers
for single-sided printing. This is the form most often used for short reports or
personal printing. This is the default.

O@setchapternewpage odd
Cause TEX to start new chapters on new, odd-numbered pages (right-handed
pages) and to typeset for double-sided printing. This is the form most often
used for books and manuals.

Texinfo does not have an @setchapternewpage even command, because there is no
printing tradition of starting chapters or books on an even-numbered page.

If you don’t like the default headers that @setchapternewpage sets, you can explicit
control them with the @headings command. See Section 3.4.6 [The @headings Command],
page 36.

At the beginning of a manual or book, pages are not numbered—for example, the title
and copyright pages of a book are not numbered. By convention, table of contents and
frontmatter pages are numbered with roman numerals and not in sequence with the rest of
the document.

Since an Info file does not have pages, the @setchapternewpage command has no effect
on it.

We recommend not including any @setchapternewpage command in your manual
sources at all, since the desired output is not intrinsic to the document. For a particu-
lar hard copy run, if you don’t want the default option (no blank pages, same headers on
all pages) use the ‘--texinfo’ option to texi2dvi to specify the output you want.

3.7.3 @paragraphindent: Paragraph Indenting

The Texinfo processors may insert whitespace at the beginning of the first line of each para-
graph, thereby indenting that paragraph. You can use the @paragraphindent command to
specify this indentation. Write an @paragraphindent command at the beginning of a line
followed by either ‘asis’ or a number:

O@paragraphindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).

Chapter 3: Beginning a Texinfo File 42

none
0 Omit all indentation.
n Indent by n space characters in Info output, by n ems in TEX.

The default value of indent is 3. @paragraphindent is ignored for HTML output.

It is best to write the @paragraphindent command before the end-of-header line at
the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See Section 3.2.2 [Start of Header], page 29.

A peculiarity of the texinfo-format-buffer and texinfo-format-region commands
is that they do not indent (nor fill) paragraphs that contain @w or @ commands.

3.7.4 @firstparagraphindent: Indenting After Headings

As you can see in the present manual, the first paragraph in any section is not indented
by default. Typographically, indentation is a paragraph separator, which means that
it is unnecessary when a new section begins. This indentation is controlled with the
@firstparagraphindent command:

@firstparagraphindent word

The first paragraph after a heading is indented according to the value of word:

none Prevents the first paragraph from being indented (default). This option is
ignored by makeinfo if @paragraphindent asis is in effect.

insert Include normal paragraph indentation. This respects the paragraph indentation
set by a @paragraphindent command (see Section 3.7.3 [paragraphindent],
page 41).

For HTML and XML output, the @firstparagraphindent setting is ignored.

It is best to write the @paragraphindent command before the end-of-header line at
the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See Section 3.2.2 [Start of Header], page 29.

3.7.5 Q@exampleindent: Environment Indenting

The Texinfo processors indent each line of @example and similar environments. You can
use the Gexampleindent command to specify this indentation. Write an @exampleindent
command at the beginning of a line followed by either ‘asis’ or a number:

Q@exampleindent indent

The indentation is according to the value of indent:

asis Do not change the existing indentation (not implemented in TEX).
0 Omit all indentation.
n Indent environments by n space characters in Info output, by n ems in TEX.

The default value of indent is 5. @exampleindent is ignored for HTML output.

It is best to write the @exampleindent command before the end-of-header line at
the beginning of a Texinfo file, so the region formatting commands indent paragraphs as
specified. See Section 3.2.2 [Start of Header|, page 29.

Chapter 3: Beginning a Texinfo File 43

3.8 Software Copying Permissions

If the Texinfo file has a section containing the “General Public License” and the distribution
information and a warranty disclaimer for the software that is documented, we recommend
placing this right after the ‘“Top’ node. The General Public License is very important to
Project GNU software. It ensures that you and others will continue to have a right to use
and share the software.

The copying and distribution information and the disclaimer are followed by an intro-
duction or else by the first chapter of the manual.

Although an introduction is not a required part of a Texinfo file, it is very helpful.
Ideally, it should state clearly and concisely what the file is about and who would be inter-
ested in reading it. In general, an introduction would follow the licensing and distribution
information, although sometimes people put it earlier in the document.

Chapter 4: Ending a Texinfo File 44

4 Ending a Texinfo File

The end of a Texinfo file should include commands to create indices, and the @bye command
to mark the last line to be processed.

For example:

@node Index
Qunnumbered Index

Oprintindex cp
Q@bye

4.1 Printing Indices and Menus

To print an index means to include it as part of a manual or Info file. This does not happen
automatically just because you use @cindex or other index-entry generating commands in
the Texinfo file; those just cause the raw data for the index to be accumulated. To generate
an index, you must include the @printindex command at the place in the document where
you want the index to appear. Also, as part of the process of creating a printed manual,
you must run a program called texindex (see Chapter 20 [Hardcopy]|, page 152) to sort the
raw data to produce a sorted index file. The sorted index file is what is actually used to
print the index.

Texinfo offers six separate types of predefined index, which suffice in most cases. See
Chapter 13 [Indices], page 105, for information on this, as well defining your own new indices,
combining indices, and, most importantly advice on writing the actual index entries. This
section focuses on printing indices, which is done with the @printindex command.

@printindex takes one argument, a two-letter index abbreviation. It reads the corre-
sponding sorted index file (for printed output), and formats it appropriately into an index.

The @printindex command does not generate a chapter heading for the index, since
different manuals have different needs. Consequently, you should precede the @printindex
command with a suitable section or chapter command (usually @appendix or @unnumbered)
to supply the chapter heading and put the index into the table of contents. Precede the
chapter heading with an @node line as usual.

For example:

Onode Variable Index
@unnumbered Variable Index

Oprintindex vr

Onode Concept Index
Qunnumbered Concept Index

Oprintindex cp
If you have more than one index, we recommend placing the concept index last.

e In printed output, @printindex produces a traditional two-column index, with dot
leaders between the index terms and page numbers.

Chapter 4: Ending a Texinfo File 45

e In Info output, @printindex produces a special menu containing the line number of
the entry, relative to the start of the node. Info readers can use this to go to the exact
line of an entry, not just the containing node. (Older Info readers will just go to the
node.) Here’s an example:

* First index entry: Top. (line 7)

The actual number of spaces is variable, to right-justify the line number; it’s been
reduced here to make the line fit in the printed manual.

e In plain text output, @printindex produces the same menu, but the line numbers are
relative to the start of the file, since that’s more convenient for that format.

e In HTML and Docbook output, @printindex produces links to the index entries.
e In XML output, it simply records the index to be printed.

It’s not possible to generate an index when writing to standard output; makeinfo
generates a warning in this case.

4.2 ©bye File Ending

An @bye command terminates Texinfo processing. None of the formatters read anything
following @bye. The @bye command should be on a line by itself.

If you wish, you may follow the @bye line with notes. These notes will not be formatted
and will not appear in either Info or a printed manual; it is as if text after @bye were within
@ignore ... @end ignore. Also, you may follow the @bye line with a local variables list for
Emacs. See Section 20.7 [Using Local Variables and the Compile Command], page 157, for
more information.

Chapter 5: Chapter Structuring 46

5 Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters, sections,
subsections, and subsubsections. These commands generate large headings; they also pro-
vide information for the table of contents of a printed manual (see Section 3.5 [Generating
a Table of Contents], page 37).

The chapter structuring commands do not create an Info node structure, so normally
you should put an @node command immediately before each chapter structuring command
(see Chapter 6 [Nodes], page 52). The only time you are likely to use the chapter structuring
commands without using the node structuring commands is if you are writing a document
that contains no cross references and will never be transformed into Info format.

It is unlikely that you will ever write a Texinfo file that is intended only as an Info
file and not as a printable document. If you do, you might still use chapter structuring
commands to create a heading at the top of each node—but you don’t need to.

5.1 Tree Structure of Sections

A Texinfo file is usually structured like a book with chapters, sections, subsections, and
the like. This structure can be visualized as a tree (or rather as an upside-down tree)
with the root at the top and the levels corresponding to chapters, sections, subsection, and
subsubsections.

Here is a diagram that shows a Texinfo file with three chapters, each of which has two
sections.

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

In a Texinfo file that has this structure, the beginning of Chapter 2 looks like this:
Onode Chapter 2, Chapter 3, Chapter 1, top
Q@chapter Chapter 2

The chapter structuring commands are described in the sections that follow; the @node
and @menu commands are described in following chapters. (See Chapter 6 [Nodes], page 52,
and see Chapter 7 [Menus|, page 59.)

5.2 Structuring Command Types

The chapter structuring commands fall into four groups or series, each of which contains
structuring commands corresponding to the hierarchical levels of chapters, sections, subsec-
tions, and subsubsections.

Chapter 5: Chapter Structuring 47

The four groups are the @chapter series, the Gunnumbered series, the @appendix series,
and the Gheading series.

Each command produces titles that have a different appearance on the printed page or
Info file; only some of the commands produce titles that are listed in the table of contents
of a printed book or manual.

e The @chapter and @appendix series of commands produce numbered or lettered entries
both in the body of a printed work and in its table of contents.

e The Gunnumbered series of commands produce unnumbered entries both in the body of
a printed work and in its table of contents. The @top command, which has a special use,
is a member of this series (see Section 5.3 [@top], page 47). An Qunnumbered section
should be associated with a node and be a normal part of the document structure.

e The Gheading series of commands produce simple unnumbered headings that do not
appear in a table of contents, are not associated with nodes, and cannot be cross-
referenced. The heading commands never start a new page.

e The @majorheading command is similar to @chapheading, except that it generates a
larger vertical whitespace before the heading.

e When an @setchapternewpage command says to do so, the @chapter, Qunnumbered,
and @appendix commands start new pages in the printed manual; the Gheading com-
mands do not.

Here are the four groups of chapter structuring commands:
No new page

Numbered Unnumbered Lettered /numbered Unnumbered
In contents In contents In contents Not in contents
Q@top @majorheading
Q@chapter @unnumbered @appendix @chapheading
@section @unnumberedsec @appendixsec @heading
Osubsection @unnumberedsubsec @appendixsubsec @subheading
@subsubsection @unnumberedsubsubsec @appendixsubsubsec @subsubheading
5.3 Qtop

The @top command is a special sectioning command that you use only after an ‘@node Top’
line at the beginning of a Texinfo file. The @top command tells the makeinfo formatter
which node is the ‘Top’ node, so it can use it as the root of the node tree if your manual uses
implicit node pointers. It has the same typesetting effect as @unnumbered (see Section 5.5
[@unnumbered and @appendix]|, page 48). For detailed information, see Section 6.3.6 [The
@top Command]|, page 57.

The @top node and its menu (if any) is conventionally wrapped in an @ifnottex
conditional so that it will appear only in Info and HTML output, not TEX.

5.4 Qchapter

@chapter identifies a chapter in the document. Write the command at the beginning of a
line and follow it on the same line by the title of the chapter.

For example, this chapter in this manual is entitled “Chapter Structuring”; the
@chapter line looks like this:

Chapter 5: Chapter Structuring 48

Ochapter Chapter Structuring

In TEX, the @chapter command creates a chapter in the document, specifying the
chapter title. The chapter is numbered automatically.

In Info, the @chapter command causes the title to appear on a line by itself, with a line
of asterisks inserted underneath. Thus, in Info, the above example produces the following
output:

Chapter Structuring
sk ok ok ok o kKoK ok ok o kKoK ok ok ok

Texinfo also provides a command @centerchap, which is analogous to @unnumbered,
but centers its argument in the printed output. This kind of stylistic choice is not usually
offered by Texinfo.

5.5 Qunnumbered and @appendix

Use the @unnumbered command to create a chapter that appears in a printed manual
without chapter numbers of any kind. Use the @appendix command to create an appendix
in a printed manual that is labelled by letter instead of by number.

For Info file output, the @unnumbered and @appendix commands are equivalent to
@chapter: the title is printed on a line by itself with a line of asterisks underneath. (See
Section 5.4 [@chapter], page 47.)

To create an appendix or an unnumbered chapter, write an @appendix or @unnumbered
command at the beginning of a line and follow it on the same line by the title, as you would
if you were creating a chapter.

5.6 @majorheading, @chapheading

The @majorheading and @chapheading commands put chapter-like headings in the body
of a document.

However, neither command causes TEX to produce a numbered heading or an entry in
the table of contents; and neither command causes TEX to start a new page in a printed
manual.

In TEX, an @majorheading command generates a larger vertical whitespace before the
heading than an @chapheading command but is otherwise the same.

In Info, the @Gmajorheading and @chapheading commands are equivalent to @chapter:
the title is printed on a line by itself with a line of asterisks underneath. (See Section 5.4
[@chapter], page 47.)

5.7 @section

In a printed manual, an @section command identifies a numbered section within a chapter.
The section title appears in the table of contents. In Info, an @section command provides
a title for a segment of text, underlined with ‘=’.

This section is headed with an @section command and looks like this in the Texinfo
file:

O@section @code{@@section}

Chapter 5: Chapter Structuring 49

To create a section, write the @section command at the beginning of a line and follow
it on the same line by the section title.

Thus,
@section This is a section
produces

This is a section

in Info.

5.8 OQunnumberedsec, @appendixsec, @heading

The Qunnumberedsec, @appendixsec, and @heading commands are, respectively, the un-
numbered, appendix-like, and heading-like equivalents of the @section command. (See
Section 5.7 [@section|, page 48.)

Ounnumberedsec
The @unnumberedsec command may be used within an unnumbered chapter or
within a regular chapter or appendix to provide an unnumbered section.

O@appendixsec

Oappendixsection
@appendixsection is a longer spelling of the @appendixsec command; the two
are synonymous.

Conventionally, the @appendixsec or @appendixsection command is used only
within appendices.

@heading You may use the @heading command anywhere you wish for a section-style
heading that will not appear in the table of contents.

5.9 The @subsection Command
Subsections are to sections as sections are to chapters. (See Section 5.7 [@section|, page 48.)
In Info, subsection titles are underlined with ‘~’. For example,
Osubsection This is a subsection
produces

This is a subsection

In a printed manual, subsections are listed in the table of contents and are numbered
three levels deep.

5.10 The @subsection-like Commands

The @unnumberedsubsec, @appendixsubsec, and @subheading commands are, respec-
tively, the unnumbered, appendix-like, and heading-like equivalents of the @subsection
command. (See Section 5.9 [@subsection], page 49.)

In Info, the @subsection-like commands generate a title underlined with hyphens. In
a printed manual, an @subheading command produces a heading like that of a subsection

Chapter 5: Chapter Structuring 50

except that it is not numbered and does not appear in the table of contents. Similarly, an
@unnumberedsubsec command produces an unnumbered heading like that of a subsection
and an Qappendixsubsec command produces a subsection-like heading labelled with a
letter and numbers; both of these commands produce headings that appear in the table of
contents.

5.11 The ‘subsub’ Commands

The fourth and lowest level sectioning commands in Texinfo are the ‘subsub’ commands.
They are:

O@subsubsection
Subsubsections are to subsections as subsections are to sections. (See Section 5.9
[@subsection], page 49.) In a printed manual, subsubsection titles appear in
the table of contents and are numbered four levels deep.

Ounnumberedsubsubsec
Unnumbered subsubsection titles appear in the table of contents of a printed
manual, but lack numbers. Otherwise, unnumbered subsubsections are the
same as subsubsections. In Info, unnumbered subsubsections look exactly like
ordinary subsubsections.

OGappendixsubsubsec
Conventionally, appendix commands are used only for appendices and are let-
tered and numbered appropriately in a printed manual. They also appear in the
table of contents. In Info, appendix subsubsections look exactly like ordinary
subsubsections.

O@subsubheading
The @subsubheading command may be used anywhere that you need a small
heading that will not appear in the table of contents. In Info, subsubheadings
look exactly like ordinary subsubsection headings.
In Info, ‘subsub’ titles are underlined with periods. For example,
O@subsubsection This is a subsubsection
produces

This is a subsubsection

5.12 @raisesections and @lowersections

The @raisesections and @lowersections commands implicitly raise and lower the hier-
archical level of following chapters, sections and the other sectioning commands.

That is, the @raisesections command changes sections to chapters, subsections to
sections, and so on. Conversely, the @lowersections command changes chapters to sec-
tions, sections to subsections, and so on. Thus, an @lowersections command cancels an
@raisesections command, and vice versa.

You can use @lowersections to include text written as an outer or standalone Texinfo
file in another Texinfo file as an inner, included file. Typical usage looks like this:

Chapter 5: Chapter Structuring 51

Q@lowersections
@include somefile.texi
@raisesections

(Without the @raisesections, all the subsequent sections in the document would be low-
ered.)

If the included file being lowered has a @top node, you’ll need to conditionalize its
inclusion with a flag (see Section 17.4.1 [set value], page 140).

Another difficulty can arise with documents that use the (recommended) feature of
makeinfo for implicitly determining node pointers. Since makeinfo must assume a hierar-
chically organized document to determine the pointers, you cannot just arbitrarily sprinkle
@raisesections and @lowersections commands in the document. The final result has
to have menus that take the raising and lowering into account. Therefore, as a practical
matter, you generally only want to raise or lower large chunks, usually in external files as
shown above.

Repeated use of the commands continue to raise or lower the hierarchical level a step
at a time. An attempt to raise above ‘chapter’ reproduces chapter commands; an attempt
to lower below ‘subsubsection’ reproduces subsubsection commands. Also, lowered subsub-
sections and raised chapters will not work with makeinfo’s feature of implicitly determining
node pointers, since the menu structure won’t be correct.

Write each @raisesections and @lowersections command on a line of its own.

Chapter 6: Nodes 52

6 Nodes

Nodes are the primary segments of a Texinfo file. They do not in and of themselves impose
a hierarchical or any other kind of structure on a file. Nodes contain node pointers that
name other nodes, and can contain menus which are lists of nodes. In Info, the movement
commands can carry you to a pointed-to node or to a node listed in a menu.

Node pointers and menus provide structure for Info files just as chapters, sections,
subsections, and the like, provide structure for printed books.

Because node names are used in cross-references, it is not desirable to casually change
them. Such name changes invalidate references from other manuals, from mail archives,
and so on.

6.1 Two Paths

The node and menu commands and the chapter structuring commands are technically
independent of each other:

e In Info, node and menu commands provide structure. The chapter structuring com-
mands generate headings with different kinds of underlining—asterisks for chapters,
hyphens for sections, and so on; they do nothing else.

e In TEX, the chapter structuring commands generate chapter and section numbers and
tables of contents. The node and menu commands provide information for cross refer-
ences; they do nothing else.

You can use node pointers and menus to structure an Info file any way you want; and
you can write a Texinfo file so that its Info output has a different structure than its printed
output. However, virtually all Texinfo files are written such that the structure for the Info
output corresponds to the structure for the printed output. It is neither convenient nor
understandable to the reader to do otherwise.

Generally, printed output is structured in a tree-like hierarchy in which the chapters
are the major limbs from which the sections branch out. Similarly, node pointers and menus
are organized to create a matching structure in the Info output.

6.2 Node and Menu Illustration

Here is a copy of the diagram shown earlier that illustrates a Texinfo file with three chapters,
each of which contains two sections.

The “root” is at the top of the diagram and the “leaves” are at the bottom. This is
how such a diagram is drawn conventionally; it illustrates an upside-down tree. For this
reason, the root node is called the ‘Top’ node, and ‘Up’ node pointers carry you closer to
the root.

Chapter 6: Nodes 53

Section Section Section Section Section Section

1.1 1.2 2.1 2.2 3.1 3.2
The fully-written command to start Chapter 2 would be this:
Onode Chapter 2, Chapter 3, Chapter 1, Top
@Qcomment mnode-name, next, previous, up

This @node line says that the name of this node is “Chapter 2”, the name of the ‘Next’
node is “Chapter 3”7, the name of the ‘Previous’ node is “Chapter 1”7, and the name of
the ‘Up’ node is “Top”. You can omit writing out these node names if your document
is hierarchically organized (see Section 6.4 [makeinfo Pointer Creation], page 57), but the
pointer relationships still obtain.

Note: Please Note: ‘Next’ refers to the next node at the same hierarchical level
in the manual, not necessarily to the next node within the Texinfo file. In the
Texinfo file, the subsequent node may be at a lower level—a section-level node
most often follows a chapter-level node, for example. ‘Next’ and ‘Previous’ refer
to nodes at the same hierarchical level. (The ‘Top’ node contains the exception
to this rule. Since the ‘Top’ node is the only node at that level, ‘Next’ refers
to the first following node, which is almost always a chapter or chapter-level
node.)

To go to Sections 2.1 and 2.2 using Info, you need a menu inside Chapter 2. (See
Chapter 7 [Menus|, page 59.) You would write the menu just before the beginning of
Section 2.1, like this:

Omenu
* Sect. 2.1:: Description of this section.
* Sect. 2.2::

@end menu

Write the node for Sect. 2.1 like this:

O@node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2
Qcomment node-name, next, previous, up

In Info format, the ‘Next’ and ‘Previous’ pointers of a node usually lead to other nodes
at the same level—from chapter to chapter or from section to section (sometimes, as shown,
the ‘Previous’ pointer points up); an ‘Up’ pointer usually leads to a node at the level above
(closer to the ‘Top’ node); and a ‘Menu’ leads to nodes at a level below (closer to ‘leaves’).
(A cross reference can point to a node at any level; see Chapter 8 [Cross References],
page 63.)

Usually, an @node command and a chapter structuring command are used in sequence,
along with indexing commands. (You may follow the @node line with a comment line that
reminds you which pointer is which.)

Chapter 6: Nodes 54

Here is the beginning of the chapter in this manual called “Ending a Texinfo File”. This
shows an @node line followed by a comment line, an @chapter line, and then by indexing
lines.

@node Ending a File, Structuring, Beginning a File, Top
Q@Qcomment node-name, next, previous, up
@chapter Ending a Texinfo File

Ocindex Ending a Texinfo file

Ocindex Texinfo file ending

Ocindex File ending

6.3 The G@node Command

A node is a segment of text that begins at an @node command and continues until the next
@node command. The definition of node is different from that for chapter or section. A
chapter may contain sections and a section may contain subsections; but a node cannot
contain subnodes; the text of a node continues only until the next @node command in the
file. A node usually contains only one chapter structuring command, the one that follows the
@node line. On the other hand, in printed output nodes are used only for cross references, so
a chapter or section may contain any number of nodes. Indeed, a chapter usually contains
several nodes, one for each section, subsection, and subsubsection.

To create a node, write an @node command at the beginning of a line, and follow it
with up to four arguments, separated by commas, on the rest of the same line. The first
argument is required; it is the name of this node. The subsequent arguments are the names
of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order, and may be omitted if your
Texinfo document is hierarchically organized (see Section 6.4 [makeinfo Pointer Creation],
page 57).

You may insert spaces before each name if you wish; the spaces are ignored. You must
write the name of the node and (if present) the names of the ‘Next’, ‘Previous’, and ‘Up’
pointers all on the same line. Otherwise, the formatters fail. (See Info file ‘info’, node
‘Top’, for more information about nodes in Info.)

Usually, you write one of the chapter-structuring command lines immediately after an
@node line—for example, an @section or @subsection line. (See Section 5.2 [Structuring
Command Types|, page 46.)

Note: The GNU Emacs Texinfo mode updating commands work only with
Texinfo files in which @node lines are followed by chapter structuring lines. See
Section 2.5.2 [Updating Requirements|, page 21.

TEX uses @node lines to identify the names to use for cross references. For this reason,
you must write @node lines in a Texinfo file that you intend to format for printing, even if
you do not intend to format it for Info. (Cross references, such as the one at the end of this
sentence, are made with @xref and related commands; see Chapter 8 [Cross References],
page 63.)

6.3.1 Choosing Node and Pointer Names

The name of a node identifies the node. The pointers enable you to reach other nodes and
consist simply of the names of those nodes.

Chapter 6: Nodes 55

Normally, a node’s ‘Up’ pointer contains the name of the node whose menu mentions
that node. The node’s ‘Next’ pointer contains the name of the node that follows that node
in that menu and its ‘Previous’ pointer contains the name of the node that precedes it in
that menu. When a node’s ‘Previous’ node is the same as its ‘Up’ node, both node pointers
name the same node.

Usually, the first node of a Texinfo file is the ‘“Top’ node, and its ‘Up’ and ‘Previous’
pointers point to the ‘dir’ file, which contains the main menu for all of Info.

The ‘Top’ node itself contains the main or master menu for the manual. Also, it is
helpful to include a brief description of the manual in the ‘Top’ node. See Section 6.3.5
[First Node], page 56, for information on how to write the first node of a Texinfo file.

Even when you explicitly specify all pointers, that does not mean you can write the
nodes in the Texinfo source file in an arbitrary order! Because TEX processes the file
sequentially, irrespective of node pointers, you must write the nodes in the order you wish
them to appear in the printed output.

6.3.2 How to Write an @node Line

The easiest way to write an @node line is to write @node at the beginning of a line and then
the name of the node, like this:

@Onode node—-name

If you are using GNU Emacs, you can use the update node commands provided by
Texinfo mode to insert the names of the pointers; or you can leave the pointers out of the
Texinfo file and let makeinfo insert node pointers into the Info file it creates. (See Chapter 2
[Texinfo Mode], page 15, and Section 6.4 [makeinfo Pointer Creation], page 57.)

Alternatively, you can insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you
do this, you may find it helpful to use the Texinfo mode keyboard command C-c C-c n.
This command inserts ‘@node’ and a comment line listing the names of the pointers in their
proper order. The comment line helps you keep track of which arguments are for which
pointers. This comment line is especially useful if you are not familiar with Texinfo.

The template for a fully-written-out node line with ‘Next’, ‘Previous’, and ‘Up’ pointers
looks like this:

Onode node-name, next, previous, up

If you wish, you can ignore @node lines altogether in your first draft and then use the
texinfo-insert-node-lines command to create @node lines for you. However, we do not
recommend this practice. It is better to name the node itself at the same time that you
write a segment so you can easily make cross references. A large number of cross references
are an especially important feature of a good Info file.

After you have inserted an @node line, you should immediately write an @-command
for the chapter or section and insert its name. Next (and this is important!), put in several
index entries. Usually, you will find at least two and often as many as four or five ways of
referring to the node in the index. Use them all. This will make it much easier for people
to find the node.

6.3.3 @node Line Tips

Here are three suggestions:

Chapter 6: Nodes 56

Try to pick node names that are informative but short.

In the Info file, the file name, node name, and pointer names are all inserted on one
line, which may run into the right edge of the window. (This does not cause a problem
with Info, but is ugly.)

Try to pick node names that differ from each other near the beginnings of their names.
This way, it is easy to use automatic name completion in Info.

By convention, node names are capitalized just as they would be for section or chapter
titles—initial and significant words are capitalized; others are not.

6.3.4 @node Line Requirements

Here are several requirements for @node lines:

All the node names for a single Info file must be unique.

Duplicates confuse the Info movement commands. This means, for example, that if
you end every chapter with a summary, you must name each summary node differently.
You cannot just call each one “Summary”. You may, however, duplicate the titles of
chapters, sections, and the like. Thus you can end each chapter in a book with a section
called “Summary”, so long as the node names for those sections are all different.

A pointer name must be the name of a node.

The node to which a pointer points may come before or after the node containing the
pointer.

@-commands in node names are not allowed. This includes punctuation characters that
are escaped with a ‘@, such as @ and {, and accent commands such as ‘@’’. (For a few
cases when this is useful, Texinfo has limited support for using @-commands in node
names; see Section 21.1.4 [Pointer Validation|, page 167.) Perhaps this limitation will
be removed some day.
Unfortunately, you cannot use periods, commas, colons or parentheses within a node
name; these confuse the Texinfo processors. Perhaps this limitation will be removed
some day, too.
For example, the following is a section title in this manual:

Q@code{@@unnumberedsec}, @code{@@appendixsec}, @code{@@heading}

But the corresponding node name lacks the commas and the @’s:

unnumberedsec appendixsec heading
Case is significant in node names.

Spaces before and after names on the ‘@node’ line are ignored, but spaces “inside” a
name are significant. For example:

@node foo bar,
@node foo bar ,
@node foo bar ,

all define the same node, ‘foo bar’. References to the node should all use that name,
without the leading or trailing spaces, but with the internal spaces.

6.3.5 The First Node

The first node of a Texinfo file is the Top node, except in an included file (see Appendix D
[Include Files|, page 215). The Top node should contain a short summary, copying permis-

Chapter 6: Nodes 57

sions, and a master menu. See Section 3.6 [The Top Node|, page 38, for more information
on the Top node contents and examples.

Here is a description of the node pointers to be used in the Top node:

e The Top node (which must be named ‘top’ or ‘Top’) should have as its ‘Up’ node the
name of a node in another file, where there is a menu that leads to this file. Specify
the file name in parentheses.

Usually, all Info files are installed in the same Info directory tree; in this case, use
‘(dir)’ as the parent of the Top node; this is short for ‘(dir)top’, and specifies the
Top node in the ‘dir’ file, which contains the main menu for the Info system as a whole.

e On the other hand, do not define the ‘Previous’ node of the Top node to be ‘(dir)’, as
it causes confusing behavior for users: if you are in the Top node and hits to go
backwards, you wind up in the middle of the some other entry in the ‘dir’ file, which
has nothing to do with what you were reading.

e The ‘Next’ node of the Top node should be the first chapter in your document.

See Section 21.2 [Installing an Info File], page 171, for more information about installing
an Info file in the ‘info’ directory.

For concreteness, here is an example with explicit pointers (which you can maintain
automatically with the texinfo mode commands):

Or you can leave the pointers off entirely and let the tools implicitly define them. This
is recommended. Thus:

Gnode Top

6.3.6 The @top Sectioning Command

A special sectioning command, @top should be used with the @node Top line. The @top
sectioning command tells makeinfo that it marks the ‘Top’ node in the file. It provides
the information that makeinfo needs to insert node pointers automatically. Write the @top
command at the beginning of the line immediately following the @node Top line. Write the
title on the remaining part of the same line as the @top command.

In Info, the @top sectioning command causes the title to appear on a line by itself,
with a line of asterisks inserted underneath, as other sectioning commands do.

In TEX and texinfo-format-buffer, the @top sectioning command is merely a syn-
onym for @unnumbered. Neither of these formatters require an @top command, and do
nothing special with it. You can use @chapter or @unnumbered after the @node Top line
when you use these formatters. Also, you can use @chapter or @unnumbered when you use
the Texinfo updating commands to create or update pointers and menus.

Thus, in practice, a Top node starts like this:

OGnode Top
@top Your Manual Title

6.4 Creating Pointers with makeinfo

The makeinfo program has a feature for automatically determining node pointers for a
hierarchically organized document.

Chapter 6: Nodes 58

When you take advantage of this feature, you do not need to write the ‘Next’, ‘Previous’,
and ‘Up’ pointers after the name of a node. However, you must write a sectioning command,
such as @chapter or @section, on the line immediately following each truncated @node line
(except that comment lines may intervene).

In addition, you must follow the ‘Top’ @node line with a line beginning with @top to
mark the ‘Top’ node in the file. See Section 5.3 [@top], page 47.

Finally, you must write the name of each node (except for the ‘Top’ node) in a menu
that is one or more hierarchical levels above the node’s hierarchical level.

This implicit node pointer insertion feature in makeinfo relieves you from the need to
update menus and pointers manually or with Texinfo mode commands. (See Section 2.5
[Updating Nodes and Menus]|, page 18.)

In most cases, you will want to take advantage of this feature and not redundantly
specify node pointers. However, Texinfo documents are not required to be organized hier-
archically or in fact to contain sectioning commands at all (for example, if you never intend
the document to be printed). The special procedure for handling the short text before a
menu (see Chapter 7 [Menus|, page 59) also disables this feature, for that group of nodes.
In those cases, you will need to explicitly specify the pointers.

6.5 @anchor: Defining Arbitrary Cross-reference Targets

An anchor is a position in your document, labeled so that cross-references can refer to it,
just as they can to nodes. You create an anchor with the @anchor command, and give the
label as a normal brace-delimited argument. For example:

This marks the @anchor{x-spotl}spot.

@xref{x-spot,,the spot}.
produces:

This marks the spot.

See [the spot], page 1.

As you can see, the @anchor command itself produces no output. This example defines
an anchor ‘x-spot’ just before the word ‘spot’. You can refer to it later with an @xref or
other cross-reference command, as shown. See Chapter 8 [Cross References], page 63, for
details on the cross-reference commands.

It is best to put @anchor commands just before the position you wish to refer to; that
way, the reader’s eye is led on to the correct text when they jump to the anchor. You can
put the @anchor command on a line by itself if that helps readability of the source. Spaces
are always ignored after @anchor.

Anchor names and node names may not conflict. Anchors and nodes are given similar
treatment in some ways; for example, the goto-node command in standalone Info takes
either an anchor name or a node name as an argument. (See section “goto-node” in GNU
Info.)

Chapter 7: Menus 59

7 Menus

Menus contain pointers to subordinate nodes. In online output, you use menus to go to
such nodes. Menus have no effect in printed manuals and do not appear in them.

A node with a menu should not contain much text. If you find yourself writing a lot of
before a menu, we generally recommend moving most of the text into a new subnode—all
but a paragraph or two. Otherwise, a reader with a terminal that displays only a few lines
may miss the menu and its associated text. As a practical matter, it is best to locate a
menu within 20 or so lines of the beginning of the node.

7.1 Menu Location

A menu must be located at the end of a node, without any regular text or additional
commands between the @end menu and the beginning of the next node. (As a consequence,
there may be at most one menu in a node.)

This is actually a useful restriction, since a reader who uses the menu could easily miss
any such text. Technically, it is necessary because in Info format, there is no marker for the
end of a menu, so Info-reading programs would have no way to know when the menu ends
and normal text resumes.

Technically, menus can carry you to any node, regardless of the structure of the docu-
ment; even to nodes in a different Info file. However, we do not recommend ever making use
of this, because the makeinfo implicit pointer creation feature (see Section 6.4 [makeinfo
Pointer Creation], page 57) and GNU Emacs Texinfo mode updating commands work only
to create menus of subordinate nodes in a hierarchically structured document. Instead, use
cross references to refer to arbitrary nodes.

In the past, we recommended using a ‘@heading’ command within an @ifinfo con-
ditional instead of the normal sectioning commands after a very short node with a menu.
This had the advantage of making the printed output look better, because there was no very
short text between two headings on the page. But aside from not working with makeinfo’s
implicit pointer creation, it also makes the XML output incorrect, since it does not reflect
the true document structure. So, unfortunately we can no longer recommend this.

7.2 Writing a Menu

A menu consists of an @menu command on a line by itself followed by menu entry lines or
menu comment lines and then by an @end menu command on a line by itself.

A menu looks like this:

Gmenu
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.
Q@end menu

In a menu, every line that begins with an ‘* ’ is a menu entry. (Note the space after
the asterisk.) A line that does not start with an ‘* ’ may also appear in a menu. Such

Chapter 7: Menus 60

a line is not a menu entry but is a menu comment line that appears in the Info file. In
the example above, the line ‘Larger Units of Text’ is a menu comment line; the two lines
starting with ‘* ’ are menu entries. Space characters in a menu are preserved as-is; this
allows you to format the menu as you wish.

7.3 The Parts of a Menu

A menu entry has three parts, only the second of which is required:
1. The menu entry name (optional).
2. The name of the node (required).
3. A description of the item (optional).

The template for a menu entry looks like this:
* menu-entry-name: node-name. description

Follow the menu entry name with a single colon and follow the node name with tab,
comma, period, or newline.

In Info, a user selects a node with the m (Info-menu) command. The menu entry name
is what the user types after the m command.

The third part of a menu entry is a descriptive phrase or sentence. Menu entry names
and node names are often short; the description explains to the reader what the node
is about. A useful description complements the node name rather than repeats it. The
description, which is optional, can spread over two or more lines; if it does, some authors
prefer to indent the second line while others prefer to align it with the first (and all others).
It’s up to you.

7.4 Less Cluttered Menu Entry

When the menu entry name and node name are the same, you can write the name imme-
diately after the asterisk and space at the beginning of the line and follow the name with
two colons.

For example, write

* Name:: description
instead of
* Name: Name. description

You should use the node name for the menu entry name whenever possible, since it
reduces visual clutter in the menu.

7.5 A Menu Example

A menu looks like this in Texinfo:

Omenu
* menu entry name: Node name. A short description.
* Node name:: This form is preferred.

@end menu

Chapter 7: Menus 61

This produces:

* menu:
* menu entry name: Node name. A short description.
* Node name:: This form is preferred.

Here is an example as you might see it in a Texinfo file:

Omenu
Larger Units of Text

* Files:: A1l about handling files.
* Multiples: Buffers. Multiple buffers; editing
several files at once.
@end menu
This produces:
* menu:
Larger Units of Text

* Files:: A1l about handling files.
* Multiples: Buffers. Multiple buffers; editing
several files at once.

In this example, the menu has two entries. ‘Files’ is both a menu entry name and the
name of the node referred to by that name. ‘Multiples’ is the menu entry name; it refers
to the node named ‘Buffers’. The line ‘Larger Units of Text’ is a comment; it appears
in the menu, but is not an entry.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names
of nodes in the same Info file (see Section 7.6 [Referring to Other Info Files|, page 61).

7.6 Referring to Other Info Files

You can create a menu entry that enables a reader in Info to go to a node in another Info
file by writing the file name in parentheses just before the node name. In this case, you
should use the three-part menu entry format, which saves the reader from having to type
the file name.

The format looks like this:

Omenu

* first-entry-name: (filename)nodename. description

* second-entry-name : (filename)second-node. description

Q@end menu

For example, to refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs
Manual, you would write a menu like this:

Gmenu

* Qutlining: (emacs)Outline Mode. The major mode for
editing outlines.

* Rebinding: (emacs)Rebinding. How to redefine the
meaning of a key.

@end menu

Chapter 7: Menus 62

If you do not list the node name, but only name the file, then Info presumes that you
are referring to the ‘Top’ node.

The ‘dir’ file that contains the main menu for Info has menu entries that list only file
names. These take you directly to the ‘Top’ nodes of each Info document. (See Section 21.2
[Installing an Info File|, page 171.)

For example:

* Info: (info). Documentation browsing system.
* Emacs: (emacs). The extensible, self-documenting
text editor.
(The ‘dir’ top level directory for the Info system is an Info file, not a Texinfo file, but a
menu entry looks the same in both types of file.)
The GNU Emacs Texinfo mode menu updating commands only work with nodes within

the current buffer, so you cannot use them to create menus that refer to other files. You
must write such menus by hand.

Chapter 8: Cross References 63

8 Cross References

Cross references are used to refer the reader to other parts of the same or different Texinfo
files. In Texinfo, nodes and anchors are the places to which cross references can refer.

8.1 What References Are For

Often, but not always, a printed document should be designed so that it can be read
sequentially. People tire of flipping back and forth to find information that should be
presented to them as they need it.

However, in any document, some information will be too detailed for the current con-
text, or incidental to it; use cross references to provide access to such information. Also,
an online help system or a reference manual is not like a novel; few read such documents in
sequence from beginning to end. Instead, people look up what they need. For this reason,
such creations should contain many cross references to help readers find other information
that they may not have read.

In a printed manual, a cross reference results in a page reference, unless it is to another
manual altogether, in which case the cross reference names that manual.

In Info, a cross reference results in an entry that you can follow using the Info ‘f’
command. (See Info file ‘info’, node ‘Help-Xref’.)

The various cross reference commands use nodes (or anchors, see Section 6.5 [@anchor],
page 58) to define cross reference locations. This is evident in Info, in which a cross reference
takes you to the specified location. TEX also uses nodes to define cross reference locations,
but the action is less obvious. When TEX generates a DVI file, it records each node’s page
number and uses the page numbers in making references. Thus, if you are writing a manual
that will only be printed, and will not be used online, you must nonetheless write @node
lines to name the places to which you make cross references.

8.2 Different Cross Reference Commands

There are four different cross reference commands:

Oxref Used to start a sentence in the printed manual saying ‘See ...’ or an Info
cross-reference saying ‘*Note name : node.’.

Qref Used within or, more often, at the end of a sentence; same as @xref for Info;
produces just the reference in the printed manual without a preceding ‘See’.

Opxref Used within parentheses to make a reference that suits both an Info file and a
printed book. Starts with a lower case ‘see’ within the printed manual. (‘p’ is
for ‘parenthesis’.)

@inforef Used to make a reference to an Info file for which there is no printed manual.

(The @cite command is used to make references to books and manuals for which there is
no corresponding Info file and, therefore, no node to which to point. See Section 9.1.13
[@cite], page 79.)

Chapter 8: Cross References 64

8.3 Parts of a Cross Reference

A cross reference command requires only one argument, which is the name of the node
to which it refers. But a cross reference command may contain up to four additional
arguments. By using these arguments, you can provide a cross reference name for Info, a
topic description or section title for the printed output, the name of a different Info file,
and the name of a different printed manual.

Here is a simple cross reference example:
O@xref{Node name}.
which produces
*Note Node name::.
and
See Section nnn [Node name], page ppp.
Here is an example of a full five-part cross reference:

@xref{Node name, Cross Reference Name, Particular Topic,
info-file-name, A Printed Manual}, for details.

which produces

*Note Cross Reference Name: (info-file—-name)Node name,
for details.

in Info and
See section “Particular Topic” in A Printed Manual, for details.
in a printed book.
The five possible arguments for a cross reference are:

1. The node or anchor name (required). This is the location to which the cross reference
takes you. In a printed document, the location of the node provides the page reference
only for references within the same document.

2. The cross reference name for the Info reference, if it is to be different from the node
name. If you include this argument, it becomes the first part of the cross reference. It
is usually omitted.

3. A topic description or section name. Often, this is the title of the section. This is used
as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the Info file in which the reference is located, if it is different from the
current file. You need not include any ‘.info’ suffix on the file name, since Info readers
try appending it automatically.

5. The name of a printed manual from a different Texinfo file.

The template for a full five argument cross reference looks like this:

@xref{node-name, cross-reference-name, title-or-topic,
info-file-name, printed-manual-title}.
Cross references with one, two, three, four, and five arguments are described separately
following the description of @xref.

Write a node name in a cross reference in exactly the same way as in the @node line,
including the same capitalization; otherwise, the formatters may not find the reference.

Chapter 8: Cross References 65

You can write cross reference commands within a paragraph, but note how Info and
TEX format the output of each of the various commands: write @xref at the beginning of
a sentence; write @pxref only within parentheses, and so on.

8.4 Oxref

The @xref command generates a cross reference for the beginning of a sentence. The Info
formatting commands convert it into an Info cross reference, which the Info ‘£’ command
can use to bring you directly to another node. The TEX typesetting commands convert it
into a page reference, or a reference to another book or manual.

8.4.1 What a Reference Looks Like and Requires

Most often, an Info cross reference looks like this:
*Note node-name::.
or like this
*Note cross-reference-name: node-name.
In TEX, a cross reference looks like this:
See Section section-number [node-name|, page page.
or like this
See Section section-number [title-or-topic|, page page.

The @xref command does not generate a period or comma to end the cross reference
in either the Info file or the printed output. You must write that period or comma yourself;
otherwise, Info will not recognize the end of the reference. (The @pxref command works
differently. See Section 8.7 [@pxref]|, page 70.)

Caution: A period or comma must follow the closing brace of an @xref. It is
required to terminate the cross reference. This period or comma will appear in
the output, both in the Info file and in the printed manual.

@xref must refer to an Info node by name. Use @node to define the node (see Sec-
tion 6.3.2 [Writing a Node|, page 55).

@xref is followed by several arguments inside braces, separated by commas. Whitespace
before and after these commas is ignored.

A cross reference requires only the name of a node; but it may contain up to four addi-
tional arguments. Each of these variations produces a cross reference that looks somewhat
different.

Note: Commas separate arguments in a cross reference; avoid including them
in the title or other part lest the formatters mistake them for separators.

8.4.2 Oxref with One Argument

The simplest form of @xref takes one argument, the name of another node in the same
Info file. The Info formatters produce output that the Info readers can use to jump to the
reference; TEX produces output that specifies the page and section number for you.

For example,
@xref{Tropical Storms}.

produces

Chapter 8: Cross References 66

*Note Tropical Storms::.
and
See Section 3.1 [Tropical Storms], page 24.
(Note that in the preceding example the closing brace is followed by a period.)
You can write a clause after the cross reference, like this:
O@xref{Tropical Storms}, for more info.
which produces
*Note Tropical Storms::, for more info.
and
See Section 3.1 [Tropical Storms], page 24, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by
the clause, which is followed by a period.)

8.4.3 @xref with Two Arguments

With two arguments, the second is used as the name of the Info cross reference, while the
first is still the name of the node to which the cross reference points.

The template is like this:

@xref{node-name, cross-reference-name}.
For example,

Oxref{Electrical Effects, Lightning}.
produces:

*Note Lightning: Electrical Effects.
and

See Section 5.2 [Electrical Effects], page 57.

(Note that in the preceding example the closing brace is followed by a period; and that the
node name is printed, not the cross reference name.)

You can write a clause after the cross reference, like this:
Oxref{Electrical Effects, Lightning}, for more info.
which produces
*Note Lightning: Electrical Effects, for more info.
and
See Section 5.2 [Electrical Effects], page 57, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by
the clause, which is followed by a period.)

8.4.4 Oxref with Three Arguments

A third argument replaces the node name in the TEX output. The third argument should
be the name of the section in the printed output, or else state the topic discussed by that
section. Often, you will want to use initial upper case letters so it will be easier to read
when the reference is printed. Use a third argument when the node name is unsuitable
because of syntax or meaning.

Chapter 8: Cross References 67

Remember to avoid placing a comma within the title or topic section of a cross reference,
or within any other section. The formatters divide cross references into arguments according
to the commas; a comma within a title or other section will divide it into two arguments. In
a reference, you need to write a title such as “Clouds, Mist, and Fog” without the commas.

Also, remember to write a comma or period after the closing brace of an @xref to
terminate the cross reference. In the following examples, a clause follows a terminating
comma.

The template is like this:
O@xref{node-name, cross-reference-name, title-or-topic}.
For example,

Oxref{Electrical Effects, Lightning, Thunder and Lightning},
for details.

produces

*Note Lightning: Electrical Effects, for details.
and

See Section 5.2 [Thunder and Lightning], page 57, for details.

If a third argument is given and the second one is empty, then the third argument
serves both. (Note how two commas, side by side, mark the empty second argument.)

Oxref{Electrical Effects, , Thunder and Lightning},
for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.
and

See Section 5.2 [Thunder and Lightning], page 57, for details.

As a practical matter, it is often best to write cross references with just the first
argument if the node name and the section title are the same, and with the first and third
arguments if the node name and title are different.

Here are several examples from The GNU Awk User’s Guide:

@xref{Sample Program}.

@xref{Glossary’.

Oxref{Case-sensitivity, ,Case-sensitivity in Matching}.

@xref{Close Output, , Closing Output Files and Pipes},
for more information.

@xref{Regexp, , Regular Expressions as Patterns}.

8.4.5 @xref with Four and Five Arguments

In a cross reference, a fourth argument specifies the name of another Info file, different from
the file in which the reference appears, and a fifth argument specifies its title as a printed
manual.

Remember that a comma or period must follow the closing brace of an @xref command
to terminate the cross reference. In the following examples, a clause follows a terminating
comma.

Chapter 8: Cross References 68

The template is:

©xref{node-name, cross-reference-name, title-or-topic,
info-file-name, printed-manual-title}.

For example,

O@xref{Electrical Effects, Lightning, Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

produces

xNote Lightning: (weather)Electrical Effects, for details.
The name of the Info file is enclosed in parentheses and precedes the name of the node.
In a printed manual, the reference looks like this:

See section “Thunder and Lightning” in An Introduction to Meteorology, for
details.

The title of the printed manual is typeset in italics; and the reference lacks a page number
since TEX cannot know to which page a reference refers when that reference is to another
manual.

Often, you will leave out the second argument when you use the long version of @xref.
In this case, the third argument, the topic description, will be used as the cross reference
name in Info.

The template looks like this:

@xref{node-name, , title-or-topic, info-file-name,
printed-manual-title}, for details.

which produces

xNote title-or-topic: (info-file-name)node-name, for details.
and

See section title-or-topic in printed-manual-title, for details.
For example,

O@xref{Electrical Effects, , Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

produces

*Note Thunder and Lightning: (weather)Electrical Effects,
for details.

and

See section “Thunder and Lightning” in An Introduction to Meteorology, for
details.

On rare occasions, you may want to refer to another Info file that is within a single
printed manual—when multiple Texinfo files are incorporated into the same TEX run but
make separate Info files. In this case, you need to specify only the fourth argument, and
not the fifth.

Chapter 8: Cross References 69

8.5 Naming a ‘Top’ Node

In a cross reference, you must always name a node. This means that in order to refer to a
whole manual, you must identify the ‘Top’ node by writing it as the first argument to the
@xref command. (This is different from the way you write a menu entry; see Section 7.6
[Referring to Other Info Files], page 61.) At the same time, to provide a meaningful section
topic or title in the printed cross reference (instead of the word ‘Top’), you must write an
appropriate entry for the third argument to the @xref command.

Thus, to make a cross reference to The GNU Make Manual, write:
@xref{Top, , Overview, make, The GNU Make Manual}.
which produces
xNote Overview: (make)Top.
and
See section “Overview” in The GNU Make Manual.

In this example, ‘Top’ is the name of the first node, and ‘Overview’ is the name of the first
section of the manual.

8.6 Qref

@ref is nearly the same as @xref except that it does not generate a ‘See’ in the printed
output, just the reference itself. This makes it useful as the last part of a sentence.

For example,

For more information, see @ref{Hurricanes}.
produces (in Info):

For more information, see *Note Hurricanes::.
and (in printed output):

For more information, see Section 8.2 [Hurricanes|, page 123.

The @ref command sometimes tempts writers to express themselves in a manner that
is suitable for a printed manual but looks awkward in the Info format. Bear in mind that
your audience will be using both the printed and the Info format. For example:

Sea surges are described in @ref{Hurricanes}.
looks ok in the printed output:

Sea surges are described in Section 6.7 [Hurricanes|, page 72.
but is awkward to read in Info:

Sea surges are described in *Note Hurricanes::.

Caution: You should write a period or comma immediately after an @ref com-
mand with two or more arguments. Otherwise, Info will generate a (grammat-
ically incorrect) period, just so the cross-reference doesn’t fail completely.

As a general rule, you should write a period or comma after every @ref command.
This works best in both the printed and the Info output.

Chapter 8: Cross References 70

8.7 Qpxref

The parenthetical reference command, @pxref, is nearly the same as @xref, but you use
it only inside parentheses and you do mot type a comma or period after the command’s
closing brace. The command differs from @xref in two ways:

1. TEX typesets the reference for the printed manual with a lower case ‘see’ rather than
an upper case ‘See’.

2. The Info formatting commands automatically end the reference with a closing colon or
period.

Because one type of formatting automatically inserts closing punctuation and the other
does not, you should use @pxref only inside parentheses as part of another sentence. Also,
you yourself should not insert punctuation after the reference, as you do with @xref.

@pxref is designed so that the output looks right and works right between parentheses
both in printed output and in an Info file. In a printed manual, a closing comma or period
should not follow a cross reference within parentheses; such punctuation is wrong. But in an
Info file, suitable closing punctuation must follow the cross reference so Info can recognize
its end. @pxref spares you the need to use complicated methods to put a terminator into
one form of the output and not the other.

With one argument, a parenthetical cross reference looks like this:
. storms cause flooding (@pxref{Hurricanes})
which produces
. storms cause flooding (*Note Hurricanes::)
and
. storms cause flooding (see Section 6.7 [Hurricanes|, page 72) ...
With two arguments, a parenthetical cross reference has this template:
(@pxref{node-name, cross-reference-namel)
which produces
(*Note cross-reference-name: node-name.)
and
. (see Section nnn [node-name|, page ppp) . . .

@pxref can be used with up to five arguments just like @xref (see Section 8.4 [@xref],
page 65).

Caution: Use @pxref only as a parenthetical reference. Do not try to use
@pxref as a clause in a sentence. It will look bad in either the Info file, the
printed output, or both.

Parenthetical cross references look best at the ends of sentences. Although they tech-
nically work in the middle of a sentence, that location breaks up the flow of reading.

Chapter 8: Cross References 71

8.8 Q@inforef

@inforef is used for cross references to Info files for which there are no printed manuals.
Even in a printed manual, @inforef generates a reference directing the user to look in an

Info file.
The command takes either two or three arguments, in the following order:

1. The node name.

2. The cross reference name (optional).

3. The Info file name.
Separate the arguments with commas, as with @xref. Also, you must terminate the refer-
ence with a comma or period after the ‘}’, as you do with @xref.
The template is:

@inforef{node-name, cross-reference-name, info-file-namel,

Thus,

@inforef{Advanced, Advanced Info commands, info},
for more information.

produces

*Note Advanced Info commands: (info)Advanced,
for more information.

and

See Info file ‘info’, node ‘Advanced’, for more information.
Similarly,

@inforef{Advanced, , info}, for more information.
produces

*Note (info)Advanced::, for more information.
and

See Info file ‘info’, node ‘Advanced’, for more information.

The converse of @inforef is @cite, which is used to refer to printed works for which
no Info form exists. See Section 9.1.13 [@cite], page 79.

8.9 @url, Quref{url[, text][, replacement]}

@uref produces a reference to a uniform resource locator (url). It takes one mandatory
argument, the url, and two optional arguments which control the text that is displayed. In
HTML output, @uref produces a link you can follow.

@url is a synonym for @uref. Originally, @url had the meaning of @indicateurl (see
Section 9.1.15 [@indicateurl], page 80), but in actual practice it was misused the vast
majority of the time. So we’ve changed the definitions.

The second argument, if specified, is the text to display (the default is the url itself);
in Info and DVI output, but not in HTML output, the url is also output.

The third argument, if specified, is the text to display, but in this case the url is not
output in any format. This is useful when the text is already sufficiently referential, as in
a man page. If the third argument is given, the second argument is ignored.

Chapter 8: Cross References 72

If the url is long enough to cause problems with line breaking, you may find it useful to
insert @/ at places where a line break would be acceptable (after ¢/’ characters, for instance).
This tells TEX to allow (but not force) a line break at those places. See Section 15.2 [Line
Breaks|, page 120.

Here is an example of the simple one argument form, where the url is both the target
and the text of the link:

The official GNU ftp site is Quref{ftp://ftp.gnu.org/gnu}.
produces:
The official GNU ftp site is ftp://ftp.gnu.org/gnu.
An example of the two-argument form:

The official Quref{ftp://ftp.gnu.org/gnu, GNU ftp site}
holds programs and texts.

produces:

The official GNU ftp site
holds programs and texts.

that is, the Info output is this:

The official GNU ftp site (ftp://ftp.gnu.org/gnu)
holds programs and texts.

and the HTML output is this:

The official GNU ftp site
holds programs and texts.

An example of the three-argument form:
The Quref{/man.cgi/1/1s,,1s(1)} program ...
produces:
The Is(1) program . . .
but with HTML:
The 1s(1) program ...
To merely indicate a url without creating a link people can follow, use @indicateurl
(see Section 9.1.15 [indicateurl], page 80).
Some people prefer to display url’s in the unambiguous format:
<URL:http://host/path>

You can use this form in the input file if you wish. We feel it’s not necessary to include the
‘<URL:’ and ‘>’ in the output, since any software that tries to detect url’s in text already
has to detect them without the ‘<URL:’ to be useful.

ftp://ftp.gnu.org/gnu
ftp://ftp.gnu.org/gnu
/man.cgi/1/ls

Chapter 9: Marking Words and Phrases 73

9 Marking Words and Phrases

In Texinfo, you can mark words and phrases in a variety of ways. The Texinfo formatters
use this information to determine how to highlight the text. You can specify, for example,
whether a word or phrase is a defining occurrence, a metasyntactic variable, or a symbol
used in a program. Also, you can emphasize text, in several different ways.

9.1 Indicating Definitions, Commands, etc.

Texinfo has commands for indicating just what kind of object a piece of text refers to. For
example, metasyntactic variables are marked by @var, and code by @code. Since the pieces
of text are labelled by commands that tell what kind of object they are, it is easy to change
the way the Texinfo formatters prepare such text. (Texinfo is an intentional formatting
language rather than a typesetting formatting language.)

For example, in a printed manual, code is usually illustrated in a typewriter font;
@code tells TEX to typeset this text in this font. But it would be easy to change the way
TEX highlights code to use another font, and this change would not affect how keystroke
examples are highlighted. If straight typesetting commands were used in the body of the
file and you wanted to make a change, you would need to check every single occurrence to
make sure that you were changing code and not something else that should not be changed.

9.1.1 Highlighting Commands are Useful

The highlighting commands can be used to extract useful information from the file, such
as lists of functions or file names. It is possible, for example, to write a program in Emacs
Lisp (or a keyboard macro) to insert an index entry after every paragraph that contains
words or phrases marked by a specified command. You could do this to construct an index
of functions if you had not already made the entries.

The commands serve a variety of purposes:

Q@code{sample-code}
Indicate text that is a literal example of a piece of a program.

Q@kbd{keyboard-characters?
Indicate keyboard input.

Q@key{key-name}
Indicate the conventional name for a key on a keyboard.

@samp{text}
Indicate text that is a literal example of a sequence of characters.

@var{metasyntactic-variable}
Indicate a metasyntactic variable.

Q@env{environment-variable}
Indicate an environment variable.

Ofile{file-name}
Indicate the name of a file.

Q@command{ command-name }
Indicate the name of a command.

Chapter 9: Marking Words and Phrases 74

Qoption{option}
Indicate a command-line option.

@dfn{term}
Indicate the introductory or defining use of a term.

Qcite{reference}
Indicate the name of a book.

Q@acronym{acronym}
Indicate an acronym.

@indicateurl{uniform-resource-locator}
Indicate a uniform resource locator for the World Wide Web.

@email{email-address [, displayed-text]}
Indicate an electronic mail address.

9.1.2 @code{sample-code}
Use the @code command to indicate text that is a piece of a program and which consists of
entire syntactic tokens. Enclose the text in braces.

Thus, you should use @code for an expression in a program, for the name of a variable
or function used in a program, or for a keyword in a programming language.

Use @code for command names in languages that resemble programming languages,
such as Texinfo. For example, @code and @samp are produced by writing ‘@code{@@code}’
and ‘@code{@@samp}’ in the Texinfo source, respectively.

It is incorrect to alter the case of a word inside an @code command when it appears at
the beginning of a sentence. Most computer languages are case sensitive. In C, for example,
Printf is different from the identifier printf, and most likely is a misspelling of it. Even
in languages which are not case sensitive, it is confusing to a human reader to see identifiers
spelled in different ways. Pick one spelling and always use that. If you do not want to
start a sentence with a command name written all in lower case, you should rearrange the
sentence.

In the printed manual, @code causes TEX to typeset the argument in a typewriter
face. In the Info file, it causes the Info formatting commands to use single quotation marks
around the text.

For example,
The function returns @code{nil}.
produces this in the printed manual:
The function returns nil.
and this in the Info file:
The function returns ‘nil’.
Here are some cases for which it is preferable not to use @code:
e For shell command names such as 1s (use @command).
e For shell options such as ‘-¢’ when such options stand alone (use @option).

e Also, an entire shell command often looks better if written using @samp rather than
@code. In this case, the rule is to choose the more pleasing format.

Chapter 9: Marking Words and Phrases 75

e For environment variable such as TEXINPUTS (use @env).

e For a string of characters shorter than a syntactic token. For example, if you are
writing about ‘goto-ch’, which is just a part of the name for the goto-char Emacs
Lisp function, you should use @samp.

e In general, when writing about the characters used in a token; for example, do not use
@code when you are explaining what letters or printable symbols can be used in the
names of functions. (Use @samp.) Also, you should not use @code to mark text that
is considered input to programs unless the input is written in a language that is like
a programming language. For example, you should not use @code for the keystroke
commands of GNU Emacs (use @kbd instead) although you may use @code for the
names of the Emacs Lisp functions that the keystroke commands invoke.

Since @command, @option, and @env were introduced relatively recently, it is acceptable
to use @code or @samp for command names, options, and environment variables. The new
commands allow you to express the markup more precisely, but there is no real harm in
using the older commands, and of course the long-standing manuals do so.

9.1.3 @kbd{keyboard-characters}
Use the @kbd command for characters of input to be typed by users. For example, to refer
to the characters M-a, write:
@kbd{M-a}
and to refer to the characters M-x shell, write:
@kbd{M-x shell}

By default, the @kbd command produces a different font (slanted typewriter instead of
normal typewriter) in the printed manual, so users can distinguish the characters that they
are supposed to type from those that the computer outputs.

In Info output, @kbd is usually the same as @code, producing ‘quotes’ around its ar-
gument. However, in typewriter-like contexts such as the @example environment (see Sec-
tion 10.3 [example], page 84) and @code command itself, the quotes are omitted, since Info
format cannot use distinguishing fonts.

Since the usage of @kbd varies from manual to manual, you can control the font switch-
ing with the @kbdinputstyle command. This command has no effect on Info output.
Write this command at the beginning of a line with a single word as an argument, one of
the following:

‘code’ Always use the same font for @kbd as @code.
‘example’ Use the distinguishing font for @kbd only in @example and similar environments.
‘distinct’

(the default) Always use the distinguishing font for @kbd.

You can embed another @-command inside the braces of an @kbd command. Here, for
example, is the way to describe a command that would be described more verbosely as
“press the ‘r’ key and then press the key”:

@kbd{r @key{RET}}
This produces: r RET). (The present manual accepts the default for @kbdinputstyle.)
You also use the @kbd command if you are spelling out the letters you type; for example:

Chapter 9: Marking Words and Phrases 76

To give the Q@code{logout} command,
type the characters Q@kbd{l o g o u t @key{RET}}.

This produces:
To give the logout command, type the characters 1 o g o u t (RET).

(Also, this example shows that you can add spaces for clarity. If you explicitly want
to mention a space character as one of the characters of input, write @key{SPC} for it.)

9.1.4 @key{key-name}
Use the @key command for the conventional name for a key on a keyboard, as in:
Qkey{RET}

You can use the @key command within the argument of an @kbd command when the
sequence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x you would type:
@kbd{C-x @key{ESC}}
Here is a list of the recommended names for keys:

SPC Space

RET Return

LFD Linefeed (however, since most keyboards nowadays do not have a
Linefeed key, it might be better to call this character C-j.

TAB Tab

BS Backspace

ESC Escape

DEL Delete

SHIFT Shift

CTRL Control

META Meta

There are subtleties to handling words like ‘meta’ or ‘ctrl’ that are names of modifier
keys. When mentioning a character in which the modifier key is used, such as Meta-a, use
the @kbd command alone; do not use the @key command; but when you are referring to the
modifier key in isolation, use the @key command. For example, write ‘@kbd{Meta-al}’ to
produce Meta-a and ‘@key{META}’ to produce (META).

9.1.5 Gsamp{text}

Use the @samp command to indicate text that is a literal example or ‘sample’ of a sequence
of characters in a file, string, pattern, etc. Enclose the text in braces. The argument appears
within single quotation marks in both the Info file and the printed manual; in addition, it
is printed in a fixed-width font.

To match @samp{foo} at the end of the line,

use the regexp @samp{foo$}.

produces

Chapter 9: Marking Words and Phrases 7

To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

Any time you are referring to single characters, you should use @samp unless @kbd or
@key is more appropriate. Also, you may use @samp for entire statements in C and for entire
shell commands—in this case, @samp often looks better than @code. Basically, @samp is a
catchall for whatever is not covered by @code, @kbd, or @key.

Only include punctuation marks within braces if they are part of the string you are
specifying. Write punctuation marks outside the braces if those punctuation marks are part
of the English text that surrounds the string. In the following sentence, for example, the
commas and period are outside of the braces:

In English, the vowels are @samp{al}, @samp{e},
@samp{i}, @samp{o}, @samp{u}, and sometimes
@samp{y}.

This produces:

[AN O AR A

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.

9.1.6 @verb{<char>text<char>}

Use the @verb command to print a verbatim sequence of characters.

Like INTEX’s \verb command, the verbatim text can be quoted using any unique de-
limiter character. Enclose the verbatim text, including the delimiters, in braces. Text is
printed in a fixed-width font:

How many @verb{|@|}-escapes does one need to print this
Q@verb{.@a @b @c.} string or @verb{+@’e?‘!‘{}\+} this?

produces

How many Q@-escapes does one need to print this
@a @b @c string or these @’e?‘{}!‘\ this?

This is in contrast to @samp (see the previous section), @code, and similar commands;
in those cases, the argument is normal Texinfo text, where the three characters @{} are
special. With @verb, nothing is special except the delimiter character you choose.

It is not reliable to use @verb inside other Texinfo constructs.

9.1.7 @var{metasyntactic-variable}

Use the @var command to indicate metasyntactic variables. A metasyntactic variable is
something that stands for another piece of text. For example, you should use a metasyntactic
variable in the documentation of a function to describe the arguments that are passed to
that function.

Do not use @var for the names of particular variables in programming languages.
These are specific names from a program, so @code is correct for them (see Section 9.1.2
[code], page 74). For example, the Emacs Lisp variable texinfo-tex-command is not a
metasyntactic variable; it is properly formatted using @code.

Do not use @var for environment variables either; @env is correct for them (see the
next section).

The effect of @var in the Info file is to change the case of the argument to all upper
case. In the printed manual and HTML output, the argument is printed in slanted type.

Chapter 9: Marking Words and Phrases 78

For example,

To delete file @var{filename},
type @samp{rm @var{filenamel}}.

produces
To delete file filename, type ‘rm filename’.
(Note that @var may appear inside @code, @samp, @file, etc.)

Write a metasyntactic variable all in lower case without spaces, and use hyphens to
make it more readable. Thus, the Texinfo source for the illustration of how to begin a
Texinfo manual looks like this:

\input texinfo
@@setfilename @var{info-file-name}
@@settitle @var{name-of-manual}

This produces:

\input texinfo
@setfilename info-file-name
@settitle name-of-manual

In some documentation styles, metasyntactic variables are shown with angle brackets,
for example:

., type rm <filename>

However, that is not the style that Texinfo uses. (You can, of course, modify the sources to
‘texinfo.tex’ and the Info formatting commands to output the <. ..> format if you wish.)

9.1.8 @env{environment-variable}

Use the @env command to indicate environment variables, as used by many operating
systems, including GNU. Do not use it for metasyntactic variables; use @var instead (see
the previous section).

@env is equivalent to @code in its effects. For example:
The @env{PATH} environment variable
produces

The PATH environment variable . . .

9.1.9 efile{file-name}

Use the @file command to indicate text that is the name of a file, buffer, or directory, or
is the name of a node in Info. You can also use the command for file name suffixes. Do not
use @file for symbols in a programming language; use @code.

Currently, @file is equivalent to @samp in its effects. For example,

The @file{.el} files are in
the @file{/usr/local/emacs/lisp} directory.

produces

The . el’ files are in the ‘/usr/local/emacs/lisp’ directory.

Chapter 9: Marking Words and Phrases 79

9.1.10 @command{command-name}

Use the @command command to indicate command names, such as 1s or cc.
@command is equivalent to @code in its effects. For example:
The command Q@command{ls} lists directory contents.
produces
The command 1s lists directory contents.

You should write the name of a program in the ordinary text font, rather than using
@command, if you regard it as a new English word, such as ‘Emacs’ or ‘Bison’.

When writing an entire shell command invocation, as in ‘1s -1’, you should use either
@samp or @code at your discretion.

9.1.11 Qoption{option-name}

Use the @option command to indicate a command-line option; for example, ‘-1’ or
‘-—version’ or ‘--output=filename’.

@option is equivalent to @samp in its effects. For example:
The option @option{-1} produces a long listing.
produces
The option ‘-1’ produces a long listing.

In tables, putting options inside @code produces a more pleasing effect.

9.1.12 @dfn{term?}

Use the @dfn command to identify the introductory or defining use of a technical term. Use
the command only in passages whose purpose is to introduce a term which will be used
again or which the reader ought to know. Mere passing mention of a term for the first time
does not deserve @dfn. The command generates italics in the printed manual, and double
quotation marks in the Info file. For example:

Getting rid of a file is called @dfn{deleting} it.
produces
Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a
definition of the term. The sentence does not need to say explicitly that it is a definition,
but it should contain the information of a definition—it should make the meaning clear.

9.1.13 @cite{reference}

Use the @cite command for the name of a book that lacks a companion Info file. The
command produces italics in the printed manual, and quotation marks in the Info file.

If a book is written in Texinfo, it is better to use a cross reference command since a
reader can easily follow such a reference in Info. See Section 8.4 [@xref], page 65.

Chapter 9: Marking Words and Phrases 80

9.1.14 @acronym{acronym|, meaning|}

Use the @acronym command for abbreviations written in all capital letters, such as ‘NASA’.
The abbreviation is given as the single argument in braces, as in ‘@acronym{NASA}’. As
a matter of style, or for particular abbreviations, you may prefer to use periods, as in
‘Qacronym{F.B.I.}".

If the acronym is at the end of a sentence, remember to use the special @. and similar
commands (see Section 14.2.2 [Ending a Sentence|, page 111).

In TEX, the acronym is printed in slightly smaller font. In the Info output, the argument
is printed as-is. In HTML, Docbook, and XML, the <acronym> tag is used.

@acronym accepts an optional second argument, intended to be used for the meaning of
the acronym. If present, it is printed in parentheses after the acronym. For instance (since
GNU is a recursive acronym, we use @acronym recursively):

Q@acronym{GNU, @acronym{GNU}’s Not Unix}
produces:
GNU (GNU’s Not Unix)

In some circumstances, it is conventional to print family names in all capitals. Don’t
use @acronym for this, since a name is not an acronym. Use @sc instead (see Section 9.2.2
[Smallcaps], page 81).

9.1.15 @indicateurl{uniform-resource-locator?}

Use the @indicateurl command to indicate a uniform resource locator on the World Wide
Web. This is analogous to @file, @var, etc., and is purely for markup purposes. It does
not produce a link you can follow in HTML output (use the @uref command for that, see
Section 8.9 [@uref]|, page 71). It is useful for url’s which do not actually exist. For example:

For example, the url might be @indicateurl{http://example.org/path}.
which produces:

For example, the url might be http://example.org/path.

9.1.16 Q@email{email-address|, displayed-text]|}

Use the @email command to indicate an electronic mail address. It takes one mandatory
argument, the address, and one optional argument, the text to display (the default is the
address itself).

In Info, the address is shown in angle brackets, preceded by the text to display if any.
In TEX, the angle brackets are omitted. In HTML output, @email produces a ‘mailto’ link
that usually brings up a mail composition window. For example:

Send bug reports to Q@email{bug-texinfo@@gnu.org},
suggestions to the Gemail{bug-texinfo@@gnu.org, same placel}.

produces

Send bug reports to bug-texinfo@gnu.org,
suggestions to the same place.

mailto:bug-texinfo@gnu.org
mailto:bug-texinfo@gnu.org

Chapter 9: Marking Words and Phrases 81

9.2 Emphasizing Text

Usually, Texinfo changes the font to mark words in the text according to what category
the words belong to; an example is the @code command. Most often, this is the best way
to mark words. However, sometimes you will want to emphasize text without indicating a
category. Texinfo has two commands to do this. Also, Texinfo has several commands that
specify the font in which TEX will typeset text. These commands have no effect on Info
and only one of them, the @r command, has any regular use.

9.2.1 Qemph{text} and @strong{text}

The @emph and @strong commands are for emphasis; @strong is stronger. In printed
output, @emph produces italics and @strong produces bold.

For example,

@strong{Caution:} @samp{rm * .[~.]x}
removes Qemph{all} files in the directory.

produces the following in printed output and HTML:

Caution: ‘rm * . [~.]*" removes all files in the directory.
and the following in Info:

Caution: ‘rm * .[".]*’ removes _all_

files in the directory.

The @strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.

In the Info output, @emph surrounds the text with underscores (‘_’), and @strong puts
asterisks around the text.

Caution: Do not use @strong with the word ‘Note’; Info will mistake the
combination for a cross reference. (It’s usually redundant, anyway.) Use a
phrase such as Please notice or Caution instead, or the optional argument to
Qquotation—Note’ is allowable there.

9.2.2 @sc{text}: The Small Caps Font
Use the ‘@sc’ command to set text in A SMALL CAPS FONT (where possible). Write the text
you want to be in small caps between braces in lower case, like this:
Richard @sc{Stallman} founded @acronym{GNU}.
This produces:
Richard STALLMAN founded GNU.

As shown here, we recommend using @acronym for actual abbreviations (see Sec-
tion 9.1.14 [acronym], page 80), and reserving @sc for special cases where you want small
caps. The output is not the same (@acronym prints in a smaller text font, not the small
caps font), but more importantly it describes the actual text more accurately.

Family names are one case where small capitals are sometimes desirable, also as shown
here.

TEX typesets any uppercase letters between the braces of an @sc command in full-size
capitals; only lowercase letters are printed in the small caps font. In the Info output, the

Chapter 9: Marking Words and Phrases 82

argument to @sc is printed in all upper case. In HTML, the argument is uppercased and
the output marked with the <small> tag to reduce the font size.

Since it’s redundant to mark all-uppercase text with @sc, makeinfo warns about such
usage.

We recommend using regular mixed case wherever possible.

9.2.3 Fonts for Printing, Not Info

Texinfo provides four font commands that specify font changes in the printed manual and
(where possible) in the HTML output, but have no effect in the Info file. All four commands
apply to an argument that follows, surrounded by braces.

@i selects an italic font;

@b selects bold face;

ot selects the fixed-width, typewriter-style font used by @code;

Qr selects a roman font, which is the usual font in which text is printed.

Only the @r command has much use: in example-like environments, you can use the
@r command to write comments in the standard roman font instead of the fixed-width font.
This looks better in printed output, and produces a <lineannotation> tag in Docbook
output.

For example,

@lisp
+22) ; O0r{Add two plus two.}
Q@end lisp
produces
+ 2 2) ; Add two plus two.

In general, you should avoid using the other three font commands. If you need to use
one, it probably indicates a gap in the Texinfo language.

Chapter 10: Quotations and Examples 83

10 Quotations and Examples

Quotations and examples are blocks of text consisting of one or more whole paragraphs that
are set off from the bulk of the text and treated differently. They are usually indented.

In Texinfo, you always begin a quotation or example by writing an @-command at the
beginning of a line by itself, and end it by writing an @end command that is also at the
beginning of a line by itself. For instance, you begin an example by writing @example by
itself at the beginning of a line and end the example by writing @end example on a line by
itself, at the beginning of that line.

10.1 Block Enclosing Commands
Here are commands for quotations and examples, explained further in the following sections:

Oquotation
Indicate text that is quoted. The text is filled, indented (from both margins),
and printed in a roman font by default.

@example Illustrate code, commands, and the like. The text is printed in a fixed-width
font, and indented but not filled.

Qverbatim
Mark a piece of text that is to be printed verbatim; no character substitutions
are made and all commands are ignored, until the next @end verbatim. The
text is printed in a fixed-width font, and not indented or filled. Extra spaces
and blank lines are significant, and tabs are expanded.

Osmallexample
Same as @example, except that in TEX this command typesets text in a smaller
font.

@lisp Like @example, but specifically for illustrating Lisp code. The text is printed

in a fixed-width font, and indented but not filled.

@smalllisp
Is to @lisp as @smallexample is to @example.

@display Display illustrative text. The text is indented but not filled, and no font is
selected (so, by default, the font is roman).

@smalldisplay
Is to @display as @smallexample is to @example.

@format Like @display (the text is not filled and no font is selected), but the text is not
indented.

O@smallformat
Is to @format as @smallexample is to @example.

The @exdent command is used within the above constructs to undo the indentation of
a line.

The @flushleft and @flushright commands are used to line up the left or right
margins of unfilled text.

Chapter 10: Quotations and Examples 84

The @noindent command may be used after one of the above constructs to prevent
the following text from being indented as a new paragraph.

You can use the @cartouche environment around one of the above constructs to high-
light the example or quotation by drawing a box with rounded corners around it. See
Section 10.14 [Drawing Cartouches Around Examples], page 90.

10.2 @quotation: Block quotations

The text of a quotation is processed normally (regular font, text is filled) except that:

e the margins are closer to the center of the page, so the whole of the quotation is
indented;

e the first lines of paragraphs are indented no more than other lines;
e in the printed output, interparagraph spacing is reduced.
This is an example of text written between an @quotation command and an

@end quotation command. An @quotation command is most often used to
indicate text that is excerpted from another (real or hypothetical) printed work.

Write an @quotation command as text on a line by itself. This line will disappear
from the output. Mark the end of the quotation with a line beginning with and containing
only @end quotation. The @end quotation line will likewise disappear from the output.

@quotation takes one optional argument, given on the remainder of the line. This text,
if present, is included at the beginning of the quotation in bold or otherwise emphasized,
and followed with a ‘:’. For example:

Qquotation Note
This is
a foo.
Q@end quotation
produces
Note: This is a foo.
If the @quotation argument is exactly one of these words:
Caution Important Note Tip Warning

then the Docbook output uses corresponding special tags (<note>, etc.) instead of the
default <blockquote>. HTML output always uses <blockquote>.

10.3 Qexample: Example Text

The @example environment is used to indicate an example that is not part of the running
text, such as computer input or output. Write an @example command at the beginning of
a line by itself. Mark the end of the example with an @end example command, also written
at the beginning of a line by itself.

An @example environment has the following characteristics:

e FEach line in the input file is a line in the output; that is, the source text is not filled as
it normally is.

e Extra spaces and blank lines are significant.

e The output is indented.

Chapter 10: Quotations and Examples 85

e The output uses a fixed-width font.

e Texinfo commands are expanded; if you want the output to be the input verbatim, use
the @verbatim environment instead (see Section 10.4 [@verbatim|, page 85).

For example,

Q@example

cp foo @var{desti}; \
cp foo @var{dest2}

Q@end example

produces

cp foo destl; \
cp foo dest2

The lines containing @example and @end example will disappear from the output. To
make the output look good, you should put a blank line before the @example and another
blank line after the @end example. Blank lines inside the beginning @example and the
ending @end example, on the other hand, do appear in the output.

Caution: Do not use tabs in the lines of an example! (Or anywhere else in
Texinfo, except in verbatim environments.) TEX treats tabs as single spaces,
and that is not what they look like. In Emacs, you can use M-x untabify to
convert tabs in a region to multiple spaces.

FExamples are often, logically speaking, “in the middle” of a paragraph, and the text
that continues afterwards should not be indented, as in the example above. The @noindent
command prevents a piece of text from being indented as if it were a new paragraph (see
Section 10.12 [@noindent], page 89.

If you want to embed code fragments within sentences, instead of displaying them, use
the @code command or its relatives (see Section 9.1.2 [@code], page 74).

If you wish to write a “comment” on a line of an example in the normal roman font,

you can use the @r command (see Section 9.2.3 [Fonts|, page 82).

10.4 @verbatim: Literal Text

Use the @verbatim environment for printing of text that may contain special characters
or commands that should not be interpreted, such as computer input or output (@example
interprets its text as regular Texinfo commands). This is especially useful for including
automatically generated output in a Texinfo manual. Here is an example; the output you
see is just the same as the input, with a line @verbatim before and a line @end verbatim
after.

This is an example of text written in a Qverbatim

block. No character substitutions are made. All commands
are ignored, until ‘<at>end verbatim’.

In the printed manual, the text is typeset in a
fixed-width font, and not indented or filled. All
spaces and blank lines are significant, including tabs.
Write a @verbatim command at the beginning of a line by itself. This line will disappear
from the output. Mark the end of the verbatim block with a @end verbatim command, also

Chapter 10: Quotations and Examples 86

written at the beginning of a line by itself. The @end verbatim will also disappear from
the output.

For example:

@verbatim

{

(TAB)@command with strange characters: Q’e
expand(TAB)me

}

@end verbatim

produces
{
@command with strange characters: Q’e
expand me
}

Since the lines containing @verbatim and @end verbatim produce no output, typically
you should put a blank line before the @verbatim and another blank line after the @end
verbatim. Blank lines between the beginning @verbatim and the ending @end verbatim
will appear in the output.

It is not reliable to use @verbatim inside other Texinfo constructs.

10.5 @verbatiminclude file: Include a File Verbatim

You can include the exact contents of a file in the document with the @verbatiminclude
command:
Overbatiminclude filename
The contents of filename is printed in a verbatim environment (see Section 10.4
[@verbatim|, page 85). Generally, the file is printed exactly as it is, with all special
characters and white space retained. No indentation is added; if you want indentation,
enclose the @verbatiminclude within @example (see Section 10.3 [@example|, page 84).

The name of the file is taken literally, with a single exception: @value{var} references
are expanded. This makes it possible to reliably include files in other directories in a
distribution, for instance:

@include @value{top_srcdir}/NEWS
(You still have to get top_srcdir defined in the first place.)

10.6 @lisp: Marking a Lisp Example

The @lisp command is used for Lisp code. It is synonymous with the @example command.
This is an example of text written between an
@lisp command and an Q@end lisp command.
Use @lisp instead of @example to preserve information regarding the nature of the
example. This is useful, for example, if you write a function that evaluates only and all the
Lisp code in a Texinfo file. Then you can use the Texinfo file as a Lisp library.!

L Tt would be straightforward to extend Texinfo to work in a similar fashion for C, Fortran, or other
languages.

Chapter 10: Quotations and Examples 87

Mark the end of @lisp with @end lisp on a line by itself.

10.7 @small... Block Commands

In addition to the regular @example and @lisp commands, Texinfo has “small”
example-style commands. These are @smalldisplay, @smallexample, @smallformat, and
Osmalllisp.

In Info, the @small... commands are equivalent to their non-small companion com-
mands.
In TEX, however, the @small... commands typeset text in a smaller font than the

non-small example commands. Consequently, many examples containing long lines fit on a
page without needing to be shortened.

Mark the end of an @small. .. block with a corresponding @end small. ... For exam-
ple, pair @smallexample with @end smallexample.

Here is an example of the font used by the @small... commands (in Info, the output
will be the same as usual):

. to make sure that you have the freedom to
distribute copies of free software (and charge for
this service if you wish), that you receive source
code or can get it if you want it, that you can
change the software or use pieces of it in new free
programs; and that you know you can do these things.
The @small... commands make it easier to prepare manuals without forcing you to

edit examples by hand to fit them onto narrower pages.

As a general rule, a printed document looks much better if you use only one of (for
instance) @example or @smallexample consistently within a chapter.

10.8 @display and @smalldisplay

The @display command begins a kind of example. It is like the @example command except
that, in a printed manual, @display does not select the fixed-width font. In fact, it does
not specify the font at all, so that the text appears in the same font it would have appeared
in without the @display command.

This is an example of text written between an @display command
and an @end display command. The @display command
indents the text, but does not fill it.

Texinfo also provides a command @smalldisplay, which is like @display but uses a
smaller font in @smallbook format. See Section 10.7 [small], page 87.

10.9 @format and @smallformat

The @format command is similar to @example except that, in the printed manual, @format
does not select the fixed-width font and does not narrow the margins.

This is an example of text written between an @format command
and an @end format command. As you can see

from this example,

the @format command does not fill the text.

Chapter 10: Quotations and Examples 88

Texinfo also provides a command @smallformat, which is like @format but uses a
smaller font in @smallbook format. See Section 10.7 [small], page 87.

10.10 @exdent: Undoing a Line’s Indentation

The @exdent command removes any indentation a line might have. The command is written
at the beginning of a line and applies only to the text that follows the command that is
on the same line. Do not use braces around the text. In a printed manual, the text on an
@exdent line is printed in the roman font.

@exdent is usually used within examples. Thus,

Q@example
This line follows an @Q@example command.
Q@exdent This line is exdented.
This line follows the exdented line.
The @Q@end example comes on the next line.
Q@end group
produces
This line follows an @example command.
This line is exdented.
This line follows the exdented line.
The Q@end example comes on the next line.

In practice, the @exdent command is rarely used. Usually, you un-indent text by ending
the example and returning the page to its normal width.

10.11 @flushleft and @flushright

The @flushleft and @flushright commands line up the ends of lines on the left and right
margins of a page, but do not fill the text. The commands are written on lines of their
own, without braces. The @flushleft and @flushright commands are ended by @end
flushleft and @end flushright commands on lines of their own.

For example,

@flushleft

This text is
written flushleft.
@end flushleft

produces

This text is
written flushleft.

@flushright produces the type of indentation often used in the return address of
letters. For example,

Oflushright

Here is an example of text written
flushright. The @code{@flushright} command
right justifies every line but leaves the
left end ragged.

Q@end flushright

Chapter 10: Quotations and Examples 89

produces

Here is an example of text written
flushright. The @flushright command
right justifies every line but leaves the
left end ragged.

10.12 @noindent: Omitting Indentation

An example or other inclusion can break a paragraph into segments. Ordinarily, the format-
ters indent text that follows an example as a new paragraph. You can prevent this on a case-
by-case basis by writing @noindent at the beginning of a line, preceding the continuation
text. You can also disable indentation for all paragraphs globally with @paragraphindent
(see Section 3.7.3 [paragraphindent], page 41).

It is best to write @noindent on a line by itself, since in most environments, spaces
following the command will not be ignored. It’s ok to use it at the beginning of a line, with
text following, outside of any environment.

For example:

Q@example
This is an example
Q@end example

Onoindent

This line is not indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
Q@code{@@display} and @code{@@end display}.)

produces:

This is an example

This line is not indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
@display and @end display.)

To adjust the number of blank lines properly in the Info file output, remember that
the line containing @noindent does not generate a blank line, and neither does the @end
example line.

In the Texinfo source file for this manual, each line that says ‘produces’ is preceded by
OGnoindent.

Do not put braces after an @noindent command; they are not necessary, since
@noindent is a command used outside of paragraphs (see Section A.1 [Command Syntax],
page 203).

Chapter 10: Quotations and Examples 90

10.13 @indent: Forcing Indentation

To complement the @noindent command (see the previous section), Texinfo provides
the @indent command that forces a paragraph to be indented. This paragraph, for instance,
is indented using an @indent command. The first paragraph of a section is the most
likely place to use @indent, to override the normal behavior of no indentation there (see
Section 3.7.3 [paragraphindent], page 41).

It is best to write @indent on a line by itself, since in most environments, spaces
following the command will not be ignored. The @indent line will not generate a blank line
in the Info output within an environment.

However, it is ok to use it at the beginning of a line, with text following, outside of any
environment.

Do not put braces after an @indent command; they are not necessary, since @indent
is a command used outside of paragraphs (see Section A.1 [Command Syntax], page 203).

10.14 @cartouche: Rounded Rectangles Around Examples

In a printed manual, the @cartouche command draws a box with rounded corners around
its contents. In HTML, a normal rectangle is drawn (that’s the best HTML can do).
@cartouche has no effect in Info output.

You can use this command to further highlight an example or quotation. For instance,
you could write a manual in which one type of example is surrounded by a cartouche for
emphasis.

For example,

Q@cartouche

Q@example

% pwd
/usr/local/share/emacs
Q@end example

@end cartouche

surrounds the two-line example with a box with rounded corners, in the printed manual.

The output from the example looks like this (if you're reading this in Info, you’ll see
the @cartouche had no effect):

% pwd
/usr/local/info

For proper output in HTML, it’s necessary to put the @cartouche around the
@example, and not the other way around. This limitation of makeinfo may be removed
one day.

@cartouche also implies @group (see Section 15.8 [group], page 122).

Chapter 11: Lists and Tables 91

11 Lists and Tables

Texinfo has several ways of making lists and tables. Lists can be bulleted or numbered;
two-column tables can highlight the items in the first column; multi-column tables are also
supported.

11.1 Introducing Lists

Texinfo automatically indents the text in lists or tables, and numbers an enumerated list.
This last feature is useful if you modify the list, since you do not need to renumber it
yourself.

Numbered lists and tables begin with the appropriate @-command at the beginning of
a line, and end with the corresponding @end command on a line by itself. The table and
itemized-list commands also require that you write formatting information on the same line
as the beginning @-command.

Begin an enumerated list, for example, with an @enumerate command and end the list
with an @end enumerate command. Begin an itemized list with an @itemize command,
followed on the same line by a formatting command such as @bullet, and end the list with
an @end itemize command.

Precede each element of a list with an @item or @itemx command.

Here is an itemized list of the different kinds of table and lists:
e [temized lists with and without bullets.
e Enumerated lists, using numbers or letters.

e Two-column tables with highlighting.

Here is an enumerated list with the same items:

1. Ttemized lists with and without bullets.
2. Enumerated lists, using numbers or letters.

3. Two-column tables with highlighting.

And here is a two-column table with the same items and their @-commands:

@itemize Itemized lists with and without bullets.

Q@enumerate
Enumerated lists, using numbers or letters.

Otable
@ftable
@vtable Two-column tables, optionally with indexing.

Chapter 11: Lists and Tables 92

11.2 @itemize: Making an Itemized List

The @itemize command produces sequences of indented paragraphs, with a bullet or other
mark inside the left margin at the beginning of each paragraph for which such a mark is
desired.

Begin an itemized list by writing @itemize at the beginning of a line. Follow the
command, on the same line, with a character or a Texinfo command that generates a mark.
Usually, you will write @bullet after @itemize, but you can use @minus, or any command
or character that results in a single character in the Info file. If you don’t want any mark
at all, use @w. (When you write the mark command such as @bullet after an @itemize
command, you may omit the ‘{}’.) If you don’t specify a mark command, the default is
QObullet.

Write the text of the indented paragraphs themselves after the @itemize, up to another
line that says @end itemize.

At the beginning of each paragraph for which a mark in the margin is desired, write a
line that starts with @item. It is ok to have text following the @item.

Usually, you should put a blank line before an @item. This puts a blank line in the
Info file. (TEX inserts the proper interline whitespace in either case.) Except when the
entries are very brief, these blank lines make the list look better.

Here is an example of the use of @itemize, followed by the output it produces. @bullet
produces an ‘*’ in Info and a round dot in TEX.

Q@itemize Q@bullet
Q@item
Some text for foo.

Q@item

Some text
for bar.
@end itemize

This produces:

e Some text for foo.

e Some text for bar.

Itemized lists may be embedded within other itemized lists. Here is a list marked with
dashes embedded in a list marked with bullets:

Chapter 11: Lists and Tables 93

Q@itemize Q@bullet
Q@item
First item.

Q@itemize @minus
Q@item
Inner item.

Q@item
Second inner item.
Q@end itemize

Q@item
Second outer item.
Q@end itemize

This produces:
e First item.
— Inner item.
— Second inner item.

e Second outer item.

11.3 @enumerate: Making a Numbered or Lettered List

@enumerate is like @itemize (see Section 11.2 [@itemize], page 92), except that the labels
on the items are successive integers or letters instead of bullets.

Write the @enumerate command at the beginning of a line. The command does not
require an argument, but accepts either a number or a letter as an option. Without an
argument, @enumerate starts the list with the number ‘1’. With a numeric argument, such
as ‘3’, the command starts the list with that number. With an upper or lower case letter,
such as ‘a’ or ‘A’, the command starts the list with that letter.

Write the text of the enumerated list in the same way as an itemized list: write a line
starting with @item at the beginning of each paragraph that you want enumerated. It is ok
to have text following the @item.

You should put a blank line between entries in the list. This generally makes it easier
to read the Info file.

Here is an example of @enumerate without an argument:

Q@enumerate
Q@item
Underlying causes.

Q@item
Proximate causes.
@end enumerate

This produces:

1. Underlying causes.

Chapter 11: Lists and Tables 94

2.

Proximate causes.

Here is an example with an argument of 3:

Qenumerate 3
Qitem
Predisposing causes.

Q@item
Precipitating causes.

Qitem
Perpetuating causes.
Q@end enumerate

This produces:

3.
4.
d.

Predisposing causes.
Precipitating causes.

Perpetuating causes.

Here is a brief summary of the alternatives. The summary is constructed using

@enumerate with an argument of a.

a.

Q@enumerate
Without an argument, produce a numbered list, starting with the number 1.
Q@enumerate positive-integer

With a (positive) numeric argument, start a numbered list with that number. You can
use this to continue a list that you interrupted with other text.

Q@enumerate upper-case-letter

With an upper case letter as argument, start a list in which each item is marked by a
letter, beginning with that upper case letter.

Q@enumerate lower—-case-letter
With a lower case letter as argument, start a list in which each item is marked by a

letter, beginning with that lower case letter.

You can also nest enumerated lists, as in an outline.

11.4 Making a Two-column Table

@table is similar to @itemize (see Section 11.2 [@itemize|, page 92), but allows you to
specify a name or heading line for each item. The @table command is used to produce two-
column tables, and is especially useful for glossaries, explanatory exhibits, and command-
line option summaries.

Chapter 11: Lists and Tables 95

11.4.1 Using the @table Command

Use the @table command to produce two-column tables. It is usually listed for “definition
lists” of various sorts, where you have a list of terms and a brief text with each one.

Write the @table command at the beginning of a line, after a blank line, and follow it
on the same line with an argument that is a Texinfo “indicating” command such as @code,
@samp, @var, @option, or @kbd (see Section 9.1 [Indicating], page 73).

This command will be applied to the text that goes into the first column of each item
and thus determines how it will be highlighted. For example, @table @code will cause the
text in the first column to be output as if it @code command.

You may also use the @asis command as an argument to @table. @asis is a command
that does nothing; if you use this command after @table, the first column entries are output
without added highlighting (“as is”).

The @table command works with other commands besides those explicitly mentioned
here. However, you can only use commands that normally take arguments in braces. (In this
case, however, you use the command name without an argument, because the subsequent
@item’s will supply the argument.)

Begin each table entry with an @item command at the beginning of a line. Write the
first column text on the same line as the @item command. Write the second column text
on the line following the @item line and on subsequent lines. (You do not need to type
anything for an empty second column entry.) You may write as many lines of supporting
text as you wish, even several paragraphs. But only the text on the same line as the @item
will be placed in the first column (including any footnotes).

Normally, you should put a blank line before an @item line. This puts a blank line in
the Info file. Except when the entries are very brief, a blank line looks better.

End the table with a line consisting of @end table, followed by a blank line. TEX will
always start a new paragraph after the table, so the blank line is needed for the Info output
to be analogous.

The following table, for example, highlights the text in the first column with an @samp
command:

Otable @samp

Q@item foo

This is the text for
@samp{foo}.

Q@item bar
Text for @samp{bar}.
Q@end table

This produces:
‘foo’ This is the text for ‘foo’.
‘bar’ Text for ‘bar’.

If you want to list two or more named items with a single block of text, use the @itemx
command. (See Section 11.4.3 [@itemx], page 96.)

Chapter 11: Lists and Tables 96

11.4.2 ©@ftable and @vtable

The @ftable and @vtable commands are the same as the @table command except that
@ftable automatically enters each of the items in the first column of the table into the
index of functions and @vtable automatically enters each of the items in the first column
of the table into the index of variables. This simplifies the task of creating indices. Only
the items on the same line as the @item commands are indexed, and they are indexed in
exactly the form that they appear on that line. See Chapter 13 [Indices], page 105, for more
information about indices.

Begin a two-column table using @ftable or @vtable by writing the @-command at the
beginning of a line, followed on the same line by an argument that is a Texinfo command
such as @code, exactly as you would for an @table command; and end the table with an
@end ftable or Gend vtable command on a line by itself.

See the example for @table in the previous section.

11.4.3 Q@itemx

Use the @itemx command inside a table when you have two or more first column entries
for the same item, each of which should appear on a line of its own.

Use @item for the first entry, and @itemx for all subsequent entries; @itemx must always
follow an @item command, with no blank line intervening.

The @itemx command works exactly like @item except that it does not generate ex-
tra vertical space above the first column text. If you have multiple consecutive @itemx
commands, do not insert any blank lines between them.

For example,

Q@table Qcode

@item upcase

Q@itemx downcase

These two functions accept a character or a string as
argument, and return the corresponding upper case (lower
case) character or string.

Q@end table

This produces:
upcase

downcase These two functions accept a character or a string as argument, and return the
corresponding upper case (lower case) character or string.

(Note also that this example illustrates multi-line supporting text in a two-column table.)

11.5 OGmultitable: Multi-column Tables

@multitable allows you to construct tables with any number of columns, with each column
having any width you like.

You define the column widths on the @multitable line itself, and write each row of the
actual table following an @item command, with columns separated by an @tab command.
Finally, @end multitable completes the table. Details in the sections below.

Chapter 11: Lists and Tables 97

11.5.1 Multitable Column Widths

You can define the column widths for a multitable in two ways: as fractions of the line
length; or with a prototype row. Mixing the two methods is not supported. In either case,
the widths are defined entirely on the same line as the @multitable command.

1. To specify column widths as fractions of the line length, write @columnfractions and
the decimal numbers (presumably less than 1; a leading zero is allowed and ignored)
after the @multitable command, as in:

@multitable Q@columnfractions .33 .33 .33

The fractions need not add up exactly to 1.0, as these do not. This allows you to
produce tables that do not need the full line length.

2. To specify a prototype row, write the longest entry for each column enclosed in braces
after the @Gmultitable command. For example:

Omultitable {some text for column one} {for column two}

The first column will then have the width of the typeset ‘some text for column one’,
and the second column the width of ‘for column two’.

The prototype entries need not appear in the table itself.

Although we used simple text in this example, the prototype entries can contain Texinfo
commands; markup commands such as @code are particularly likely to be useful.

11.5.2 Multitable Rows

After the @multitable command defining the column widths (see the previous section),
you begin each row in the body of a multitable with @item, and separate the column entries
with @tab. Line breaks are not special within the table body, and you may break input
lines in your source file as necessary.

You can also use @headitem instead of @item to produce a heading row. The TEX
output for such a row is in bold, and the HTML, XML, and Docbook output uses the
<thead> tag.

Here is a complete example of a multi-column table (the text is from The GNU Emacs
Manual, see section “Splitting Windows” in The GNU Emacs Manual):

Omultitable Q@columnfractions .15 .45 .4
Oheaditem Key @tab Command Q@tab Description
@item C-x 2

Qtab Qcode{split-window-vertically}

Otab Split the selected window into two windows,
with one above the other.

@item C-x 3

O@tab Qcode{split-window-horizontally}

Otab Split the selected window into two windows
positioned side by side.

Oitem C-Mouse-2

@tab

@tab In the mode line or scroll bar of a window,
split that window.

Q@end multitable

Chapter 11: Lists and Tables

produces:

Key Command

C-x2 split-window-vertically
Cx3 split-window-horizontally
C-Mouse-2

98

Description
Split the selected window into
two windows, with one above the

other.])
Split the selected window into two

windows positioned side by side.
In the mode line or scroll bar of a

window, split that window.

Chapter 12: Special Displays 99

12 Special Displays

The commands in this chapter allow you to write text that is specially displayed (output
format permitting), outside of the normal document flow.

One set of such commands is for creating “floats”, that is, figures, tables, and the like,
set off from the main text, possibly numbered, captioned, and/or referred to from elsewhere
in the document. Images are often included in these displays.

Another group of commands is for creating footnotes in Texinfo.

12.1 Floats

A float is a display which is set off from the main text. It is typically labelled as being a
“Figure”, “Table”, “Example”, or some similar type.

A float is so-named because, in principle, it can be moved to the bottom or top of
the current page, or to a following page, in the printed output. (Floating does not make
sense in other output formats.) In the present version of Texinfo, however, this floating is
unfortunately not yet implemented. Instead, the floating material is simply output at the
current location, more or less as if it were an @group (see Section 15.8 [@group], page 122).

12.1.1 @float [type][,label]: Floating material

To produce floating material, enclose the material you want to be displayed separate between
@float and @end float commands, on lines by themselves.

Floating material uses @image to display an already-existing graphic (see Section 12.2
[Images|, page 101), or @multitable to display a table (see Section 11.5 [Multi-column
Tables|, page 96). However, the contents of the float can be anything. Here’s an example
with simple text:

@float Figure,fig:exl
This is an example float.
Q@end float

And the output:

This is an example float.
Figure 12.1

As shown in the example, @float takes two arguments (separated by a comma), type
and label. Both are optional.

type Specifies the sort of float this is; typically a word such as “Figure”, “Table”, etc.
If not given, and label is, any cross-referencing will simply use a bare number.

label Specifies a cross-reference label for this float. If given, this float is automatically
given a number, and will appear in any @listofloats output (see Section 12.1.3
[listoffloats|, page 100). Cross-references to label are allowed.

On the other hand, if label is not given, then the float will not be numbered
and consequently will not appear in the @listoffloats output or be cross-
referenceable.

Chapter 12: Special Displays 100

Normally, you specify both type and label, to get a labeled and numbered float.

In Texinfo, all floats are numbered the same way: with the chapter number (or appendix
letter), a period, and the float number, which simply counts 1, 2, 3, ..., and is reset at
each chapter. Each float type is counted independently.

Floats within an @unnumbered are numbered, or outside of any chapter, are simply
numbered consecutively from 1.

These numbering conventions are not, at present, changeable.

12.1.2 @caption & @shortcaption

You may write an @caption anywhere within a @float environment, to define a caption
for the float. It is not allowed in any other context. @caption takes a single argument,
enclosed in braces. Here’s an example:

@float

An example float, with caption.

Qcaption{Caption for example float.}

@end float

The output is:

An example float, with caption.
Caption for example float.

Q@caption can appear anywhere within the float; it is not processed until the @end
float. The caption text is usually a sentence or two, but may consist of several paragraphs
if necessary.

In the output, the caption always appears below the float; this is not currently change-
able. It is preceded by the float type and/or number, as specified to the @float command
(see the previous section).

The @shortcaption command likewise may be used only within @float, and takes a
single argument in braces. The short caption text is used instead of the caption text in a list
of floats (see the next section). Thus, you can write a long caption for the main document,
and a short title to appear in the list of floats.

12.1.3 @listoffloats: Tables of contents for floats

You can write a @listoffloats command to generate a list of floats for a given float type
(see Section 12.1.1 [float], page 99), analogous to the document’s overall table of contents.
Typically, it is written in its own @unnumbered node to provide a heading and structure,
rather like @printindex (see Section 4.1 [Printing Indices & Menus|, page 44).
@listoffloats takes one optional argument, the float type. Here’s an example:

Onode List of Figures

Ounnumbered List of Figures

@listoffloats Figure

And the output from @listoffloats:

Figure 12,0 .o 99

Chapter 12: Special Displays 101

Without any argument, @listoffloats generates a list of floats for which no float
type was specified, i.e., no first argument to the @float command (see Section 12.1.1 [float],
page 99).

Each line in the list of floats contains the float type (if any), the float number, and
the caption, if any—the @shortcaption argument, if it was specified, else the @caption
argument. In Info, the result is a menu where each float can be selected. In HTML, each
line is a link to the float. In printed output, the page number is included.

Unnumbered floats (those without cross-reference labels) are omitted from the list of
floats.

12.2 Inserting Images

You can insert an image given in an external file with the @image command. Although
images can be used anywhere, including the middle of a paragraph, we describe them in
this chapter since they are most often part of a displayed figure or example.

12.2.1 Image Syntax

Here is the basic synopsis of the @image command:
@image{filename|, width|, height|, alttext|, extension]||||}
The filename argument is mandatory, and must not have an extension, because the
different processors support different formats:
o TEX reads the file ‘filename.eps’ (Encapsulated PostScript format).
e PDFTEX reads ‘filename.pdf’ (Adobe’s Portable Document Format).
e makeinfo includes ‘filename.txt’ verbatim for Info output (more or less as if it was
an @example).
e makeinfo uses the optional fifth argument extension to @image for the filename exten-
sion, if it is specified. For example:
Q@image{foo,,,,.xpm}
will cause makeinfo to look for ‘foo.xpm’ before any others.

The width and height arguments are described in the next section.

When producing html, makeinfo sets the alt attribute for inline images to the optional
alttext (fourth) argument to @image, if supplied. If not supplied, makeinfo uses the full file
name of the image being displayed. If you want an empty alt string, use @-. The alttext
is taken as Texinfo text, so special characters such as ‘""" and ‘<’ and ‘&’ are escaped in the
HTML and XML output.

If you do not supply the optional extension (fifth) argument, makeinfo first tries
‘filename.png’; if that does not exist, it tries ‘filename.jpg’. If that does not exist
either, it complains. (We cannot support GIF format directly due to software patents.)

In Info output, makeinfo writes a reference to the binary image file (trying filename
suffixed with ‘extension’, ‘.extension’, ‘.png’, or ‘. jpg’, in that order) if one exists. It
also literally includes the ‘.txt’ file if one exists. This way, Info readers which can display
images (such as the Emacs Info browser, running under X) can do so, whereas Info readers
which can only use text (such as the standalone Info reader) can display the textual version.

The implementation of this is to put the following construct into the Info output:

Chapter 12: Special Displays 102

"@"H[image src="binaryfile" text="txtfile"
alt="alttext ... ~Q@7HI]

where ‘~@ and ‘"H’ stand for the actual null and backspace control characters. If one of the
files is not present, the corresponding argument is omitted.

The reason for mentioning this here is that older Info browsers (this feature was intro-
duced in Texinfo version 4.6) will display the above literally, which, although not pretty,
should not be harmful.

12.2.2 Image Scaling

The optional width and height arguments to the @image command (see the previous section)
specify the size to scale the image to. They are ignored for Info output. If neither is specified,
the image is presented in its natural size (given in the file); if only one is specified, the other is
scaled proportionately; and if both are specified, both are respected, thus possibly distorting
the original image by changing its aspect ratio.

The width and height may be specified using any valid TEX dimension, namely:

pt point (72.27pt = lin)

pc pica (1pc = 12pt)

bp big point (72bp = lin)

in inch

cm centimeter (2.54cm = lin)
mm millimeter (10mm = lcm)

dd didot point (1157dd = 1238pt)
cc cicero (lecc = 12dd)

Sp scaled point (65536sp = 1pt)

For example, the following will scale a file ‘ridt.eps’ to one inch vertically, with the
width scaled proportionately:

Q@image{ridt,,1lin}

For @image to work with TEX, the file ‘epsf.tex’ must be installed somewhere that
TEX can find it. (The standard location is ‘texmf /tex/generic/dvips/epsf.tex’, where
texmf is a root of your TEX directory tree.) This file is included in the Texinfo distribution
and is also available from ftp://tug.org/tex/epsf.tex, among other places.

@image can be used within a line as well as for displayed figures. Therefore, if you
intend it to be displayed, be sure to leave a blank line before the command, or the output
will run into the preceding text.

Image scaling is presently implemented only in TEX, not in HTML or any other sort
of output.

ftp://tug.org/tex/epsf.tex

Chapter 12: Special Displays 103

12.3 Footnotes

A footnote is for a reference that documents or elucidates the primary text.! Footnotes
are distracting; use them sparingly, if at all. Standard bibliographical references are better
placed in a bibliography at the end of a document than in footnotes throughout.

12.3.1 Footnote Commands

In Texinfo, footnotes are created with the @footnote command. This command is followed
immediately by a left brace, then by the text of the footnote, and then by a terminating
right brace. Footnotes may be of any length (they will be broken across pages if necessary),
but are usually short. The template is:

ordinary text@footnote{text of footnote}

As shown here, the @footnote command should come right after the text being foot-
noted, with no intervening space; otherwise, the footnote marker might end up starting a
line.

For example, this clause is followed by a sample footnote?; in the Texinfo source, it
looks like this:

...a sample footnote@footnote{Here is the sample
footnote.}; in the Texinfo source...

As you can see, the source includes two punctuation marks next to each other; in this
case, ‘.};’ is the sequence. This is normal (the first ends the footnote and the second
belongs to the sentence being footnoted), so don’t worry that it looks odd.

In a printed manual or book, the reference mark for a footnote is a small, superscripted
number; the text of the footnote appears at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote
number between them, like this: ‘(1)’. The reference mark is followed by a cross-reference
link to the footnote’s text.

In the HTML output, footnote references are marked with a small, superscripted num-
ber which is rendered as a hypertext link to the footnote text.

By the way, footnotes in the argument of an @item command for a @table must be on
the same line as the @item (as usual). See Section 11.4 [Two-column Tables|, page 94.

12.3.2 Footnote Styles

Info has two footnote styles, which determine where the text of the footnote is located:

e In the ‘End’ node style, all the footnotes for a single node are placed at the end of that
node. The footnotes are separated from the rest of the node by a line of dashes with
the word ‘Footnotes’ within it. Each footnote begins with an ‘(n)’ reference mark.

Here is an example of a single footnote in the end of node style:

————————— Footnotes - ———————-

(1) Here is a sample footnote.

LA footnote should complement or expand upon the primary text, but a reader should not need to read
a footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago
Manual of Style, which is published by the University of Chicago Press.

2 Here is the sample footnote.

Chapter 12: Special Displays 104

e In the ‘Separate’ node style, all the footnotes for a single node are placed in an auto-
matically constructed node of their own. In this style, a “footnote reference” follows
each ‘(n)’ reference mark in the body of the node. The footnote reference is actually
a cross reference which you use to reach the footnote node.

The name of the node with the footnotes is constructed by appending ‘~Footnotes’ to
the name of the node that contains the footnotes. (Consequently, the footnotes’ node
for the ‘Footnotes’ node is ‘Footnotes-Footnotes’l) The footnotes’ node has an ‘Up’
node pointer that leads back to its parent node.

Here is how the first footnote in this manual looks after being formatted for Info in the
separate node style:

File: texinfo.info Node: Overview-Footnotes, Up: Overview

(1) The first syllable of "Texinfo" is pronounced like "speck", not
"hex". ...
Unless your document has long and important footnotes (as in, say, Gibbon’s Decline
and Fall . ..), we recommend the ‘end’ style, as it is simpler for readers to follow.
Use the @footnotestyle command to specify an Info file’s footnote style. Write this
command at the beginning of a line followed by an argument, either ‘end’ for the end node
style or ‘separate’ for the separate node style.

For example,
@footnotestyle end
or
@footnotestyle separate

Write an @footnotestyle command before or shortly after the end-of-header line at
the beginning of a Texinfo file. (If you include the @footnotestyle command between
the start-of-header and end-of-header lines, the region formatting commands will format
footnotes as specified.)

If you do not specify a footnote style, the formatting commands use their default style.

Currently, texinfo-format-buffer and texinfo-format-region use the ‘separate’ style
and makeinfo uses the ‘end’ style.

Chapter 13: Indices 105

13 Indices

Using Texinfo, you can generate indices without having to sort and collate entries manually.
In an index, the entries are listed in alphabetical order, together with information on how
to find the discussion of each entry. In a printed manual, this information consists of page
numbers. In an Info file, this information is a menu entry leading to the first node referenced.

Texinfo provides several predefined kinds of index: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other
than their canonical purpose. Lastly, you can define your own new indices.

See Section 4.1 [Printing Indices & Menus|, page 44, for information on how to print
indices.

13.1 Making Index Entries

When you are making index entries, it is good practice to think of the different ways people
may look for something. Different people do not think of the same words when they look
something up. A helpful index will have items indexed under all the different words that
people may use. For example, one reader may think it obvious that the two-letter names
for indices should be listed under “Indices, two-letter names”, since the word “Index” is
the general concept. But another reader may remember the specific concept of two-letter
names and search for the entry listed as “T'wo letter names for indices”. A good index will
have both entries and will help both readers.

Like typesetting, the construction of an index is a highly skilled, professional art, the
subtleties of which are not appreciated until you need to do it yourself.

See Section 4.1 [Printing Indices & Menus|, page 44, for information about printing an
index at the end of a book or creating an index menu in an Info file.

13.2 Predefined Indices

Texinfo provides six predefined indices. Here are their nominal meanings, abbreviations,
and the corresponding index entry commands:

cp (@cindex) concept index, for general concepts.

‘fn’ (efindex) function index, for function and function-like names (such as entry
points of libraries).

‘ky’ (@kindex) keystroke index, for keyboard commands.

‘pg’ (@pindex) program index, for names of programs.

‘tp’ (@tindex) data type index, for type names (such as structures defined in header
files).

‘vr’ (@vindex) variable index, for variable names (such as global variables of li-
braries).

Not every manual needs all of these, and most manuals use only two or three at most. The
present manual, for example, has two indices: a concept index and an @-command index
(that is actually the function index but is called a command index in the chapter heading).

Chapter 13: Indices 106

You are not required to use the predefined indices strictly for their canonical purposes.
For example, suppose you wish to index some C preprocessor macros. You could put them
in the function index along with actual functions, just by writing @findex commands for
them; then, when you print the “Function Index” as an unnumbered chapter, you could
give it the title ‘Function and Macro Index’ and all will be consistent for the reader.

On the other hand, it is best not to stray too far from the meaning of the predefined
indices. Otherwise, in the event that your text is combined with other text from other
manuals, the index entries will not match up. Instead, define your own new index (see
Section 13.5 [New Indices], page 108).

We recommend having a single index in the final document whenever possible, how-
ever many source indices you use, since then readers have only one place to look. Two
or more source indices can be combined into one output index using the @synindex or
@syncodeindex commands (see Section 13.4 [Combining Indices], page 107).

13.3 Defining the Entries of an Index

The data to make an index come from many individual indexing commands scattered
throughout the Texinfo source file. Each command says to add one entry to a particu-
lar index; after formatting, the index will give the current page number or node name as
the reference.

An index entry consists of an indexing command at the beginning of a line followed,
on the rest of the line, by the entry.

For example, this section begins with the following five entries for the concept index:

Q@cindex Defining indexing entries
Ocindex Index entries, defining
O@cindex Entries for an index
Ocindex Specifying index entries
Ocindex Creating index entries

Fach predefined index has its own indexing command—@cindex for the concept index,
@findex for the function index, and so on, as listed in the previous section.

Concept index entries consist of text. The best way to write an index is to choose
entries that are terse yet clear. If you can do this, the index often looks better if the entries
are not capitalized, but written just as they would appear in the middle of a sentence.
(Capitalize proper names and acronyms that always call for upper case letters.) This is the
case convention we use in most GNU manuals’ indices.

If you don’t see how to make an entry terse yet clear, make it longer and clear—not
terse and confusing. If many of the entries are several words long, the index may look
better if you use a different convention: to capitalize the first word of each entry. But do
not capitalize a case-sensitive name such as a C or Lisp function name or a shell command;
that would be a spelling error.

Whichever case convention you use, please use it consistently!

Entries in indices other than the concept index are symbol names in programming
languages, or program names; these names are usually case-sensitive, so use upper and
lower case as required for them.

Chapter 13: Indices 107

By default, entries for a concept index are printed in a small roman font and entries
for the other indices are printed in a small @code font. You may change the way part of
an entry is printed with the usual Texinfo commands, such as @file for file names (see
Chapter 9 [Marking Text|, page 73), and @r for the normal roman font (see Section 9.2.3
[Fonts], page 82).

Caution: Do not use a colon in an index entry. In Info, a colon separates the
menu entry name from the node name, so a colon in the entry itself confuses
Info. See Section 7.3 [Menu Parts], page 60, for more information about the
structure of a menu entry.

13.4 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and concepts,
perhaps because you have few enough entries that a separate index would look silly.

You could put functions into the concept index by writing @cindex commands for them
instead of @findex commands, and produce a consistent manual by printing the concept
index with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at
all; but this is not a robust procedure. It works only if your document is never included
as part of another document that is designed to have a separate function index; if your
document were to be included with such a document, the functions from your document
and those from the other would not end up together. Also, to make your function names
appear in the right font in the concept index, you would need to enclose every one of them
between the braces of @code.

13.4.1 @syncodeindex

When you want to combine functions and concepts into one index, you should index the
functions with @findex and index the concepts with @cindex, and use the @syncodeindex
command to redirect the function index entries into the concept index.

The @syncodeindex command takes two arguments; they are the name of the index
to redirect, and the name of the index to redirect it to. The template looks like this:

O@syncodeindex from to

For this purpose, the indices are given two-letter names:

‘cp’ concept index
‘fn’ function index
‘vr’ variable index
‘ky’ key index

‘pg’ program index
‘tp’ data type index

Write an @syncodeindex command before or shortly after the end-of-header line at the
beginning of a Texinfo file. For example, to merge a function index with a concept index,
write the following:

O@syncodeindex fn cp

Chapter 13: Indices 108

This will cause all entries designated for the function index to merge in with the concept
index instead.

To merge both a variables index and a function index into a concept index, write the
following;:

O@syncodeindex vr cp
O@syncodeindex fn cp

The @syncodeindex command puts all the entries from the ‘from’ index (the redirected
index) into the @code font, overriding whatever default font is used by the index to which
the entries are now directed. This way, if you direct function names from a function index
into a concept index, all the function names are printed in the @code font as you would
expect.

13.4.2 @synindex

The @synindex command is nearly the same as the @syncodeindex command, except that
it does not put the ‘from’ index entries into the @code font; rather it puts them in the roman
font. Thus, you use @synindex when you merge a concept index into a function index.

See Section 4.1 [Printing Indices & Menus|, page 44, for information about printing an
index at the end of a book or creating an index menu in an Info file.

13.5 Defining New Indices

In addition to the predefined indices, you may use the @defindex and @defcodeindex
commands to define new indices. These commands create new indexing @-commands with
which you mark index entries. The @defindex command is used like this:

Odefindex name
The name of an index should be a two letter word, such as ‘au’. For example:
O@defindex au

This defines a new index, called the ‘au’ index. At the same time, it creates a new
indexing command, @auindex, that you can use to make index entries. Use this new indexing
command just as you would use a predefined indexing command.

For example, here is a section heading followed by a concept index entry and two ‘au’
index entries.

O@section Cognitive Semantics
O@cindex kinesthetic image schemas
@auindex Johnson, Mark

Qauindex Lakoff, George

(Evidently, ‘au’ serves here as an abbreviation for “author”.)

In general, Texinfo constructs the new indexing command by concatenating the name
of the index with ‘index’; thus, defining an ‘xy’ index leads to the automatic creation of an
@xyindex command.

Use the @printindex command to print the index, as you do with the predefined
indices. For example:

Chapter 13: Indices 109

Onode Author Index
Qunnumbered Author Index

O@printindex au

The @defcodeindex is like the @defindex command, except that, in the printed output,
it prints entries in an @code font by default instead of a roman font.

You should define new indices before the end-of-header line of a Texinfo file, and (of
course) before any @synindex or @syncodeindex commands (see Section 3.2 [Texinfo File
Header|, page 28).

Chapter 14: Special Insertions 110

14 Special Insertions

Texinfo provides several commands for inserting characters that have special meaning in
Texinfo, such as braces, and for other graphic elements that do not correspond to simple
characters you can type.

These are:
e ‘@ and braces and commas.
e Whitespace within and around a sentence.
e Accents.
e Dots and bullets.
e The TEX logo and the copyright symbol.
e The pounds currency symbol.
e The minus sign.
e Mathematical expressions.
e Glyphs for evaluation, macros, errors, etc.
e Footnotes.

e Images.

14.1 Inserting @ and {} and ,

‘@ and curly braces are special characters in Texinfo. To insert these characters so they
appear in text, you must put an ‘@ in front of these characters to prevent Texinfo from
misinterpreting them.

The comma °,” is a special character only in one uncommon context: it separates

arguments to commands that take multiple arguments.

14.1.1 Inserting ‘@’ with @@

@@ stands for a single ‘@’ in either printed or Info output.

Do not put braces after an @@ command.

14.1.2 Imserting ‘{’ and ‘}’ with @{ and @}

@{ stands for a single ‘{’ in either printed or Info output.
@} stands for a single ‘}’ in either printed or Info output.

Do not put braces after either an @{ or an @} command.ppp

14.1.3 Inserting ¢,” with @comma{}

Ordinarily, a comma ‘,” is a normal character that can be simply typed in your input where
you need it.

However, Texinfo uses the comma as a special character in one uncommon context:
some commands, such as @acronym (see Section 9.1.14 [acronym], page 80) and @xref (see
Chapter 8 [Cross References|, page 63), as well as user-defined macros (see Section 19.1
[Defining Macros|, page 147), can take more than one argument. In these cases, the comma
character is used to separate arguments.

Chapter 14: Special Insertions 111

Since a comma chacter would confuse Texinfo’s parsing for these commands, you must
use the command ,” instead if you want to have an actual comma in the output. Here are
some examples:

@acronym{ABC, A Bizarre @comma{}}
@xref{Comma,, The Q@comma{} symbol}
O@mymac{One argument@comma{} containing a comma}

Although , can be used anywhere, there is no need for it anywhere except in this
unusual case.

14.2 Inserting Space

The following sections describe commands that control spacing of various kinds within and
after sentences.

14.2.1 Not Ending a Sentence

Depending on whether a period or exclamation point or question mark is inside or at the
end of a sentence, less or more space is inserted after a period in a typeset manual. Since
it is not always possible to determine when a period ends a sentence and when it is used
in an abbreviation, special commands are needed in some circumstances. Usually, Texinfo
can guess how to handle periods, so you do not need to use the special commands; you just
enter a period as you would if you were using a typewriter, which means you put two spaces
after the period, question mark, or exclamation mark that ends a sentence.

Use the @: command after a period, question mark, exclamation mark, or colon that
should not be followed by extra space. For example, use @: after periods that end abbrevi-
ations which are not at the ends of sentences.

For example,

The s.0.p.@: has three parts ...
The s.o.p. has three parts ...

produces the following. If you look carefully at this printed output, you will see a little
extraneous space after ‘s.o.p.’ in the second line.

The s.o.p. has three parts . ..
The s.o.p. has three parts . ..

(Incidentally, ‘s.o.p.” is an abbreviation for “Standard Operating Procedure”.)

@: has no effect on the Info and HTML output. In Docbook and XML, the previous
punctuation character (.7!:) is output as an entity instead of as the normal character:
‘. ? ! :’. This gives further processors a chance to notice and
not add the usual extra space.

Do not put braces after @: (or any non-alphabetic command).

14.2.2 Ending a Sentence

Use @. instead of a period, @! instead of an exclamation point, and @7 instead of a question
mark at the end of a sentence that ends with a capital letter. Otherwise, TEX will think
the letter is an abbreviation and will not insert the correct end-of-sentence spacing. Here
is an example:

Chapter 14: Special Insertions 112

Give it to M.I.B. and to M.E.W@. Also, give it to R.J.CQ.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

produces the following. If you look carefully at this printed output, you will see a little
more whitespace after the ‘W in the first line.

Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.
Give it to M.I.B. and to M.E.W. Also, give it to R.J.C.

In the Info file output, @. is equivalent to a simple ‘.’; likewise for @! and @7.

The meanings of @: and @. in Texinfo are designed to work well with the Emacs
sentence motion commands (see section “Sentences” in The GNU Emacs Manual).

Do not put braces after any of these commands.

14.2.3 Multiple Spaces

Ordinarily, TEX collapses multiple whitespace characters (space, tab, and newline) into a
single space. Info output, on the other hand, preserves whitespace as you type it, except
for changing a newline into a space; this is why it is important to put two spaces at the end
of sentences in Texinfo documents.

Occasionally, you may want to actually insert several consecutive spaces, either for
purposes of example (what your program does with multiple spaces as input), or merely
for purposes of appearance in headings or lists. Texinfo supports three commands: @SPACE,
@TAB, and @NL, all of which insert a single space into the output. (Here, @SPACE represents
an ‘@’ character followed by a space, i.e., ‘@ ’, and TAB and NL represent the tab character
and end-of-line, i.e., when ‘@ is the last character on a line.)

For example,

Spacey@ @ @ @
example.

produces
Spacey example.

Other possible uses of @SPACE have been subsumed by @multitable (see Section 11.5
[Multi-column Tables|, page 96).

Do not follow any of these commands with braces.

To produce a non-breakable space, see Section 15.5 [tie], page 122.

14.2.4 @dmn{dimension}: Format a Dimension

At times, you may want to write ‘12pt’ or ‘8.5in’ with little or no space between the
number and the abbreviation for the dimension. You can use the @mn command to do this.
On seeing the command, TEX inserts just enough space for proper typesetting; the Info
formatting commands insert no space at all, since the Info file does not require it.

To use the @dmn command, write the number and then follow it immediately, with no
intervening space, by @dmn, and then by the dimension within braces. For example,

A4 paper is 8.27@dmn{in} wide.
produces

A4 paper is 8.27 in wide.

Chapter 14: Special Insertions 113

Not everyone uses this style. Some people prefer ‘8.27 in.@:’ or ‘8.27 inches’ to
‘8.27@dmn{in}’ in the Texinfo file. In these cases, however, the formatters may insert a line
break between the number and the dimension, so use @w (see Section 15.4 [w], page 121).
Also, if you write a period after an abbreviation within a sentence, you should write ‘@:’
after the period to prevent TEX from inserting extra whitespace, as shown here. See
Section 14.2.1 [Not Ending a Sentence], page 111.

14.3 Inserting Accents

Here is a table with the commands Texinfo provides for inserting floating accents. The
commands with non-alphabetic names do not take braces around their argument (which is
taken to be the next character). (Exception: @, does take braces around its argument.)
This is so as to make the source as convenient to type and read as possible, since accented
characters are very common in some languages.

To get the true accented characters output in Info, and not just the ASCII translit-
erations, you can use the ‘--enable-encoding’ option to makeinfo (see Section 21.1.3
[makeinfo options], page 163).

Command Output What

@"o 0 umlaut accent

@’0 6 acute accent

@,{c} ¢ cedilla accent

@=0 0 macron/overbar accent
@ o 0 circumflex accent

@‘o 0 grave accent

@~ o 0 tilde accent
@dotaccent{o} o) overdot accent

@H{o} 0 long Hungarian umlaut
@ringaccent{o} 0 ring accent
@tieaccent{oo} 60 tie-after accent

Qu{o} 0 breve accent
Qubaraccent{o} 0 underbar accent
@udotaccent{o} 0 underdot accent

ev{o} 0 hacek/check/caron accent

This table lists the Texinfo commands for inserting other characters commonly used in
languages other than English.

@exclamdown{} i upside-down !
@questiondown{} upside-down 7
@aa{} @AA{} a A a,A with circle
Q@ae{} QAE{} e B ae,AE ligatures
@dotless{i} 1 dotless i
@dotless{j}] dotless j

e1{} erL{} tL suppressed-L,1
@o{} @o{} N0) 0,0 with slash
Qoe{} QOE{} e (B oe,OF ligatures

[e)

Q@ordf{} Qordm{}
ess{}

Spanish ordinals
es-zet or sharp S

= e

Chapter 14: Special Insertions 114

14.4 Inserting Ellipsis and Bullets

An ellipsis (a line of dots) is not typeset as a string of periods, so a special command is used
for ellipsis in Texinfo. The @bullet command is special, too. Each of these commands is
followed by a pair of braces, ‘{}’, without any whitespace between the name of the command
and the braces. (You need to use braces with these commands because you can use them
next to other text; without the braces, the formatters would be confused. See Section A.1
[6-Command Syntax]|, page 203, for further information.)

14.4.1 @dots{} (...) and @enddots{} (...)

Use the @dots{} command to generate an ellipsis, which is three dots in a row, appropriately
spaced ... like so. Do not simply write three periods in the input file; that would work for
the Info file output, but would produce the wrong amount of space between the periods in
the printed manual.

Similarly, the @enddots{} command generates an end-of-sentence ellipsis, which has
different spacing afterwards, ... Look closely to see the difference.

Here is an ellipsis: ... Here are three periods in a row: ...

In printed output, the three periods in a row are closer together than the dots in the
ellipsis.

14.4.2 @bullet{} ()

Use the @bullet{} command to generate a large round dot, or the closest possible thing to
one. In Info, an asterisk is used.

Here is a bullet: o

When you use @bullet in Q@itemize, you do not need to type the braces, because
@itemize supplies them. (See Section 11.2 [@itemize|, page 92.)

14.5 Inserting TpX and Legal Symbols: (©), ®

The logo ‘“TEX’ is typeset in a special fashion and it needs an @-command. The copyright
and registered symbols, ‘(©’ and ‘¥’ is also special. Each of these commands is followed
by a pair of braces, ‘{}’, without any whitespace between the name of the command and
the braces.

14.5.1 @TeX{} (TEX) and @LaTeX{} (ETEX)

Use the @TeX{} command to generate ‘TEX’. In a printed manual, this is a special logo that
is different from three ordinary letters. In Info, it just looks like ‘TeX’.

Similarly, use the @LaTeX{} command to generate ‘IXTEX’, which is even more special
in printed manuals (and different from the incorrect La@TeX{}. In Info, the result is just
‘LaTeX’. (ITEX is another macro package built on top of TEX, very loosely analogous to
Texinfo in that it emphasizes logical structure, but much (much) larger.)

The spelling of these commands are unusual among Texinfo commands in that they
use both uppercase and lowercase letters.

14.5.2 @copyright{} (©)

Use the @copyright{} command to generate the copyright symbol, ‘(©’. Where possible,
this is a ‘c’ inside a circle; in Info, this is ‘(C)’.

Chapter 14: Special Insertions 115

14.5.3 Qregisteredsymbol{} (CD)

Use the @registeredsymbol{} command to generate the registered symbol, ‘®’, Where
possible, this is an ‘R’ inside a circle; in Info, this is ‘(R)’.

14.6 @pounds{} (£): Pounds Sterling

Use the @pounds{} command to generate ‘£’. In a printed manual, this is the symbol for
the currency pounds sterling. In Info, it is a ‘#’. Other currency symbols are unfortunately
not available.

14.7 @minus{} (—): Inserting a Minus Sign

Use the @minus{} command to generate a minus sign. In a fixed-width font, this is a single
hyphen, but in a proportional font, the symbol is the customary length for a minus sign—a
little longer than a hyphen, shorter than an em-dash:

‘—’ is a minus sign generated with ‘@minus{}’,
-’ is a hyphen generated with the character ‘-,

‘—’ is an em-dash for text.
In the fixed-width font used by Info, @minus{} is the same as a hyphen.

You should not use @minus{} inside @code or @example because the width distinction
is not made in the fixed-width font they use.

When you use @minus to specify the mark beginning each entry in an itemized list, you
do not need to type the braces (see Section 11.2 [@itemize|, page 92).

14.8 @math: Inserting Mathematical Expressions
You can write a short mathematical expression with the @math command. Write the math-
ematical expression between braces, like this:
@math{(a + b)(a + b) = a”2 + 2ab + b"2}
This produces the following in TEX:
(a + b)(a + b) = a®> + 2ab + V?
and the following in other formats:
(a +b)(a+b) =a"2+ 2ab + b2

Thus, the @math command has no effect on the Info and HI'ML output; makeinfo just
reproduces the input, it does not try to interpret the mathematics in any way.

@math implies @tex. This not only makes it possible to write superscripts and subscripts
(as in the above example), but also allows you to use any of the plain TEX math control
sequences. It’s conventional to use ‘\’ instead of ‘@ for these commands. As in:

@math{\sin 2\pi \equiv \cos 3\pi}
which looks like this in TEX:

sin 2r = cos 3w
and which looks like the input in Info and HTML:

Chapter 14: Special Insertions 116

\sin 2\pi \equiv \cos 3\pi

Since ‘\’ is an escape character inside @math, you can use @\ to get a literal backslash
(\\ will work in TgX, but youll get the literal ‘\\” in Info). @\ is not defined outside of
@math, since a ‘\’ ordinarily produces a literal ‘\’.

For displayed equations, you must at present use TEX directly (see Section 17.3 [Raw
Formatter Commands|, page 138).

14.9 Glyphs for Examples

In Texinfo, code is often illustrated in examples that are delimited by @example and @end
example, or by @lisp and @end lisp. In such examples, you can indicate the results of
evaluation or an expansion using ‘=’ or ‘—’. Likewise, there are commands to insert glyphs
to indicate printed output, error messages, equivalence of expressions, and the location of
point.

The glyph-insertion commands do not need to be used within an example, but most
often they are. Every glyph-insertion command is followed by a pair of left- and right-hand
braces.

14.9.1 Glyphs Summary

Here are the different glyph commands:

= @result{} points to the result of an expression.

— Q@expansion{} shows the results of a macro expansion.

o @print{} indicates printed output.

Qerror{} indicates that the following text is an error message.

= @equiv{} indicates the exact equivalence of two forms.

* @point{} shows the location of point.

14.9.2 @result{} (=): Indicating Evaluation
Use the @result{} command to indicate the result of evaluating an expression.

The @result{} command is displayed as ‘=" in the printed output and as ‘=>" in other
formats.

Thus, the following,

(cdr °(1 2 3))
= (2 3)

may be read as “(cdr > (1 2 3)) evaluates to (2 3)”.

14.9.3 @expansion{} (~—): Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the
result of the expansion with the @expansion{} command.

The @expansion{} command is displayed as ‘+’ in the printed output. and as ‘==>’
in other formats.

Chapter 14: Special Insertions 117

For example, the following
@lisp
(third ’(a b ¢))
Qexpansion{} (car (cdr (cdr ’(a b ¢))))
@result{} c
Q@end lisp
produces
(third ’(a b ¢))
— (car (cdr (cdr ’(a b ¢))))
= C
which may be read as:
(third ’(a b ¢)) expands to (car (cdr (cdr ’(a b c)))); the result of eval-
uating the expression is c.
Often, as in this case, an example looks better if the @expansion{} and @result{} com-
mands are indented.

14.9.4 @print{} (-): Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate the printed
output with the @print{} command.
The @print{} command is displayed as ‘=|’" in Info and HTML and as ‘-’ in the
printed output.
In the following example, the printed text is indicated with ‘ +’, and the value of the
expression follows on the last line.
(progn (print ’foo) (print ’bar))
- foo
- bar
= bar
In a Texinfo source file, this example is written as follows:
@lisp
(progn (print ’foo) (print ’bar))
@print{} foo
@print{} bar
@result{} bar
@end lisp

14.9.5 Qerror{} ([error]): Indicating an Error Message
A piece of code may cause an error when you evaluate it. You can designate the error
message with the @error{} command.
The @error{} command is displayed as ‘error-->’ in Info and HTML and as °
in the printed output.
Thus,
@lisp
(+ 23 ’x)

)

Chapter 14: Special Insertions 118

@error{} Wrong type argument: integer-or-marker-p, x

Q@end lisp
produces
(+ 23 ’x)

Wrong type argument: integer-or-marker-p, x
This indicates that the following error message is printed when you evaluate the expression:
Wrong type argument: integer-or-marker-p, x
‘[error] ’ itself is not part of the error message.

14.9.6 @equiv{} (=): Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence
of two forms with the @equiv{} command.

3

The @equiv{} command is displayed as ‘==" in Info and HTML and as ‘=’ in the
printed output.

Thus,

@lisp

(make-sparse-keymap) @equiv{} (list ’keymap)

Q@end lisp
produces

(make-sparse-keymap) = (list ’keymap)
This indicates that evaluating (make-sparse-keymap) produces identical results to evalu-
ating (list ’keymap).

14.9.7 @point{} (%): Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples, the
convention is to include the entire contents of the buffer in question between two lines of
dashes containing the buffer name.

You can use the ‘@point{}’ command to show the location of point in the text in the
buffer. (The symbol for point, of course, is not part of the text in the buffer; it indicates
the place between two characters where point is located.)

The @point{} command is displayed as ‘~=!-’ in Info and HTML and as ‘4’ in the
printed output.

The following example shows the contents of buffer ‘foo’ before and after evaluating a
Lisp command to insert the word changed.

---------- Buffer: foo ----------
This is the *contents of foo.
—————————— Buffer: foo --———=—----

(insert "changed ")

= nil
—————————— Buffer: foo --—————----
This is the changed xcontents of foo.
—————————— Buffer: foo ----------

Chapter 14: Special Insertions

In a Texinfo source file, the example is written like this:

Q@example

—————————— Buffer: foo --——————-—-
This is the @point{}contents of foo.
—————————— Buffer: foo --———————-

(insert "changed ")
Q@result{} nil

—————————— Buffer: foo --————-----
This is the changed @point{}contents of foo.
—————————— Buffer: foo ---------—-

Q@end example

119

Chapter 15: Forcing and Preventing Breaks 120

15 Forcing and Preventing Breaks

Usually, a Texinfo file is processed both by TEX and by one of the Info formatting com-
mands. Line, paragraph, or page breaks sometimes occur in the ‘wrong’ place in one or
other form of output. You must ensure that text looks right both in the printed manual
and in the Info file.

For example, in a printed manual, page breaks may occur awkwardly in the middle of
an example; to prevent this, you can hold text together using a grouping command that
keeps the text from being split across two pages. Conversely, you may want to force a page
break where none would occur normally. Fortunately, problems like these do not often arise.
When they do, use the break, break prevention, or pagination commands.

15.1 Break Commands

The break commands create or allow line and paragraph breaks:

©* Force a line break.
@sp n Skip n blank lines.
e- Insert a discretionary hyphen.

@hyphenation{hy-phen-a-ted words}
Define hyphen points in hy-phen-a-ted words.

These commands hold text together on a single line:
@w{text} Prevent text from being split and hyphenated across two lines.

etie{} Insert a normal interword space at which a line break may not occur.

The pagination commands apply only to printed output, since Info files do not have
pages.
@page Start a new page in the printed manual.
Q@group Hold text together that must appear on one printed page.

Oneed mils
Start a new printed page if not enough space on this one.

15.2 0% and 0/: Generate and Allow Line Breaks

The @* command forces a line break in both the printed manual and in Info. The @/
command allows a line break (printed manual only).

Here is an example with @*:
This line @* is broken @*in two places.
produces

This line
is broken
in two places.

The @/ command can be useful within a url (see Section 8.9 [@uref], page 71), which
tend to be long and are otherwise unbreakable. For example:

Chapter 15: Forcing and Preventing Breaks 121

The official Texinfo home page is on the GNU web site:
Quref{http://www.gnu.org/@/software/@/gnu/Q/texinfol.

produces

The official Texinfo home page is on the GNU web site:
http://www.gnu.org/software/gnu/texinfo.

Without the @/ commands, TEX would have nowhere to break the line. @/ has no effect in
the online output.

15.3 @- and Ghyphenation: Helping TEX Hyphenate

Although TEX’s hyphenation algorithm is generally pretty good, it does miss useful hyphen-
ation points from time to time. (Or, far more rarely, insert an incorrect hyphenation.) So,
for documents with an unusual vocabulary or when fine-tuning for a printed edition, you
may wish to help TEX out. Texinfo supports two commands for this:

©- Insert a discretionary hyphen, i.e., a place where TEX can (but does not have
to) hyphenate. This is especially useful when you notice an overfull hbox is due
to TEX missing a hyphenation (see Section 20.10 [Overfull hboxes], page 159).
TEX will not insert any hyphenation points itself into a word containing @-.

@hyphenation{hy-phen-a-ted words}
Tell TEX how to hyphenate hy-phen-a-ted words. As shown, you put a ‘-’ at
each hyphenation point. For example:

@hyphenation{man-u-script man-u-scripts}
TEX only uses the specified hyphenation points when the words match exactly,

so give all necessary variants.

Info output is not hyphenated, so these commands have no effect there.

15.4 @w{text}: Prevent Line Breaks
@w{text} outputs text and prohibits line breaks within text, for both TEX and makeinfo.

Thus, you can use @w to produce a non-breakable space, fixed at the width of a normal
interword space:

@w{ } @w{ } Ow{ } indentation.
produces:
indentation.
The space from @u{ }, as well as being non-breakable, also will not stretch or shrink.
Sometimes that is what you want, for instance if you're doing indenting manual. However,

usually you want a normal interword space that does stretch and shrink (in the printed
output); see the @tie command in the next section.

You can also use the @w command to prevent TEX from automatically hyphenating a
long name or phrase that happens to fall near the end of a line. makeinfo does not ever
hyphenate words.

You can also use @w to avoid unwanted keyword expansion in source control systems.
For example, to literally write Id in your document, use @w{$}Id$.

http://www.gnu.org/penalty z@ software/penalty z@ gnu/penalty z@ texinfo

Chapter 15: Forcing and Preventing Breaks 122

15.5 @tie{}: Inserting an Unbreakable Space

The @tie{} command produces a normal interword space at which a line break may not
occur. Always write it with following (empty) braces, as usual for commands used within
a paragraph. Here’s an example:

Q@TeX{} was written by Donald E.Q@tie{}Knuth.
produces:
TEX was written by Donald E. Knuth.
There are two important differences between @tie{} and @w{ }:

e The space produced by @tie{} will stretch and shrink slightly along with the normal
interword spaces in the paragraph; the space produced by @w{ } will not vary.

e Qtie{} allows hyphenation of the surrounding words, while @w{ } inhibits hyphenation
of those words (for TgXnical reasons, namely that it produces an ‘\hbox’).

15.6 @sp n: Insert Blank Lines
A line beginning with and containing only @sp n generates n blank lines of space in both
the printed manual and the Info file. @sp also forces a paragraph break. For example,
Gsp 2
generates two blank lines.

The @sp command is most often used in the title page.

15.7 @page: Start a New Page

A line containing only @page starts a new page in a printed manual. The command has no
effect on Info files since they are not paginated. An @page command is often used in the
@titlepage section of a Texinfo file to start the copyright page.

15.8 @group: Prevent Page Breaks

The @group command (on a line by itself) is used inside an @example or similar construct to
begin an unsplittable vertical group, which will appear entirely on one page in the printed
output. The group is terminated by a line containing only @end group. These two lines
produce no output of their own, and in the Info file output they have no effect at all.

Although @group would make sense conceptually in a wide variety of contexts, its
current implementation works reliably only within @example and variants, and within
@display, @format, @flushleft and @flushright. See Chapter 10 [Quotations and Ex-
amples], page 83. (What all these commands have in common is that each line of input
produces a line of output.) In other contexts, @group can cause anomalous vertical spacing.

This formatting requirement means that you should write:

Q@example
Q@group

@end group
Q@end example

Chapter 15: Forcing and Preventing Breaks 123

with the @group and @end group commands inside the @example and Q@end example com-
mands.

The @group command is most often used to hold an example together on one page. In
this Texinfo manual, more than 100 examples contain text that is enclosed between @group
and Qend group.

If you forget to end a group, you may get strange and unfathomable error messages
when you run TgX. This is because TEX keeps trying to put the rest of the Texinfo file
onto the one page and does not start to generate error messages until it has processed
considerable text. It is a good rule of thumb to look for a missing @end group if you get
incomprehensible error messages in TEX.

15.9 @need mils: Prevent Page Breaks

A line containing only @need n starts a new page in a printed manual if fewer than n
mils (thousandths of an inch) remain on the current page. Do not use braces around the
argument n. The @need command has no effect on Info files since they are not paginated.
This paragraph is preceded by an @need command that tells TEX to start a new page
if fewer than 800 mils (eight-tenths inch) remain on the page. It looks like this:
Oneed 800
This paragraph is preceded by ...
The @need command is useful for preventing orphans (single lines at the bottoms of
printed pages).

Chapter 16: Definition Commands 124

16 Definition Commands

The @deffn command and the other definition commands enable you to describe functions,
variables, macros, commands, user options, special forms and other such artifacts in a
uniform format.

In the Info file, a definition causes the entity category—Function’, ‘Variable’, or
whatever—to appear at the beginning of the first line of the definition, followed by the
entity’s name and arguments. In the printed manual, the command causes TEX to print
the entity’s name and its arguments on the left margin and print the category next to the
right margin. In both output formats, the body of the definition is indented. Also, the
name of the entity is entered into the appropriate index: @deffn enters the name into the
index of functions, @defvr enters it into the index of variables, and so on (see Section 13.2
[Predefined Indices], page 105).

A manual need not and should not contain more than one definition for a given name.
An appendix containing a summary should use @table rather than the definition commands.

16.1 The Template for a Definition

The @deffn command is used for definitions of entities that resemble functions. To write
a definition using the @deffn command, write the @deffn command at the beginning of
a line and follow it on the same line by the category of the entity, the name of the entity
itself, and its arguments (if any). Then write the body of the definition on succeeding lines.
(You may embed examples in the body.) Finally, end the definition with an @end deffn
command written on a line of its own.

The other definition commands follow the same format: a line with the @def... com-
mand and whatever arguments are appropriate for that command; the body of the definition;
and a corresponding @end line.

The template for a definition looks like this:

@deffn category name arguments...
body-of-definition
Q@end deffn

For example,
@deffn Command forward-word count
This command moves point forward @var{count} words
(or backward if @var{count} is negative).

Q@end deffn
produces
forward-word count [Command]|
This function moves point forward count words (or backward if count is
negative). ...

Capitalize the category name like a title. If the name of the category contains spaces,
as in the phrase ‘Interactive Command’, enclose it in braces. For example:

@deffn {Interactive Command} isearch-forward

@end deffn

Chapter 16: Definition Commands 125

Otherwise, the second word will be mistaken for the name of the entity. As a general rule,
when any of the arguments in the heading line ezcept the last one are more than one word,
you need to enclose them in braces.

Some of the definition commands are more general than others. The @deffn command,
for example, is the general definition command for functions and the like—for entities that
may take arguments. When you use this command, you specify the category to which the
entity belongs. Three predefined, specialized variations (@defun, @defmac, and @defspec)
specify the category for you: “Function”, “Macro”, and “Special Form” respectively. (In
Lisp, a special form is an entity much like a function.) Similarly, the general @defvr
command is accompanied by several specialized variations for describing particular kinds of
variables.

See Section 16.7 [Sample Function Definition], page 135, for a detailed example of a
function definition, including the use of @example inside the definition.

Unfortunately, due to implementation difficulties, macros are not expanded in @deffn
and all the other definition commands.

16.2 Definition Command Continuation Lines

The heading line of a definition command can get very long. Therefore, Texinfo has a
special syntax allowing them to be continued over multiple lines of the source file: a lone
‘@’ at the end of each line to be continued. Here’s an example:

@defun fn-name Q@

argl arg2 arg3
This is the basic continued defun.
@end defun

produces:

fn-name argl arg2 arg3 [Function]
This is the basic continued defun.

As you can see, the continued lines are combined, as if they had been typed on one source
line.

Although this example only shows a one-line continuation, continuations may extend
over any number of lines; simply put an @ at the end of each line to be continued.

The @ character does not have to be the last character on the physical line: whitespace
is allowed (and ignored) afterwards.

In general, any number of spaces or tabs around the @ continuation character, both on
the line with the @ and on the continued line, are collapsed into a single space. There is one
exception: the Texinfo processors will not fully collapse whitespace around a continuation
inside braces. For example:

@deffn {Category @
Name} ...

The output (not shown) has excess space between ‘Category’ and ‘Name’. In this case,
simply elide any unwanted whitespace in your input, or put the continuation @ outside
braces.

Chapter 16: Definition Commands 126

@ does not (currently) function as a continuation character in any other context. Or-
dinarily, ‘@’ followed by a whitespace character (space, tab, newline) produces a normal
interword space (see Section 14.2.3 [Multiple Spaces|, page 112).

16.3 Optional and Repeated Arguments

Some entities take optional or repeated arguments, which may be specified by a distinctive
glyph that uses square brackets and ellipses. For example, a special form often breaks its
argument list into separate arguments in more complicated ways than a straightforward
function.

An argument enclosed within square brackets is optional. Thus, [optional-arg] means
that optional-arg is optional. An argument followed by an ellipsis is optional and may be
repeated more than once. Thus, repeated-args'...’ stands for zero or more arguments.
Parentheses are used when several arguments are grouped into additional levels of list
structure in Lisp.

Here is the @defspec line of an example of an imaginary special form:

foobar (var [from to [inc]]) body. .. [Special Form]

In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. These arguments are
grouped with the argument var into a list, to distinguish them from body, which includes
all remaining elements of the form.

In a Texinfo source file, this @defspec line is written like this (except it would not be
split over two lines, as it is in this example).

@defspec foobar (@var{var} [@var{from} @var{to}
[@var{inc}]]) @var{body}@dots{}

The function is listed in the Command and Variable Index under ‘foobar’.

16.4 Two or More ‘First’ Lines

To create two or more ‘first” or header lines for a definition, follow the first @deffn line by
a line beginning with @deffnx. The @deffnx command works exactly like @deffn except
that it does not generate extra vertical white space between it and the preceding line.

For example,

@deffn {Interactive Command} isearch-forward
@deffnx {Interactive Command} isearch-backward
These two search commands are similar except ...

Q@end deffn
produces
isearch-forward [Interactive Command]
isearch-backward [Interactive Command]

These two search commands are similar except . ..

Each definition command has an ‘x’ form: @defunx, @defvrx, @deftypefunx, etc.

The ‘x’ forms work similarly to @itemx (see Section 11.4.3 [itemx], page 96).

Chapter 16: Definition Commands 127

16.5 The Definition Commands

Texinfo provides more than a dozen definition commands, all of which are described in this
section.

The definition commands automatically enter the name of the entity in the appropriate
index: for example, @deffn, @defun, and @defmac enter function names in the index of
functions; @defvr and @defvar enter variable names in the index of variables.

Although the examples that follow mostly illustrate Lisp, the commands can be used
for other programming languages.

16.5.1 Functions and Similar Entities

This section describes the commands for describing functions and similar entities:

Q@deffn category name arguments. ..

The @deffn command is the general definition command for functions, interac-
tive commands, and similar entities that may take arguments. You must choose
a term to describe the category of entity being defined; for example, “Function”
could be used if the entity is a function. The @deffn command is written at the
beginning of a line and is followed on the same line by the category of entity
being described, the name of this particular entity, and its arguments, if any.
Terminate the definition with @end deffn on a line of its own.

For example, here is a definition:

Odeffn Command forward-char nchars
Move point forward @var{nchars} characters.
Q@end deffn

This shows a rather terse definition for a “command” named forward-char
with one argument, nchars.

@deffn and prints argument names such as nchars in slanted type in the printed
output, because we think of these names as metasyntactic variables—they stand
for the actual argument values. Within the text of the description, however,
write an argument name explicitly with @var to refer to the value of the argu-
ment. In the example above, we used ‘@var{nchars}’ in this way.

In the unusual case when an argument name contains ‘~-’, or another character
sequence which is treated specially (see Section 1.7 [Conventions|, page 9), use
@var around the argument. This causes the name to be printed in slanted
typewriter, instead of the regular slanted font, exactly as input.

The template for @deffn is:

Q@deffn category name arguments...
body-of-definition
@end deffn

@defun name arguments...
The @defun command is the definition command for functions. @defun is equiv-
alent to ‘@deffn Function ...’. Terminate the definition with @end defun on
a line of its own. Thus, the template is:

Chapter 16: Definition Commands 128

Odefun function-name arguments...
body-of-definition
@end defun

@defmac name arguments. ..
The @defmac command is the definition command for macros. @defmac is
equivalent to ‘@deffn Macro ...’ and works like @defun.

Q@defspec name arguments. ..
The @defspec command is the definition command for special forms. (In Lisp,
a special form is an entity much like a function, see section “Special Forms”
in GNU Emacs Lisp Reference Manual.) @defspec is equivalent to ‘@deffn
{Special Form} ... and works like @defun.

All these commands create entries in the index of functions.

16.5.2 Variables and Similar Entities

Here are the commands for defining variables and similar entities:

Q@defvr category name
The @defvr command is a general definition command for something like a
variable—an entity that records a value. You must choose a term to describe
the category of entity being defined; for example, “Variable” could be used if
the entity is a variable. Write the @defvr command at the beginning of a line
and follow it on the same line by the category of the entity and the name of
the entity.

Capitalize the category name like a title. If the name of the category contains
spaces, as in the name “User Option”, enclose it in braces. Otherwise, the
second word will be mistaken for the name of the entity. For example,

@defvr {User Option} fill-column
This buffer-local variable specifies
the maximum width of filled lines.

Q@end defvr
Terminate the definition with @end defvr on a line of its own.

The template is:
@defvr category name
body-of-definition
Q@end defvr
@defvr creates an entry in the index of variables for name.

Q@defvar name

The @defvar command is the definition command for variables. @defvar is

equivalent to ‘@defvr Variable ...’ .

For example:

@defvar kill-ring

Q@end defvar

Chapter 16: Definition Commands 129

The template is:

Q@defvar name
body-of-definition
Q@end defvar

@defvar creates an entry in the index of variables for name.

Q@defopt name
The @defopt command is the definition command for user options, i.e., variables
intended for users to change according to taste; Emacs has many such (see
section “Variables” in The GNU Emacs Manual). @defopt is equivalent to
‘@defvr {User Option} ...’ and works like @defvar. It creates an entry in
the index of variables.

16.5.3 Functions in Typed Languages

The @deftypefn command and its variations are for describing functions in languages in
which you must declare types of variables and functions, such as C and C++.

Odeftypefn category data-type name arguments...
The @deftypefn command is the general definition command for functions and
similar entities that may take arguments and that are typed. The @deftypefn
command is written at the beginning of a line and is followed on the same line
by the category of entity being described, the type of the returned value, the
name of this particular entity, and its arguments, if any.

For example,

@deftypefn {Library Function} int foobar
(int @var{foo}, float @var{bar})

Q@end deftypefn
(where the text before the “...” shown above as two lines, would actually be
a single line in a real Texinfo file) produces the following in Info:

-- Library Function: int foobar (int FOO, float BAR)

In a printed manual, it produces:

int foobar (int foo, float bar) [Library Function]

This means that foobar is a “library function” that returns an int, and its
arguments are foo (an int) and bar (a float).

Since in typed languages, the actual names of the arguments are typically scat-
tered among data type names and keywords, Texinfo cannot find them without
help. You can either (a) write everything as straight text, and it will be printed
in slanted type; (b) use @var for the variable names, which will uppercase the
variable names in Info and use the slanted typewriter font in printed output;
(c) use @var for the variable names and @code for the type names and keywords,
which will be dutifully obeyed.

The template for @deftypefn is:

Chapter 16: Definition Commands 130

Odeftypefn category data-type name arguments
body-of-description
Q@end deftypefn

Note that if the category or data type is more than one word then it must be
enclosed in braces to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada,
you might consider using @deftypefn in a manner somewhat contrary to the
convention described in the preceding paragraphs. For example:

Odeftypefn stacks private push @
(@var{s}:in out stack; @
Ovar{n}:in integer)

Q@end deftypefn

(The @deftypefn arguments are shown using continuations (see Section 16.2
[Def Cmd Continuation Lines|, page 125), but could be on a single line in a real
Texinfo file.)

In this instance, the procedure is classified as belonging to the package stacks
rather than classified as a ‘procedure’ and its data type is described as private.
(The name of the procedure is push, and its arguments are s and n.)

@deftypefn creates an entry in the index of functions for name.

@deftypefun data-type name arguments...
The @deftypefun command is the specialized definition command for functions

in typed languages. The command is equivalent to ‘@deftypefn Function ...".
The template is:

@deftypefun type name arguments...
body-of-description
Q@end deftypefun

@deftypefun creates an entry in the index of functions for name.

16.5.4 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed lan-
guages. See Section 16.5.3 [Typed Functions|, page 129. The general definition com-
mand @deftypevr corresponds to @deftypefn and the specialized definition command
@deftypevar corresponds to @deftypefun.

Odeftypevr category data-type name
The @deftypevr command is the general definition command for something
like a variable in a typed language—an entity that records a value. You must
choose a term to describe the category of the entity being defined; for example,
“Variable” could be used if the entity is a variable.

The @deftypevr command is written at the beginning of a line and is followed
on the same line by the category of the entity being described, the data type,
and the name of this particular entity.

Chapter 16: Definition Commands 131

For example:

@deftypevr {Global Flag} int enable

Q@end deftypevr
produces the following in Info:

-- Global Flag: int enable

and the following in a printed manual:

int enable [Global Flag]

The template is:

@deftypevr category data-type name
body-of-description
Q@end deftypevr

Q@deftypevar data-type name
The @deftypevar command is the specialized definition command for variables
in typed languages. @deftypevar is equivalent to ‘@deftypevr Variable ...".
The template is:

Q@deftypevar data-type name
body-of-description
Q@end deftypevar

These commands create entries in the index of variables.

16.5.5 Data Types

Here is the command for data types:

@deftp category name attributes...

The @deftp command is the generic definition command for data types. The
command is written at the beginning of a line and is followed on the same line
by the category, by the name of the type (which is a word like int or float),
and then by names of attributes of objects of that type. Thus, you could use
this command for describing int or float, in which case you could use data
type as the category. (A data type is a category of certain objects for purposes
of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that
type has two slots called the CAR and the CDR. Here is how you would write
the first line of a definition of pair.

@deftp {Data type} pair car cdr

Q@end deftp

Chapter 16: Definition Commands 132

The template is:

Odeftp category name-of-type attributes...
body-of-definition
Q@end deftp

@deftp creates an entry in the index of data types.

16.5.6 Object-Oriented Programming

Here are the commands for formatting descriptions about abstract objects, such as are used
in object-oriented programming. A class is a defined type of abstract object. An instance
of a class is a particular object that has the type of the class. An instance variable is a
variable that belongs to the class but for which each instance has its own value.

16.5.6.1 Object-Oriented Variables

These commands allow you to define different sorts of variables in object-oriented program-
ming languages.

Q@defcv category class name
The @defcv command is the general definition command for variables associated
with classes in object-oriented programming. The @defcv command is followed
by three arguments: the category of thing being defined, the class to which it
belongs, and its name. For instance:

@defcv {Class Option} Window border-pattern
@end defcv
produces:

border-pattern [Class Option of Window]

@defcv creates an entry in the index of variables.

Q@deftypecv category class data-type name
The @deftypecv command is the definition command for typed class variables
in object-oriented programming. It is analogous to @defcv with the addition of
the data-type parameter to specify the type of the instance variable. Ordinarily,
the data type is a programming language construct that should be marked with
Q@code. For instance:

@deftypecv {Class Option} Window @code{int} border-pattern

Q@end deftypecv

produces:

int border-pattern [Class Option of Window]

@deftypecv creates an entry in the index of variables.

Chapter 16: Definition Commands 133

@defivar class name
The @defivar command is the definition command for instance variables in
object-oriented programming. @defivar is equivalent to ‘@defcv {Instance
Variable} For instance:

@defivar Window border-pattern

Q@end defivar
produces:

border-pattern [Instance Variable of Window]

@defivar creates an entry in the index of variables.

Q@deftypeivar class data-type name
The @deftypeivar command is the definition command for typed instance
variables in object-oriented programming. It is analogous to @defivar with
the addition of the data-type parameter to specify the type of the instance
variable. Ordinarily, the data type is a programming language construct that
should be marked with @code. For instance:

@deftypeivar Window @code{int} border-pattern

Q@end deftypeivar

produces:

int border-pattern [Instance Variable of Window]

@deftypeivar creates an entry in the index of variables.

16.5.6.2 Object-Oriented Methods

These commands allow you to define different sorts of function-like entities resembling
methods in object-oriented programming languages. These entities take arguments, as
functions do, but are associated with particular classes of objects.

@defop category class name arguments...
The @defop command is the general definition command for these method-like
entities.

For example, some systems have constructs called wrappers that are associated
with classes as methods are, but that act more like macros than like functions.
You could use @defop Wrapper to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of
an operation as the specification for a method. Thus, a window system might
specify that all window classes have a method named expose; we would say
that this window system defines an expose operation on windows in general.
Typically, the operation has a name and also specifies the pattern of arguments;
all methods that implement the operation must accept the same arguments,

Chapter 16: Definition Commands 134

since applications that use the operation do so without knowing which method
will implement it.

Often it makes more sense to document operations than methods. For example,
window application developers need to know about the expose operation, but
need not be concerned with whether a given class of windows has its own method
to implement this operation. To describe this operation, you would write:

Q@defop Operation windows expose

The @defop command is written at the beginning of a line and is followed on
the same line by the overall name of the category of operation, the name of the
class of the operation, the name of the operation, and its arguments, if any.

The template is:

@defop category class name arguments...
body-of-definition
Q@end defop

@defop creates an entry, such as ‘expose on windows’, in the index of functions.

@deftypeop category class data-type name arguments...
The @deftypeop command is the definition command for typed operations in
object-oriented programming. It is similar to @defop with the addition of the
data-type parameter to specify the return type of the method. @deftypeop
creates an entry in the index of functions.

@defmethod class name arguments...
The @defmethod command is the definition command for methods in object-
oriented programming. A method is a kind of function that implements an
operation for a particular class of objects and its subclasses.

@defmethod is equivalent to ‘@defop Method ...’. The command is written at
the beginning of a line and is followed by the name of the class of the method,
the name of the method, and its arguments, if any.

For example:

@defmethod bar-class bar-method argument

Q@end defmethod

illustrates the definition for a method called bar-method of the class bar-class.
The method takes an argument.

@defmethod creates an entry in the index of functions.

@deftypemethod class data-type name arguments...
The @deftypemethod command is the definition command for methods in
object-oriented typed languages, such as C++ and Java. It is similar to the
@defmethod command with the addition of the data-type parameter to specify
the return type of the method. @deftypemethod creates an entry in the index
of functions.

Chapter 16: Definition Commands 135

16.6 Conventions for Writing Definitions

When you write a definition using @deffn, @defun, or one of the other definition commands,
please take care to use arguments that indicate the meaning, as with the count argument
to the forward-word function. Also, if the name of an argument contains the name of a
type, such as integer, take care that the argument actually is of that type.

16.7 A Sample Function Definition

A function definition uses the @defun and @end defun commands. The name of the function
follows immediately after the @defun command and it is followed, on the same line, by the
parameter list.

Here is a definition from section “Calling Functions” in The GNU Emacs Lisp Reference
Manual.

apply function &rest arguments [Function]
apply calls function with arguments, just like funcall but with one dif-
ference: the last of arguments is a list of arguments to give to function,
rather than a single argument. We also say that this list is appended to
the other arguments.

apply returns the result of calling function. As with funcall, function
must either be a Lisp function or a primitive function; special forms and
macros do not make sense in apply.

(setq f ’list)
= list
(apply £ ’x ’y ’z)
Wrong type argument: listp, z
(apply ’+ 1 2 °(3 4))
= 10
(apply ’+ (1 2 3 4))
= 10

(apply ’append ’((a b c¢) nil (x y z) nil))
= (abcxyz)

An interesting example of using apply is found in the description of
mapcar.

In the Texinfo source file, this example looks like this:

Odefun apply function &rest arguments

Qcode{apply} calls @var{function} with

@var{arguments}, just like @code{funcall} but with one
difference: the last of @var{arguments} is a list of
arguments to give to @var{function}, rather than a single
argument. We also say that this list is @dfn{appended}
to the other arguments.

Chapter 16: Definition Commands 136

Qcode{apply} returns the result of calling
@var{function}. As with Q@code{funcall},

@var{function} must either be a Lisp function or a
primitive function; special forms and macros do not make
sense in @code{apply}.

Q@example
(setq f ’list)
@result{} list
(apply £ ’x ’y ’z)
Q@error{} Wrong type argument: listp, z
(apply ’+ 1 2 °(3 4))
@result{} 10
(apply ’+ (1 2 3 4))
@result{} 10

(apply ’append ’((a b ¢) nil (x y z) nil))
@result{} (a bcxy 2z)
Q@end example

An interesting example of using @code{apply} is found
in the description of @code{mapcar}.
Q@end defun

In this manual, this function is listed in the Command and Variable Index under apply.

Ordinary variables and user options are described using a format like that for functions
except that variables do not take arguments.

Chapter 17: Conditionally Visible Text 137

17 Conditionally Visible Text

The conditional commands allow you to use different text for different output formats, or
for general conditions that you define. For example, you can use them to specify different
text for the printed manual and the Info output.
The conditional commands comprise the following categories.
e Commands specific to an output format (Info, TgX, HTML, .. .).

e Commands specific to any output format other than a given one (not Info, not TEX,
e ‘Raw’ formatter text for any output format, passed straight through with no interpre-
tation of @-commands.

e Format-independent variable substitutions, and testing if a variable is set or clear.

17.1 Conditional Commands

Texinfo has an @if format environment for each output format, to allow conditional inclu-
sion of text for a particular output format.

@ifinfo begins segments of text that should be ignored by TgX when it typesets the
printed manual, and by makeinfo when not producing Info output. The segment of text
appears only in the Info file and, for historical compatibility, the plain text output.

The environments for the other formats are analogous:

@ifdocbook ... @end ifdocbook
Text to appear only in the Docbook output.

Q@ifhtml ... @end ifhtml
Text to appear only in the HT'ML output.

@ifplaintext ... @end ifplaintext
Text to appear only in the plain text output.

Q@iftex ... Q@end iftex
Text to appear only in the printed manual.

Q@ifxml ... Q@end ifxml
Text to appear only in the XML output.

The @if... and @end if... commands must appear on lines by themselves in your
source file.

Here is an example showing all these conditionals:

Q@iftex

This text will appear only in the printed manual.

Q@end iftex

@ifinfo

However, this text will appear only in Info and plain text.
Q@end ifinfo

@ifhtml

And this text will only appear in HTML.

Q@end ifhtml

Chapter 17: Conditionally Visible Text 138

O@ifplaintext

Whereas this text will only appear in plain text.
Q@end ifplaintext

Q@ifxml

Notwithstanding that this will only appear in XML.
Q@end ifxml

©@ifdocbook

Nevertheless, this will only appear in Docbook.
Q@end ifdocbook

The preceding example produces the following line:
This text will appear only in the printed manual.

Notice that you only see one of the input lines, depending on which version of the manual
you are reading.

17.2 Conditional Not Commands

You can specify text to be included in any output format other than a given one with the
@ifnot... environments:

@ifnotdocbook ... Q@end ifnotdocbook
@ifnothtml ... Q@end ifnothtml
@ifnotinfo ... Q@end ifnotinfo
@ifnotplaintext ... @end ifnotplaintext
@ifnottex ... Q@end ifnottex
Q@ifnotxml ... @end ifnotxml
The @ifnot... command and the @end command must appear on lines by themselves in

your actual source file.

If the output file is being made in the given format, the region is ignored. Otherwise,
it is included.

There is one exception (for historical compatibility): @ifnotinfo text is omitted for
both Info and plain text output, not just Info. To specify text which appears only in Info
and not in plain text, use @ifnotplaintext, like this:

@ifinfo

@ifnotplaintext

This will be in Info, but not plain text.
Q@end ifnotplaintext

Q@end ifinfo

The regions delimited by these commands are ordinary Texinfo source as with @iftex,
not raw formatter source as with @tex (see Section 17.3 [Raw Formatter Commands],
page 138).

17.3 Raw Formatter Commands

Inside a region delineated by @iftex and @end iftex, you can embed some raw TEX com-
mands. The Texinfo processors will ignore such a region unless TEX output is being
produced. You can write the TEX commands as you would write them in a normal TEX
file, except that you must replace the ‘\’ used by TgX with an ‘@’. For example, in the

Chapter 17: Conditionally Visible Text 139

@titlepage section of a Texinfo file, you can use the TEX command @vskip to format the
copyright page. (The @titlepage command causes Info to ignore the region automatically,
as it does with the @iftex command.)

However, most features of plain TEX will not work within @iftex, as they are over-
ridden by Texinfo features. The purpose of @iftex is to provide conditional processing for
the Texinfo source, not provide access to underlying formatting features.

You can enter plain TEX completely, and use ‘\’ in the TEX commands, by delineating
a region with the @tex and @end tex commands. All plain TEX commands and category
codes are restored within an @tex region. The sole exception is that the @ character still
introduces a command, so that @end tex can be recognized properly. As with @iftex,
Texinfo processors will ignore such a region unless TEX output is being produced.

In complex cases, you may wish to define new TEX macros within @tex. You must use
\gdef to do this, not \def, because @tex regions are processed in a TEX group.
As an example, here is a mathematical expression written in plain TEX:
Otex
$$ \chi~2 = \sum_{i=1}"N
\left (y_i - (a + b x_1i)
\over \sigma_i\right)~2 $$
Q@end tex
The output of this example will appear only in a printed manual. If you are reading this in
Info, you will not see the equation that appears in the printed manual. In a printed manual,
the above expression looks like this:

¢y (yi— (a+bxi)>2

i=1 gi

Analogously, you can use @ifhtml ... @end ifhtml to delimit a region to be included
in HTML output only, and @html ... @end html for a region of raw HTML.

Likewise, you can use @ifxml ... @end ifxml to delimit a region to be included in
XML output only, and @xml ... @end xml for a region of raw XML.

Again likewise, you can use @ifdocbook ... @end ifdocbook to delimit a region to
be included in Docbook output only, and @docbook ... @end docbook for a region of raw
Docbook.

In all cases, the exception to the raw processing is that @ is still an escape character,
so the @end command can be recognized.

17.4 @set, @clear, and Qvalue

You can direct the Texinfo formatting commands to format or ignore parts of a Texinfo file
with the @set, @clear, @ifset, and @ifclear commands.

Here are brief descriptions of these commands, see the following sections for more
details:

@set flag [value]
Set the variable flag, to the optional value if specifed.

Chapter 17: Conditionally Visible Text 140

QOclear flag
Undefine the variable flag, whether or not it was previously defined.

Q@ifset flag
If flag is set, text through the next @end ifset command is formatted. If flag
is clear, text through the following @end ifset command is ignored.

Q@ifclear flag
If flag is set, text through the next @end ifclear command is ignored. If flag
is clear, text through the following @end ifclear command is formatted.

17.4.1 @set and @value

You use the @set command to specify a value for a flag, which is later expanded by the
@value command.

A flag (aka variable) is an identifier. It is best to use only letters and numerals in a
flag name, not ‘=’ or ‘_—they will work in some contexts, but not all, due to limitations in

TEX.
The value is the remainder of the input line, and can contain anything.
Write the @set command like this:
@set foo This is a string.
This sets the value of the flag foo to “This is a string.”.

The Texinfo formatters then replace an @value{flag} command with the string to
which flag is set. Thus, when foo is set as shown above, the Texinfo formatters convert
this:

Ovalue{foo}
to this:
This is a string.

You can write an @value command within a paragraph; but you must write an @set
command on a line of its own.

If you write the @set command like this:
@set foo
without specifying a string, the value of foo is the empty string.

If you clear a previously set flag with @clear flag, a subsequent @value{flag} com-
mand will report an error.

For example, if you set foo as follows:
Oset howmuch very, very, very
then the formatters transform

It is a @value{howmuch} wet day.
into
It is a very, very, very wet day.
If you write
O@clear howmuch

then the formatters transform

Chapter 17: Conditionally Visible Text 141

It is a @value{howmuch} wet day.
into
It is a {No value for "howmuch"} wet day.

17.4.2 Q@ifset and @ifclear

When a flag is set, the Texinfo formatting commands format text between subsequent
pairs of @ifset flag and @end ifset commands. When the flag is cleared, the Texinfo
formatting commands do not format the text. @ifclear operates analogously.

Write the conditionally formatted text between @ifset flag and Qend ifset com-
mands, like this:

@ifset flag
conditional-text
Q@end ifset

For example, you can create one document that has two variants, such as a manual for
a ‘large’ and ‘small’ model:

You can use this machine to dig up shrubs
without hurting them.

O@set large

Q@ifset large
It can also dig up fully grown trees.
Q@end ifset

Remember to replant promptly ...

In the example, the formatting commands will format the text between @ifset large and
@end ifset because the large flag is set.

When flag is cleared, the Texinfo formatting commands do not format the text between
Q@ifset flag and @end ifset; that text is ignored and does not appear in either printed
or Info output.

For example, if you clear the flag of the preceding example by writing an @clear
large command after the @set large command (but before the conditional text), then the
Texinfo formatting commands ignore the text between the @ifset large and @end ifset
commands. In the formatted output, that text does not appear; in both printed and Info
output, you see only the lines that say, “You can use this machine to dig up shrubs without
hurting them. Remember to replant promptly ...”.

If a flag is cleared with an @clear flag command, then the formatting commands
format text between subsequent pairs of @ifclear and @end ifclear commands. But if
the flag is set with @set flag, then the formatting commands do not format text between
an @ifclear and an @end ifclear command; rather, they ignore that text. An @ifclear
command looks like this:

@ifclear flag

Chapter 17: Conditionally Visible Text 142

17.4.3 @value Example

You can use the @value command to minimize the number of places you need to change
when you record an update to a manual. See Section C.2 [GNU Sample Texts|, page 210,
for the full text of an example of using this to work with Automake distributions.
This example is adapted from section “Overview” in The GNU Make Manual.
1. Set the flags:
O@set EDITION 0.35 Beta
O@set VERSION 3.63 Beta
Oset UPDATED 14 August 1992
Oset UPDATE-MONTH August 1992
2. Write text for the @copying section (see Section 3.3.1 [copying], page 31):
Q@copying
This is Edition @value{EDITION},
last updated @value{UPDATED},
of @cite{The GNU Make Manuall,
for @code{make}, version @value{VERSION}.

Copyright

Permission is granted ...
Q@end copying
3. Write text for the title page, for people reading the printed manual:
@titlepage
Otitle GNU Make
Osubtitle A Program for Directing Recompilation
@subtitle Edition @value{EDITIONZ},
@subtitle @value{UPDATE-MONTH}
Gpage
Q@insertcopying

Q@end titlepage
(On a printed cover, a date listing the month and the year looks less fussy than a date
listing the day as well as the month and year.)
4. Write text for the Top node, for people reading the Info file:

O@ifnottex
OGnode Top
@top Make

@insertcopying

Q@end ifnottex
After you format the manual, the @value constructs have been expanded, so the output
contains text like this:

This is Edition 0.35 Beta, last updated 14 August 1992,
of ‘The GNU Make Manual’, for ‘make’, Version 3.63 Beta.

Chapter 17: Conditionally Visible Text 143

When you update the manual, you change only the values of the flags; you do not need
to edit the three sections.

17.5 Conditional Nesting

Conditionals can be nested; however, the details are a little tricky. The difficulty comes
with failing conditionals, such as @ifhtml when HTML is not being produced, where the
included text is to be ignored. However, it is not to be completely ignored, since it is useful
to have one @ifset inside another, for example—that is a way to include text only if two
conditions are met. Here’s an example:

@ifset somevar

@ifset anothervar

Both somevar and anothervar are set.
@end ifset

@ifclear anothervar

Somevar is set, anothervar is not.
@end ifclear

@end ifset

Technically, Texinfo requires that for a failing conditional, the ignored text must be
properly nested with respect to that failing conditional. Unfortunately, it’s not always
feasible to check that all conditionals are properly nested, because then the processors
could have to fully interpret the ignored text, which defeats the purpose of the command.
Here’s an example illustrating these rules:

@ifset a

@ifset b

@ifclear ok - ok, ignored
Q@end junky - ok, ignored
Q@end ifset

Oc WRONG - missing Qend ifset.

Finally, as mentioned above, all conditional commands must be on lines by themselves,
with no text (even spaces) before or after. Otherwise, the processors cannot reliably deter-
mine which commands to consider for nesting purposes.

Chapter 18: Internationalization 144

18 Internationalization

Texinfo has some support for writing in languages other than English, although this area
still needs considerable work.

For a list of the various accented and special characters Texinfo supports, see Sec-
tion 14.3 [Inserting Accents|, page 113.

18.1 @documentlanguage cc: Set the Document Language

The @documentlanguage command declares the current document language. Write it on a
line by itself, with a two-letter ISO-639 language code following (list is included below). If
you have a multilingual document, the intent is to be able to use this command multiple
times, to declare each language change. If the command is not used at all, the default is en
for English.

At present, this command is ignored in Info and HTML output. For TEX, it causes
the file ‘txi-cc.tex’ to be read (if it exists). Such a file appropriately redefines the various
English words used in TEX output, such as ‘Chapter’, ‘See’, and so on.

It would be good if this command also changed TEX’s ideas of the current hyphen-
ation patterns (via the TEX primitive \language), but this is unfortunately not currently
implemented.

Hereare the valid language codes, from ISO-639.

aa Afar ab Abkhazian af Afrikaans
am Ambharic ar Arabic as Assamese
ay Aymara az Azerbaijani ba Bashkir

be Byelorussian bg Bulgarian bh Bihari

bi Bislama bn Bengali; Bangla bo Tibetan

br Breton ca Catalan co Corsican
cs Czech cy Welsh da Danish

de German dz Bhutani el Greek

en English eo Esperanto es Spanish

et Estonian eu Basque fa Persian

fi Finnish fj Fiji fo Faroese

fr French fy Frisian ga Irish

gd Scots Gaelic gl Galician gn Guarani
gu Gujarati ha Hausa he Hebrew

hi Hindi hr Croatian hu Hungarian
hy Armenian ia Interlingua id Indonesian
ie Interlingue ik Inupiak is Icelandic
it Ttalian iu Inuktitut ja Japanese
jw Javanese ka Georgian kk Kazakh

k1l Greenlandic km Cambodian kn Kannada
ks Kashmiri ko Korean ku Kurdish
ky Kirghiz la Latin In Lingala

1t Lithuanian lo Laothian lv Latvian, Lettish
mg Malagasy mi Maori mk Macedonian

ml Malayalam mn Mongolian mo Moldavian

Chapter 18: Internationalization 145

mr Marathi ms Malay mt Maltese
my Burmese na Nauru ne Nepali

nl Dutch no Norwegian oc Occitan
om (Afan) Oromo or Oriya pa Punjabi
pl Polish ps Pashto, Pushto pt Portuguese
qu Quechua rm Rhaeto-Romance rn Kirundi
ro Romanian ru Russian rw Kinyarwanda
sa Sanskrit sd Sindhi sg Sangro

sh Serbo-Croatian si Sinhalese sk Slovak

sl Slovenian sm Samoan sn Shona

S0 Somali sq Albanian sr Serbian

Ss Siswati st Sesotho su Sundanese
SV Swedish sw Swahili ta Tamil

te Telugu tg Tajik th Thai

ti Tigrinya tk Turkmen tl Tagalog
tn Setswana to Tonga tr Turkish
ts Tsonga tt Tatar tw Twi

ug Uighur uk Ukrainian ur Urdu

uz Uzbek vi Vietnamese vo Volapuk
wo Wolof xh Xhosa yi Yiddish
yo Yoruba za Zhuang zh Chinese
zu Zulu

18.2 @documentencoding enc: Set Input Encoding

The @documentencoding command declares the input document encoding. Write it on a
line by itself, with a valid encoding specification following.

At present, Texinfo supports only three encodings:

US-ASCII This has no particular effect, but it’s included for completeness.

IS0-8859-1

IS0-8859-2
These specify the standard encodings for Western European and Eastern Euro-
pean languages, respectively. A full description of the encodings is beyond our
scope here; http://czyborra.com/charsets/iso8859.html is one of many
useful references.

Specifying an encoding enc has the following effects:

In Info output, if the option ‘--enable-encoding’ is also given to makeinfo, a so-

called ‘Local Variables’ section (see section “File Variables” in The GNU Emacs Manual)
is output including enc. This allows Info readers to set the encoding appropriately:

Local Variables:
coding: enc
End:
In HTML output, a ‘<meta>’ tag is output, in the ‘<head>’ section of the HTML, that
specifies enc. Web servers and browsers cooperate to use this information so the correct
encoding is used to display the page.

http://czyborra.com/charsets/iso8859.html

Chapter 18: Internationalization 146

<meta http-equiv="Content-Type" content="text/html;
charset=enc">

In all other cases, it is recognized but ignored.

Chapter 19: Defining New Texinfo Commands 147

19 Defining New Texinfo Commands

Texinfo provides several ways to define new commands:

e A Texinfo macro allows you to define a new Texinfo command as any sequence of text
and/or existing commands (including other macros). The macro can have any number
of parameters—text you supply each time you use the macro.

Incidentally, these macros have nothing to do with the @defmac command, which is for
documenting macros in the subject of the manual (see Section 16.1 [Def Cmd Template],
page 124).

e ‘@Galias’ is a convenient way to define a new name for an existing command.

e ‘@definfoenclose’ allows you to define new commands with customized output in the

Info file.

19.1 Defining Macros

You use the Texinfo @macro command to define a macro, like this:

@macro macroname{paraml, param2, ...}
text ... \parami\ ...
Q@end macro

The parameters paraml, param?2, ... correspond to arguments supplied when the
macro is subsequently used in the document (described in the next section).

For a macro to work consistently with TEX, macroname must consist entirely of letters:
no digits, hyphens, underscores, or other special characters. So, we recommend using only
letters. However, makeinfo will accept anything except ‘{}_"="; ‘*_’ and ‘"’ are excluded
so that macros can be called in @math mode without a following space (see Section 14.8
[@math], page 115).

If a macro needs no parameters, you can define it either with an empty list (‘émacro
foo {}’) or with no braces at all (‘@macro foo’).

The definition or body of the macro can contain most Texinfo commands, including
previously-defined macros. Not-yet-defined macro invocations are not allowed; thus, it is not
possible to have mutually recursive Texinfo macros. Also, a macro definition that defines
another macro does not work in TEX due to limitations in the design of @macro.

In the macro body, instances of a parameter name surrounded by backslashes, as in
“\param1\’ in the example above, are replaced by the corresponding argument from the
macro invocation. You can use parameter names any number of times in the body, including
Zero.

To get a single ‘\” in the macro expansion, use ‘\\’. Any other use of ‘\’ in the body
yields a warning.

The newlines after the @Gmacro line and before the @end macro line are ignored, that
is, not included in the macro body. All other whitespace is treated according to the usual
Texinfo rules.

To allow a macro to be used recursively, that is, in an argument to a call to itself, you
must define it with ‘@rmacro’, like this:

Chapter 19: Defining New Texinfo Commands 148

@rmacro rmac {arg}
a\arg\b
Q@end rmacro

Ormac{1@rmac{text}2}
This produces the output ‘alatextb2b’. With ‘@macro’ instead of ‘@rmacro’, an error
message is given.
You can undefine a macro foo with @unmacro foo. It is not an error to undefine a
macro that is already undefined. For example:

Qunmacro foo

19.2 Invoking Macros

After a macro is defined (see the previous section), you can use (invoke) it in your document
like this:
@macroname {argl, arg2, ...}
and the result will be just as if you typed the body of macroname at that spot. For example
@macro foo {p, g}
Together: \p\ & \q\.
Q@end macro
@foo{a, b}
produces:
Together: a & b.

Thus, the arguments and parameters are separated by commas and delimited by braces;
any whitespace after (but not before) a comma is ignored. The braces are required in the
invocation (but not the definition), even when the macro takes no arguments, consistent
with all other Texinfo commands. For example:

@macro argless {}
No arguments here.
@end macro
@argless{}
produces:
No arguments here.
To insert a comma, brace, or backslash in an argument, prepend a backslash, as in

@macname {\\\{\}\,}

which will pass the (almost certainly error-producing) argument ‘\{},’ to macname. How-
ever, commas in parameters, even if escaped by a backslash, might cause trouble in TEX.
If the macro is defined to take a single argument, and is invoked without any braces,

the entire rest of the line after the macro name is supplied as the argument. For example:

@macro bar {p}

Twice: \p\ & \p\.

@end macro

Obar aah

produces:

Chapter 19: Defining New Texinfo Commands 149

Twice: aah & aah.

If the macro is defined to take a single argument, and is invoked with braces, the braced
text is passed as the argument, regardless of commas. For example:

@macro bar {p}
Twice: \p\ & \p\.
@end macro
O@bar{a,b}

produces:
Twice: a,b & a,b.

19.3 Macro Details

Due to unavoidable limitations, certain macro-related constructs cause problems with TEX.
If you get macro-related errors when producing the printed version of a manual, try expand-
ing the macros with makeinfo by invoking texi2dvi with the ‘-E’ option (see Section 20.3
[Format with texi2dvi], page 154).

e As mentioned earlier, macro names must consist entirely of letters.

e It is not advisable to redefine any TEX primitive, plain, or Texinfo command name as
a macro. Unfortunately this is a very large set of names, and the possible resulting
errors are completely random.

e All macros are expanded inside at least one TEX group. This means that @set and
other such commands have no effect inside a macro.

e Macros containing a command which must be on a line by itself, such as a conditional,
cannot be invoked in the middle of a line.

e Commas in macro arguments, even if escaped by a backslash, don’t always work.
e [t is best to avoid comments inside macro definitions.
e Macro arguments cannot cross lines.

e Macros cannot define macros in the natural way. To do this, you must use conditionals
and raw TEX. For example:

Q@ifnottex

@macro ctor {name, arg}

@macro \name\

something involving \arg\ somehow
Q@end macro

Q@end macro

Q@end ifnottex

Otex

\gdef\ctor#1{\ctorx#1,}
\gdef\ctorx#1,#2,{\def#1{something involving #2 somehowl}}
Q@end tex

The makeinfo implementation also has limitations:

e G@verbatim and macros do not mix; for instance, you can’t start a verbatim block
inside a macro and end it outside. (See Section 10.4 [verbatim]|, page 85.) Starting

Chapter 19: Defining New Texinfo Commands 150

any environment inside a macro and ending it outside may or may not work, for that
matter.

e Macros that completely define macros are ok, but it’s not possible to have incorrectly
nested macro definitions. That is, @macro and @end macro (likewise for @rmacro) must
be correctly paired. For example, you cannot start a macro definition within a macro,
and then end the nested definition outside the macro.

e Ormacro is a kludge.

One more limitation is common to both implementations: white space is ignored at
the beginnings of lines.

Future major revisions of Texinfo may ease some of these limitations (by introducing
a new macro syntax).

19.4 ‘Galias new=existing’

The ‘@alias’ command defines a new command to be just like an existing one. This is
useful for defining additional markup names, thus preserving semantic information in the
input even though the output result may be the same.

Write the ‘@alias’ command on a line by itself, followed by the new command name,
an equals sign, and the existing command name. Whitespace around the equals sign is
ignored. Thus:

Q@alias new = existing

For example, if your document contains citations for both books and some other media
(movies, for example), you might like to define a macro @moviecite{} that does the same
thing as an ordinary @cite{} but conveys the extra semantic information as well. You’d
do this as follows:

@alias moviecite = cite

Macros do not always have the same effect as aliases, due to vagaries of argument
parsing. Also, aliases are much simpler to define than macros. So the command is not
redundant. (It was also heavily used in the Jargon File!)

Aliases must not be recursive, directly or indirectly.

It is not advisable to redefine any TEX primitive, plain, or Texinfo command name as
an alias. Unfortunately this is a very large set of names, and the possible resulting errors
are completely random.

19.5 ‘definfoenclose’s Customized Highlighting

A @definfoenclose command may be used to define a highlighting command for Info, but
not for TEX. A command defined using @definfoenclose marks text by enclosing it in
strings that precede and follow the text. You can use this to get closer control of your Info
output.

Presumably, if you define a command with @definfoenclose for Info, you will create
a corresponding command for TEX, either in ‘texinfo.tex’, ‘texinfo.cnf’, or within an
‘@iftex’ in your document.

Write a @definfoenclose command on a line and follow it with three arguments
separated by commas. The first argument to @definfoenclose is the @-command name

Chapter 19: Defining New Texinfo Commands 151

(without the @); the second argument is the Info start delimiter string; and the third
argument is the Info end delimiter string. The latter two arguments enclose the highlighted
text in the Info file. A delimiter string may contain spaces. Neither the start nor end
delimiter is required. If you do not want a start delimiter but do want an end delimiter, you
must follow the command name with two commas in a row; otherwise, the Info formatting
commands will naturally misinterpret the end delimiter string you intended as the start
delimiter string.

If you do a @definfoenclose on the name of a pre-defined macro (such as @emph,
@strong, @t, or @i), the enclosure definition will override the built-in definition.

An enclosure command defined this way takes one argument in braces; this is intended
for new markup commands (see Chapter 9 [Marking Text], page 73).

For example, you can write:
@definfoenclose phoo,//,\\

near the beginning of a Texinfo file to define @phoo as an Info formatting command that
inserts ‘//” before and ‘\\’ after the argument to @phoo. You can then write @phoo{bar}
wherever you want ‘//bar\\’ highlighted in Info.

Also, for TEX formatting, you could write

@iftex
Gglobal@let@phoo=0i
@end iftex

to define @phoo as a command that causes TEX to typeset the argument to @phoo in italics.

Each definition applies to its own formatter: one for TEX, the other for texinfo-
format-buffer or texinfo-format-region. The @definfoenclose command need not
be within ‘@ifinfo’, but the raw TEX commands do need to be in ‘@iftex’.

Here is another example: write
@definfoenclose headword, ,

near the beginning of the file, to define @headword as an Info formatting command that
inserts nothing before and a colon after the argument to @headword.

‘@definfoenclose’ definitions must not be recursive, directly or indirectly.

Chapter 20: Formatting and Printing Hardcopy 152

20 Formatting and Printing Hardcopy

There are three major shell commands for making a printed manual from a Texinfo file: one
for converting the Texinfo file into a file that will be printed, a second for sorting indices,
and a third for printing the formatted document. When you use the shell commands, you
can either work directly in the operating system shell or work within a shell inside GNU
Emacs.

If you are using GNU Emacs, you can use commands provided by Texinfo mode instead
of shell commands. In addition to the three commands to format a file, sort the indices,
and print the result, Texinfo mode offers key bindings for commands to recenter the output
buffer, show the print queue, and delete a job from the print queue.

20.1 Use TEX

The typesetting program called TEX is used for formatting a Texinfo file. TEX is a very
powerful typesetting program and, if used correctly, does an exceptionally good job. (See
Section 20.16 [How to Obtain TEX], page 162, for information on how to obtain TEX.)

The standalone makeinfo program and Emacs functions texinfo-format-region and
texinfo-format-buffer commands read the very same @-commands in the Texinfo file as
does TEX, but process them differently to make an Info file (see Section 21.1 [Creating an
Info File], page 163).

20.2 Format with tex and texindex

You can format the Texinfo file with the shell command tex followed by the name of the
Texinfo file. For example:

tex foo.texi

TEX will produce a DVI file as well as several auxiliary files containing information for
indices, cross references, etc. The DVI file (for DeVice Independent file) can be printed on
virtually any device (see the following sections).

The tex formatting command itself does not sort the indices; it writes an output file
of unsorted index data. (The texi2dvi command automatically generates indices; see
Section 20.3 [Format with texi2dvi], page 154.) To generate a printed index after running
the tex command, you first need a sorted index to work from. The texindex command sorts
indices. (The source file ‘texindex.c’ comes as part of the standard Texinfo distribution,
among other places.)

The tex formatting command outputs unsorted index files under names that obey a
standard convention: the name of your main input file with any ‘.tex’ (or similar, see
section “tex invocation” in Web2c) extension removed, followed by the two letter names
of indices. For example, the raw index output files for the input file ‘foo.texinfo’ would
be ‘foo.cp’, ‘foo.vr’, ‘foo.fn’, ‘foo.tp’, ‘foo.pg’ and ‘foo.ky’. Those are exactly the
arguments to give to texindex.

Chapter 20: Formatting and Printing Hardcopy 153

Instead of specifying all the unsorted index file names explicitly, you can use ‘??’ as
shell wildcards and give the command in this form:

texindex fo00.77

This command will run texindex on all the unsorted index files, including any that you
have defined yourself using @defindex or @defcodeindex. (You may execute ‘texindex
fo0o.77 even if there are similarly named files with two letter extensions that are not index
files, such as ‘foo.el’. The texindex command reports but otherwise ignores such files.)

For each file specified, texindex generates a sorted index file whose name is made by
appending ‘s’ to the input file name. The @printindex command looks for a file with that
name (see Section 4.1 [Printing Indices & Menus|, page 44). texindex does not alter the
raw index output file.

After you have sorted the indices, you need to rerun tex on the Texinfo file. This
regenerates the DVI file, this time with up-to-date index entries.

Finally, you may need to run tex one more time, to get the page numbers in the
cross-references correct.

To summarize, this is a five step process:

1. Run tex on your Texinfo file. This generates a DVT file (with undefined cross-references
and no indices), and the raw index files (with two letter extensions).

2. Run texindex on the raw index files. This creates the corresponding sorted index files
(with three letter extensions).

3. Run tex again on your Texinfo file. This regenerates the DVI file, this time with indices
and defined cross-references, but with page numbers for the cross-references from last
time, generally incorrect.

4. Sort the indices again, with texindex.

5. Run tex one last time. This time the correct page numbers are written for the cross-
references.

Alternatively, it’s a one-step process: run texi2dvi (see Section 20.3 [Format with
texi2dvi|, page 154).

You need not run texindex each time after you run tex. If you do not, on the next
run, the tex formatting command will use whatever sorted index files happen to exist from
the previous use of texindex. This is usually ok while you are debugging.

Sometimes you may wish to print a document while you know it is incomplete, or
to print just one chapter of a document. In that case, the usual auxiliary files that TEX
creates and warnings TEpX gives when cross-references are not satisfied are just nuisances.
You can avoid them with the @novalidate command, which you must give before the
@setfilename command (see Section 3.2.3 [@setfilename|, page 29). Thus, the beginning
of your file would look approximately like this:

\input texinfo
Onovalidate
Osetfilename myfile.info

@novalidate also turns off validation in makeinfo, just like its —=—no-validate option (see
Section 21.1.4 [Pointer Validation], page 167).

Chapter 20: Formatting and Printing Hardcopy 154

20.3 Format with texi2dvi

The texi2dvi command automatically runs both TEX and texindex as many times as
necessary to produce a DVI file with sorted indices and all cross-references resolved. It
is therefore simpler than manually executing the tex—texindex—tex—tex sequence de-
scribed in the previous section.

To run texi2dvi on an input file ‘foo.texi’, do this (where ‘prompt$ ’ is your shell
prompt):
prompt$ texi2dvi foo.texi

As shown in this example, the input filenames to texi2dvi must include any extension
(‘.texi’, ‘.texinfo’, etc.). Under MS-DOS and perhaps in other circumstances, you may
need to run ‘sh texi2dvi foo.texi’ instead of relying on the operating system to invoke
the shell on the ‘texi2dvi’ script.

Perhaps the most useful option to texi2dvi is ‘-—command=cmd’. This inserts cmd

on a line by itself after the @setfilename in a temporary copy of the input file before
running TEX. With this, you can specify different printing formats, such as @smallbook (see
Section 20.11 [smallbook]|, page 160), @afourpaper (see Section 20.12 [A4 Paper], page 160),
or @pagesizes (see Section 20.13 [pagesizes|, page 160), without actually changing the
document source. (You can also do this on a site-wide basis with ‘texinfo.cnf’; see
Section 20.9 [Preparing for TEX]|, page 158).

texi2dvi can also be used to process EIEX files; simply run ‘texi2dvi
filename.ext’.

For a list of other options, run ‘texi2dvi --help’.

20.4 Shell Print Using lpr -d

The precise command to print a DVI file depends on your system installation. Two common
ones are ‘dvips foo.dvi -o’ and ‘lpr -d foo.dvi’.

For example, the following commands will (perhaps) suffice to sort the indices, format,
and print the Bison Manual:

tex bison.texinfo
texindex bison.??
tex bison.texinfo
lpr -d bison.dvi

(Remember that the shell commands may be different at your site; but these are commonly
used versions.)

Using the texi2dvi shell script (see the previous section):

texi2dvi bison.texinfo
lpr -d bison.dvi
or perhaps dvips bison.dvi -o

1pr is a standard program on Unix systems, but it is usually absent on MS-DOS/MS-
Windows. Some network packages come with a program named 1lpr, but these are usually
limited to sending files to a print server over the network, and generally don’t support the
‘-d’ option. If you are unfortunate enough to work on one of these systems, you have several
alternative ways of printing DVI files:

Chapter 20: Formatting and Printing Hardcopy 155

e Find and install a Unix-like 1pr program, or its clone. If you can do that, you will be
able to print DVI files just like described above.

e Send the DVI files to a network printer queue for DVI files. Some network printers
have special queues for printing DVT files. You should be able to set up your network
software to send files to that queue. In some cases, the version of lpr which comes
with your network software will have a special option to send a file to specific queues,
like this:

lpr -Qdvi -hprint.server.domain bison.dvi

e Convert the DVI file to a Postscript or PCL file and send it to your local printer.
See section “Invoking Dvips” in Dvips, and the man pages for dvilj, for detailed
description of these tools. Once the DVI file is converted to the format your local
printer understands directly, just send it to the appropriate port, usually ‘PRN’.

20.5 From an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. To create
a shell within Emacs, type M-x shell. In this shell, you can format and print the document.
See Chapter 20 [Format and Print Hardcopy]|, page 152, for details.

You can switch to and from the shell buffer while tex is running and do other editing.
If you are formatting a long document on a slow machine, this can be very convenient.
You can also use texi2dvi from an Emacs shell. For example, here is how to use
texi2dvi to format and print Using and Porting GNU CC from a shell within Emacs:
texi2dvi gcc.texinfo
lpr -d gcc.dvi
See the next section for more information about formatting and printing in Texinfo
mode.

20.6 Formatting and Printing in Texinfo Mode

Texinfo mode provides several predefined key commands for TEX formatting and print-
ing. These include commands for sorting indices, looking at the printer queue, killing the
formatting job, and recentering the display of the buffer in which the operations occur.

C-c C-t C-b
M-x texinfo-tex-buffer
Run texi2dvi on the current buffer.
C-c C-t C-r
M-x texinfo-tex-region
Run TEX on the current region.
C-c C-t C-1
M-x texinfo-texindex
Sort the indices of a Texinfo file formatted with texinfo-tex-region.
C-c C-t C-p
M-x texinfo-tex-print
Print a DVI file that was made with texinfo-tex-region or texinfo-tex-
buffer.

Chapter 20: Formatting and Printing Hardcopy 156

C-c C-t C-q
M-x tex-show-print-queue
Show the print queue.

C-c C-t C-d

M-x texinfo-delete-from-print-queue
Delete a job from the print queue; you will be prompted for the job num-
ber shown by a preceding C-c C-t C-q command (texinfo-show-tex-print-
queue).

C-c C-t C-k

M-x tex-kill-job
Kill the currently running TEX job started by either texinfo-tex-region or
texinfo-tex-buffer, or any other process running in the Texinfo shell buffer.

C-c C-t C-x

M-x texinfo-quit-job
Quit a TEX formatting job that has stopped because of an error by sending an
(& to it. When you do this, TEX preserves a record of what it did in a ‘.1log’
file.

C-c C-t C-1

M-x tex-recenter-output-buffer
Redisplay the shell buffer in which the TEX printing and formatting commands
are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with
comments to the right):

C-c C-t C-b Run texi2dvi on the buffer.
C-c C-t C-p Print the DVI file.
C-c C-t C—q Display the printer queue.

The Texinfo mode TEX formatting commands start a subshell in Emacs called the
‘stex-shellx’. The texinfo-tex-command, texinfo-texindex-command, and tex-dvi-
print-command commands are all run in this shell.

You can watch the commands operate in the ‘*tex-shell*’ buffer, and you can switch
to and from and use the ‘*tex-shellx*’ buffer as you would any other shell buffer.

The formatting and print commands depend on the values of several variables. The
default values are:

Variable Default value
texinfo-texi2dvi-command "texi2dvi"
texinfo-tex-command "tex"
texinfo-texindex-command "texindex"
texinfo-delete-from-print-queue-command "lprm"
texinfo-tex-trailer "@bye"
tex-start-of-header "ix*xstart"
tex-end-of-header "Yxkend"
tex-dvi-print-command "lpr -d"

tex-show-queue-command "lpq"

Chapter 20: Formatting and Printing Hardcopy 157

You can change the values of these variables with the M-x set-variable command
(see section “Examining and Setting Variables” in The GNU Emacs Manual), or with your
‘.emacs’ initialization file (see section “Init File” in The GNU Emacs Manual).

Beginning with version 20, GNU Emacs offers a user-friendly interface, called Cus-
tomize, for changing values of user-definable variables. See section “Easy Customization
Interface” in The GNU Emacs Manual, for more details about this. The Texinfo vari-
ables can be found in the ‘Development/Docs/Texinfo’ group, once you invoke the M-x
customize command.

20.7 Using the Local Variables List

Yet another way to apply the TEX formatting command to a Texinfo file is to put that
command in a local variables list at the end of the Texinfo file. You can then specify the
tex or texi2dvi commands as a compile-command and have Emacs run it by typing M-x
compile. This creates a special shell called the ‘*compilationx’ buffer in which Emacs
runs the compile command. For example, at the end of the ‘gdb.texinfo’ file, after the
@bye, you could put the following:

Local Variables:

compile-command: "texi2dvi gdb.texinfo"

End:
This technique is most often used by programmers who also compile programs this way; see
section “Compilation” in The GNU Emacs Manual.

20.8 TEX Formatting Requirements Summary
Every Texinfo file that is to be input to TEX must begin with a \input command and must
contain an @setfilename command:

\input texinfo
O@setfilename arg-not-used-by-TgX

The first command instructs TEX to load the macros it needs to process a Texinfo file and
the second command opens auxiliary files.

Every Texinfo file must end with a line that terminates TEX’s processing and forces

out unfinished pages:
Q@bye

Strictly speaking, these lines are all a Texinfo file needs to be processed successfully by
TEX.

Usually, however, the beginning includes an @settitle command to define the title
of the printed manual, an @setchapternewpage command, a title page, a copyright page,
and permissions. Besides an @bye, the end of a file usually includes indices and a table of
contents. (And of course most manuals contain a body of text as well.)

For more information, see:
e Section 3.2.4 [@settitle], page 30.
e Section 3.7.2 [@setchapternewpage|, page 40.
e Appendix E [Page Headings|, page 219.
e Section 3.4 [Titlepage & Copyright Page|, page 32.

Chapter 20: Formatting and Printing Hardcopy 158

e Section 4.1 [Printing Indices & Menus], page 44.
e Section 3.5 [Contents|, page 37.

20.9 Preparing for TEX

TEX needs to know where to find the ‘texinfo.tex’ file that the ‘\input texinfo’ com-
mand on the first line reads. The ‘texinfo.tex’ file tells TEX how to handle @-commands;
it is included in all standard GNU distributions. The latest version is always available from
the Texinfo source repository:

http://savannah.gnu.org/cgi-bin/viewcvs/texinfo/texinfo/doc/texinfo.tex?rev=HEAD

Usually, the installer has put the ‘texinfo.tex’ file in the default directory that con-
tains TEX macros when GNU Texinfo, Emacs or other GNU software is installed. In this
case, TEX will find the file and you do not need to do anything special. If this has not been
done, you can put ‘texinfo.tex’ in the current directory when you run TEX, and TEX will
find it there.

Also, you should install ‘epsf.tex’, if it is not already installed from another distribu-
tion. More details are at the end of the description of the @image command (see Section 12.2
[Images], page 101).

Likewise for ‘pdfcolor.tex’, if it is not already installed and you use pdftex.

Optionally, you may create an additional ‘texinfo.cnf’, and install it as well. This
file is read by TEX when the @setfilename command is executed (see Section 3.2.3
[@setfilename], page 29). You can put any commands you like there, according to local
site-wide conventions. They will be read by TEX when processing any Texinfo document.
For example, if ‘texinfo.cnf’ contains the line ‘@afourpaper’ (see Section 20.12 [A4 Pa-
per], page 160), then all Texinfo documents will be processed with that page size in effect.
If you have nothing to put in ‘texinfo.cnf’, you do not need to create it.

If neither of the above locations for these system files suffice for you, you can specify the
directories explicitly. For ‘texinfo.tex’, you can do this by writing the complete path for
the file after the \input command. Another way, that works for both ‘texinfo.tex’ and
‘texinfo.cnf’ (and any other file TEX might read), is to set the TEXINPUTS environment
variable in your ‘.cshrc’ or ‘.profile’ file.

Which you use of ‘.cshrc’ or ‘.profile’ depends on whether you use a Bourne
shell-compatible (sh, bash, ksh, ...) or C shell-compatible (csh, tcsh) command inter-
preter. The latter read the ‘. cshrc’ file for initialization information, and the former read
‘.profile’.

In a ‘.cshrc’ file, you could use the following csh command sequence:

setenv TEXINPUTS .:/home/me/mylib:
In a ‘.profile’ file, you could use the following sh command sequence:
TEXINPUTS=. : /home/me/mylib:
export TEXINPUTS
On MS-DOS/MS-Windows, you would say it like this':
set TEXINPUTS=.;d:/home/me/mylib;c:
It is customary for DOS/Windows users to put such commands in the ‘autoexec.bat’ file,
or in the Windows Registry.

I Note the use of the ¢;’ character, instead of ‘:’, as directory separator on these systems.

http://savannah.gnu.org/cgi-bin/viewcvs/texinfo/texinfo/doc/texinfo.tex?rev=HEAD

Chapter 20: Formatting and Printing Hardcopy 159

These settings would cause TEX to look for ‘\input’ file first in the current directory,
indicated by the ¢.’; then in a hypothetical user ‘me’”s ‘mylib’ directory, and finally in
the system directories. (A leading, trailing, or doubled ‘:’ indicates searching the system
directories at that point.)

Finally, you may wish to dump a ‘. fmt’ file (see section “Memory dumps” in Web2c) so
that TEX can load Texinfo faster. (The disadvantage is that then updating ‘texinfo.tex’
requires redumping.) You can do this by running this command, assuming ‘epsf.tex’ is

findable by TEX:
initex texinfo @dump

(dump is a TEX primitive.) Then, move ‘texinfo.fmt’ to wherever your .fmt files are
found; typically, this will be in the subdirectory ‘web2c’ of your TEX installation.

20.10 Overfull “hboxes”

TEX is sometimes unable to typeset a line without extending it into the right margin. This
can occur when TEX comes upon what it interprets as a long word that it cannot hyphenate,
such as an electronic mail network address or a very long title. When this happens, TEX
prints an error message like this:

Overfull @hbox (20.76302pt too wide)

(In TEX, lines are in “horizontal boxes”, hence the term, “hbox”. ‘@hbox’ is a TEX primitive
not needed in the Texinfo language.)

TEX also provides the line number in the Texinfo source file and the text of the
offending line, which is marked at all the places that TEX considered hyphenation. See
Section F.3 [Catching Errors with TEX Formatting], page 224, for more information about
typesetting errors.

If the Texinfo file has an overfull hbox, you can rewrite the sentence so the overfull
hbox does not occur, or you can decide to leave it. A small excursion into the right margin
often does not matter and may not even be noticeable.

If you have many overfull boxes and/or an antipathy to rewriting, you can coerce TEX
into greatly increasing the allowable interword spacing, thus (if you're lucky) avoiding many
of the bad line breaks, like this:

Otex
\global\emergencystretch = .9\hsize
Q@end tex

(You should adjust the fraction as needed.) This huge value for \emergencystretch cannot
be the default, since then the typeset output would generally be of noticeably lower quality;
the default is ‘. 15\hsize’. \hsize is the TEX dimension containing the current line width.

For what overfull boxes you have, however, TEX will print a large, ugly, black rectangle
beside the line that contains the overfull hbox unless told otherwise. This is so you will
notice the location of the problem if you are correcting a draft.

To prevent such a monstrosity from marring your final printout, write the following in
the beginning of the Texinfo file on a line of its own, before the @titlepage command:

@finalout

Chapter 20: Formatting and Printing Hardcopy 160

20.11 Printing “Small” Books

By default, TEX typesets pages for printing in an 8.5 by 11 inch format. However, you can
direct TEX to typeset a document in a 7 by 9.25 inch format that is suitable for bound
books by inserting the following command on a line by itself at the beginning of the Texinfo
file, before the title page:

@smallbook

(Since many books are about 7 by 9.25 inches, this command might better have been called
the @regularbooksize command, but it came to be called the @smallbook command by
comparison to the 8.5 by 11 inch format.)

If you write the @smallbook command between the start-of-header and end-of-header
lines, the Texinfo mode TEX region formatting command, texinfo-tex-region, will format
the region in “small” book size (see Section 3.2.2 [Start of Header], page 29).

See Section 10.7 [small], page 87, for information about commands that make it easier
to produce examples for a smaller manual.

See Section 20.3 [Format with texi2dvi], page 154, and Section 20.9 [Preparing for
TEX], page 158, for other ways to format with @smallbook that do not require changing
the source file.

20.12 Printing on A4 Paper

You can tell TEX to format a document for printing on European size A4 paper (or Ab)
with the @afourpaper (or @afivepaper) command. Write the command on a line by itself
near the beginning of the Texinfo file, before the title page. For example, this is how you
would write the header for this manual:

\input texinfo Qc —*-texinfo-*-

@c %**start of header

O@setfilename texinfo

@settitle Texinfo

O@afourpaper

@c Y**end of header

See Section 20.3 [Format with texi2dvi], page 154, and Section 20.9 [Preparing for TEX],
page 158, for other ways to format for different paper sizes that do not require changing
the source file.

You may or may not prefer the formatting that results from the command @afourlatex.
There’s also @afourwide for A4 paper in wide format.

20.13 @pagesizes [width][, height]: Custom Page Sizes

You can explicitly specify the height and (optionally) width of the main text area on the
page with the @pagesizes command. Write this on a line by itself near the beginning of
the Texinfo file, before the title page. The height comes first, then the width if desired,
separated by a comma. Examples:

Opagesizes 200mm, 150mm

and

Chapter 20: Formatting and Printing Hardcopy 161

Opagesizes 11.5in

This would be reasonable for printing on B5-size paper. To emphasize, this command
specifies the size of the text area, not the size of the paper (which is 250 mm by 177 mm for
B5, 14in by 8.5in for legal).

To make more elaborate changes, such as changing any of the page margins, you must
define a new command in ‘texinfo.tex’ (or ‘texinfo.cnf’, see Section 20.9 [Preparing for

TEX], page 158).

See Section 20.3 [Format with texi2dvi], page 154, and Section 20.9 [Preparing for TEX],
page 158, for other ways to specify @pagesizes that do not require changing the source file.

@pagesizes is ignored by makeinfo.

20.14 Cropmarks and Magnification

You can (attempt to) direct TEX to print cropmarks at the corners of pages with the
Q@cropmarks command. Write the @cropmarks command on a line by itself between @iftex
and @end iftex lines near the beginning of the Texinfo file, before the title page, like this:

@iftex
O@cropmarks
Q@end iftex

This command is mainly for printers that typeset several pages on one sheet of film;
but you can attempt to use it to mark the corners of a book set to 7 by 9.25 inches with the
@smallbook command. (Printers will not produce cropmarks for regular sized output that
is printed on regular sized paper.) Since different printing machines work in different ways,
you should explore the use of this command with a spirit of adventure. You may have to
redefine the command in ‘texinfo.tex’.

You can attempt to direct TEX to typeset pages larger or smaller than usual with the
\mag TEX command. Everything that is typeset is scaled proportionally larger or smaller.
(\mag stands for “magnification”.) This is not a Texinfo @-command, but is a plain TEX
command that is prefixed with a backslash. You have to write this command between @tex
and @end tex (see Section 17.3 [Raw Formatter Commands], page 138).

Follow the \mag command with an ‘=’ and then a number that is 1000 times the
magnification you desire. For example, to print pages at 1.2 normal size, write the following
near the beginning of the Texinfo file, before the title page:

Qtex
\mag=1200
Q@end tex

With some printing technologies, you can print normal-sized copies that look better
than usual by giving a larger-than-normal master to your print shop. They do the reduction,
thus effectively increasing the resolution.

Depending on your system, DVI files prepared with a nonstandard-\mag may not print
or may print only with certain magnifications. Be prepared to experiment.

Chapter 20: Formatting and Printing Hardcopy 162

20.15 PDF Output

You can generate a PDF output file from Texinfo source by using the pdftex program
to process your file instead of plain tex. That is, run ‘pdftex foo.texi’ instead of ‘tex
foo.texi’, or give the ‘~-pdf’ option to texi2dvi.

PDF stands for ‘Portable Document Format’. It was invented by Adobe Systems some
years ago for document interchange, based on their PostScript language. A PDF reader for
the X window system is freely available, as is the definition of the file format. At present,
there are no ‘@ifpdf’ or ‘@pdf’ commands as with the other output formats.

Despite the ‘portable’ in the name, PDF files are nowhere near as portable in practice as
the plain ASCII formats (Info, HTML) that Texinfo supports (DVI portability is arguable).
They also tend to be much larger. Nevertheless, a PDF file does preserve an actual printed
document on a screen as faithfully as possible, so it has its place.

20.16 How to Obtain TEX

TEX is freely redistributable. You can obtain TEX for Unix systems via anonymous
ftp or on physical media. The core material consists of the Web2c TEX distribution
(http://tug.org/web2c).

Instructions for retrieval by anonymous ftp and information on other available distri-
butions: http://tug.org/unixtex.ftp.

The Free Software Foundation provides a core distribution on its Source Code CD-ROM
suitable for printing Texinfo manuals. To order it, contact:

Free Software Foundation, Inc.

59 Temple Place Suite 330

Boston, MA 02111-1307

USA

Telephone: +1-617-542-5942

Fax: (including Japan) +1-617-542-2652

Free Dial Fax (in Japan):
0031-13-2473 (KDD)
0066-3382-0158 (IDC)

Electronic mail: gnu@gnu.org
Many other TEX distributions are available; see http://tug.org/.

http://www.foolabs.com/xpdf/
http://partners.adobe.com/asn/developer/technotes/
http://tug.org/web2c
http://tug.org/unixtex.ftp
http://tug.org/

Chapter 21: Creating and Installing Info Files 163

21 Creating and Installing Info Files

This chapter describes how to create and install Info files. See Section 1.4 [Info Files],
page 5, for general information about the file format itself.

21.1 Creating an Info File

makeinfo is a program that converts a Texinfo file into an Info file, HTML file, or plain
text. texinfo-format-region and texinfo-format-buffer are GNU Emacs functions
that convert Texinfo to Info.

For information on installing the Info file in the Info system, see Section 21.2 [Installing
an Info File|, page 171.

21.1.1 makeinfo Preferred

The makeinfo utility creates an Info file from a Texinfo source file more quickly than either
of the Emacs formatting commands and provides better error messages. We recommend it.
makeinfo is a C program that is independent of Emacs. You do not need to run Emacs to
use makeinfo, which means you can use makeinfo on machines that are too small to run
FEmacs. You can run makeinfo in any one of three ways: from an operating system shell,
from a shell inside Emacs, or by typing the C-c¢ C-m C-r or the C-c C-m C-b command in
Texinfo mode in Emacs.

The texinfo-format-region and the texinfo-format-buffer commands are useful
if you cannot run makeinfo. Also, in some circumstances, they format short regions or
buffers more quickly than makeinfo.

21.1.2 Running makeinfo from a Shell
To create an Info file from a Texinfo file, invoke makeinfo followed by the name of the
Texinfo file. Thus, to create the Info file for Bison, type the following to the shell:
makeinfo bison.texinfo
(You can run a shell inside Emacs by typing M-x shell.)
makeinfo has many options to control its actions and output; see the next section.

21.1.3 Options for makeinfo
The makeinfo program accepts many options. Perhaps the most commonly needed are
those that change the output format. By default, makeinfo outputs Info files.

FEach command line option is a word preceded by ‘==’ or a letter preceded by ‘-’. You
can use abbreviations for the long option names as long as they are unique.

For example, you could use the following shell command to create an Info file for
‘bison.texinfo’ in which each line is filled to only 68 columns:

makeinfo --fill-column=68 bison.texinfo
You can write two or more options in sequence, like this:
makeinfo --no-split --fill-column=70 ...

This would keep the Info file together as one possibly very long file and would also set the
fill column to 70.

The options are:

Chapter 21: Creating and Installing Info Files 164

-D var Cause the variable var to be defined. This is equivalent to @set var in the
Texinfo file (see Section 17.4 [set clear value], page 139).

—-—commands-in-node—names
Allow @-commands in node names. This is not recommended, as it can probably
never be implemented in TEX. It also makes makeinfo much slower. Also, this
option is ignored when ‘--no-validate’ is used. See Section 21.1.4 [Pointer
Validation], page 167, for more details.

-—css—-include=file
Include the contents of file, which should contain cascading style sheets specifi-
cations, in the ‘<style>’ block of the HTML output. See Section 22.3 [HTML
CSS], page 178. If file is ‘-’, read standard input.

-—docbook
Generate Docbook output rather than Info.

--enable-encoding
Output accented and special characters in Info or plain text output based on
‘@documentencoding’. See Section 18.2 [documentencoding|, page 145, and
Section 14.3 [Inserting Accents|, page 113.

-—error-limit=1imit
-e 1imit Set the maximum number of errors that makeinfo will report before exiting
(on the assumption that continuing would be useless); default 100.

-—fill-column=width

-f width Specify the maximum number of columns in a line; this is the right-hand edge
of a line. Paragraphs that are filled will be filled to this width. (Filling is the
process of breaking up and connecting lines so that lines are the same length
as or shorter than the number specified as the fill column. Lines are broken
between words.) The default value is 72. Ignored with ‘--html’.

--footnote-style=style

-s style Set the footnote style to style, either ‘end’ for the end node style (the default)
or ‘separate’ for the separate node style. The value set by this option overrides
the value set in a Texinfo file by an @footnotestyle command (see Section 12.3
[Footnotes|, page 103). When the footnote style is ‘separate’, makeinfo makes
a new node containing the footnotes found in the current node. When the
footnote style is ‘end’, makeinfo places the footnote references at the end of
the current node. Ignored with ‘-=html’.

-—force

-F Ordinarily, if the input file has errors, the output files are not created. With
this option, they are preserved.

--help

-h Print a usage message listing all available options, then exit successfully.

--html Generate HTML output rather than Info. See Chapter 22 [Generating HTML],
page 177. By default, the HTML output is split into one output file per Texinfo
source node, and the split output is written into a subdirectory with the name
of the top-level info file.

Chapter 21: Creating and Installing Info Files 165

-1 dir Append dir to the directory search list for finding files that are included using
the @include command. By default, makeinfo searches only the current direc-
tory. If dir is not given, the current directory ‘.’ is appended. Note that dir can
actually be a list of several directories separated by the usual path separator
character (‘:” on Unix, ‘;” on MS-DOS/MS-Windows).

—-—ifdocbook

-—ifhtml

--ifinfo

--ifplaintext

-—iftex

--ifxml For the specified format, process ‘@if format’ and ‘@format’ commands even
if not generating the given output format. For instance, if ‘--iftex’ is spec-
ified, then ‘@iftex’ and ‘@tex’ blocks will be read. This can be useful when
postprocessing the output.

--macro—-expand=file

-E file Output the Texinfo source with all the macros expanded to the named file.
Normally, the results of macro expansion are used internally by makeinfo and
then discarded. This option is used by texi2dvi.

—--no-headers
For Info output, do not include menus or node separator lines in the output,
and implicitly ‘--enable-encoding’ (see above). This results in a simple plain
text file that you can (for example) send in email without complications, or
include in a distribution (as in an ‘INSTALL’ file).

For HTML output, likewise omit menus. And if ‘~-no-split’ is also specified,
do not include a navigation links at the top of each node (these are never in-
cluded in the default case of split output). See Chapter 22 [Generating HTML],
page 177.

In both cases, ignore @setfilename and write to standard output by default—
can be overridden with ‘-o’.

--no-ifdocbook

--no-ifhtml

-—-no-ifinfo

--no-ifplaintext

--no-iftex

-—-no-ifxml
Do not process ‘Qifformat’ and ‘@format’ commands even if generating the
given format. For instance, if ‘-—no-ifhtml’ is specified, then ‘@ifhtml’ and
‘@html’ blocks will not be read.

--no-split
Suppress the splitting stage of makeinfo. By default, large output files (where
the size is greater than 70k bytes) are split into smaller subfiles. For Info output,
each one is approximately 50k bytes. For HTML output, each file contains one
node (see Chapter 22 [Generating HTML], page 177).

Chapter 21: Creating and Installing Info Files 166

--no-pointer-validate

--no-validate
Suppress the pointer-validation phase of makeinfo. This can also be done with
the @novalidate command (see Section 20.1 [Use TEX]|, page 152). Normally,
after a Texinfo file is processed, some consistency checks are made to ensure that
cross references can be resolved, etc. See Section 21.1.4 [Pointer Validation],
page 167.

--no-warn
Suppress warning messages (but not error messages). You might want this if
the file you are creating has examples of Texinfo cross references within it, and
the nodes that are referenced do not actually exist.

—--number-sections
Output chapter, section, and appendix numbers as in printed manuals.

—--no-number-footnotes
Suppress automatic footnote numbering. By default, makeinfo numbers each
footnote sequentially in a single node, resetting the current footnote number to
1 at the start of each node.

--output=file

-o file Specify that the output should be directed to file and not to the file name
specified in the @setfilename command found in the Texinfo source (see Sec-
tion 3.2.3 [setfilename], page 29). If file is ‘=, output goes to standard output
and ‘--no-split’ is implied. For split HI'ML output, file is the name for the
directory into which all HTML nodes are written (see Chapter 22 [Generating
HTML], page 177).

-P dir Prepend dir to the directory search list for @include. If dir is not given, the
current directory ‘.’ is prepended. See ‘-I’ for more details.

--paragraph-indent=indent

-p indent
Set the paragraph indentation style to indent. The value set by this option
overrides the value set in a Texinfo file by an @paragraphindent command (see
Section 3.7.3 [paragraphindent]|, page 41). The value of indent is interpreted as
follows:

‘asis’ Preserve any existing indentation at the starts of paragraphs.
‘0’ or ‘none’

Delete any existing indentation.
num Indent each paragraph by num spaces.

--reference-limit=1limit

-r limit Set the value of the number of references to a node that makeinfo will make
without reporting a warning. If a node has more than this number of references
in it, makeinfo will make the references but also report a warning. The default
is 1000.

--split-size=num
Keep Info files to at most num characters; default is 300,000.

Chapter 21: Creating and Installing Info Files 167

-U var Cause var to be undefined. This is equivalent to @clear var in the Texinfo file

(see Section 17.4 [set clear value], page 139).

—--verbose

Cause makeinfo to display messages saying what it is doing. Normally,
makeinfo only outputs messages if there are errors or warnings.

—--version

-V

Print the version number, then exit successfully.

--xml Generate XML output rather than Info.

makeinfo also reads the environment variable TEXINFO_OUTPUT_FORMAT to determine

the output format, if not overridden by a command line option. The possible values are:

docbook html info plaintext =xml

If not set, Info output is the default.

21.1.4 Pointer Validation

If you do not suppress pointer validation with the

‘--no-validate’ option or the

@novalidate command in the source file (see Section 20.1 [Use TEX], page 152), makeinfo
will check the validity of the final Info file. Mostly, this means ensuring that nodes you
have referenced really exist. Here is a complete list of what is checked:

1.

If a ‘Next’, ‘Previous’, or ‘Up’ node reference is a reference to a node in the current
file and is not an external reference such as to ‘(dir)’, then the referenced node must
exist.

In every node, if the ‘Previous’ node is different from the ‘Up’ node, then the node
pointed to by the ‘Previous’ field must have a ‘Next’ field which points back to this
node.

Every node except the ‘Top’ node must have an ‘Up’ pointer.

The node referenced by an ‘Up’ pointer must itself reference the current node through
a menu item, unless the node referenced by ‘Up’ has the form ‘(file)’.

If the ‘Next’ reference of a node is not the same as the ‘Next’ reference of the ‘Up’
reference, then the node referenced by the ‘Next’ pointer must have a ‘Previous’ pointer
that points back to the current node. This rule allows the last node in a section to
point to the first node of the next chapter.

Every node except ‘Top’ should be referenced by at least one other node, either via the
‘Previous’ or ‘Next’ links, or via a menu or a cross-reference.

Some Texinfo documents might fail during the validation phase because they use com-

mands like @value and @definfoenclose in node definitions and cross-references inconsis-
tently. Consider the following example:

Chapter 21: Creating and Installing Info Files 168

O@set nodename Node 1

@node @value{nodename}, Node 2, Top, Top
This is node 1.

Onode Node 2, , Node 1, Top

This is node 2.
Here, the node “Node 1”7 was referenced both verbatim and through @value.

By default, makeinfo fails such cases, because node names are not fully expanded until
they are written to the output file. You should always try to reference nodes consistently;
e.g., in the above example, the second @node line should have also used @value. However,
if, for some reason, you must reference node names inconsistently, and makeinfo fails to
validate the file, you can use the ‘--~commands-in-node-names’ option to force makeinfo
to perform the expensive expansion of all node names it finds in the document. This
might considerably slow down the program, though; twofold increase in conversion time
was measured for large documents such as the Jargon file.

The support for @-commands in @node directives is not general enough to be freely
used. For example, if the example above redefined nodename somewhere in the document,
makeinfo will fail to convert it, even if invoked with the ‘--commands-in-node-names’
option.

‘~-—commands-in-node-names’ has no effect if the ‘~-no-validate’ option is given.

21.1.5 Running makeinfo Within Emacs

You can run makeinfo in GNU Emacs Texinfo mode by using either the makeinfo-region
or the makeinfo-buffer commands. In Texinfo mode, the commands are bound to C-c
C-m C-r and C-c C-m C-b by default.

C-c C-m C-r
M-x makeinfo-region
Format the current region for Info.

C-c C-m C-b
M-x makeinfo-buffer
Format the current buffer for Info.

When you invoke makeinfo-region the output goes to a temporary buffer. When you
invoke makeinfo-buffer output goes to the file set with @setfilename (see Section 3.2.3
[setfilename], page 29).

The Emacs makeinfo-region and makeinfo-buffer commands run the makeinfo
program in a temporary shell buffer. If makeinfo finds any errors, Emacs displays the error
messages in the temporary buffer.

You can parse the error messages by typing C-x ¢ (next-error). This causes Emacs
to go to and position the cursor on the line in the Texinfo source that makeinfo thinks
caused the error. See section “Running make or Compilers Generally” in The GNU Emacs
Manual, for more information about using the next-error command.

Chapter 21: Creating and Installing Info Files 169

In addition, you can Kkill the shell in which the makeinfo command is running or make
the shell buffer display its most recent output.

C-c C-m C-k

M-x makeinfo-kill-job
Kill the current running makeinfo job (from makeinfo-region or makeinfo-
buffer).

C-c C-m C-1
M-x makeinfo-recenter-output-buffer
Redisplay the makeinfo shell buffer to display its most recent output.

(Note that the parallel commands for killing and recentering a TEX job are C-c C-t C-k
and C-c C-t C-1. See Section 20.6 [Texinfo Mode Printing], page 155.)

You can specify options for makeinfo by setting the makeinfo-options variable with
either the M-x customize or the M-x set-variable command, or by setting the variable in
your ‘.emacs’ initialization file.

For example, you could write the following in your ‘.emacs’ file:

(setq makeinfo-options
"--paragraph-indent=0 --no-split
--fill-column=70 --verbose")

For more information, see Section 21.1.3 [Options for makeinfo|, page 163, as well as “Easy
Customization Interface,” “Examining and Setting Variables,” and “Init File” in The GNU
Emacs Manual.

21.1.6 The texinfo-format... Commands

In GNU Emacs in Texinfo mode, you can format part or all of a Texinfo file with the
texinfo-format-region command. This formats the current region and displays the for-
matted text in a temporary buffer called ‘*Info Regionx’.

Similarly, you can format a buffer with the texinfo-format-buffer command. This
command creates a new buffer and generates the Info file in it. Typing C-x C-s will save
the Info file under the name specified by the @setfilename line which must be near the
beginning of the Texinfo file.

C-c C-e C-r
texinfo-format-region
Format the current region for Info.

C-c C-e C-b
texinfo-format-buffer
Format the current buffer for Info.

The texinfo-format-region and texinfo-format-buffer commands provide you
with some error checking, and other functions can provide you with further help in finding
formatting errors. These procedures are described in an appendix; see Appendix F [Catching
Mistakes|, page 223. However, the makeinfo program is often faster and provides better
error checking (see Section 21.1.5 [makeinfo in Emacs], page 168).

Chapter 21: Creating and Installing Info Files 170

21.1.7 Batch Formatting

You can format Texinfo files for Info using batch-texinfo-format and Emacs Batch mode.
You can run Emacs in Batch mode from any shell, including a shell inside of Emacs. (See
section “Command Arguments” in The GNU Emacs Manual.)

Here is a shell command to format all the files that end in ‘.texinfo’ in the current
directory:

emacs -batch -funcall batch-texinfo-format *.texinfo

Emacs processes all the files listed on the command line, even if an error occurs while
attempting to format some of them.

Run batch-texinfo-format only with Emacs in Batch mode as shown; it is not in-
teractive. It kills the Batch mode Emacs on completion.

batch-texinfo-format is convenient if you lack makeinfo and want to format several
Texinfo files at once. When you use Batch mode, you create a new Emacs process. This
frees your current Emacs, so you can continue working in it. (When you run texinfo-
format-region or texinfo-format-buffer, you cannot use that Emacs for anything else
until the command finishes.)

21.1.8 Tag Files and Split Files

If a Texinfo file has more than 30,000 bytes, texinfo-format-buffer automatically creates
a tag table for its Info file; makeinfo always creates a tag table. With a tag table, Info can
jump to new nodes more quickly than it can otherwise.

In addition, if the Texinfo file contains more than about 300,000 bytes, texinfo-
format-buffer and makeinfo split the large Info file into shorter indirect subfiles of about
300,000 bytes each. Big files are split into smaller files so that Emacs does not need to
make a large buffer to hold the whole of a large Info file; instead, Emacs allocates just
enough memory for the small, split-off file that is needed at the time. This way, Emacs
avoids wasting memory when you run Info. (Before splitting was implemented, Info files
were always kept short and include files were designed as a way to create a single, large
printed manual out of the smaller Info files. See Appendix D [Include Files|, page 215, for
more information. Include files are still used for very large documents, such as The Emacs
Lisp Reference Manual, in which each chapter is a separate file.)

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split-off files
are called indirect files.

)

The split-off files have names that are created by appending ‘-1’, ‘-2’, ‘=3” and so on
to the file name specified by the @setfilename command. The shortened version of the
original file continues to have the name specified by @setfilename.

At one stage in writing this document, for example, the Info file was saved as the file
‘test-texinfo’ and that file looked like this:

Chapter 21: Creating and Installing Info Files 171

Info file: test-texinfo, —*-Text—*-
produced by texinfo-format-buffer
from file: new-texinfo-manual.texinfo

Indirect:
test-texinfo-1: 102
test-texinfo-2: 50422
test-texinfo-3: 101300
“_"L

Tag table:

(Indirect)

Node: overview~ 7104
Node: info file™ 71271
Node: printed manual~74853
Node: conventions~ 76855

(But ‘test-texinfo’ had far more nodes than are shown here.) Each of the split-off,
indirect files, ‘test-texinfo-1’, ‘test-texinfo-2’, and ‘test-texinfo-3’, is listed in this
file after the line that says ‘Indirect:’. The tag table is listed after the line that says ‘Tag
table:’.

In the list of indirect files, the number following the file name records the cumulative
number of bytes in the preceding indirect files, not counting the file list itself, the tag
table, or the permissions text in each file. In the tag table, the number following the node
name records the location of the beginning of the node, in bytes from the beginning of the
(unsplit) output.

If you are using texinfo-format-buffer to create Info files, you may want to run
the Info-validate command. (The makeinfo command does such a good job on its own,
you do not need Info-validate.) However, you cannot run the M-x Info-validate node-
checking command on indirect files. For information on how to prevent files from being
split and how to validate the structure of the nodes, see Section F.6.1 [Using Info-validate],
page 228.

21.2 Installing an Info File

Info files are usually kept in the ‘info’ directory. You can read Info files using the standalone
Info program or the Info reader built into Emacs. (See Info file ‘info’, node ‘Top’, for an
introduction to Info.)

21.2.1 The Directory File ‘dir’

For Info to work, the ‘info’ directory must contain a file that serves as a top level directory
for the Info system. By convention, this file is called ‘dir’. (You can find the location of
this file within Emacs by typing C-h i to enter Info and then typing C-x C-f to see the
pathname to the ‘info’ directory.)

The ‘dir’ file is itself an Info file. It contains the top level menu for all the Info files in
the system. The menu looks like this:

Chapter 21: Creating and Installing Info Files 172

* Menu:

* Info: (info). Documentation browsing system.

* FEmacs: (emacs) . The extensible, self-documenting
text editor.

* Texinfo: (texinfo). With one source file, make

either a printed manual using
QTeX{} or an Info file.

Each of these menu entries points to the ‘Top’ node of the Info file that is named in
parentheses. (The menu entry does not need to specify the ‘Top’ node, since Info goes to
the ‘Top’ node if no node name is mentioned. See Section 7.6 [Nodes in Other Info Files],
page 61.)

Thus, the ‘Info’ entry points to the ‘Top’ node of the ‘info’ file and the ‘Emacs’ entry
points to the ‘Top’ node of the ‘emacs’ file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file.
For example, the line for the ‘Top’ node of the Emacs manual looks like this in Info:
File: emacs Node: Top, Up: (DIR), Next: Distrib

In this case, the ‘dir’ file name is written in upper case letters—it can be written in either
upper or lower case. This is not true in general, it is a special case for ‘dir’.

21.2.2 Listing a New Info File

To add a new Info file to your system, you must write a menu entry to add to the menu
in the ‘dir’ file in the ‘info’ directory. For example, if you were adding documentation for
GDB, you would write the following new entry:

* GDB: (gdb). The source-level C debugger.

The first part of the menu entry is the menu entry name, followed by a colon. The second
part is the name of the Info file, in parentheses, followed by a period. The third part is the
description.

The name of an Info file often has a ‘.info’ extension. Thus, the Info file for GDB
might be called either ‘gdb’ or ‘gdb.info’. The Info reader programs automatically try the
file name both with and without ‘.info’!; so it is better to avoid clutter and not to write
‘.info’ explicitly in the menu entry. For example, the GDB menu entry should use just
‘gdb’ for the file name, not ‘gdb.info’.

21.2.3 Info Files in Other Directories

If an Info file is not in the ‘info’ directory, there are three ways to specify its location:
1. Write the pathname in the ‘dir’ file as the second part of the menu.
2. If you are using Emacs, list the name of the file in a second ‘dir’ file, in its directory;

and then add the name of that directory to the Info-directory-1ist variable in your
personal or site initialization file.

This variable tells Emacs where to look for ‘dir’ files (the files must be named ‘dir’).
Emacs merges the files named ‘dir’ from each of the listed directories. (In Emacs
version 18, you can set the Info-directory variable to the name of only one directory.)

L On MS-DOS/MS-Windows systems, Info will try the ‘.inf’ extension as well.

Chapter 21: Creating and Installing Info Files 173

3. Specify the Info directory name in the INFOPATH environment variable in your
‘.profile’ or ‘.cshrc’ initialization file. (Only you and others who set this
environment variable will be able to find Info files whose location is specified this way.)

For example, to reach a test file in the ‘/home/bob/info’ directory, you could add an
entry like this to the menu in the standard ‘dir’ file:

* Test: (/home/bob/info/info-test). Bob’s own test file.

In this case, the absolute file name of the ‘info-test’ file is written as the second part of
the menu entry.

Alternatively, you could write the following in your ‘.emacs’ file:
(require ’info)
(setq Info-directory-list

(cons (expand-file-name "/home/bob/info")
Info-directory-list))

This tells Emacs to merge the system ‘dir’ file with the ‘dir’ file in ‘/home/bob/info’.
Thus, Info will list the ‘/home/bob/info/info-test’ file as a menu entry in the
‘/home/bob/info/dir’ file. Emacs does the merging only when M-x info is first run, so
if you want to set Info-directory-list in an Emacs session where you've already run

info, you must (setq Info-dir-contents nil) to force Emacs to recompose the ‘dir’
file.

Finally, you can tell Info where to look by setting the INFOPATH environment variable
in your shell startup file, such as ‘.cshrc’, ‘.profile’ or ‘autoexec.bat’. If you use a
Bourne-compatible shell such as sh or bash for your shell command interpreter, you set
the INFOPATH environment variable in the ‘.profile’ initialization file; but if you use csh
or tcsh, you set the variable in the ‘.cshrc’ initialization file. On MS-DOS/MS-Windows
systems, you must set INFOPATH in your ‘autoexec.bat’ file or in the Registry. Each type
of shell uses a different syntax.

e In a ‘.cshrc’ file, you could set the INFOPATH variable as follows:
setenv INFOPATH .:~/info:/usr/local/emacs/info

e In a ‘.profile’ file, you would achieve the same effect by writing:
INFOPATH=. : $HOME/info: /usr/local/emacs/info
export INFOPATH

e In a ‘autoexec.bat’ file, you write this command?:
set INFOPATH=.;%HOME},/info;c:/usr/local/emacs/info

The .’ indicates the current directory as usual. Emacs uses the INFOPATH environment
variable to initialize the value of Emacs’s own Info-directory-1list variable. The stand-
alone Info reader merges any files named ‘dir’ in any directory listed in the INFOPATH
variable into a single menu presented to you in the node called ‘(dir)Top’.

However you set INFOPATH, if its last character is a colon®, this is replaced by the
default (compiled-in) path. This gives you a way to augment the default path with new
directories without having to list all the standard places. For example (using sh syntax):

2 Note the use of ¢;’ as the directory separator, and a different syntax for using values of other environ-
ment variables.

3 On MS-DOS/MS-Windows systems, use semi-colon instead.

Chapter 21: Creating and Installing Info Files 174

INFOPATH=/1local/info:
export INFOPATH

will search ‘/local/info’ first, then the standard directories. Leading or doubled colons
are not treated specially.

When you create your own ‘dir’ file for use with Info-directory-list or INFOPATH,
it’s easiest to start by copying an existing ‘dir’ file and replace all the text after the ‘* Menu:’
with your desired entries. That way, the punctuation and special CTRL-_ characters that
Info needs will be present.

21.2.4 Installing Info Directory Files

When you install an Info file onto your system, you can use the program install-info to
update the Info directory file ‘dir’. Normally the makefile for the package runs install-
info, just after copying the Info file into its proper installed location.

In order for the Info file to work with install-info, you include the commands
@dircategory and @direntry. ..@end direntry in the Texinfo source file. Use @direntry
to specify the menu entries to add to the Info directory file, and use @dircategory to spec-
ify which part of the Info directory to put it in. Here is how these commands are used in
this manual:

@dircategory Texinfo documentation system

Q@direntry

* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info. ...

ééﬁd direntry
Here’s what this produces in the Info file:

INFO-DIR-SECTION Texinfo documentation system
START-INFO-DIR-ENTRY

* Texinfo: (texinfo). The GNU documentation format.
* install-info: (texinfo)Invoking install-info. ...

END-INFO-DIR-ENTRY

The install-info program sees these lines in the Info file, and that is how it knows what
to do.

Always use the @direntry and @dircategory commands near the beginning of the
Texinfo input, before the first @node command. If you use them later on in the input,
install-info will not notice them.

If you use @dircategory more than once in the Texinfo source, each usage specifies
the ‘current’ category; any subsequent @direntry commands will add to that category.

When choosing a category name for the @dircategory command, we recommend
consulting the Free Software Directory. If your program is not listed there, or listed
incorrectly or incompletely, please report the situation to the directory maintainers
(bug-directory@gnu.org) so that the category names can be kept in sync.

Here are a few examples (see the ‘util/dir-example’ file in the Texinfo distribution
for large sample dir file):

Emacs
Localization

http://www.gnu.org/directory
mailto:bug-directory@gnu.org

Chapter 21: Creating and Installing Info Files 175

Printing

Software development

Software libraries

Text creation and manipulation

Each ‘Invoking’ node for every program installed should have a corresponding
@direntry. This lets users easily find the documentation for the different programs they
can run, as with the traditional man system.

21.2.5 Invoking install-info

install-info inserts menu entries from an Info file into the top-level ‘dir’ file in the Info
system (see the previous sections for an explanation of how the ‘dir’ file works). It’s most
often run as part of software installation, or when constructing a ‘dir’ file for all manuals
on a system. Synopsis:
install-info [option]... [info-file [dir-filell]

If info-file or dir-file are not specified, the options (described below) that define them
must be. There are no compile-time defaults, and standard input is never used. install-
info can read only one Info file and write only one ‘dir’ file per invocation.

If dir-file (however specified) does not exist, install-info creates it if possible (with
no entries).

If any input file is compressed with gzip (see section “Invoking gzip” in Gzip),
install-info automatically uncompresses it for reading. And if dir-file is compressed,
install-info also automatically leaves it compressed after writing any changes. If dir-file
itself does not exist, install-info tries to open ‘dir-file.gz’.

Options:

--delete Delete the entries in info-file from dir-file. The file name in the entry in dir-file
must be info-file (except for an optional ‘.info’ in either one). Don’t insert
any new entries.

-—-dir-file=name
-d name Specify file name of the Info directory file. This is equivalent to using the dir-file
argument.

-—entry=text

-e text Insert text as an Info directory entry; text should have the form of an Info menu
item line plus zero or more extra lines starting with whitespace. If you specify
more than one entry, they are all added. If you don’t specify any entries, they
are determined from information in the Info file itself.

--help

-h Display a usage message listing basic usage and all available options, then exit
successfully.

-—info-file=file

-i file Specify Info file to install in the directory. Equivalent to using the info-file
argument.

--info-dir=dir

-D dir Specify the directory where the directory file ‘dir’ resides. Equivalent to
‘--dir-file=dir/dir’.

Chapter 21: Creating and Installing Info Files 176

-—-item=text
Same as ‘--entry=text’. An Info directory entry is actually a menu item.

--quiet Suppress warnings.

—-remove
-r Same as ‘-—-delete’.

-—-section=sec

-s sec Put this file’s entries in section sec of the directory. If you specify more than
one section, all the entries are added in each of the sections. If you don’t specify
any sections, they are determined from information in the Info file itself.

—--version
-V Display version information and exit successfully.

Chapter 22: Generating HTML 177

22 Generating HTML

makeinfo generates Info output by default, but given the ‘~-html’ option, it will generate
HTML, for web browsers and other programs. This chapter gives some details on such
HTML output.

makeinfo can also write in XML and Docbook format, but we do not as yet describe
these further. See Section 1.3 [Output Formats|, page 4, for a brief overview of all the
output formats.

22.1 HTML Translation

makeinfo will include segments of Texinfo source between @ifhtml and @end ifhtml in
the HTML output (but not any of the other conditionals, by default). Source between
@html and @end html is passed without change to the output (i.e., suppressing the normal
escaping of input ‘<’ >’ and ‘&’ characters which have special significance in HTML). See
Section 17.1 [Conditional Commands], page 137.

The ‘--footnote-style’ option is currently ignored for HITML output; footnotes are
always linked to the end of the output file.

By default, a navigation bar is inserted at the start of each node, analogous to Info
output. The ‘--no-headers’ option suppresses this if used with ‘--no-split’. Header
<1link> elements in split output can support info-like navigation with browsers like Lynx
and Emacs W3 which implement this HTML 1.0 feature.

The HTML generated is mostly standard (i.e., HTML 2.0, RFC-1866). One exception is
that HTML 3.2 tables are generated from the @multitable command, but tagged to degrade
as well as possible in browsers without table support. The HTML 4 ‘lang’ attribute on the
‘<html>’ attribute is also used. (Please report output from an error-free run of makeinfo
which has browser portability problems as a bug.)

22.2 HTML Splitting

When splitting output (which is the default), makeinfo writes HTML output into (gener-
ally) one output file per Texinfo source @node.

The output file name is the node name with special characters replaced by ‘="’s, so it
can work as a filename. In the unusual case of two different nodes having the same name
after this treatment, they are written consecutively to the same file, with HTML anchors
so each can be referred to separately. If makeinfo is run on a system which does not
distinguish case in filenames, nodes which are the same except for case will also be folded
into the same output file.

When splitting, the HTML output files are written into a subdirectory, with the name
chosen as follows:

1. makeinfo first tries the subdirectory with the base name from @setfilename (that is,
any extension is removed). For example, HTML output for @setfilename gcc.info
would be written into a subdirectory named ‘gcc’.

2. If that directory cannot be created for any reason, then makeinfo tries appending
‘.html’ to the directory name. For example, output for @setfilename texinfo would
be written to ‘texinfo.html’.

Chapter 22: Generating HTML 178

3. If the ‘name.html’ directory can’t be created either, makeinfo gives up.

In any case, the top-level output file within the directory is always named ‘index.html’.

Monolithic output (--no-split) is named according to @setfilename (with any
‘.info’ extension is replaced with ‘.html’) or ——output (the argument is used literally).

22.3 HTML CSS

Cascading Style Sheets (CSS for short) is an Internet standard for influencing the display
of HTML documents: see http://www.w3.org/Style/CSS/.

By default, makeinfo includes a few simple CSS commands to better implement the
appearance of some of the environments. Here are two of them, as an example:

pre.display { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }

A full explanation of CSS is (far) beyond this manual; please see the reference above.
In brief, however, this specification tells the web browser to use a ‘smaller’ font size for
@smalldisplay text, and to use the ‘inherited’ font (generally a regular roman typeface)
for both @smalldisplay and @display. By default, the HTML ‘<pre>’ command uses a
monospaced font.

You can influence the CSS in the HTML output with the ‘--css-include=file’ option
to makeinfo. This includes the contents file in the HTML output, as you might expect.
However, the details are somewhat tricky, as described in the following, to provide maximum
flexibility.

The CSS file may begin with so-called ‘@import’ directives, which link to external CSS
specifications for browsers to use when interpreting the document. Again, a full description
is beyond our scope here, but we’ll describe how they work syntactically, so we can explain
how makeinfo handles them.

There can be more than one ‘@import’, but they have to come first in the file, with
only whitespace and comments interspersed, no normal definitions. (Technical exception: an
‘@charset’ directive may precede the ‘@import”s. This does not alter makeinfo’s behavior,
it just copies the ‘@charset’ if present.) Comments in CSS files are delimited by ‘/* ...
x/’, as in C. An ‘@import’ directive must be in one of these two forms:

Q@import url(http://example.org/foo.css);
@import "http://example.net/bar.css";

As far as makeinfo is concerned, the crucial characters are the ‘@’ at the beginning and
the semicolon terminating the directive. When reading the CSS file, it simply copies any
such ‘@’-directive into the output, as follows:

e If file contains only normal CSS declarations, it is included after makeinfo’s default
CSS, thus overriding it.

e If file begins with ‘@import’ specifications (see below), then the ‘import’’s are included
first (they have to come first, according to the standard), and then makeinfo’s default
CSS is included. If you need to override makeinfo’s defaults from an ‘@import’, you
can do so with the ‘! important’ CSS construct, as in:

pre.smallexample { font-size: inherit ! important }

http://www.w3.org/Style/CSS/

Chapter 22: Generating HTML 179

o If file contains both ‘@import’ and inline CSS specifications, the ‘@import’s are in-
cluded first, then makeinfo’s defaults, and lastly the inline CSS from file.

e Any @-directive other than ‘@import’ and ‘@charset’ is treated as a CSS declaration,
meaning makeinfo includes its default CSS and then the rest of the file.

If the CSS file is malformed or erroneous, makeinfo’s output is unspecified. makeinfo
does not try to interpret the meaning of the CSS file in any way; it just looks for the special
‘@ and ‘;’ characters and blindly copies the text into the output. Comments in the CSS
file may or may not be included in the output.

22.4 HTML Cross-references

Cross-references between Texinfo manuals in HTML format amount, in the end, to a stan-
dard HTML <a> link, but the details are unfortunately complex. This section describes
the algorithm used in detail, so that Texinfo can cooperate with other programs, such as
texi2html, by writing mutually compatible HTML files.

This algorithm may or may not be used for links within HTML output for a Texinfo
file. Since no issues of compatibility arise in such cases, we do not need to specify this.

We try to support references to such “external” manuals in both monolithic and split
forms. A monolithic (mono) manual is entirely contained in one file, and a split manual
has a file for each node. (See Section 22.2 [HTML Splitting], page 177.)

Acknowledgement: this algorithm was primarily devised by Patrice Dumas in 2003-04.

22.4.1 HTML Cross-reference Link Basics

For our purposes, an HTML link consists of four components: a host name, a directory
part, a file part, and a target part. We always assume the http protocol. For example:

http://host/dir/file.html#target

The information to construct a link comes from the node name and manual name in the
cross-reference command in the Texinfo source (see Chapter 8 [Cross References|, page 63),
and from external information, which is currently simply hardwired. In the future, it may
come from an external data file.

We now consider each part in turn.

The host is hardwired to be the local host. This could either be the literal string
‘localhost’, or, according to the rules for HTML links, the ‘http://localhost/’ could be
omitted entirely.

The dir and file parts are more complicated, and depend on the relative split/mono
nature of both the manual being processed and the manual that the cross-reference refers
to. The underlying idea is that there is one directory for Texinfo manuals in HTML, and
each manual is either available as a monolithic file ‘manual.html’, or a split subdirectory
‘manual/*.html’. Here are the cases:

e If the present manual is split, and the referent manual is also split, the directory is
‘../referent/’ and the file is the expanded node name (described later).

)

e If the present manual is split, and the referent manual is mono, the directory is ‘. ./
and the file is ‘referent.html’.

Chapter 22: Generating HTML 180

e If the present manual is mono, and the referent manual is split, the directory is ‘ref-
erent/’ and the file is the expanded node name.

e If the present manual is mono, and the referent manual is also mono, the directory is
‘./7 (or just the empty string), and the file is ‘referent.html’.

Any directory part in the filename argument of the source cross-reference command is
ignored. Thus, @xref{,,,../foo} and @xref{,,,foo} both use ‘foo’ as the manual name.

This is because any such attempted hardwiring of the directory is very unlikely to be useful
for both Info and HTML output.

Finally, the target part is always the expanded node name.

Whether the present manual is split or mono is determined by user option; makeinfo
defaults to split, with the ‘~-no-split’ option overriding this.

Whether the referent manual is split or mono is another bit of the external information.
For now, makeinfo simply assumes the referent manual is the same as the present manual.

There can be a mismatch between the format of the referent manual that the generating
software assumes, and the format it’s actually present in. See Section 22.4.5 [HTML Xref
Mismatch], page 183.

22.4.2 HTML Cross-reference Node Name Expansion

As mentioned in the previous section, the key part of the HTML cross-reference algorithm is
the conversion of node names in the Texinfo source into strings suitable for HT' ML identifiers
and filenames. The restrictions are similar for each: plain ASCII letters, numbers, and the
‘=" and ‘_’ characters are all that can be used.

Cross-references in Texinfo can actually refer either to nodes or anchors (see Section 6.5
[anchor], page 58), but anchors are treated identically to nodes in this context, so we’ll
continue to say “node” names for simplicity.

(@-commands and 8-bit characters are not presently handled by makeinfo for HTML
cross-references. See the next section.)

A special exception: the Top node (see Section 3.6 [The Top Node], page 38) is always
mapped to the file ‘index.html’, to match web server software. However, the HTML target
is ‘Top’. Thus (in the split case):

@xref{Top, Introduction,, emacs, The GNU Emacs Manual}.
=

1. The standard ASCII letters (a-z and A-z), and numbers (0-9) are not modified. All
other characters are changed as specified below.

2. Multiple consecutive space, tab and newline characters are transformed into just one
space. (It’s not possible to have newlines in node names with the current implementa-
tion, but we specify it anyway, just in case.)

3. Leading and trailing spaces are removed.

4. After the above has been applied, each remaining space character is converted into a
‘=’ character.

5. Other ASCII 7-bit characters are transformed into ‘_00xx’, where xx is the ASCII
character code in (lowercase) hexadecimal. This includes ‘_’, which is mapped to
‘_005f".

Chapter 22: Generating HTML 181

For example:
@node A node --- with _’%
= A-node-_002d_002d_002d-with-_005f_0027_0025
Notice in particular:
o ‘= ‘_005f’
o ‘== ‘_002d’
e ‘A node’ = ‘A-node’
On case-folding computer systems, nodes differing only by case will be mapped to the
same file.
In particular, as mentioned above, Top always maps to the file ‘index.html’. Thus, on
a case-folding system, Top and a node named ‘Index’ will both be written to ‘index.html’.

Fortunately, the targets serve to distinguish these cases, since HIML target names are
always case-sensitive, independent of operating system.

22.4.3 HTML Cross-reference Command Expansion

In standard Texinfo, node names may not contain @-commands. makeinfo has an op-
tion ‘--commands-in-node-names’ which partially supports it (see Section 21.1.2 [Invoking
makeinfo], page 163), but it is not robust and not recommended.

Thus, makeinfo also does not fully implement this part of the HTML cross-reference
algorithm, but it is documented here for the sake of completeness.

First, comments are removed.

Next, any @value commands (see Section 17.4.1 [set value]|, page 140) and macro
invocations (see Section 19.2 [Invoking Macros|, page 148) are fully expanded.

Then, for the following commands, the command name and braces are removed, the
text of the argument is recursively transformed:

Qasis @b Qcite @code @command @dfn @dmn Qdotless
Q@emph Q@env Q@file Q@indicateurl Q@kbd Qkey
@samp @sc @strong @t Qvar Qw

For @sc, any letters are capitalized.

The following commands are replaced by constant text, as shown. If any of these
commands have non-empty arguments, as in @TeX{bad}, it is an error, and the result is
unspecified. ‘(space)’ means a space character, ‘(nothing)’ means the empty string, etc.
The notation ‘U+xxxx’ means Unicode code point xxxx. There are further transformations
of many of these expansions for the final file or target name, such as space characters to ‘=7,
etc., according to the other rules.

@(newline) (space)
@(space) (space)
@(tab) (space)
Q! ‘1

@x* (space)
Q- (nothing)
Q. <

Q: (nothing)

Chapter 22: Generating HTML 182

(g ‘P

0@ ‘Q’

e{ L

e} ‘¥
@LaTeX ‘LaTeX’
Q@TeX ‘TeX’
Obullet U+2022
Q@comma <’
Qcopyright U+00A9
Q@dots U+2026
Q@enddots oL
Qequiv U+2261
Q@error ‘error—->’
@exclamdown U+00A1
Q@expansion U+2192
Ominus U+2212
Q@ordf U+00AA
Q@ordm U+00BA
@point U+2217
@pounds U+00A3
@print =7
Q@questiondown U+00BF
Q@registeredsymbol U+00AE
Oresult U+21D2
Qtie (space)

An @acronym command is replaced by the first argument, followed by the second ar-
gument in parentheses, if present. See Section 9.1.14 [acronym], page 80.

An @email command is replaced by the text argument if present, else the address. See
Section 9.1.16 [email], page 80.

An @image command is replaced by the filename (first) argument. See Section 12.2
[Images], page 101.

A @verb command is replaced by its transformed argument. See Section 9.1.6 [verb],
page 77.

Any other command is an error, and the result is unspecified.

22.4.4 HTML Cross-reference 8-bit Character Expansion

Characters other than plain 7-bit ASCII are transformed into the corresponding Unicode
code point(s), in Normalization Form C, which uses precomposed characters where available.
(This is the normalization form recommended by the W3C and other bodies.)

These will then be further transformed by the rules above into the string ‘_xxxx’, where
xxxx is the code point in hex.

For example, combining this rule and the previous section:

O@node @b{A} @TeX{} Qu{B} @point{}@enddots{}
= A-TeX-B_0306-_2605_002e_002e_002e

Chapter 22: Generating HTML 183

Notice: 1) @enddots expands to three periods which in turn expands to three ‘_002e’’s;
2) @u{B} is a ‘B’ with a breve accent, which does not exist as a pre-accented Unicode
character, therefore expands to ‘B_0306’ (B with combining breve).

For the definition of Unicode Normalization Form C, see Unicode report UAX#15,
http://www.unicode.org/reports/tris/. Many related documents and implementations
are available elsewhere on the web.

22.4.5 HTML Cross-reference Mismatch

As mentioned earlier (see Section 22.4.1 [HTML Xref Link Basics|, page 179), the generating
software has to guess whether a given manual being cross-referenced is available in split or
monolithic form—and, inevitably, it might guess wrong. However, it is possible when the
referent manual itself is generated, it is possible to handle at least some mismatches.

In the case where we assume the referent is split, but it is actually available in mono,
the only recourse would be to generate a ‘manual/’ subdirectory full of HTML files which
redirect back to the monolithic ‘manual.html’. Since this is essentially the same as a split
manual in the first place, it’s not very appealing.

On the other hand, in the case where we assume the referent is mono, but it is actually
available in split, it is possible to use JavaScript to redirect from the putatively monolithic
‘manual.html’ to the different ‘manual/node.html’ files. Here’s an example:

function redirect() {
switch (location.hash) {
case "#Nodel":
location.replace("manual/Nodel.html#Nodel"); break;
case "#Node2"
location.replace("manual/Node2.html#Node2"); break;

default:;
}
}
Then, in the <body> tag of ‘manual .html’:
<body onLoad="redirect();">
Once again, this is something the software which generated the referent manual has to

do in advance, it’s not something the software generating the actual cross-reference in the
present manual can control.

Ultimately, we hope to allow for an external configuration file to control which manuals
are available from where, and how.

http://www.unicode.org/reports/tr15/

Appendix A: @-Command List 184

Appendix A @-Command List

Here is an alphabetical list of the @-commands in Texinfo. Square brackets, [], indicate

optional arguments; an ellipsis,

4

..”, indicates repeated text.

More specifics on the general syntax of different @-commands are given in the section

below.

Qwhitespace
An @ followed by a space, tab, or newline produces a normal, stretchable, in-
terword space. See Section 14.2.3 [Multiple Spaces], page 112.

Q! Generate an exclamation point that really does end a sentence (usually after an
end-of-sentence capital letter). See Section 14.2.2 [Ending a Sentence], page 111.

@"

@’ Generate an umlaut or acute accent, respectively, over the next character, as
in 6 and 6. See Section 14.3 [Inserting Accents], page 113.

@x Force a line break. See Section 15.2 [Line Breaks|, page 120.

e,{c} Generate a cedilla accent under ¢, as in ¢. See Section 14.3 [Inserting Accents],
page 113.

e- Insert a discretionary hyphenation point. See Section 15.3 [- and hyphenation],
page 121.

@. Produce a period that really does end a sentence (usually after an end-of-
sentence capital letter). See Section 14.2.2 [Ending a Sentence], page 111.

Q/ Produces no output, but allows a line break. See Section 15.2 [Line Breaks],
page 120.

@: Indicate to TEX that an immediately preceding period, question mark, excla-
mation mark, or colon does not end a sentence. Prevent TEX from inserting
extra whitespace as it does at the end of a sentence. The command has no effect
on the Info file output. See Section 14.2.1 [Not Ending a Sentence], page 111.

0= Generate a macron (bar) accent over the next character, as in 6. See Section 14.3
[Inserting Accents|, page 113.

@7 Generate a question mark that really does end a sentence (usually after an end-
of-sentence capital letter). See Section 14.2.2 [Ending a Sentence], page 111.

@@ Stands for an at sign, ‘@’. See Section 14.1 [Inserting @ and {} and ,], page 110.

e\ Stands for a backslash (‘\’) inside @math. See Section 14.8 [math], page 115.

o~

(G Generate a circumflex (hat) or grave accent, respectively, over the next charac-
ter, as in 6 and &. See Section 14.3 [Inserting Accents], page 113.

o{ Stands for a left brace, ‘{’. See Section 14.1 [Inserting @ and {} and ,], page 110.

@} Stands for a right-hand brace, ‘}’.

See Section 14.1 [Inserting @ and {} and ,], page 110.

Appendix A: @-Command List 185

e~ Generate a tilde accent over the next character, as in N. See Section 14.3
[Inserting Accents|, page 113.

eAA{}

Qaa{} Generate the uppercase and lowercase Scandinavian A-ring letters, respectively:
A, &. See Section 14.3 [Inserting Accents|, page 113.

Q@acronym{abbrev?
Tag abbrev as an acronym, that is, an abbreviation written in all capital letters,
such as ‘NASA’. See Section 9.1.14 [acronym]|, page 80.

@AE{}

Qae{} Generate the uppercase and lowercase AE ligatures, respectively: A, &. See
Section 14.3 [Inserting Accents], page 113.

OGafivepaper
Change page dimensions for the A5 paper size. See Section 20.12 [A4 Paper],
page 160.

O@afourlatex

O@afourpaper

OGafourwide
Change page dimensions for the A4 paper size. See Section 20.12 [A4 Paper],
page 160.

Q@alias new=existing
Make the command ‘@new’ an alias for the existing command ‘Gexisting’. See
Section 19.4 [alias], page 150.

@anchor{name?}
Define name as the current location for use as a cross-reference target. See
Section 6.5 [@anchor]|, page 58.

O@appendix title
Begin an appendix. The title appears in the table of contents of a printed
manual. In Info, the title is underlined with asterisks. See Section 5.5 [The
@unnumbered and @appendix Commands], page 48.

O@appendixsec title

OGappendixsection title
Begin an appendix section within an appendix. The section title appears in the
table of contents of a printed manual. In Info, the title is underlined with equal
signs. @appendixsection is a longer spelling of the @appendixsec command.
See Section 5.8 [Section Commands], page 49.

Oappendixsubsec title
Begin an appendix subsection within an appendix. The title appears in the
table of contents of a printed manual. In Info, the title is underlined with
hyphens. See Section 5.10 [Subsection Commands]|, page 49.

OGappendixsubsubsec title
Begin an appendix subsubsection within an appendix subsection. The title
appears in the table of contents of a printed manual. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands|, page 50.

Appendix A: @-Command List 186

@asis Used following @table, @ftable, and @vtable to print the table’s first column
without highlighting (“as is”). See Section 11.4 [Making a T'wo-column Table],
page 94.

Q@author author
Typeset author flushleft and underline it. See Section 3.4.3 [The @title and
@author Commands], page 34.

@b{text} Print text in bold font. No effect in Info. See Section 9.2.3 [Fonts|, page 82.

@bullet{}
Generate a large round dot, or the closest possible thing to one. See Sec-
tion 14.4.2 [@bullet], page 114.

@bye Stop formatting a file. The formatters do not see the contents of a file following
an @bye command. See Chapter 4 [Ending a File], page 44.

@c comment
Begin a comment in Texinfo. The rest of the line does not appear in either
the Info file or the printed manual. A synonym for @comment. See Section 1.8
[Comments], page 9.

@caption Define the full caption for a @float. See Section 12.1.2 [caption shortcaption],
page 100.

Q@cartouche
Highlight an example or quotation by drawing a box with rounded corners
around it. Pair with @end cartouche. No effect in Info. See Section 10.14
[Drawing Cartouches Around Examples|, page 90.)

Ocenter line-of-text
Center the line of text following the command. See Section 3.4.2 [@center],
page 33.

Q@centerchap line-of-text
Like @chapter, but centers the chapter title. See Section 5.4 [@chapter],
page 47.

Q@chapheading title
Print a chapter-like heading in the text, but not in the table of contents of a
printed manual. In Info, the title is underlined with asterisks. See Section 5.6
[@majorheading and @chapheading], page 48.

Q@chapter title
Begin a chapter. The chapter title appears in the table of contents of a
printed manual. In Info, the title is underlined with asterisks. See Section 5.4
[@chapter]|, page 47.

Q@cindex entry
Add entry to the index of concepts. See Section 13.1 [Defining the Entries of
an Index], page 105.

Qcite{reference?’
Highlight the name of a book or other reference that lacks a companion Info
file. See Section 9.1.13 [@cite], page 79.

Appendix A: @-Command List 187

QOclear flag
Unset flag, preventing the Texinfo formatting commands from formatting text
between subsequent pairs of @ifset flag and @end ifset commands, and pre-
venting @value{flag} from expanding to the value to which flag is set. See
Section 17.4 [@set @clear @value], page 139.

Q@code{sample-code}
Highlight text that is an expression, a syntactically complete token of a pro-
gram, or a program name. See Section 9.1.2 [@code], page 74.

@comma{} Insert a comma °,” character; only needed when a literal comma would be taken
as an argument separator. See Section 14.1.3 [Inserting a Comma|, page 110.

@command{ command-name }
Indicate a command name, such as 1s. See Section 9.1.10 [@command], page 79.

Q@comment comment
Begin a comment in Texinfo. The rest of the line does not appear in either the
Info file or the printed manual. A synonym for @c. See Section 1.8 [Comments],

page 9.
Qcontents
Print a complete table of contents. Has no effect in Info, which uses menus
instead. See Section 3.5 [Generating a Table of Contents], page 37.
Qcopyright{}

Generate the copyright symbol (©). See Section 14.5.2 [@copyright{}|, page 114.

Odefcodeindex index-name
Define a new index and its indexing command. Print entries in an @code font.
See Section 13.5 [Defining New Indices], page 108.

@defcv category class name

@defcvx category class name
Format a description for a variable associated with a class in object-oriented
programming. Takes three arguments: the category of thing being defined, the
class to which it belongs, and its name. See Chapter 16 [Definition Commands],
page 124, and Section 16.4 [Def Cmds in Detail], page 126.

@deffn category name arguments...

O@deffnx category name arguments. ..
Format a description for a function, interactive command, or similar entity that
may take arguments. @deffn takes as arguments the category of entity being
described, the name of this particular entity, and its arguments, if any. See
Chapter 16 [Definition Commands], page 124.

Q@defindex index-name
Define a new index and its indexing command. Print entries in a roman font.
See Section 13.5 [Defining New Indices|, page 108.

@definfoenclose newcmd, before, after,
Create new @-command newcmd for Info that marks text by enclosing it in
strings that precede and follow the text. See Section 19.5 [definfoenclose],
page 150.

Appendix A: @-Command List 188

Q@defivar class instance-variable-name

Q@defivarx class instance-variable-name
This command formats a description for an instance variable in object-oriented
programming. The command is equivalent to ‘@defcv {Instance Variable}
...”. See Chapter 16 [Definition Commands], page 124, and Section 16.4 [Def
Cmds in Detail], page 126.

@defmac macroname arguments...

@defmacx macroname arguments...
Format a description for a macro. The command is equivalent to ‘@deffn Macro
...". See Chapter 16 [Definition Commands], page 124, and Section 16.4 [Def
Cmds in Detail], page 126.

@defmethod class method-name arguments...

Odefmethodx class method-name arguments. ..
Format a description for a method in object-oriented programming. The com-
mand is equivalent to ‘@defop Method ...’. Takes as arguments the name of
the class of the method, the name of the method, and its arguments, if any.
See Chapter 16 [Definition Commands|, page 124, and Section 16.4 [Def Cmds
in Detail], page 126.

Q@defop category class name arguments...

Q@defopx category class name arguments...
Format a description for an operation in object-oriented programming. @defop
takes as arguments the overall name of the category of operation, the name of
the class of the operation, the name of the operation, and its arguments, if any.
See Chapter 16 [Definition Commands], page 124, and Section 16.5.6 [Abstract
Objects|, page 132.

Q@defopt option-name

Q@defoptx option-name
Format a description for a user option. The command is equivalent to ‘@defvr
{User Option} ...’. See Chapter 16 [Definition Commands|, page 124, and
Section 16.4 [Def Cmds in Detail], page 126.

Q@defspec special-form—name arguments...

Q@defspecx special-form—-name arguments...
Format a description for a special form. The command is equivalent to ‘@deffn
{Special Form} ...’. See Chapter 16 [Definition Commands], page 124, and
Section 16.4 [Def Cmds in Detail], page 126.

@deftp category name-of-type attributes...

@deftpx category name-of-type attributes...
Format a description for a data type. @deftp takes as arguments the category,
the name of the type (which is a word like ‘int’ or ‘float’), and then the names
of attributes of objects of that type. See Chapter 16 [Definition Commands],
page 124, and Section 16.5.5 [Data Types|, page 131.

Appendix A: @-Command List 189

Q@deftypecv category class data-type name

Q@deftypecvx category class data-type name
Format a description for a typed class variable in object-oriented programming.
See Chapter 16 [Definition Commands]|, page 124, and Section 16.5.6 [Abstract
Objects], page 132.

@deftypefn classification data-type name arguments...

Odeftypefnx classification data-type name arguments. ..
Format a description for a function or similar entity that may take arguments
and that is typed. @deftypefn takes as arguments the classification of entity
being described, the type, the name of the entity, and its arguments, if any. See
Chapter 16 [Definition Commands|, page 124, and Section 16.4 [Def Cmds in
Detail], page 126.

Odeftypefun data-type function-name arguments...

Odeftypefunx data-type function-name arguments...
Format a description for a function in a typed language. The command is equiv-
alent to ‘@deftypefn Function ...". See Chapter 16 [Definition Commands],
page 124, and Section 16.4 [Def Cmds in Detail], page 126.

@deftypeivar class data-type variable-name

@deftypeivarx class data-type variable-name
Format a description for a typed instance variable in object-oriented program-
ming. See Chapter 16 [Definition Commands|, page 124, and Section 16.5.6
[Abstract Objects], page 132.

O@deftypemethod class data-type method-name arguments...

@deftypemethodx class data-type method-name arguments...
Format a description for a typed method in object-oriented programming. See
Chapter 16 [Definition Commands|, page 124, and Section 16.4 [Def Cmds in
Detail], page 126.

O@deftypeop category class data-type name arguments. ..

Q@deftypeopx category class data-type name arguments. ..
Format a description for a typed operation in object-oriented programming.
See Chapter 16 [Definition Commands]|, page 124, and Section 16.5.6 [Abstract
Objects], page 132.

@deftypevar data-type variable—name

Odeftypevarx data-type variable-name
Format a description for a variable in a typed language. The command is equiv-
alent to ‘@deftypevr Variable ...’. See Chapter 16 [Definition Commands],
page 124, and Section 16.4 [Def Cmds in Detail], page 126.

Q@deftypevr classification data-type name

@deftypevrx classification data-type name
Format a description for something like a variable in a typed language—an
entity that records a value. Takes as arguments the classification of entity being
described, the type, and the name of the entity. See Chapter 16 [Definition
Commands]|, page 124, and Section 16.4 [Def Cmds in Detail], page 126.

Appendix A: @-Command List 190

Odefun function-name arguments. ..

Q@defunx function-name arguments. ..
Format a description for functions. The command is equivalent to ‘@deffn
Function ...’. See Chapter 16 [Definition Commands|, page 124, and Sec-

tion 16.4 [Def Cmds in Detail], page 126.

Q@defvar variable-name

O@defvarx variable-name
Format a description for variables. The command is equivalent to ‘@defvr
Variable ...’. See Chapter 16 [Definition Commands|, page 124, and Sec-

tion 16.4 [Def Cmds in Detail], page 126.

Q@defvr category name

@defvrx category name
Format a description for any kind of variable. @defvr takes as arguments the
category of the entity and the name of the entity. See Chapter 16 [Definition
Commands]|, page 124, and Section 16.4 [Def Cmds in Detail], page 126.

Q@detailmenu
Avoid makeinfo confusion stemming from the detailed node listing in a master
menu. See Section 3.6.2 [Master Menu Parts], page 39.

@dfn{term}
Highlight the introductory or defining use of a term. See Section 9.1.12 [@dfn],
page 79.

@dircategory dirpart
Specify a part of the Info directory menu where this file’s entry should go. See
Section 21.2.4 [Installing Dir Entries], page 174.

@direntry
Begin the Info directory menu entry for this file. Pair with @end direntry. See
Section 21.2.4 [Installing Dir Entries], page 174.

@display Begin a kind of example. Like @example (indent text, do not fill), but do
not select a new font. Pair with @end display. See Section 10.8 [@display],
page 87.

@dmn{dimension}
Format a unit of measure, as in 12 pt. Causes TEX to insert a thin space before
dimension. No effect in Info. See Section 14.2.4 [@dmn], page 112.

@docbook Enter Docbook completely. Pair with @end docbook. See Section 17.3 [Raw
Formatter Commands|, page 138.

O@documentdescription
Set the document description text, included in the HTML output. Pair with
@end documentdescription. See Section 3.7.1 [@documentdescription],
page 40.

Q@documentencoding enc
Declare the input encoding to be enc. See Section 18.2 [@documentencoding],
page 145.

Appendix A: @-Command List 191

O@documentlanguage CC
Declare the document language as the two-character ISO-639 abbreviation CC.
See Section 18.1 [@documentlanguage], page 144.

@dotaccent{c}
Generate a dot accent over the character c, as in 6. See Section 14.3 [Inserting
Accents], page 113.

@dots{} Imsert an ellipsis: ‘...". See Section 14.4.1 [@dots], page 114.

@email{address [, displayed-text]}
Indicate an electronic mail address. See Section 9.1.16 [@email], page 80.

Qemph{text}
Highlight text; text is displayed in italics in printed output, and surrounded by
asterisks in Info. See Section 9.2 [Emphasizing Text], page 81.

Q@end environment
Ends environment, as in ‘@end example’. See Section 1.6 [@-commands], page 8.

Qenv{environment-variable}
Indicate an environment variable name, such as PATH. See Section 9.1.8 [@env],
page T8.

@enddots{}
Generate an end-of-sentence of ellipsis, like this ... See Section 14.4.1
[@dots{}], page 114.

@enumerate [number-or-letter]
Begin a numbered list, using @item for each entry. Optionally, start list with
number-or-letter. Pair with @end enumerate. See Section 11.3 [@enumerate],
page 93.

4)

@equiv{} Indicate to the reader the exact equivalence of two forms with a glyph: ‘=".
See Section 14.9.6 [Equivalence], page 118.

@error{} Indicate to the reader with a glyph that the following text is an error message:

‘[error] . See Section 14.9.5 [Error Glyph], page 117.

Q@evenfooting [left] @| [center] @| [right]

Q@evenheading [left] @| [center] @| [right]
Specify page footings resp. headings for even-numbered (left-hand) pages. See
Section E.4 [How to Make Your Own Headings|, page 221.

Qeveryfooting [left] @| [center] @| [right]

Qeveryheading [left] @| [center] @| [right]
Specify page footings resp. headings for every page. Not relevant to Info. See
Section E.4 [How to Make Your Own Headings], page 221.

@example Begin an example. Indent text, do not fill, and select fixed-width font. Pair
with @end example. See Section 10.3 [@example], page 84.

Q@exampleindent indent
Indent example-like environments by indent number of spaces (perhaps 0). See
Section 3.7.5 [Paragraph Indenting], page 42.

Appendix A: @-Command List 192

@exclamdown{}
Produce an upside-down exclamation point. See Section 14.3 [Inserting Ac-
cents|, page 113.

Q@exdent line-of-text
Remove any indentation a line might have. See Section 10.10 [Undoing the
Indentation of a Line|, page 88.

Q@expansion{}
Indicate the result of a macro expansion to the reader with a special glyph:
‘=7, See Section 14.9.3 [— Indicating an Expansion], page 116.

@file{filename}
Highlight the name of a file, buffer, node, or directory. See Section 9.1.9 [@file],
page 78.

@finalout
Prevent TEX from printing large black warning rectangles beside over-wide
lines. See Section 20.10 [Overfull hboxes], page 159.

@findex entry
Add entry to the index of functions. See Section 13.1 [Defining the Entries of
an Index]|, page 105.

@float Environment to define floating material. Pair with @end float. See Sec-
tion 12.1 [Floats|, page 99.

@flushleft

@flushright
Left justify every line but leave the right end ragged. Leave font as is. Pair with
@end flushleft. @flushright analogous. See Section 10.11 [@flushleft and
@flushright|, page 88.

@footnote{text-of-footnote}
Enter a footnote. Footnote text is printed at the bottom of the page by TEX;
Info may format in either ‘End’ node or ‘Separate’ node style. See Section 12.3
[Footnotes], page 103.

@footnotestyle style
Specify an Info file’'s footnote style, either ‘end’ for the end node style or
‘separate’ for the separate node style. See Section 12.3 [Footnotes|, page 103.

@format Begin a kind of example. Like @display, but do not narrow the margins. Pair
with @end format. See Section 10.3 [@example], page 84.

@ftable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of functions. Pair with @end
ftable. The same as @table, except for indexing. See Section 11.4.2 [@ftable
and @vtable], page 96.

Q@group Hold text together that must appear on one printed page. Pair with @end
group. Not relevant to Info. See Section 15.8 [@group], page 122.

Appendix A: @-Command List 193

@H{c} Generate the long Hungarian umlaut accent over ¢, as in 6.

QGheading title
Print an unnumbered section-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined with equal signs.
See Section 5.8 [Section Commands|, page 49.

O@headings on-off-single-double
Turn page headings on or off, and/or specify single-sided or double-sided page
headings for printing. See Section 3.4.6 [The @headings Command], page 36.

@html Enter HTML completely. Pair with @end html. See Section 17.3 [Raw Format-
ter Commands|, page 138.

@hyphenation{hy-phen-a-ted words}
Explicitly define hyphenation points. See Section 15.3 [@- and @hyphenation],
page 121.

@i{text} Print text in italic font. No effect in Info. See Section 9.2.3 [Fonts|, page 82.

Q@ifclear flag
If flag is cleared, the Texinfo formatting commands format text between
@ifclear flag and the following @end ifclear command. See Section 17.4
[@set @clear @value], page 139.

©@ifdocbook

Q@ifhtml

@ifinfo Begin text that will appear only in the given output format. @ifinfo output
appears in both Info and (for historical compatibility) plain text output. Pair
with @end ifdocbook resp. @end ifhtml resp. @end ifinfo. See Chapter 17
[Conditionals], page 137.

@ifnotdocbook

Q@ifnothtml

Q@ifnotinfo

@ifnotplaintext

Q@ifnottex

Q@ifnotxml
Begin a stretch of text that will be ignored in one output format but not the
others. The text appears in the formats not specified: @ifnothtml text is omit-
ted from html output, etc. The exception is @ifnotinfo text, which is omitted
from plain text output as well as Info output. Pair with the corresponding @end
ifnotformat. See Chapter 17 [Conditionals|, page 137.

@ifplaintext
Begin text that will appear only in the plain text output. Pair with @end
ifplaintext. See Chapter 17 [Conditionals], page 137.

@ifset flag
If flag is set, the Texinfo formatting commands format text between @ifset
flag and the following @end ifset command. See Section 17.4 [@set @clear
@value|, page 139.

Appendix A: @-Command List 194

@iftex Begin text that will not appear in the Info file or other output, but will be
processed only by TEX. Pair with @end iftex. See Chapter 17 [Conditionally
Visible Text], page 137.

@ifxml Begin text that will appear only in the XML output. Pair with @end ifxml.
See Chapter 17 [Conditionals], page 137.

@ignore Begin text that will not appear in any output. Pair with @end ignore. See
Section 1.8 [Comments and Ignored Text], page 9.

Q@image{filename, [width], [height], [alt], [ext]}
Include graphics image in external filename scaled to the given width and/or
height, using alt text and looking for ‘filename.ext’ in HTML. See Sec-
tion 12.2 [Images|, page 101.

Q@include filename
Incorporate the contents of the file filename into the Info file or printed docu-
ment. See Appendix D [Include Files], page 215.

@indicateurl{indicateurl}
Indicate text that is a uniform resource locator for the World Wide Web. See
Section 9.1.15 [@indicateurl], page 80.

Q@inforef{node-name, [entry-name], info-file-name’}
Make a cross reference to an Info file for which there is no printed manual. See
Section 8.8 [Cross references using @inforef], page 71.

\input macro-definitions-file
Use the specified macro definitions file. This command is used only in the
first line of a Texinfo file to cause TEX to make use of the ‘texinfo’ macro
definitions file. The backslash in \input is used instead of an @ because TEX
does not recognize @ until after it has read the definitions file. See Section 3.2
[Texinfo File Header], page 28.

@item Indicate the beginning of a marked paragraph for @itemize and @enumerate;
indicate the beginning of the text of a first column entry for @table, @ftable,
and @vtable. See Chapter 11 [Lists and Tables]|, page 91.

Q@itemize mark-generating-character—-or-command
Produce a sequence of indented paragraphs, with a mark inside the left margin
at the beginning of each paragraph. Pair with @end itemize. See Section 11.2
[@itemize], page 92.

@itemx Like @item but do not generate extra vertical space above the item text. See
Section 11.4.3 [@itemx], page 96.

Q@kbd{keyboard-characters?
Indicate text that is characters of input to be typed by users. See Section 9.1.3
[@kbd], page 75.

Okbdinputstyle style
Specify when @kbd should use a font distinct from @code. See Section 9.1.3
[@kDbd], page 75.

Appendix A: @-Command List 195

Q@key{key-name}
Indicate a name for a key on a keyboard. See Section 9.1.4 [@key]|, page 76.

Q@kindex entry
Add entry to the index of keys. See Section 13.1 [Defining the Entries of an
Index]|, page 105.

QL{}

@1{} Generate the uppercase and lowercase Polish suppressed-L letters, respectively:
L L

@LaTeX{} Insert the logo KTEX. See Section 14.5.1 [TEX and IXTEX], page 114.

@lisp Begin an example of Lisp code. Indent text, do not fill, and select fixed-width
font. Pair with @end 1lisp. See Section 10.6 [@1lisp], page 86.

Q@listoffloats
Produce a table-of-contents-like listing of @floats. See Section 12.1.3 [listof-
floats], page 100.

Q@lowersections
Change subsequent chapters to sections, sections to subsections, and so on. See
Section 5.12 [@raisesections and @lowersections|, page 50.

@macro macroname {params}
Define a new Texinfo command @macroname{params}. Only supported by
makeinfo and texi2dvi. See Section 19.1 [Defining Macros|, page 147.

OGmajorheading title
Print a chapter-like heading in the text, but not in the table of contents of a
printed manual. Generate more vertical whitespace before the heading than the
@chapheading command. See Section 5.6 [@majorheading and @chapheading],
page 48.

@math{mathematical-expression}
Format a mathematical expression. See Section 14.8 [@math: Inserting Mathe-
matical Expressions|, page 115.

@menu Mark the beginning of a menu of nodes in Info. No effect in a printed manual.
Pair with @end menu. See Chapter 7 [Menus|, page 59.

Ominus{} Generate a minus sign, ‘—’. See Section 14.7 [@minus|, page 115.

OGmultitable column-width-spec
Begin a multi-column table. Pair with @end multitable. See Section 11.5.1
[Multitable Column Widths|, page 97.

@need n Start a new page in a printed manual if fewer than n mils (thousandths of an
inch) remain on the current page. See Section 15.9 [@need], page 123.

Onode name, next, previous, up
Define the beginning of a new node in Info, and serve as a locator for references
for TEX. See Section 6.3 [@node|, page 54.

Appendix A: @-Command List 196

Onoindent
Prevent text from being indented as if it were a new paragraph. See Sec-
tion 10.12 [@noindent], page 89.

Onovalidate
Suppress validation of node references, omit creation of auxiliary files with TEX.
Use before @setfilename. See Section 21.1.4 [Pointer Validation|, page 167.

eo{}

@o{} Generate the uppercase and lowercase O-with-slash letters, respectively: @, .

Q@oddfooting [left] @| [center] @| [right]

Q@oddheading [left] @| [center] @| [right]
Specify page footings resp. headings for odd-numbered (right-hand) pages. See
Section E.4 [How to Make Your Own Headings|, page 221.

QOE{}
Qoe{} Generate the uppercase and lowercase OE ligatures, respectively: (E, ce. See
Section 14.3 [Inserting Accents], page 113.

Q@option{option-name}
Indicate a command-line option, such as ‘-1’ or ‘--help’. See Section 9.1.11
[@option], page 79.

@page Start a new page in a printed manual. No effect in Info. See Section 15.7
[@page]|, page 122.

@pagesizes [width] [, height]
Change page dimensions. See Section 20.13 [pagesizes], page 160.

O@paragraphindent indent
Indent paragraphs by indent number of spaces (perhaps 0); preserve source file
indentation if indent is asis. See Section 3.7.3 [Paragraph Indenting], page 41.

Opindex entry
Add entry to the index of programs. See Section 13.1 [Defining the Entries of
an Index], page 105.

@point{} Indicate the position of point in a buffer to the reader with a glyph: ‘*’. See
Section 14.9.7 [Indicating Point in a Buffer], page 118.

@pounds{}
Generate the pounds sterling currency sign. See Section 14.6 [@pounds{}|,
page 115.

@print{} Indicate printed output to the reader with a glyph: ‘-’. See Section 14.9.4
[Print Glyph], page 117.

Oprintindex index-name
Print an alphabetized two-column index in a printed manual or generate an
alphabetized menu of index entries for Info. See Section 4.1 [Printing Indices
& Menus], page 44.

Appendix A: @-Command List 197

@pxref{node-name, [entry], [topic-or-title], [info-file], [manuall}
Make a reference that starts with a lower case ‘see’ in a printed manual. Use
within parentheses only. Do not follow command with a punctuation mark—
the Info formatting commands automatically insert terminating punctuation
as needed. Only the first argument is mandatory. See Section 8.7 [@pxref],
page 70.

@questiondown{}
Generate an upside-down question mark. See Section 14.3 [Inserting Accents],
page 113.

Qquotation
Narrow the margins to indicate text that is quoted from another real or imagi-
nary work. Takes optional argument of prefix text. Pair with @end quotation.
See Section 10.2 [@quotation|, page 84.

@r{text} Print text in roman font. No effect in Info. See Section 9.2.3 [Fonts|, page 82.

Q@raisesections
Change subsequent sections to chapters, subsections to sections, and so on. See
Section 5.12 [@raisesections and @lowersections], page 50.

Q@ref{node-name, [entry], [topic-or-title], [info-file], [manuall}
Make a reference. In a printed manual, the reference does not start with a
‘See’. Follow command with a punctuation mark. Only the first argument is
mandatory. See Section 8.6 [@ref], page 69.

@refill This command used to refill and indent the paragraph after all the other pro-
cessing has been done. It is no longer needed, since all formatters now automat-
ically refill as needed, but you may still see it in the source to some manuals,
as it does no harm.

Q@registeredsymbol{}
Generate the legal symbol ® . See Section 14.5.3 [@registeredsymbol{}],
page 115.

@result{}
Indicate the result of an expression to the reader with a special glyph: ‘=’. See
Section 14.9.2 [@result], page 116.

@ringaccent{c}
Generate a ring accent over the next character, as in 6. See Section 14.3 [In-
serting Accents], page 113.

@samp{text}
Highlight text that is a literal example of a sequence of characters. Used for
single characters, for statements, and often for entire shell commands. See
Section 9.1.5 [@samp|, page 76.

@sc{text?}
Set text in a printed output in THE SMALL CAPS FONT and set text in the Info
file in uppercase letters. See Section 9.2.2 [Smallcaps], page 81.

Appendix A: @-Command List 198

O@section title
Begin a section within a chapter. In a printed manual, the section title is
numbered and appears in the table of contents. In Info, the title is underlined
with equal signs. See Section 5.7 [@section|, page 48.

@set flag [string]
Make flag active, causing the Texinfo formatting commands to format text be-
tween subsequent pairs of @ifset flag and @end ifset commands. Optionally,
set value of flag to string. See Section 17.4 [@set @clear @valuel, page 139.

@setchapternewpage on-off-odd
Specify whether chapters start on new pages, and if so, whether on odd-
numbered (right-hand) new pages. See Section 3.7.2 [@setchapternewpage],
page 40.

O@setcontentsaftertitlepage
Put the table of contents after the ‘@end titlepage’ even if the @contents
command is not there. See Section 3.5 [Contents], page 37.

O@setfilename info-file—name
Provide a name to be used by the Info file. This command is essential for
TEX formatting as well, even though it produces no output. See Section 3.2.3
[@setfilename], page 29.

Osetshortcontentsaftertitlepage
Place the short table of contents after the ‘@end titlepage’ command even if
the @shortcontents command is not there. See Section 3.5 [Contents], page 37.

Osettitle title
Provide a title for page headers in a printed manual, and the default document
description for HTML ‘<head>’. See Section 3.2.4 [@settitle], page 30.

@shortcaption
Define the short caption for a @float. See Section 12.1.2 [caption shortcaption],
page 100.

O@shortcontents
Print a short table of contents. Not relevant to Info, which uses menus rather
than tables of contents. A synonym for @summarycontents. See Section 3.5
[Generating a Table of Contents|, page 37.

Oshorttitlepage title
Generate a minimal title page. See Section 3.4.1 [@titlepage|, page 33.

Osmallbook
Cause TEX to produce a printed manual in a 7 by 9.25 inch format rather than
the regular 8.5 by 11 inch format. See Section 20.11 [Printing Small Books],
page 160. Also, see Section 10.7 [small], page 87.

@smalldisplay
Begin a kind of example. Like @smallexample (narrow margins, no filling),
but do not select the fixed-width font. Pair with @end smalldisplay. See
Section 10.7 [small], page 87.

Appendix A: @-Command List 199

Osmallexample
Indent text to indicate an example. Do not fill, select fixed-width font, nar-
row the margins. In printed manuals, print text in a smaller font than with
@example. Pair with @end smallexample. See Section 10.7 [small|, page 87.

Osmallformat
Begin a kind of example. Like @smalldisplay, but do not narrow the margins.
Pair with @end smallformat. See Section 10.7 [small|, page 87.

@smalllisp
Begin an example of Lisp code. Same as @smallexample. Pair with @end
smalllisp. See Section 10.7 [small], page 87.

@sp n Skip n blank lines. See Section 15.6 [@sp|, page 122.

@ss{} Generate the German sharp-S es-zet letter, 8. See Section 14.3 [Inserting Ac-
cents|, page 113.

O@strong {text}
Emphasize text by typesetting it in a bold font for the printed manual and by
surrounding it with asterisks for Info. See Section 9.2.1 [Emphasizing Text|,
page 81.

Osubheading title
Print an unnumbered subsection-like heading in the text, but not in the table of
contents of a printed manual. In Info, the title is underlined with hyphens. See
Section 5.10 [@unnumberedsubsec @appendixsubsec @subheading], page 49.

Osubsection title
Begin a subsection within a section. In a printed manual, the subsection title is
numbered and appears in the table of contents. In Info, the title is underlined
with hyphens. See Section 5.9 [@subsection], page 49.

Osubsubheading title
Print an unnumbered subsubsection-like heading in the text, but not in the
table of contents of a printed manual. In Info, the title is underlined with
periods. See Section 5.11 [The ‘subsub’ Commands], page 50.

O@subsubsection title
Begin a subsubsection within a subsection. In a printed manual, the subsubsec-
tion title is numbered and appears in the table of contents. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands]|, page 50.

Osubtitle title
In a printed manual, set a subtitle in a normal sized font flush to the right-
hand side of the page. Not relevant to Info, which does not have title pages.
See Section 3.4.3 [@title @subtitle and @author Commands], page 34.

O@summarycontents
Print a short table of contents. Not relevant to Info, which uses menus rather
than tables of contents. A synonym for @shortcontents. See Section 3.5
[Generating a Table of Contents|, page 37.

Appendix A: @-Command List 200

Osyncodeindex from-index into-index
Merge the index named in the first argument into the index named in the
second argument, printing the entries from the first index in @code font. See
Section 13.4 [Combining Indices], page 107.

Osynindex from-index into-index
Merge the index named in the first argument into the index named in the second
argument. Do not change the font of from-index entries. See Section 13.4
[Combining Indices], page 107.

@t{text} Print text in a fixed-width, typewriter-like font. No effect in Info. See Sec-
tion 9.2.3 [Fonts]|, page 82.

Qtab Separate columns in a multitable. See Section 11.5.2 [Multitable Rows], page 97.

@table formatting-command
Begin a two-column table, using @item for each entry. Write each first column
entry on the same line as @item. First column entries are printed in the font
resulting from formatting-command. Pair with @end table. See Section 11.4
[Making a Two-column Table|, page 94. Also see Section 11.4.2 [@ftable and
@vtable], page 96, and Section 11.4.3 [@itemx], page 96.

QTeX{} Insert the logo TEX. See Section 14.5.1 [TEX and KTEX], page 114.

Qtex Enter TEX completely. Pair with @end tex. See Section 17.3 [Raw Formatter
Commands], page 138.

O@thischapter

Othischaptername

Othisfile

O@thispage

O@thistitle
Only allowed in a heading or footing. Stands for the number and name of the
current chapter (in the format ‘Chapter 1: Title’), the chapter name only, the
filename, the current page number, and the title of the document, respectively.
See Section E.4 [How to Make Your Own Headings|, page 221.

Qtief{} Generate a normal interword space at which a line break is not allowed. See
Section 15.5 [@tie{}], page 122.

@tieaccent{cc}
Generate a tie-after accent over the next two characters cc, as in ‘6o’. See
Section 14.3 [Inserting Accents|, page 113.

Otindex entry
Add entry to the index of data types. See Section 13.1 [Defining the Entries of
an Index], page 105.

Otitle title
In a printed manual, set a title flush to the left-hand side of the page in a
larger than normal font and underline it with a black rule. Not relevant to Info,
which does not have title pages. See Section 3.4.3 [The @title @subtitle and
@author Commands|, page 34.

Appendix A: @-Command List 201

@titlefont{text}
In a printed manual, print text in a larger than normal font. Not relevant
to Info, which does not have title pages. See Section 3.4.2 [The @titlefont
@center and @sp Commands|, page 33.

Otitlepage
Indicate to Texinfo the beginning of the title page. Write command on a line
of its own. Pair with @end titlepage. Nothing between @titlepage and @end
titlepage appears in Info. See Section 3.4.1 [@titlepage|, page 33.

@today{} Insert the current date, in ‘1 Jan 1900’ style. See Section E.4 [How to Make
Your Own Headings|, page 221.

Qtop title

In a Texinfo file to be formatted with makeinfo, identify the topmost @node
in the file, which must be written on the line immediately preceding the @top
command. Used for makeinfo’s node pointer insertion feature. The title is
underlined with asterisks. Both the @node line and the @top line normally
should be enclosed by @ifnottex and @end ifnottex. In TEX and texinfo-
format-buffer, the @top command is merely a synonym for @unnumbered. See
Section 6.4 [Creating Pointers with makeinfo|, page 57.

Qu{c}

Qubaraccent{c}

@udotaccent{c}
Generate a breve, underbar, or underdot accent, respectively, over or under the
character ¢, as in 0, 0, 0. See Section 14.3 [Inserting Accents], page 113.

Ounnumbered title
In a printed manual, begin a chapter that appears without chapter numbers of
any kind. The title appears in the table of contents of a printed manual. In
Info, the title is underlined with asterisks. See Section 5.5 [@unnumbered and
@appendix], page 48.

Ounnumberedsec title
In a printed manual, begin a section that appears without section numbers of
any kind. The title appears in the table of contents of a printed manual. In Info,
the title is underlined with equal signs. See Section 5.8 [Section Commands],
page 49.

Ounnumberedsubsec title
In a printed manual, begin an unnumbered subsection within a chapter.
The title appears in the table of contents of a printed manual. In Info,
the title is underlined with hyphens. See Section 5.10 [@unnumberedsubsec
@appendixsubsec @subheading], page 49.

OQunnumberedsubsubsec title
In a printed manual, begin an unnumbered subsubsection within a chapter. The
title appears in the table of contents of a printed manual. In Info, the title is
underlined with periods. See Section 5.11 [The ‘subsub’ Commands]|, page 50.

Appendix A: @-Command List 202

Quref{url[, displayed-text] [, replacement}

Qurl{url [, displayed-text] [, replacement}
Define a cross reference to an external uniform resource locator for the World
Wide Web. See Section 8.9 [@uref], page 71.

ev{c} Generate check accent over the character ¢, as in 6. See Section 14.3 [Inserting
Accents], page 113.
@value{flag}

Replace flag with the value to which it is set by @set flag. See Section 17.4
[@set @clear @value], page 139.

Q@var{metasyntactic-variable}
Highlight a metasyntactic variable, which is something that stands for another
piece of text. See Section 9.1.7 [Indicating Metasyntactic Variables], page 77.

@verb{delim literal delim}
Output literal, delimited by the single character delim, exactly as is (in the
fixed-width font), including any whitespace or Texinfo special characters. See
Section 9.1.6 [verb], page 77.

Qverbatim
Output the text of the environment exactly as is (in the fixed-width font). Pair
with @end verbatim. See Section 10.4 [verbatim|, page 85.

Overbatiminclude filename
Output the contents of filename exactly as is (in the fixed-width font). See
Section 10.5 [verbatiminclude|, page 86.

Q@vindex entry
Add entry to the index of variables. See Section 13.1 [Defining the Entries of
an Index]|, page 105.

@vskip amount
In a printed manual, insert whitespace so as to push text on the remainder of
the page towards the bottom of the page. Used in formatting the copyright
page with the argument ‘Opt plus 1£fi111’. (Note spelling of ‘fi111’.) @vskip
may be used only in contexts ignored for Info. See Section 3.4.4 [Copyright],
page 35.

@vtable formatting-command
Begin a two-column table, using @item for each entry. Automatically enter
each of the items in the first column into the index of variables. Pair with @end
vtable. The same as @table, except for indexing. See Section 11.4.2 [@ftable
and @vtable], page 96.

@w{text} Prevent text from being split across two lines. See Section 15.4 [@w], page 121.

@xml Enter XML completely. Pair with @end xml. See Section 17.3 [Raw Formatter
Commands]|, page 138.

Oxref{node-name, [entry], [topic-or-title], [info-file], [manuall}
Make a reference that starts with ‘See’ in a printed manual. Follow command
with a punctuation mark. Only the first argument is mandatory. See Section 8.4
[exref], page 65.

Appendix A: @-Command List 203

A.1 e-Command Syntax

The character ‘@’ is used to start special Texinfo commands. (It has the same meaning that
‘\” has in plain TgX.) Texinfo has four types of @-command:

1. Non-alphabetic commands.
These commands consist of an @ followed by a punctuation mark or other char-
acter that is not part of the alphabet. Non-alphabetic commands are almost
always part of the text within a paragraph, and never take any argument. The
two characters (@ and the other one) are complete in themselves; none is fol-
lowed by braces. The non-alphabetic commands are: @., @:, @, @SPACE, QTAB,
@NL, @@, @{, and @}.

2. Alphabetic commands that do not require arguments.
These commands start with @ followed by a word followed by left- and right-
hand braces. These commands insert special symbols in the document; they
do not require arguments. For example, @dots{} = ‘...’, Cequiv{} = ‘=,
@TeX{} = “TEX’, and @bullet{} = ‘o’ .

3. Alphabetic commands that require arguments within braces.
These commands start with @ followed by a letter or a word, followed by an argu-
ment within braces. For example, the command @dfn indicates the introductory
or defining use of a term; it is used as follows: ‘In Texinfo, @0-commands are
@dfn{mark-up} commands.’

4. Alphabetic commands that occupy an entire line.
These commands occupy an entire line. The line starts with @, followed by
the name of the command (a word); for example, @center or @cindex. If no
argument is needed, the word is followed by the end of the line. If there is an
argument, it is separated from the command name by a space. Braces are not
used.

Thus, the alphabetic commands fall into classes that have different argument syntaxes.
You cannot tell to which class a command belongs by the appearance of its name, but you
can tell by the command’s meaning: if the command stands for a glyph, it is in class 2 and
does not require an argument; if it makes sense to use the command together with other
text as part of a paragraph, the command is in class 3 and must be followed by an argument
in braces; otherwise, it is in class 4 and uses the rest of the line as its argument.

The purpose of having a different syntax for commands of classes 3 and 4 is to make
Texinfo files easier to read, and also to help the GNU Emacs paragraph and filling commands
work properly. There is only one exception to this rule: the command @refill, which is
always used at the end of a paragraph immediately following the final period or other
punctuation character. @refill takes no argument and does not require braces. @refill
never confuses the Emacs paragraph commands because it cannot appear at the beginning
of a line. It is also no longer needed, since all formatters now refill paragraphs automatically.

Appendix B: Tips and Hints 204

Appendix B Tips and Hints

Here are some tips for writing Texinfo documentation:

e Write in the present tense, not in the past or the future.

kb

e Write actively! For example, write “We recommend that ...” rather than “It is rec-

ommended that ...”.
e Use 70 or 72 as your fill column. Longer lines are hard to read.
e Include a copyright notice and copying permissions.

Index, Index, Index!

Write many index entries, in different ways. Readers like indices; they are helpful and
convenient.

Although it is easiest to write index entries as you write the body of the text, some
people prefer to write entries afterwards. In either case, write an entry before the paragraph
to which it applies. This way, an index entry points to the first page of a paragraph that is
split across pages.

Here are more hints we have found valuable:

e Write each index entry differently, so each entry refers to a different place in the doc-
ument.

e Write index entries only where a topic is discussed significantly. For example, it is not
useful to index “debugging information” in a chapter on reporting bugs. Someone who
wants to know about debugging information will certainly not find it in that chapter.

e Consistently capitalize the first word of every concept index entry, or else consistently
use lower case. Terse entries often call for lower case; longer entries for capitalization.
Whichever case convention you use, please use one or the other consistently! Mixing
the two styles looks bad.

e Always capitalize or use upper case for those words in an index for which this is proper,
such as names of countries or acronyms. Always use the appropriate case for case-
sensitive names, such as those in C or Lisp.

e Write the indexing commands that refer to a whole section immediately after the
section command, and write the indexing commands that refer to a paragraph before
that paragraph.

In the example that follows, a blank line comes after the index entry for “Leaping”:

@section The Dog and the Fox
Ocindex Jumping, in general
Ocindex Leaping

@cindex Dog, lazy, jumped over

O@cindex Lazy dog jumped over

Ocindex Fox, jumps over dog

Ocindex Quick fox jumps over dog

The quick brown fox jumps over the lazy dog.
(Note that the example shows entries for the same concept that are written in different
ways—‘Lazy dog’, and ‘Dog, lazy—so readers can look up the concept in different
ways.)

Appendix B: Tips and Hints 205

Blank Lines

e Insert a blank line between a sectioning command and the first following sentence or
paragraph, or between the indexing commands associated with the sectioning com-
mand and the first following sentence or paragraph, as shown in the tip on indexing.
Otherwise, a formatter may fold title and paragraph together.

e Always insert a blank line before an @table command and after an @end table com-
mand; but never insert a blank line after an @able command or before an @end table
command.

For example,

Types of fox:

Otable @samp
Q@item Quick
Jump over lazy dogs.

Q@item Brown
Also jump over lazy dogs.
Q@end table

@noindent
On the other hand,

Insert blank lines before and after @itemize ... @end itemize and @enumerate ...
@end enumerate in the same way.

Complete Phrases

Complete phrases are easier to read than . ..

e Write entries in an itemized list as complete sentences; or at least, as complete phrases.
Incomplete expressions ... awkward ... like this.

e Write the prefatory sentence or phrase for a multi-item list or table as a complete
expression. Do not write “You can set:”; instead, write “You can set these variables:”.
The former expression sounds cut off.

Editions, Dates and Versions

Include edition numbers, version numbers, and dates in the @copying text (for people
reading the Texinfo file, and for the legal copyright in the output files). Then use
@insertcopying in the @titlepage section (for people reading the printed output) and
the Top node (for people reading the online output).

It is easiest to do this using @set and @value. See Section 17.4.3 [@value Example],
page 142, and Section C.2 [GNU Sample Texts|, page 210.

Definition Commands

Definition commands are @deffn, @defun, @defmac, and the like, and enable you to write
descriptions in a uniform format.

Appendix B: Tips and Hints 206

e Write just one definition command for each entity you define with a definition com-
mand. The automatic indexing feature creates an index entry that leads the reader to
the definition.

e Use @table ... @end table in an appendix that contains a summary of functions, not
@deffn or other definition commands.

Capitalization
e Capitalize “Texinfo”; it is a name. Do not write the ‘x’ or ‘i’ in upper case.
e Capitalize “Info”; it is a name.

o Write TEX using the @TeX{} command. Note the uppercase ‘T’ and ‘X’. This command
causes the formatters to typeset the name according to the wishes of Donald Knuth,

who wrote TEX.

Spaces

Do not use spaces to format a Texinfo file, except inside of @example ... @end example
and other literal environments and commands.
For example, TEX fills the following:
@kbd{C-x v}
@kbd{M-x vc-next-action}
Perform the next logical operation
on the version-controlled file
corresponding to the current buffer.
so it looks like this:

C-x v M-x vc-next-action Perform the next logical operation on the version-
controlled file corresponding to the current buffer.

In this case, the text should be formatted with @table, @item, and @itemx, to create a
table.

@code, @samp, @var, and ‘---’

e Use @code around Lisp symbols, including command names. For example,

The main function is @code{vc-next-action},
e Avoid putting letters such as ‘s’ immediately after an ‘@code’. Such letters look bad.
e Use @var around meta-variables. Do not write angle brackets around them.

3

e Use three hyphens in a row, ‘-=-’, to indicate a long dash. TEX typesets these as a
long dash and the Info formatters reduce three hyphens to two.

Periods Outside of Quotes

Place periods and other punctuation marks outside of quotations, unless the punctuation
is part of the quotation. This practice goes against publishing conventions in the United
States, but enables the reader to distinguish between the contents of the quotation and the
whole passage.

For example, you should write the following sentence with the period outside the end
quotation marks:

Appendix B: Tips and Hints 207

¢

Evidently, ‘au’ is an abbreviation for ‘‘author’’.

since ‘au’ does not serve as an abbreviation for ‘author.’ (with a period following the word).

Introducing New Terms

e Introduce new terms so that a reader who does not know them can understand them
from context; or write a definition for the term.
For example, in the following, the terms “check in”, “register” and “delta” are all
appearing for the first time; the example sentence should be rewritten so they are
understandable.
The major function assists you in checking in a file to your version control
system and registering successive sets of changes to it as deltas.
e Use the @dfn command around a word being introduced, to indicate that the reader
should not expect to know the meaning already, and should expect to learn the meaning
from this passage.

@pxref

Absolutely never use @pxref except in the special context for which it is designed: inside
parentheses, with the closing parenthesis following immediately after the closing brace. One
formatter automatically inserts closing punctuation and the other does not. This means
that the output looks right both in printed output and in an Info file, but only when the
command is used inside parentheses.

Invoking from a Shell

You can invoke programs such as Emacs, GCC, and gawk from a shell. The documentation
for each program should contain a section that describes this. Unfortunately, if the node
names and titles for these sections are all different, they are difficult for users to find.

So, there is a convention to name such sections with a phrase beginning with the word
‘Invoking’, as in ‘Invoking Emacs’; this way, users can find the section easily.

ANSI C Syntax

When you use @example to describe a C function’s calling conventions, use the ANSI C
syntax, like this:
void dld_init (char *@var{pathl});
And in the subsequent discussion, refer to the argument values by writing the same argument
names, again highlighted with @var.
Avoid the obsolete style that looks like this:
#include <dld.h>

dld_init (path)
char *path;

Also, it is best to avoid writing #include above the declaration just to indicate that
the function is declared in a header file. The practice may give the misimpression that the
#include belongs near the declaration of the function. Either state explicitly which header
file holds the declaration or, better yet, name the header file used for a group of functions
at the beginning of the section that describes the functions.

Appendix B: Tips and Hints 208

Bad Examples

Here are several examples of bad writing to avoid:

In this example, say, “ ... you must @dfn{check in} the new version.” That flows
better.

When you are done editing the file, you must perform a @dfn{check in}.
In the following example, say, “. .. makes a unified interface such as VC mode possible.”

SCCS, RCS and other version-control systems all perform similar functions in
broadly similar ways (it is this resemblance which makes a unified control mode
like this possible).

And in this example, you should specify what ‘it’ refers to:
If you are working with other people, it assists in coordinating everyone’s
changes so they do not step on each other.

And Finally ...

e Pronounce TEX as if the ‘X’ were a Greek ‘chi’, as the last sound in the name ‘Bach’.
But pronounce Texinfo as in ‘speck’ “teckinfo”.

e Write notes for yourself at the very end of a Texinfo file after the @bye. None of the
formatters process text after the @bye; it is as if the text were within @ignore ... @end
ignore.

Appendix C: Sample Texinfo Files 209

Appendix C Sample Texinfo Files

The first example is from the first chapter (see Section 1.11 [Short Sample], page 12), given
here in its entirety, without commentary. The second includes the full texts to be used in
GNU manuals.

C.1 Short Sample

Here is a complete, short sample Texinfo file, without any commentary. You can see this
file, with comments, in the first chapter. See Section 1.11 [Short Sample], page 12.

In a nutshell: The makeinfo program transforms a Texinfo source file such as this into
an Info file or HTML; and TEX typesets it for a printed manual.

\input texinfo @c -*-texinfo-—*-
Qc %**start of header
Osetfilename sample.info
Osettitle Sample Manual 1.0

@c %*xend of header

QOcopying
This is a short example of a complete Texinfo file.

Copyright (C) 2004 Free Software Foundation, Inc.
@end copying

Otitlepage

Otitle Sample Title
Gpage

Ovskip Opt plus 1filll
O@insertcopying

Q@end titlepage

@c Output the table of the contents at the beginning.
Q@contents

@ifnottex
Onode Top
@top GNU Sample

Q@insertcopying
@end ifnottex

Gmenu

* First Chapter:: The first chapter is the
only chapter in this sample.

* Index:: Complete index.

@end menu

Appendix C: Sample Texinfo Files 210

Onode First Chapter
@chapter First Chapter

Q@cindex chapter, first

This is the first chapter.
O@cindex index entry, another

Here is a numbered list.

Q@enumerate
Q@item
This is the first item.

Q@item
This is the second item.
@end enumerate

@node Index
Qunnumbered Index

Oprintindex cp

Qbye

C.2 GNU Sample Texts

Following is a sample Texinfo document with the full texts that should be used in GNU
manuals.

As well as the legal texts, it also serves as a practical example of how many elements in a
GNU system can affect the manual. If you're not familiar with all these different elements,
don’t worry. They’re not required and a perfectly good manual can be written without
them. They're included here nonetheless because many manuals do (or could) benefit from
them.

See Section 1.11 [Short Sample], page 12, for a minimal example of a Texinfo file. See
Chapter 3 [Beginning a File], page 27, for a full explanation of that minimal example.

Here are some notes on the example:

e The ‘$Id:’ comment is for the CVS (see section “Overview” in Concurrent Versions
System) or RCS (see rcsintro(1)) version control systems, which expand it into a string
such as:

$Id: texinfo.txi,v 1.52 2004/04/09 21:30:07 karl Exp $

Appendix C: Sample Texinfo Files 211

(This is useful in all sources that use version control, not just manuals.) You may
wish to include the ‘$Id:’ comment in the @copying text, if you want a completely
unambiguous reference to the documentation version.

If you want to literally write Id, use @w: @w{$}Id$.

e The ‘version.texi’ in the @include command is maintained automatically by Au-
tomake (see section “Introduction” in GNU Automake). It sets the ‘VERSION’ and
‘UPDATED’ values used elsewhere. If your distribution doesn’t use Automake, but you
do use Emacs, you may find the time-stamp.el package helpful (see section “Time
Stamps” in The GNU Emacs Manual).

e The @syncodeindex command reflects the recommendation to use only one index where
possible, to make it easier for readers to look up index entries.

e The @dircategory is for constructing the Info directory. See Section 21.2.4 [Installing
Dir Entries|, page 174, which includes a variety of recommended category names.

e The ‘Invoking’ node is a GNU standard to help users find the basic information about
command-line usage of a given program. See section “Manual Structure Details” in
GNU Coding Standards.

e [t is best to include the entire GNU Free Documentation License in a GNU manual,
unless the manual is only a few pages long. Of course this sample is even shorter than
that, but it includes the FDL anyway in order to show one conventional way to do so.
The ‘fdl.texi’ file is available on the GNU machines and in the Texinfo and other
GNU source distributions.

The FDL provides for omitting itself under certain conditions, but in that case the
sample texts given here have to be modified. See Section G.1 [GNU Free Documentation
License|, page 230.

e If your manual has invariant sections (again, see the license itself for details), then
don’t forget to change the text here accordingly.

e For documents that express your personal views, feelings or experiences, it is more
appropriate to use a license permitting only verbatim copying, rather than the FDL.
See Section C.3 [Verbatim Copying License], page 213.

Here is the sample document:

\input texinfo @c -*-texinfo-*-

Qcomment $Id: texinfo.txi,v 1.52 2004/04/09 21:30:07 karl Exp $
Qcomment %**start of header

O@setfilename sample.info

@include version.texi

@settitle GNU Sample @value{VERSION}
Osyncodeindex pg cp

Qcomment %**end of header

Q@copying

This manual is for GNU Sample

(version @value{VERSION}, @value{UPDATED}),
which is an example in the Texinfo documentation.

Copyright @copyright{} 2004 Free Software Foundation, Inc.

Appendix C: Sample Texinfo Files 212

Qquotation

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with the Front-Cover Texts being ‘‘A GNU Manual,’’
and with the Back-Cover Texts as in (a) below. A copy of the

license is included in the section entitled ¢‘GNU Free Documentation
License.’’

(a) The FSF’s Back-Cover Text is: ‘‘You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free
Software Foundation raise funds for GNU development.’’

@end quotation

Q@end copying

Q@dircategory Texinfo documentation system
@direntry

* sample: (sample)Invoking sample.

Q@end direntry

Q@titlepage

@title GNU Sample

@subtitle for version @value{VERSION}, @value{UPDATED}
Qauthor A.U. Thor (@email{bug-texinfo@@gnu.orgl})

Opage

Qvskip Opt plus 1filll

Q@insertcopying

Q@end titlepage

Qcontents

@ifnottex
Gnode Top
Otop GNU Sample

Q@insertcopying
Q@end ifnottex

Omenu

* Invoking sample::

* Copying This Manual::
* Index::

@end menu

Onode Invoking sample

Appendix C: Sample Texinfo Files 213

Ochapter Invoking sample

Opindex sample
Q@cindex invoking @command{sample}

This is a sample manual. There is no sample program to
invoke, but if there was, you could see its basic usage
and command line options here.

Onode Copying This Manual
Q@appendix Copying This Manual

Gmenu
* GNU Free Documentation License:: License for copying this manual.
Q@end menu

@include fdl.texi

Onode Index
Qunnumbered Index

O@printindex cp
Q@bye

C.3 Verbatim Copying License

For software manuals and other documentation, it is important to use a license permitting
free redistribution and updating, so that when a free program is changed, the documentation
can be updated as well.

On the other hand, for documents that express your personal views, feelings or expe-
riences, it is more appropriate to use a license permitting only verbatim copying.

Here is sample text for such a license permitting verbatim copying only. This is just
the license text itself. For a complete sample document, see the previous sections.
Q@copying
This document is a sample for allowing verbatim copying only.

Copyright @copyright{} 2004 Free Software Foundation, Inc.

Q@quotation

Permission is granted to make and distribute verbatim copies
of this entire document without royalty provided the
copyright notice and this permission notice are preserved.
Q@end quotation

Q@end copying

Appendix C: Sample Texinfo Files 214

C.4 All-permissive Copying License

For software manuals and other documentation, it is important to use a license permitting
free redistribution and updating, so that when a free program is changed, the documentation
can be updated as well.

On the other hand, for small supporting files, short manuals (under 300 lines long) and
rough documentation (README files, INSTALL files, etc.), the full FDL would be overkill.
They can use a simple all-permissive license.

Here is sample text for such an all-permissive license. This is just the license text itself.
For a complete sample document, see the previous sections.

Copyright (©) 2004 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.

Appendix D: Include Files 215

Appendix D Include Files

When TEX or an Info formatting command sees an @include command in a Texinfo file,
it processes the contents of the file named by the command and incorporates them into the
DVT or Info file being created. Index entries from the included file are incorporated into
the indices of the output file.

Include files let you keep a single large document as a collection of conveniently small
parts.

D.1 How to Use Include Files

To include another file within a Texinfo file, write the @include command at the beginning
of a line and follow it on the same line by the name of a file to be included. For example:

@include buffers.texi

The name of the file is taken literally, with a single exception: @value{var} references
are expanded. This makes it possible to reliably include files in other directories in a
distribution. See Section 10.5 [@verbatiminclude|, page 86, for an example.

An included file should simply be a segment of text that you expect to be included as is
into the overall or outer Texinfo file; it should not contain the standard beginning and end
parts of a Texinfo file. In particular, you should not start an included file with a line saying
“\input texinfo’; if you do, that phrase is inserted into the output file as is. Likewise, you
should not end an included file with an @bye command; nothing after @bye is formatted.

In the past, you were required to write an @setfilename line at the beginning of an
included file, but no longer. Now, it does not matter whether you write such a line. If an
@setfilename line exists in an included file, it is ignored.

Conventionally, an included file begins with an @node line that is followed by an
@chapter line. Each included file is one chapter. This makes it easy to use the regular
node and menu creating and updating commands to create the node pointers and menus
within the included file. However, the simple Emacs node and menu creating and updating
commands do not work with multiple Texinfo files. Thus you cannot use these commands
to fill in the ‘Next’, ‘Previous’, and ‘Up’ pointers of the @node line that begins the included
file. Also, you cannot use the regular commands to create a master menu for the whole file.
Either you must insert the menus and the ‘Next’, ‘Previous’, and ‘Up’ pointers by hand, or
you must use the GNU Emacs Texinfo mode command, texinfo-multiple-files-update,
that is designed for @include files.

When an included file does not have any node lines in it, the multiple files update
command does not try to create a menu entry for it. Consequently, you can include any
file, such as a version or an update file without node lines, not just files that are chapters.
Small includable files like this are created by Automake (see Section C.2 [GNU Sample
Texts], page 210).

D.2 texinfo-multiple-files-update

GNU Emacs Texinfo mode provides the texinfo-multiple-files-update command. This
command creates or updates ‘Next’, ‘Previous’, and ‘Up’ pointers of included files as well
as those in the outer or overall Texinfo file, and it creates or updates a main menu in the

Appendix D: Include Files 216

outer file. Depending whether you call it with optional arguments, the command updates
only the pointers in the first @node line of the included files or all of them:

M-x texinfo-multiple-files-update
Called without any arguments:

— Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first @node
line in each file included in an outer or overall Texinfo file.

— Create or update the ‘Top’ level node pointers of the outer or overall file.

— Create or update a main menu in the outer file.

C-u M-x texinfo-multiple-files-update
Called with C-u as a prefix argument:
— Create or update pointers in the first @node line in each included file.
— Create or update the ‘Top’ level node pointers of the outer file.

— Create and insert a master menu in the outer file. The master menu is
made from all the menus in all the included files.

C-u 8 M-x texinfo-multiple-files—update
Called with a numeric prefix argument, such as C-u 8:

— Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the
included files.

— Create or update all the menus of all the included files.
— Create or update the ‘Top’ level node pointers of the outer or overall file.

— And then create a master menu in the outer file. This is similar to invoking
texinfo-master-menu with an argument when you are working with just
one file.

Note the use of the prefix argument in interactive use: with a regular prefix argument,
just C-u, the texinfo-multiple-files-update command inserts a master menu; with a
numeric prefix argument, such as C-u 8, the command updates every pointer and menu in
all the files and then inserts a master menu.

D.3 Include Files Requirements

If you plan to use the texinfo-multiple-files-update command, the outer Texinfo file
that lists included files within it should contain nothing but the beginning and end parts
of a Texinfo file, and a number of @include commands listing the included files. It should
not even include indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (con-
ventionally, @chapter or equivalent), and this node must be the first node in the included
file. Furthermore, each of these highest level nodes in each included file must be at the same
hierarchical level in the file structure. Usually, each is an @chapter, an @appendix, or an
@unnumbered node. Thus, normally, each included file contains one, and only one, chapter
or equivalent-level node.

The outer file should contain only one node, the ‘Top’ node. It should not contain any
nodes besides the single “Top’ node. The texinfo-multiple-files-update command will
not process them.

Appendix D: Include Files 217

D.4 Sample File with @include

Here is an example of an outer Texinfo file with @include files within it before running
texinfo-multiple-files-update, which would insert a main or master menu:

\input texinfo @c -*-texinfo-*-
O@setfilename include-example.info
@settitle Include Example

. See Appendix C [Sample Texinfo Files], page 209, for
examples of the rest of the frontmatter ...

@ifnottex

Onode Top

Otop Include Example
@end ifnottex

@include foo.texinfo

O@include bar.texinfo

@include concept-index.texinfo
Q@bye

An included file, such as ‘foo.texinfo’, might look like this:

Onode First
Ochapter First Chapter

Contents of first chapter ...
The full contents of ‘concept-index.texinfo’ might be as simple as this:

OGnode Concept Index
Ounnumbered Concept Index

Oprintindex cp

The outer Texinfo source file for The GNU Emacs Lisp Reference Manual is named
‘elisp.texi’. This outer file contains a master menu with 417 entries and a list of 41
@include files.

D.5 Evolution of Include Files

When Info was first created, it was customary to create many small Info files on one subject.
Fach Info file was formatted from its own Texinfo source file. This custom meant that Fmacs
did not need to make a large buffer to hold the whole of a large Info file when someone
wanted information; instead, Emacs allocated just enough memory for the small Info file
that contained the particular information sought. This way, Emacs could avoid wasting
memory.

References from one file to another were made by referring to the file name as well
as the node name. (See Section 7.6 [Referring to Other Info Files], page 61. Also, see
Section 8.4.5 [@xref with Four and Five Arguments|, page 67.)

Appendix D: Include Files 218

Include files were designed primarily as a way to create a single, large printed manual
out of several smaller Info files. In a printed manual, all the references were within the same
document, so TEX could automatically determine the references’ page numbers. The Info
formatting commands used include files only for creating joint indices; each of the individual
Texinfo files had to be formatted for Info individually. (Each, therefore, required its own
@setfilename line.)

However, because large Info files are now split automatically, it is no longer necessary
to keep them small.

Nowadays, multiple Texinfo files are used mostly for large documents, such as The
GNU Emacs Lisp Reference Manual, and for projects in which several different people
write different sections of a document simultaneously.

In addition, the Info formatting commands have been extended to work with the
@include command so as to create a single large Info file that is split into smaller files
if necessary. This means that you can write menus and cross references without naming the
different Texinfo files.

Appendix E: Page Headings 219

Appendix E Page Headings

Most printed manuals contain headings along the top of every page except the title and
copyright pages. Some manuals also contain footings. (Headings and footings have no
meaning to Info, which is not paginated.)

E.1 Headings Introduced

Texinfo provides standard page heading formats for manuals that are printed on one side of
each sheet of paper and for manuals that are printed on both sides of the paper. Typically,
you will use these formats, but you can specify your own format if you wish.

In addition, you can specify whether chapters should begin on a new page, or merely
continue the same page as the previous chapter; and if chapters begin on new pages, you
can specify whether they must be odd-numbered pages.

By convention, a book is printed on both sides of each sheet of paper. When you open
a book, the right-hand page is odd-numbered, and chapters begin on right-hand pages—a
preceding left-hand page is left blank if necessary. Reports, however, are often printed on
just one side of paper, and chapters begin on a fresh page immediately following the end of
the preceding chapter. In short or informal reports, chapters often do not begin on a new
page at all, but are separated from the preceding text by a small amount of whitespace.

The @setchapternewpage command controls whether chapters begin on new pages,
and whether one of the standard heading formats is used. In addition, Texinfo has several
heading and footing commands that you can use to generate your own heading and footing
formats.

In Texinfo, headings and footings are single lines at the tops and bottoms of pages;
you cannot create multiline headings or footings. Each header or footer line is divided into
three parts: a left part, a middle part, and a right part. Any part, or a whole line, may
be left blank. Text for the left part of a header or footer line is set flushleft; text for the
middle part is centered; and, text for the right part is set flushright.

E.2 Standard Heading Formats

Texinfo provides two standard heading formats, one for manuals printed on one side of each
sheet of paper, and the other for manuals printed on both sides of the paper.

By default, nothing is specified for the footing of a Texinfo file, so the footing remains
blank.

The standard format for single-sided printing consists of a header line in which the left-
hand part contains the name of the chapter, the central part is blank, and the right-hand
part contains the page number.

A single-sided page looks like this:

Appendix E: Page Headings 220

The standard format for two-sided printing depends on whether the page number is
even or odd. By convention, even-numbered pages are on the left- and odd-numbered pages
are on the right. (TEX will adjust the widths of the left- and right-hand margins. Usually,
widths are correct, but during double-sided printing, it is wise to check that pages will bind
properly—sometimes a printer will produce output in which the even-numbered pages have
a larger right-hand margin than the odd-numbered pages.)

In the standard double-sided format, the left part of the left-hand (even-numbered)
page contains the page number, the central part is blank, and the right part contains the
title (specified by the @settitle command). The left part of the right-hand (odd-numbered)
page contains the name of the chapter, the central part is blank, and the right part contains
the page number.

Two pages, side by side as in an open book, look like this:

| page number title | chapter page number

| |
| |
	[
Start of text ... I	More text ...	
	[

The chapter name is preceded by the word “Chapter”, the chapter number and a colon.
This makes it easier to keep track of where you are in the manual.

E.3 Speciftying the Type of Heading

TEX does not begin to generate page headings for a standard Texinfo file until it reaches
the @end titlepage command. Thus, the title and copyright pages are not numbered.
The Q@end titlepage command causes TEX to begin to generate page headings according
to a standard format specified by the @setchapternewpage command that precedes the
@titlepage section.

There are four possibilities:
No @setchapternewpage command

Cause TEX to specify the single-sided heading format, with chapters on new
pages. This is the same as @setchapternewpage on.

@setchapternewpage on
Specify the single-sided heading format, with chapters on new pages.

Appendix E: Page Headings 221

Osetchapternewpage off
Cause TEX to start a new chapter on the same page as the last page of the
preceding chapter, after skipping some vertical whitespace. Also cause TEX
to typeset for single-sided printing. (You can override the headers format with
the Gheadings double command; see Section 3.4.6 [The Gheadings Command)],
page 36.)

O@setchapternewpage odd
Specify the double-sided heading format, with chapters on new pages.

Texinfo lacks an @setchapternewpage even command.

E.4 How to Make Your Own Headings

You can use the standard headings provided with Texinfo or specify your own. By default,
Texinfo has no footers, so if you specify them, the available page size for the main text will
be slightly reduced.

Texinfo provides six commands for specifying headings and footings:

e Qeveryheading @everyfooting generate page headers and footers that are the same
for both even- and odd-numbered pages.

e Qevenheading and Qevenfooting command generate headers and footers for even-
numbered (left-hand) pages.

e Qoddheading and @oddfooting generate headers and footers for odd-numbered (right-
hand) pages.

Write custom heading specifications in the Texinfo file immediately after the @end
titlepage command. You must cancel the predefined heading commands with the
@headings off command before defining your own specifications.

Here is how to tell TEX to place the chapter name at the left, the page number in the
center, and the date at the right of every header for both even- and odd-numbered pages:

Oheadings off
@everyheading @thischapter @| @thispage @| @today{}

You need to divide the left part from the central part and the central part from the right
part by inserting ‘@|” between parts. Otherwise, the specification command will not be able
to tell where the text for one part ends and the next part begins.

Fach part can contain text or @-commands. The text is printed as if the part were
within an ordinary paragraph in the body of the page. The @-commands replace themselves
with the page number, date, chapter name, or whatever.

Here are the six heading and footing commands:

Q@everyheading left @| center @| right

Q@everyfooting left @| center @| right
The ‘every’ commands specify the format for both even- and odd-numbered
pages. These commands are for documents that are printed on one side of each
sheet of paper, or for documents in which you want symmetrical headers or
footers.

Appendix E: Page Headings 222

Qevenheading left Q| center @| right

Qoddheading left @| center Q| right

Q@evenfooting left @| center @| right

Q@oddfooting left @| center @| right
The ‘even’ and ‘odd’ commands specify the format for even-numbered pages
and odd-numbered pages. These commands are for books and manuals that
are printed on both sides of each sheet of paper.

Use the ‘@this. ..’ series of @-commands to provide the names of chapters and sections
and the page number. You can use the ‘@this...’ commands in the left, center, or right
portions of headers and footers, or anywhere else in a Texinfo file so long as they are between
@iftex and @end iftex commands.

Here are the ‘G@this. ..’ commands:

Othispage
Expands to the current page number.

Othischaptername
Expands to the name of the current chapter.

Othischapter
Expands to the number and name of the current chapter, in the format ‘Chapter
1. Title’.

@thistitle
Expands to the name of the document, as specified by the @settitle command.

Othisfile
For @include files only: expands to the name of the current @include file. If
the current Texinfo source file is not an @include file, this command has no
effect. This command does not provide the name of the current Texinfo source
file unless it is an @include file. (See Appendix D [Include Files], page 215, for
more information about @include files.)

You can also use the @today{} command, which expands to the current date, in ‘1 Jan
1900’ format.

Other @-commands and text are printed in a header or footer just as if they were in the
body of a page. It is useful to incorporate text, particularly when you are writing drafts:

QGheadings off
Q@everyheading @emph{Draft!} @| @thispage @| @thischapter
Qeveryfooting @| @| Version: 0.27: @today{}
Beware of overlong titles: they may overlap another part of the header or footer and
blot it out.

Appendix F: Formatting Mistakes 223

Appendix F Formatting Mistakes

Besides mistakes in the content of your documentation, there are two kinds of mistake
you can make with Texinfo: you can make mistakes with @-commands, and you can make
mistakes with the structure of the nodes and chapters.

Emacs has two tools for catching the @-command mistakes and two for catching struc-
turing mistakes.

For finding problems with @-commands, you can run TEX or a region formatting
command on the region that has a problem; indeed, you can run these commands on each
region as you write it.

For finding problems with the structure of nodes and chapters, you can use C-c C-
s (texinfo-show-structure) and the related occur command and you can use the M-x
Info-validate command.

F.1 makeinfo Find Errors

The makeinfo program does an excellent job of catching errors and reporting them—far
better than texinfo-format-region or texinfo-format-buffer. In addition, the various
functions for automatically creating and updating node pointers and menus remove many
opportunities for human error.

If you can, use the updating commands to create and insert pointers and menus. These
prevent many errors. Then use makeinfo (or its Texinfo mode manifestations, makeinfo-
region and makeinfo-buffer) to format your file and check for other errors. This is the
best way to work with Texinfo. But if you cannot use makeinfo, or your problem is very
puzzling, then you may want to use the tools described in this appendix.

F.2 Catching Errors with Info Formatting

After you have written part of a Texinfo file, you can use the texinfo-format-region or
the makeinfo-region command to see whether the region formats properly.

Most likely, however, you are reading this section because for some reason you cannot
use the makeinfo-region command; therefore, the rest of this section presumes that you
are using texinfo-format-region.

If you have made a mistake with an @-command, texinfo-format-region will stop
processing at or after the error and display an error message. To see where in the buffer
the error occurred, switch to the ‘*Info Regionx’ buffer; the cursor will be in a position
that is after the location of the error. Also, the text will not be formatted after the place
where the error occurred (or more precisely, where it was detected).

For example, if you accidentally end a menu with the command @end menus with an
‘s’ on the end, instead of with @end menu, you will see an error message that says:

Q@end menus is not handled by texinfo

The cursor will stop at the point in the buffer where the error occurs, or not long after it.
The buffer will look like this:

Appendix F: Formatting Mistakes 224

* Using texinfo-show-structure:: How to use
‘texinfo-show-structure’
to catch mistakes.

* Running Info-Validate:: How to check for
unreferenced nodes.

@end menus

—————————— Buffer: *Info Region¥* -—-—-----——-

The texinfo-format-region command sometimes provides slightly odd error mes-
sages. For example, the following cross reference fails to format:

(@xref{Catching Mistakes, for more info.)

In this case, texinfo-format-region detects the missing closing brace but displays a
message that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is
because the formatting command looks for mismatches between braces as if they were
parentheses.

Sometimes texinfo-format-region fails to detect mistakes. For example, in the fol-
lowing, the closing brace is swapped with the closing parenthesis:

(@xref{Catching Mistakes), for more info.}
Formatting produces:
(*Note for more info.: Catching Mistakes)

The only way for you to detect this error is to realize that the reference should have
looked like this:

(*Note Catching Mistakes::, for more info.)

Incidentally, if you are reading this node in Info and type f (Info-follow-
reference), you will generate an error message that says:

No such node: "Catching Mistakes) The only way ...

This is because Info perceives the example of the error as the first cross reference in this
node and if you type a immediately after typing the Info f command, Info will attempt
to go to the referenced node. If you type f catch RET), Info will complete the node
name of the correctly written example and take you to the ‘Catching Mistakes’ node. (If
you try this, you can return from the ‘Catching Mistakes’ node by typing 1 (Info-last).)

F.3 Catching Errors with TEX Formatting

You can also catch mistakes when you format a file with TEX.

Usually, you will want to do this after you have run texinfo-format-buffer (or,
better, makeinfo-buffer) on the same file, because texinfo-format-buffer sometimes
displays error messages that make more sense than TEX. (See Section F.2 [Debugging with
Info], page 223, for more information.)

For example, TEX was run on a Texinfo file, part of which is shown here:

Appendix F: Formatting Mistakes 225

—————————— Buffer: texinfo.texi —————————-

name of the Texinfo file as an extension. The
@samp{?7?} are ‘wildcards’ that cause the shell to
substitute all the raw index files. (@xref{sorting
indices, for more information about sorting
indices.)@refill

—————————— Buffer: texinfo.texi --——7——-—-

(The cross reference lacks a closing brace.) TEX produced the following output, after which
it stopped:

—————————— Buffer: *tex-shell* ---——————-
Runaway argument?
{sorting indices, for more information about sorting
indices.) @refill QETC.
! Paragraph ended before Q@xref was complete.
<to be read again>
Qpar
1.27

—————————— Buffer: *tex-shell* —--———-—-----
In this case, TEX produced an accurate and understandable error message:
Paragraph ended before @xref was complete.

‘@par’ is an internal TEX command of no relevance to Texinfo. ‘1.27" means that TEX
detected the problem on line 27 of the Texinfo file. The ‘?’ is the prompt TEX uses in this
circumstance.

Unfortunately, TEX is not always so helpful, and sometimes you must truly be a
Sherlock Holmes to discover what went wrong.

In any case, if you run into a problem like this, you can do one of three things.

1. You can tell TEX to continue running and ignore just this error by typing at the
“?” prompt.

2. You can tell TEX to continue running and to ignore all errors as best it can by typing
r at the ‘?” prompt.

This is often the best thing to do. However, beware: the one error may produce a
cascade of additional error messages as its consequences are felt through the rest of the
file. To stop TEX when it is producing such an avalanche of error messages, type C-c
(or C-c C-c, if you are running a shell inside Emacs).

3. You can tell TEX to stop this run by typing x at the ‘?” prompt.

If you are running TEX inside Emacs, you need to switch to the shell buffer and line
at which TEX offers the ‘?’ prompt.

Sometimes TEX will format a file without producing error messages even though there
is a problem. This usually occurs if a command is not ended but TEX is able to continue
processing anyhow. For example, if you fail to end an itemized list with the @end itemize
command, TEX will write a DVI file that you can print out. The only error message that
TEX will give you is the somewhat mysterious comment that

Appendix F: Formatting Mistakes 226

(@end occurred inside a group at level 1)

However, if you print the DVI file, you will find that the text of the file that follows the
itemized list is entirely indented as if it were part of the last item in the itemized list. The
error message is the way TEX says that it expected to find an @end command somewhere
in the file; but that it could not determine where it was needed.

Another source of notoriously hard-to-find errors is a missing @end group command. If
you ever are stumped by incomprehensible errors, look for a missing @end group command
first.

If the Texinfo file lacks header lines, TEX may stop in the beginning of its run and
display output that looks like the following. The ‘*’ indicates that TEX is waiting for input.

This is TeX, Version 3.14159 (Web2c 7.0)
(test.texinfo [1])
*

In this case, simply type \end after the asterisk. Then write the header lines in the
Texinfo file and run the TEX command again. (Note the use of the backslash, ‘\’. TgX
uses ‘\’ instead of ‘@’; and in this circumstance, you are working directly with TEX, not
with Texinfo.)

F.4 Using texinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a
Texinfo file. This is especially true if you are revising or adding to a Texinfo file that
someone else has written.

In GNU Emacs, in Texinfo mode, the texinfo-show-structure command lists all
the lines that begin with the @-commands that specify the structure: @chapter, @section,
@appendix, and so on. With an argument (C-u as prefix argument, if interactive), the
command also shows the @node lines. The texinfo-show-structure command is bound
to C-c C-s in Texinfo mode, by default.

The lines are displayed in a buffer called the ‘*0Occur*’ buffer, indented by hierarchi-
cal level. For example, here is a part of what was produced by running texinfo-show-
structure on this manual:

Lines matching "~@\\(chapter \\|sect\\|subs\\|subh\\|
unnum\\ |major\\|chapheading \\|heading \\|appendix\\)"
in buffer texinfo.texi.

4177 :Q@chapter Nodes

4198: QGheading Two Paths

4231: @section Node and Menu Illustration

4337: O@section The @code{@@node} Command

4393: Osubheading Choosing Node and Pointer Names
4417 : @subsection How to Write an @code{@@node} Line
4469: @subsection Q@code{@@node} Line Tips

This says that lines 4337, 4393, and 4417 of ‘texinfo.texi’ begin with the @section,
@subheading, and @subsection commands respectively. If you move your cursor into the

Appendix F: Formatting Mistakes 227

‘*0ccur*’ window, you can position the cursor over one of the lines and use the C-c C-
¢ command (occur-mode-goto-occurrence), to jump to the corresponding spot in the
Texinfo file. See section “Using Occur” in The GNU Emacs Manual, for more information
about occur-mode-goto-occurrence.

The first line in the ‘*0ccur*’ window describes the regular expression specified
by texinfo-heading-pattern. This regular expression is the pattern that texinfo-show-
structure looks for. See section “Using Regular Expressions” in The GNU Emacs
Manual, for more information.

When you invoke the texinfo-show-structure command, Emacs will display the
structure of the whole buffer. If you want to see the structure of just a part of the buffer,
of one chapter, for example, use the C-x n n (narrow-to-region) command to mark the
region. (See section “Narrowing” in The GNU Emacs Manual.) This is how the example
used above was generated. (To see the whole buffer again, use C-x n w (widen).)

If you call texinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list lines beginning with @node as well as the lines beginning with the @-sign commands
for @chapter, @section, and the like.

You can remind yourself of the structure of a Texinfo file by looking at the list in the
‘*0ccur*’ window; and if you have mis-named a node or left out a section, you can correct
the mistake.

F.5 Using occur

Sometimes the texinfo-show-structure command produces too much information. Per-
haps you want to remind yourself of the overall structure of a Texinfo file, and are over-
whelmed by the detailed list produced by texinfo-show-structure. In this case, you can
use the occur command directly. To do this, type

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want
to match. (See section “Regular Expressions” in The GNU Emacs Manual.) The occur
command works from the current location of the cursor in the buffer to the end of the

buffer. If you want to run occur on the whole buffer, place the cursor at the beginning of
the buffer.

For example, to see all the lines that contain the word ‘@chapter’ in them, just type
‘@chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘@chapter’ in the middle of the line.

If you want to see only those lines that start with the word ‘@chapter’, type ‘~@chapter’
when prompted by occur. If you want to see all the lines that end with a word or phrase,
end the last word with a ‘$’; for example, ‘catching mistakes$’. This can be helpful when
you want to see all the nodes that are part of the same chapter or section and therefore
have the same ‘Up’ pointer.

See section “Using Occur” in The GNU Emacs Manual, for more information.

F.6 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previous’,
‘Up’ or other node pointers fail to point to a node. This command checks that every node

Appendix F: Formatting Mistakes 228

pointer points to an existing node. The Info-validate command works only on Info files,
not on Texinfo files.

The makeinfo program validates pointers automatically, so you do not need to use the
Info-validate command if you are using makeinfo. You only may need to use Info-
validate if you are unable to run makeinfo and instead must create an Info file using
texinfo-format-region or texinfo-format-buffer, or if you write an Info file from
scratch.

F.6.1 Running Info-validate
To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

Note that the Info-validate command requires an upper case ‘I’. You may also need to
create a tag table before running Info-validate. See Section F.6.3 [Tagifying], page 229.

If your file is valid, you will receive a message that says “File appears valid”. However,
if you have a pointer that does not point to a node, error messages will be displayed in a
buffer called ‘*problems in info filex’.

For example, Info-validate was run on a test file that contained only the first node
of this manual. One of the messages said:

In node "Overview", invalid Next: Texinfo Mode

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to
anything (which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘Texinfo Mode’ to our test case but we do not
specify a ‘Previous’ for this node. Then we will get the following error message:

In node "Texinfo Mode", should have Previous: Overview

This is because every ‘Next’ pointer should be matched by a ‘Previous’ (in the node where
the ‘Next’ points) which points back.

Info-validate also checks that all menu entries and cross references point to actual
nodes.

Info-validate requires a tag table and does not work with files that have been split.
(The texinfo-format-buffer command automatically splits large files.) In order to use
Info-validate on a large file, you must run texinfo-format-buffer with an argument
so that it does not split the Info file; and you must create a tag table for the unsplit file.

F.6.2 Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag table. The command will
not work on the indirect subfiles that are generated when a master file is split. If you have
a large file (longer than 300,000 bytes or so), you need to run the texinfo-format-buffer
or makeinfo-buffer command in such a way that it does not create indirect subfiles. You
will also need to create a tag table for the Info file. After you have done this, you can run
Info-validate and look for badly referenced nodes.

The first step is to create an unsplit Info file. To prevent texinfo-format-buffer
from splitting a Texinfo file into smaller Info files, give a prefix to the M-x texinfo-format-
buffer command:

Appendix F: Formatting Mistakes 229

C-u M-x texinfo-format-buffer
or else
C-u C-c C-e C-b
When you do this, Texinfo will not split the file and will not create a tag table for it.

F.6.3 Tagifying a File
After creating an unsplit Info file, you must create a tag table for it. Visit the Info file you
wish to tagify and type:

M-x Info-tagify
(Note the upper case ‘I’ in Info-tagify.) This creates an Info file with a tag table that
you can validate.

The third step is to validate the Info file:
M-x Info-validate
(Note the upper case ‘I’ in Info-validate.) In brief, the steps are:

C-u M-x texinfo-format-buffer
M-x Info-tagify
M-x Info-validate
After you have validated the node structure, you can rerun texinfo-format-buffer
in the normal way so it will construct a tag table and split the file automatically, or you
can make the tag table and split the file manually

F.6.4 Splitting a File Manually

You should split a large file or else let the texinfo-format-buffer or makeinfo-buffer
command do it for you automatically. (Generally you will let one of the formatting com-
mands do this job for you. See Section 21.1 [Creating an Info File], page 163.)

The split-off files are called the indirect subfiles.

Info files are split to save memory. With smaller files, Emacs does not have make such
a large buffer to hold the information.

If an Info file has more than 30 nodes, you should also make a tag table for it. See
Section F.6.1 [Using Info-validate|, page 228, for information about creating a tag table.
(Again, tag tables are usually created automatically by the formatting command; you only
need to create a tag table yourself if you are doing the job manually. Most likely, you will
do this for a large, unsplit file on which you have run Info-validate.)

Visit the Info file you wish to tagify and split and type the two commands:
M-x Info-tagify
M-x Info-split
(Note that the ‘I’ in ‘Info’ is upper case.)

When you use the Info-split command, the buffer is modified into a (small) Info file
which lists the indirect subfiles. This file should be saved in place of the original visited file.
The indirect subfiles are written in the same directory the original file is in, with names
generated by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a
directory of subfiles.

Appendix G: Copying This Manual 230

Appendix G Copying This Manual

G.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix G: Copying This Manual 231

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix G: Copying This Manual 232

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix G: Copying This Manual 233

o

N.

O.

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix G: Copying This Manual 234

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix G: Copying This Manual 235

7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix G: Copying This Manual 236

G.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the

“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix G: Command and Variable Index

237

Command and Variable Index

This is an alphabetical list of all the @-commands, assorted Emacs Lisp functions, and
several variables. To make the list easier to use, the commands are listed without their

preceding ‘@’.

!
! (end of sentence)................c.i... 111
"
" (umlaut accent)............. 113
9
> (umlaut accent)............. 113
*
* (force line break) 120
9
, (cedilla accent) 113
- (discretionary hyphen) 121
. (end of sentence)............. ... 111
/ (allow line break) 120
<
<colon> (suppress end-of-sentence space) 111
<newlime>l 112
KSPACED . ottt 112
<tab>. ..o 112
= (macron accent)ooiiii... 113
7
? (end of sentence)............. 111

Q@

@ (literal ‘@) i 110

" (circumflex accent) 113
3
¢ (grave accent) ..., 113

{

{(literal “{7) ... 110

+

¥ (literal ‘F) ..o 110

\

\ (literal \ in @math)........................ 116
\emergencystretch......................... 159
\gdef within @tex....................... ... 139
\input (raw TEX startup).................... 10
\mag (raw TEX magnification) 161
~ (tilde accent) ...l 113

B e 113
AA 113
ACTONYM . . woovett et e e e e et e e 80
B L 113
AE .. 113
afourlatex 160
afourpaper 160
afourwidel 160
Alias. ..o 150
ANCNOT . ..ttt 58
appendiX........... ... 48
appendiXSec 49
appendixsection.............. 49
appendixsubsec............. 49
appendixsubsubsec............... 50
APPLlY . 135
ASIS ... 95
author........ i 34

Appendix G: Command and Variable Index

B

b (bold font)o 82
bullet......... ... i 114
DY€L 44, 45

c(comment) 10
caption............. ... 100
cartouche 90
Center...... ... 33
centerchapcooiiiiiiii... 48
chapheading 48
chapter.............o i 47
Cite ..o 79
COA@ ..ttt 74
columnfractions............................ 97
COMMA . . e ettt et e e e e e e et 110
CommMANdottt 79
[T} 11111T=Y N 10
contents. 37
COPYING. .\ 31
copyright 31, 114
CrOPMATKS ..o ovitt e 161
D

defcodeindex, 108
defcv... ... 132
deffn...... 127
deffnx......... i 126
defindexl 108
definfoenclose............................ 150
defivar........... 133
defmac......... i 128
defmethod 134
defop.......ooi 133
defopt......... ... 129
defspec............. i 128
deftp.....oo 131
deftypecv 132
deftypefn 129
deftypefun 130
deftypeivar 133
deftypeop 134
deftypevar 131
deftypevr 130
defun........... ...l 127
defvar....... ... 128
defvr..... 128
Afn. ... 79
dircategory, 174
direntry 174
Aisplay.....couiiiii 87
o 1 112
docbook......... 139
documentdescription........................ 40

documentencoding.......................... 145

238
documentlanguage....................oi... 144
dotaccentl 113
AOtlesSS. ...t 113
dOtS ..ot 114
E
email........ 80
emph........ 81
eNA. .t 83, 91
end titlepage................ 36
enddots......... ... 114
enumerate 93
1S5 P 78
eqUIV. ... 118
[5 e ol 117
evenfooting 221
evenheading 221
everyfooting 221
everyheading 221
example. 84
exampleindent 42
exclamdowncoiiiiiiiia.. 113
exdent. 88
expansion i 116
F
file. ... 78
£i111 TEX dimension........................ 35
finalout 159
firstparagraphindent....................... 42
float.......... 99
flushleft 88
flushright 88
fn-name......... 125
foobar 126, 129
footnote 103
footnotestyle................... 104
format.......... 87
forward-word 124
ftable....... 96
G
BLOUD -« ottt ettt e e e e 122
H
H (Hungarian umlaut accent) 113
hbox 159
heading.......... i 49
headings............... 36
headitem.......... 97
headword 151
html. 139
hyphenation 121

Appendix G: Command and Variable Index

I

i (italic font) i 82
ifclear. 141
ifdocbook.......... Ll 137, 139
ifhtml 137, 139
ifinfo...... ... 137
ifnotdocbook 138
ifnothtml 138
ifnotinfo 138
ifnotplaintext 138
ifnottex ... 138
ifnotxml 138
ifplaintext 137
ifset .. o 141
AfteX . o 137
ifxml ... 137, 139
IgNOTE . .ottt 10
Image . ..o 101
include. ...t 215
indent...... ... 90
indicateurl 80
Info-validateoirirninon... 227
inforef...... 71
insertcopying 32
isearch-backward.......................... 126
isearch-forward........................... 126
item......o. 92, 95, 97
itemize. ... 92
R =Y 96

Kbd. 75
kbdinputstyle 75
Rey . 76

Lo 113
Lo 113
LaTeX . .o 114
B o 86
listoffloatscoiiinnnnn. 100
lowersectionsc.iiiiiii.. 50

11 E el o T 147
majorheading 48
makeinfo-buffer........... L. 168
makeinfo-kill-job...................... ... 169
makeinfo-recenter-output-buffer.......... 169
makeinfo-region........................... 168
math......... 115
11T 4 59
minus........... 115

239
N
need............ i 123
NeXt—errort 168
NOAE . .ttt 54
noindent............ i 89
novalidate 153
@)
O e 113
O 113
OCCUT ottt ettt ettt e 227
occur-mode-goto-occurrence 18
oddfooting 221
oddheading 221
O L it 113
OF . e 113
OPtiOM. ..ot 79
ordf ... 113
Ordm.t 113
P
PaBE - e v et 122
page, within @titlepage 33
pagesizes ... 160
paragraphindent 41
Phoo.... 151
point 118
PoUnds. ... 115
print.......... 117
printindex 44
prref 70
Q
questiondowniiiiiia... 113
quotation 84
R
r (roman font)........... 82
raisesectionsl 50
ref ... 69
registeredsymbol.......................... 115
result......... 116
ringaccent 113
TIMACTO . o v veteee et et et e e 147

Appendix G: Command and Variable Index

S

SAMPD . .o ettt e e 76
sc (small caps font)........... 81
sectionm............. ... 48
setchapternewpage.......................... 40
setcontentsaftertitlepage 38
setfilename 29
setshortcontentsaftertitlepage............ 38
settitle........ 30
shortcaption.............................. 100
shortcontents 37
shorttitlepage 33
smallbook 160
smalldisplay 87
smallexamplecciiuiinain.. 87
smallformat 87
smalllisp ... 87
sp (line spacing) ... 122
sp (titlepage line spacing) 33
T 113
Strong...... 81
subheading 49
subsection 49
subsubheading 50
subsubsection.............l 50
subtitle........... 34
summarycontents............................ 37
syncodeindex 107
synindex il 108

T

t (typewriter font) L 82
BAD 97
table . .o 94
7= 139
TeX e 114
texinfo-all-menus-update 20
texinfo-every-node-update 20
texinfo-format-buffer................. 23, 169
texinfo-format-region................. 23, 169
texinfo-indent-menu-description........... 22
texinfo-insert-Qcode....................... 16
texinfo-insert-@dfn........................ 16
texinfo-insert-Q@end........................ 16
texinfo-insert-@example 17
texinfo-insert-@item....................... 16
texinfo-insert-@kbd........................ 16
texinfo-insert-@node....................... 16
texinfo-insert-@noindent 16
texinfo-insert-@samp....................... 16
texinfo-insert-@table 16
texinfo-insert-Qvar........................ 17
texinfo-insert-braces 17
texinfo-insert-node-lines 22

texinfo-make-menu.......................... 20

240
texinfo-master-menu........................ 19
texinfo-multiple-files-update............ 215
texinfo-multiple-files-update (in brief).... 22
texinfo-sequential-node-update............ 22
texinfo-show-structure................ 18, 226
texinfo-start-menu-description............ 17
texinfo-tex-buffer............ 24
texinfo-tex-print.......................... 24
texinfo-tex-region............ 24
texinfo-update-node........................ 20
thischapter, 222
thischaptername........................... 222
thisfile i 222
thispage i 222
thistitle 222
tie (unbreakable interword space) 122
tieaccent Ll 113
title.o 34
titlefont 33
titlepage 33
todayo 222
BOP e et 38
top (@-command) 57
U
u (breve accent) L. 113
ubaraccentl 113
udotaccent L., 113
ULMACTO .« ettt e e eee et e e e e e e e 148
unnumbered 48
unnumberedsec i 49
unnumberedsubsec................ 49
unnumberedsubsubsec........................ 50
up-list........ 17
uref 71
\Va
v (check accent) 113
value. ... 140
2 7
VerD .ot 77
verbatim........... 85
verbatiminclude............................ 86
vskip TEX vertical skip...................... 35
vtable. ... 96
\%%

w (prevent line break) 121
X

XML ..o 139
xref ... 65

Appendix G: Concept Index

Concept Index

!
TP 113
$
SId . 210
$Id expansion, preventing 121
(dir) as Up node of Topnode 57
-—commands-in-node-names 164
--css-include 164
——delete 175
--dir-file=name........................... 175
==doCbOOK 164
--enable-encoding 145, 164
——entry=text i 175
——error-limit=limit 164
-—fill-column=width 164
--footnote-style, ignored in HTML output
....................................... 177
--footnote-style=style 164
——force. 164
—=help.....coii 164, 175
—=html.. 164
——ifdocbook 165
—=ifhtml 165
——ifinfo 165
—-ifplaintext 165
it 165
——ifxml. .. 165
——info-dir=dir............... 175
——info-file=file..............coiuuiruun... 175
——item=texXt ... 176
--macro-expand=file 165
--no-headers 165
—-—-no-ifdocbook 165
—-no-ifhtml 165
——no-ifinfo........... 165
--no-ifplaintext.......................... 165
——no-iftex 165
——no-ifxml 165
--no-number-footnotes 166
--no-pointer-validate 166
—-no-split ... 165
--no-validate 166
B o Lo et 2=V o « NP 166
-—-number-sections......................... 166
——output=file............................. 166

--paragraph-indent=indent 166

241
——quiet. ... 176
--reference-limit=limit 166
SSTEMOVE Lottt e e e 176
--—section=sec 176
--split-size=num.......................... 166
—=VerbOSe 167
—-version.............iiiiii 167, 176
SoXML L 167
D AT . 175
A name 175
SDvar ... 164
—E file 165
—e limit 164
—eteXt .. 175
SF 164
“fwidth........ 164
“ho 164, 175
S dir . 165
“1file .. 175
—0 File .ot 166
SPdir . 166
—pindent........... ... 166
B 176
Srolimit..oooo 166
T8 BEC i 176
SS SEYLe .t 164
SV 167, 176
.cshre initialization file 158
.profile initialization file 158
<
<ACTONYIM> A . . o oottt 80
<blockquote> HTML tag 84
<lineannotation> Docbook tag 82

<meta> HTML tag, and charset specification .. 145
<meta> HTML tag, and document description.. 40

<note> Docbook tag 84
<small>tag.......... 81
<thead> HTML tag 97
<title> HTML tag.......... 30
<URL: convention, not used 72
?

e 113

Appendix G: Concept Index

Q@

‘@’ as continuation in definition commands. . ..
@-command list
@-command syntax00.....
@-commands
@-commands in @node, limited support
@-commands in nodename.
@import specifications, in CSS files
@include filesample
Omenu parts i
@node line writing
@value in @node lines.......................
Qw, for blank items...........................

\

“\input’ source line ignored...................

8

8-bit characters, in HTML cross-references. . . .

Abbreviations for keys
Abbreviations, tagging
Abstract of document
Accents, inserting................... ...
Acronyms, tagging,
Acute accent

Aliases, command
All-permissive copying license................
Allow line break

Another Info directory
Arguments, repeated and optional
ASCIT text output
Aspect ratio of images
autoexec.bat L L
automake, and version info
Automatic pointer creation with makeinfo.....
Automatically insert nodes, menus
Auxiliary files, avoiding

182

242
B
B5 paper, printingon 161
Back-end output formats...................... 4
Backslash in macros 147
Backslash, and macros 148
Badly referenced nodes...................... 227
Bastard title page................ 33
Batch formatting for Info.................... 170
Beebe, Nelson 4
Beginning a Texinfo file...................... 27
Beginning line of a Texinfo file................ 29
Berry, Karl....... 14
Bigpoints........ 102
Black rectangle in hardcopy 159
Blank lines.............., 122
Blank lines, as paragraph separator 9
Body of amacro............... 147
Bold font............co 82
Bolio ... 14
Book characteristics, printed................... 7
Book, printing small 160
border-pattern of Window.............. 132, 133
BoTEX . oo 14
Box with rounded corners 90
Box, ugly black in hardcopy 159
Braces and argument syntax................. 203
Braces, in macro arguments 148
Braces, inserting................. ... o oL 110
Braces, whentouse........................... 8
Breaksinaline............................. 120
Breve accentl 113
Buffer formatting and printing................ 23
Bugs, reporting oL 3
Bullets, inserting 114
C
Captions, for floats 100
Caron accentc.iiiiiia.. 113
Cascading Style Sheets, and HTML output ... 178
Caseinnodename........................... 56
Case, not altering in @code 74
Catching errors with Info formatting 223
Catching errors with TEX formatting......... 224
Catching mistakes 223
Categories, choosing 174
Cedilla accent ..., 113
Centimeters, 102
Chapter structuring. 46
Chapters, formatting one at a time........... 153
Character set, declaring 145
Characteristics, printed books or manuals. 7
Characters, basic input........................ 9
Characters, invalid in node name.............. 56
Chassell, Robert J............................ 14
Check accent 113
Checking for badly referenced nodes.......... 227
Checklist for bug reports 3

Appendix G: Concept Index

CICETOS .« o vttt e 102
Circumflex accent........................... 113
code, value for @kbdinputstyle............... 75
Collapsing whitespace around continuations... 125
Colon in nodename 56
Colon, last in INFOPATH 173
Column widths, defining for multitables 97
Combining indices 107
Comma in nodename. 56
Comma, in macro arguments 148
Command aliasesooou.... 150
Command definitions 135
Command names, indicating.................. 79
Command syntax..............oeeennnno... 203
Commands to insert special characters 110
Commands using raw TEX................... 138
Commands, inserting them 16
Commas, inserting.......................... 110
Commentst 10
Comments, in CSS files 178
Compile command for formatting 157
Compressed files, reading. 175
Conditionally visible text.................... 137
Conditionals, nested 143
Conditions for copying Texinfo................. 2
Contents, after title page..................... 38
Contents, Tableof 37
Contents-like outline of file structure 18
Continuation lines in definition commands. ... 125
Conventions for writing definitions 135
Conventions, syntactic 9
Copying conditionsoooiio.. 2
Copying Permissions 31
Copying software 43
Copying text, including 32
Copyright holder for FSF works............... 32
Copyright page 35
Copyright page, for plain text................. 32
Copyright word, always in English 31
Correcting mistakes......................... 223
cp (concept) index.......................... 105
Create nodes, menus automatically............ 18
Creating an Info file 163
Creating an unsplit file...................... 228
Creating index entries....................... 106
Creating pointers with makeinfo.............. 57
Cropmarks for printing...................... 161
Cross reference parts......................... 64
Cross references ... 63
Cross references using @inforef............... 71
Cross references using @pxref................. 70
Cross references using @ref 69
Cross references using @xref 65
Cross-reference targets, arbitrary.............. 58
Cross-references, in HTML output 179
CSS, and HTML output..................... 178

Custom page sizes 160

243
Customize Emacs package
(Development/Docs/Texinfo) 157
Customized highlighting..................... 150
Customizing of TEX for Texinfo.............. 158
CVSSId ... 210
D
Dashes insource................oooviiiina... 9
Debugging the Texinfo structure............. 223
Debugging with Info formatting.............. 223
Debugging with TEX formatting............. 224
Defining indexing entries 106
Defining macros, 147
Defining new indices 108
Defining new Texinfo commands............. 147
Definition command headings, continuing. 125
Definition commands........................ 124
Definition conventions....................... 135
Definition lists, typesetting 95
Definition template 124
Definitions grouped together................. 126
Delimiter character, for verbatim.............. 7
Depth of text area.......................... 160
Description for menu, start 17
Description of document 40
Details of macrousage 149
Didot points........... oo 102
Different cross reference commands............ 63
Dimension formatting....................... 112
Dimensions and image sizes 102
Dir categories, choosing 174
‘dir’ directory for Info installation........... 171
‘dir’ file listing L 172
‘dir’ file, creating your own 174
‘dir’ files and Info directories................ 172
Dir files, compressed 175
‘dir’, created by install-info.............. 175
Display formatting........................... 87
Displayed equations......................... 116
distinct, value for @kbdinputstyle 75
Distorting images........................... 102
Distribution............ L 43
Docbook output 5
Docbook, including raw 138
Document description........................ 40
Document input encoding 145
Document language, declaring 144
Document Permissions 31
Documentation identification 210
Dotaccent 113
Dotless i, j.oooooeeoo 113
Dots, inserting 114
Double-colon menu entries.................... 60
DTD, for Texinfo XML........................ 5
Dumas, Patrice............... 179
Dumping a fmt file..................... ... 159
DVIfile....ooooiooi 152

Appendix G: Concept Index

Ellipsis, inserting 114
Em dash, compared to minus sign............ 115
Em dash, producing.............. 9
Emacs........... 15
Emacs shell, format, print from.............. 155
Emacs-W3 4
Emphasizing text 81
Emphasizing text, font for.................... 81
En dash, producing oL 9
enable. 131
Encoding, declaring 145
‘End’ node footnote style.................... 103
End of header line 31
End titlepage starts headings 36
Ending a Sentence................... 111
Ending a Texinfo file......................... 44
Entries for an index......................... 106
Entries, making index................ 105
Enumeration L 93
Environment indentation 42
Environment variable INFOPATH.............. 173
Environment variable TEXINFO_QUTPUT_FORMAT
....................................... 167
Environment variable TEXINPUTS............. 158
epsf.tex 102
epsf.tex, installing............... 158
Equations, displayed 116
Equivalence, indicating...................... 118
Error message, indicating.................... 117
Errors, parsing 168
Es-zet ... 113
Furopean Ad paper......................... 160
Evaluation glyph 116
Example beginning of Texinfo file............. 27
Example indentation......................... 42
Examplemenu 60
example, value for @kbdinputstyle............ 5
Examples in smaller fonts 87
Examples, formatting them................... 84
Examples, glyphs for........................ 116
Expanding macros........... L 148
Expansion of 8-bit characters in HTML
cross-references......................... 182
Expansion, indicating 116
expansion, of node names in HTML
cross-references......................... 180

Expressions in a program, indicating 74

244
F
FBI,asacronym........................... 80
FDL, GNU Free Documentation License. 230
Feminine ordinal............ 113
File beginning 27
Fileending............ 44
File name collision 29
File section structure, showing it.............. 18
Final output 159
Finding badly referenced nodes 227
Fine-tuning, and hyphenation................ 121
First line of a Texinfo file..................... 29
Firstnode........... 56
First paragraph, suppressing indentation of 42
Fixed-width font...................... 82
Float environment 99
Floating accents, inserting................... 113
Floating, not yet implemented 99
Floats, in general 99
Floats, list of 100
Floats, making unnumbered 99
Floats, numbering of 100
Flooding 70
fn (function) index 105
Fonts for indices............................ 108
Fonts for printing, not Info................... 82
Footings 219
Footnotes 103
Force line break 120
Forcing indentation 90
Forcing line and page breaks................. 120
Format a dimension......................... 112
Format and print hardcopy 152
Format and print in Texinfo mode 155
Format file, dumping........................ 159
Format with the compile command........... 157
Format, print from Emacs shell 155
Formats for images 101
Formatting a file for Info.................... 163
Formatting commands 8
Formatting examples......................... 84
Formatting for Info 23
Formatting for printing....................... 23
Formatting headings and footings............ 219
Formatting requirements 157
Formatting with tex and texindex........... 152
Formulas, mathematical 115
Fox, Brian 14
Free Documentation License, including entire
....................................... 211
Free Software Directory 174
Frequently used commands, inserting.......... 16
Frontmatter, text in 27
Full texts, GNU 210
Function definitions......................... 135

Appendix G: Concept Index

G

General syntactic conventions.................. 9
Generating menus with indices................ 44
Generating plain text files................... 165
German S......... . 113
GIF images, unsupported due to patents 101
Global Document Commands................. 40
Globbing. ... 153
Glyphs. ... 116
GNUEmMacs.ooviiiiiii i 15
GNU Emacs shell, format, print from 155
GNU Free Documentation License, including entire

....................................... 211
GNU sample textsoo.. .. 210
Going to other Info files’ nodes 61
Grave acCentuueiiineiinnai... 113
Grave accent, vs. left quote.................... 9
Group (hold text together vertically)......... 122
Grouping two definitions together............ 126

H

Hacek accent 113
Hardcopy, printing it........................ 152
‘hboxes’, overfull 159
Header for Texinfo files....................... 28
Header of a Texinfo file....................... 29
Heading row, in table 97
Headings........... 219
Headings, indentation after................... 42
Headings, page, begin to appear 36
Height of images............................ 102
Height of text area....................... ... 160
help2man........... ... 5
Hierarchical documents, and menus 59
Highlighting text 73
Highlighting, customized 150
Hints ... 204
History of Texinfo 14
Holder of copyright for FSF works 32
Holding text together vertically 122
href, producing HTML 71
HTML cross-reference 8-bit character expansion
....................................... 182
HTML cross-reference command expansion ... 181
HTML cross-reference link basics 179
HTML cross-reference mismatch 183
HTML cross-reference node name expansion .. 180
HTML cross-references...................... 179
HTML output 4, 177
HTML output, and encodings 145
HTML output, browser compatibility of 177
HTML output, split......................... 177
HTML, and CSS, .. 178
HTML, including raw 138
http-equiv, and charset specification 145
Hungarian umlaut accent.................... 113
Hurricanes o 69

245
Hyphen, compared to minus................. 115
Hyphenation patterns, language-dependent ... 144
Hyphenation, helping TEX do 121
Hyphenation, preventing 121
Hyphens in source, two or three in a row 9
I
1(dotless i) ..o 113
Identification of documentation 210
If text conditionally visible 137
Ignored before @setfilename 29
Ignored text................., 10
Image formats.......... 101
Images, alternate text for................... 101
Images, inserting 101
Images, scaling 102
Incheso 102
Include file sample 217
Include files i 215
Include files requirements. 216
Include files, and section levels................ 50
Including a file verbatim 86
Including permissions text.................... 32
Indentation undoing 88
Indentation, forcing 90
Indentation, omitting 89
Indenting environments 42
Indenting paragraphs, control of 41
Indenting, suppressing of first paragraph....... 42
Index entries............ 106
Index entries, making 105
Index entry writing 106
Index file names 152
Index font types............. 106
Indexing table entries automatically........... 96
Indicating commands, definitions, etc.......... 73
Indicating evaluation....................... 116
Indices.........cooii i 105
Indices, combining them.................... 107
Indices, defining new....................... 108
Indices, printing and menus 44
Indices, sorting 152
Indices, two letter names 107
Indirect subfiles 170
Info batch formatting 170
Info file installation 171
Info file name, choosing 29
Info file, listing anew 172
Info file, splitting manually 229
Infofilesc 5
Info format, and menus 59
Info formatting 23
Info installed in another directory........... 172
Infooutput..............o i 4
Info output, and encoding 145
Info validating a large file 228
Info, creating an online file 163

Appendix G: Concept Index

Info-directory-list....................... 173
Info; other files’ nodes........................ 61
INFOPATH e 173
Initialization file for TEX input.............. 158
Input encoding, declaring.................... 145
Insert nodes, menus automatically 18
Inserting @ (literal ‘@) 110
Inserting accents................ 113
Inserting dots il 114
Inserting ellipsis 114
Inserting frequently used commands........... 16
Inserting indentation......................... 90
Inserting space 111
Inserting special characters and symbols. 110
‘INSTALL’ file, generating 165
install-info........... 175
Installing an Info file............. 171
Installing Info in another directory........... 172
Internationalization...................... ... 144
Introduction to Texinfo..................... ... 3
Introduction, as part of file................... 43
Invalid characters in node names.............. 56
Invoking macros.......... oL 148
Invoking nodes, including in dir file 175
ISO 639 codes.........ooovviiiiii. 144
Ttalicfont 82
Ttemization........... 92

J

J(dotless j)....ooii 113
JPG image format 101

K

Keyboard input o 75
Keys, recommended names 76
Keyword expansion, preventing 121
Keywords, indicating......................... 74
Knuth, Donald 7
ky (keystroke) index, 105

b 113
Lo 113
Language codes. 144
Language, declaring......................... 144
Larger or smaller pages 161
IATEX, processing with texi2dvi............. 154
Legal paper, printingon..................... 161
Length of filenames 29
Less cluttered menu entry 60
License agreement 43
License for all-permissive copying 214
License for verbatim copying 213
Line breaks 120

Line breaks, preventing 121

246
Line length, column widths as fraction of 97
Line spacing.............coooiiiiiiin... 122
Lispexample 86
Lisp examples in smaller fonts 87
List of @-commands 184
List of floats 100
Listing anew Infofile....................... 172
Lists and tables, making...................... 91
Local variables 157
Local Variables: section, for encoding 145
Location of menus 59
Looking for badly referenced nodes........... 227
Lowering and raising sections................. 50
1pr (DVI print command)................... 154
1pr-d, replacements on MS-DOS/MS-Windows
....................................... 154
Lynx. .o 4
M
Macro definitions. 135, 147
Macrodetails............. L 149
Macro expansion, indicating 116
Macro invocation L. 148
Macro names, valid characters in............. 147
Macron accent......... 113
Macros . ..o 147
Macros in definition commands 125
Macros, undefining. 148
Magnified printing 161
Mailto link o 80
makeinfo L Ll 163
makeinfo inside Emacs...................... 168
makeinfo options 163
Making a printed manual.................... 152
Making a tag table automatically 170
Making a tag table manually 229
Making cross references 63
Making line and page breaks 120
Making lists and tables....................... 91
Man page output, not supported............... 5
Man page, reference to....................... 71
Manual characteristics, printed................. 7
Margins on page, not controllable............ 161
Marking text within a paragraph.............. 73
Marking words and phrases................... 73
Masculine ordinal 113
Master menu 39
Mathematical expressions............... 115, 139
Menu description, start....................... 17
Menu entries with two colons 60
Menu example.................. 60
Menu location 59
Menuparts.............coiiii 60
Menu writing............. ... o L 59
Menu, master 39
Menusoooiiii 59
Menus generated with indices................. 44

Appendix G: Concept Index

Menus, omitting 165
METAKEY .o oo 76
Meta-syntactic chars for arguments 126
Methods, object-oriented 133
Millimetersouueiineei e 102
Minimal requirements for formatting 157
Minimal Texinfo file (requirements) 10
Mismatched HTML cross-reference source and
target 183
Mistakes, catching 223
Mode, using Texinfo 15
Monospace font................. i 82
Mozillao 4
Multiple dashes in source...................... 9
Multiple spaces............. 112
Multitable column widths 97
Multitable rows. 97
Must have in Texinfo file..................... 10
Mutually recursive macros................... 147

N

Names for indices........................... 107
Names of index files......................... 152
Names of macros, valid characters of 147
Names recommended for keys................. 76
Naming a ‘Top’ Node in references............ 69
NASA, asacronymccovvunn.... 80
Navigation bar, in HTML output 177
Navigation links, omitting................... 165
Need space at page bottom 123
Nesting conditionals 143
New index defining 108
New Info file, listing it in ‘dir’ file........... 172
New Texinfo commands, defining 147
Newlines, as blank lines 9
Next node of Top node....................... 57
Node line requirements....................... 56
Node line writing 55
node name expansion, in HTML cross-references
....................................... 180
Node name must be unique................... 56
Node name, should not contain @-commands .. 56
Node names, choosing........................ 54
Node names, invalid charactersin............. 56
Node separators, omitting 165
Node, ‘Top’ ... 38
Node, defined 54
Nodes in other Info files...................... 61
Nodes, catching mistakes.................... 223
Nodes, checking for badly referenced 227
Non-breakable space, fixed 121
Non-breakable space, variable................ 122
Not ending a sentence....................... 111

Numbering of floats......................... 100

247
O
O'Dea, Brendan 5
B e e 113
2 113
Object-oriented programming................ 132
Obtaining TEX 162
Occurrences, listing with @Qoccur 227
OB e 113
B 113
Omitting indentation......................... 89
Optional and repeated arguments............ 126
Options for makeinfo 163
Ordinals, Romance 113
Ordinary TEX commands, using 138
Other Info files’ nodes........................ 61
Outline of file structure, showing it............ 18
Output file splitting. 165
Output formats........... ... 4
Output formats, supporting more 5
Overfull ‘hboxes’ 159
Overview of Texinfo........................... 3
Owner of copyright for FSF works 32
P
Page breaks.......... oo 120, 122
Page delimiter in Texinfo mode 18
Page headings 219
Page numbering L 219
Page sizes for books......................... 160
Page sizes, customized 160
page-delimiter............................. 18
Pages, starting odd 40
Papersize, Ad.........., 160
Paragraph indentation control 41
Paragraph separator 9
Paragraph, marking text within............... 73
Parameters to macros....................... 147
Parentheses in nodename..................... 56
Parsing errors 168
Part of file formatting and printing............ 23
Parts of a cross reference............... 64
Parts of a master menu 39
Partsofamenu 60
Patches, contributing............ 3
PDF output 4, 162
pdfcolor.tex, installing 158
pdftex 4, 162
pdftex, and images......................... 101
Period in nodename.................. 56
Periods, inserting 111
Permissions text, including 32
Permissions, printed 35
pg (program) indexc...oeo.... 105
Picaso 102
Pictures, inserting 101
Pinard, Frangois.................. 14
Plain TEX 138

Appendix G: Concept Index

Plain text output.................. 4, 165
PNG image format 101
Point, indicating in a buffer 118
Pointer creation with makeinfo............... 57
Pointer validation with makeinfo 167
Pointer validation, suppressing 153, 166
Points (dimension).......................... 102
Predefined names for indices................. 107
Preparing for TEX 158
Preventing first paragraph indentation......... 42
Preventing line and page breaks 120
Previous node of Top node 57
Print and format in Texinfo mode............ 155
Print, format from Emacs shell 155
Printed book and manual characteristics........ 7
Printed output, indicating................... 117
Printed permissions.......................... 35
Printing a region or buffer.................... 23
Printing an index............................ 44
Printing cropmarks 161
Printing DVI files, on MS-DOS/MS-Windows
....................................... 154
Printing hardcopy 152
Problems, catching.......................... 223
Program names, indicating 79
Prototype row, column widths defined by 97
Q
Quotation characters ('), in source............. 9
Quotationscoiiiii 84
R
Ragged left..........., 88
Ragged right 88
Raising and lowering sections................. 50
Raw formatter commands 138
RCSSIA ... 210
Recommended names for keys 76
Rectangle, black in hardcopy 159
Recursion, mutual 147
Recursive macro invocations................. 147
Reference to @Q-commands................... 184
References 63
References using @inforef.................... 71
References using @pxref 70
References using @ref 69
References using @xref 65
Referring to other Info files................... 61
Region formatting and printing 23
Region printing in Texinfo mode............. 155
Reid, Brian 14
Repeated and optional arguments............ 126
Reporting bugsl 3
Required in Texinfo file 10
Requirements for formatting................. 157

Requirements for include files................ 216

248
Requirements for updating commands......... 21
Reserved words, indicating 74
Restrictions on node names................... 56
Result of an expression...................... 116
ridt.eps 102
Ringaccent 113
Roman font 82
Romance ordinals........................... 113
Rounded rectangles, around examples 90
Rows, of a multitable 97
Running an Info formatter.................... 23
Running Info-validate 228
Running macros.............. 148
Running makeinfo in Emacs................. 168
S
Sample @include file........................ 217
Sample function definition................... 135
Sample Texinfo file, no comments............ 209
Sample Texinfo file, with comments 12
Sample Texinfo files......................... 209
Sample texts, GNU 210
Scaled points............. 102
Scaling images.cooiiiiaa.... 102
Schwab, Andreas 14
Scribe 14
SEA SUTZES .« o v ettt ettt 69
Section structure of a file, showing it 18
Sections, raising and lowering................. 50
Sentence ending punctuation 111
Sentence non-ending punctuation 111
‘Separate’ footnote style..................... 103
SGML-tools output format 5
Sharp S 113
Shell formatting with tex and texindex...... 152
Shell printing, on MS-DOS/MS-Windows. 154
Shell, format, print from 155
Shell, running makeinfoin 168
Short captions, for lists of floats 100
Short table of contents 37
Showing the section structure of a file......... 18
Showing the structure of a file............... 226
Shrubbery 141
Site-wide Texinfo configuration file........... 158
Size of printed book 160
Slanted typewriter font, for @kbd.............. 75
Small book size................ 160
Small capsfont 81
Small examples.......................i... 87
Software copying permissions 43
Sorting indices 152
Source file format 4
Source files, characters used 9
Space, inserting horizontal 112
Space, inserting vertical 122
Spaces IN MAacrosovuneeinnee... 147
Spaces innodename......................... 56

Appendix G: Concept Index

Spaces, IN MeNuSsovveeieeneninnn.... 60
Spacing, inserting. 111
Special characters, inserting 110
Special displays.............coiiii .. 99
Special insertions 110
Special typesetting commands 114
Specifying index entries 106
Split HTML output......................... 177
Splitting an Info file manually 229
Splitting of output files...................... 165
5 113
Stallman, Richard M. 14
Start of header line 29
Starting chapters 40
Structure of a file, showing it 18
Structure, catching mistakes in 223
Structuring of chapters....................... 46
Subsection-like commands................. ... 49
Subsub commands 50
Suggestions for Texinfo, making................ 3
Summary of document 40
Suppressing first paragraph indentation. 42
Suppressing indentation 89
Syntactic conventions 9
Syntactic tokens, indicating................... 74
Syntax, of @-commands..................... 203
Syntax, optional & repeated arguments. 126

T

Table of contents 37
Table of contents, after title page 38
Table of contents, for floats.................. 100
Tables and lists, making................... ... 91
Tables with indexes 96
Tables, making multi-column 96
Tables, making two-column................... 94
Tabs; don’t use!, 9
Tag table, making automatically 170
Tag table, making manually 229
Targets for cross-references, arbitrary.......... 58
Template for a definition 124
TEX commands, using ordinary.............. 138
TEX index sorting 152
TEX input initialization..................... 158
TEX, how toobtain......................... 162
texi2dvi ... 153
texi2dvi (shell script) 154
texi2roff, unsupported software 7
texindex i 152
Texinfo commands, defining new............. 147
Texinfo file beginning 27
Texinfo fileending 44
Texinfo file header 28
Texinfo file minimum 10
Texinfo file section structure, showing it 18
Texinfo history 14
Texinfomode. 15

249
Texinfo overview. 3
Texinfo printed book characteristics............ 7
Texinfo requires @setfilename................ 29
Texinfo, introduction to 3
texinfo.cnf Ll 30
texinfo.cnf installation.................... 158
texinfo.dtd il 5
texinfo.tex, installing 158
TEXINFO_OUTPUT_FORMAT 167
TEXINPUTS e 158
Text width and height 160
Text, conditionally visible 137
Text, markingup 73
Thin space between number, dimension. 112
Tie-after accent............................. 113
Tied spaceooviiii i 122
Tilde accento i 113
time-stamp.el............... 211
TIPS .o 204
Title page. ... 33
Title page, bastard........................... 33
Title page, for plain text 32
Titlepage end starts headings................. 36
Topnode ... 38
Top node example 39
Top nodeis first............................. 56
‘Top’ node naming for references.............. 69
tp (data type) index........................ 105
Tree structuring 46
Two ‘First’ Lines for @deffn................. 126
Two letter names for indices................. 107
Two named items for @table 96
Two part menuentry 60
xi-cC.texX .. 144
Typesetting commands for dots, etc. 114
Typewriter font................... 82
U
Ugly black rectangles in hardcopy............ 159
Umlaut accent 113
Unbreakable space, fixed 121
Unbreakable space, variable 122
Uncluttered menu entry 60
Undefining macros.......................... 148
Underbar accentcooooiiiia... 113
Underdot accent 113
Unicode quotation characters.................. 9
Uniform resource locator, indicating........... 80
Uniform resource locator, referring to 71
Unique nodename requirement 56
Unnumbered float, creating................... 99
Unprocessed text 10
Unsplit file creation......................... 228
Up node of Topnode......................... 57
UPDATED Automake variable 211
Updating nodes and menus................... 18

Updating requirements....................... 21

Appendix G: Concept Index

URI syntax for Info.............. 6
URL, indicatingooiii.... 80
URL, referring to............................ 71
Usage tips.ooooiiii 204
Userinput i 75
User options, marking....................... 129
User-defined Texinfo commands.............. 147
Using Texinfo in general 3

v

Validating a large file 228
Validation of pointers....................... 167
Value of an expression, indicating............ 116
Variables, object-oriented 132
Verbatim copying license 213
Verbatim environment 85
Verbatim in-line text......................... 77
Verbatim, include file 86
VERSION Automake variable 211
Version control keywords, preventing expansion of
....................................... 121
Version number, for install-info 176
Vertically holding text together.............. 122
Visibility of conditional text................. 137
vr (variable) index................ 105

\%\%

W3 consortiumoiiii.... 4
Weinberg, Zack..............., 14

250
Weisshaus, Melissa........................... 14
White space in node name.................... 56
White space, excessive 120
Whitespace in macros. 147
Whitespace, collapsed around continuations. .. 125
Whitespace, inserting 112
Width of images.................. 102
Width of text area.......................... 160
Widths, defining multitable column 97
Wildcards 153
Words and phrases, marking them 73
Writingamenu................... 59
Writing an @node line........................ 55
Writing index entries.................. 106
X
KAV oottt 4
XML output 5
XML, including raw 138
XPM image format............... 101
Y
Years, in copyright line.................... ... 32
Z
Zaretskii, Eli 14
Zuhn, David D............. 14

	Texinfo Copying Conditions
	Overview of Texinfo
	Reporting Bugs
	Using Texinfo
	Output Formats
	Info Files
	Printed Books
	@-commands
	General Syntactic Conventions
	Comments
	What a Texinfo File Must Have
	Six Parts of a Texinfo File
	A Short Sample Texinfo File
	History

	Using Texinfo Mode
	Texinfo Mode Overview
	The Usual GNU Emacs Editing Commands
	Inserting Frequently Used Commands
	Showing the Section Structure of a File
	Updating Nodes and Menus
	The Updating Commands
	Updating Requirements
	Other Updating Commands

	Formatting for Info
	Printing
	Texinfo Mode Summary

	Beginning a Texinfo File
	Sample Texinfo File Beginning
	Texinfo File Header
	The First Line of a Texinfo File
	Start of Header
	@setfilename: Set the output file name
	@settitle: Set the document title
	End of Header

	Document Permissions
	@copying: Declare Copying Permissions
	@insertcopying: Include Permissions Text

	Title and Copyright Pages
	@titlepage
	@titlefont, @center, and @sp
	@title, @subtitle, and @author
	Copyright Page
	Heading Generation
	The @headings Command

	Generating a Table of Contents
	The `Top' Node and Master Menu
	Top Node Example
	Parts of a Master Menu

	Global Document Commands
	@documentdescription: Summary Text
	@setchapternewpage:
	@paragraphindent: Paragraph Indenting
	@firstparagraphindent: Indenting After Headings
	@exampleindent: Environment Indenting

	Software Copying Permissions

	Ending a Texinfo File
	Printing Indices and Menus
	@bye File Ending

	Chapter Structuring
	Tree Structure of Sections
	Structuring Command Types
	@top
	@chapter
	@unnumbered and @appendix
	@majorheading, @chapheading
	@section
	@unnumberedsec, @appendixsec, @heading
	The @subsection Command
	The @subsection-like Commands
	The `subsub' Commands
	@raisesections and @lowersections

	Nodes
	Two Paths
	Node and Menu Illustration
	The @node Command
	Choosing Node and Pointer Names
	How to Write an @node Line
	@node Line Tips
	@node Line Requirements
	The First Node
	The @top Sectioning Command

	Creating Pointers with makeinfo
	@anchor: Defining Arbitrary Cross-reference Targets

	Menus
	Menu Location
	Writing a Menu
	The Parts of a Menu
	Less Cluttered Menu Entry
	A Menu Example
	Referring to Other Info Files

	Cross References
	What References Are For
	Different Cross Reference Commands
	Parts of a Cross Reference
	@xref
	What a Reference Looks Like and Requires
	@xref with One Argument
	@xref with Two Arguments
	@xref with Three Arguments
	@xref with Four and Five Arguments

	Naming a `Top' Node
	@ref
	@pxref
	@inforef
	@url, @uref{@fam =@ttfam @def rm{tt}@tentt @char 123}url[, text][, replacement]{@fam =@ttfam @def rm{tt}@tentt @char 125}

	Marking Words and Phrases
	Indicating Definitions, Commands, etc.
	Highlighting Commands are Useful
	@code{@fam =@ttfam @def rm{tt}@tentt @char 123}sample-code{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@kbd{@fam =@ttfam @def rm{tt}@tentt @char 123}keyboard-characters{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@key{@fam =@ttfam @def rm{tt}@tentt @char 123}key-name{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@samp{@fam =@ttfam @def rm{tt}@tentt @char 123}text{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@verb{@fam =@ttfam @def rm{tt}@tentt @char 123}<char>text<char>{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@var{@fam =@ttfam @def rm{tt}@tentt @char 123}metasyntactic-variable{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@env{@fam =@ttfam @def rm{tt}@tentt @char 123}environment-variable{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@file{@fam =@ttfam @def rm{tt}@tentt @char 123}file-name{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@command{@fam =@ttfam @def rm{tt}@tentt @char 123}command-name{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@option{@fam =@ttfam @def rm{tt}@tentt @char 123}option-name{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@dfn{@fam =@ttfam @def rm{tt}@tentt @char 123}term{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@cite{@fam =@ttfam @def rm{tt}@tentt @char 123}reference{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@acronym{@fam =@ttfam @def rm{tt}@tentt @char 123}acronym[, meaning]{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@indicateurl{@fam =@ttfam @def rm{tt}@tentt @char 123}uniform-resource-locator{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@email{@fam =@ttfam @def rm{tt}@tentt @char 123}email-address[, displayed-text]{@fam =@ttfam @def rm{tt}@tentt @char 125}

	Emphasizing Text
	@emph{@fam =@ttfam @def rm{tt}@tentt @char 123}text{@fam =@ttfam @def rm{tt}@tentt @char 125} and @strong{@fam =@ttfam @def rm{tt}@tentt @char 123}text{@fam =@ttfam @def rm{tt}@tentt @char 125}
	@sc{@fam =@ttfam @def rm{tt}@tentt @char 123}text{@fam =@ttfam @def rm{tt}@tentt @char 125}: The Small Caps Font
	Fonts for Printing, Not Info

	Quotations and Examples
	Block Enclosing Commands
	@quotation: Block quotations
	@example: Example Text
	@verbatim: Literal Text
	@verbatiminclude file: Include a File Verbatim
	@lisp: Marking a Lisp Example
	@small...{} Block Commands
	@display and @smalldisplay
	@format and @smallformat
	@exdent: Undoing a Line's Indentation
	@flushleft and @flushright
	@noindent: Omitting Indentation
	@indent: Forcing Indentation
	@cartouche: Rounded Rectangles Around Examples

	Lists and Tables
	Introducing Lists
	@itemize: Making an Itemized List
	@enumerate: Making a Numbered or Lettered List
	Making a Two-column Table
	Using the @table Command
	@ftable and @vtable
	@itemx

	@multitable: Multi-column Tables
	Multitable Column Widths
	Multitable Rows

	Special Displays
	Floats
	@float [type][,label]: Floating material
	@caption & @shortcaption
	@listoffloats: Tables of contents for floats

	Inserting Images
	Image Syntax
	Image Scaling

	Footnotes
	Footnote Commands
	Footnote Styles

	Indices
	Making Index Entries
	Predefined Indices
	Defining the Entries of an Index
	Combining Indices
	@syncodeindex
	@synindex

	Defining New Indices

	Special Insertions
	Inserting @ and {@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} and @comma {}
	Inserting `@' with @@
	Inserting `{@fam =@ttfam @def rm{tt}@tentt @char 123}' and `{@fam =@ttfam @def rm{tt}@tentt @char 125}' with @{@fam =@ttfam @def rm{tt}@tentt @char 123} and @{@fam =@ttfam @def rm{tt}@tentt @char 125}
	Inserting `,' with @comma{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125}

	Inserting Space
	Not Ending a Sentence
	Ending a Sentence
	Multiple Spaces
	@dmn{@fam =@ttfam @def rm{tt}@tentt @char 123}dimension{@fam =@ttfam @def rm{tt}@tentt @char 125}: Format a Dimension

	Inserting Accents
	Inserting Ellipsis and Bullets
	@dots{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (...{}) and @enddots{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (...{})
	@bullet{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (bullet{})

	Inserting TeX{} and Legal Symbols: copyright{}, R{}
	@TeX{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (TeX{}) and @LaTeX{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (LaTeX{})
	@copyright{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (copyright{})
	@registeredsymbol{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (R{})

	@pounds{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (pounds{}): Pounds Sterling
	@minus{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (-{}): Inserting a Minus Sign
	@math: Inserting Mathematical Expressions
	Glyphs for Examples
	Glyphs Summary
	@result{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (=>{}): Indicating Evaluation
	@expansion{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (==>{}): Indicating an Expansion
	@print{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (-|{}): Indicating Printed Output
	@error{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (error{}): Indicating an Error Message
	@equiv{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (=={}): Indicating Equivalence
	@point{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125} (.{}): Indicating Point in a Buffer

	Forcing and Preventing Breaks
	Break Commands
	@* and @/: Generate and Allow Line Breaks
	@- and @hyphenation: Helping TeX{} Hyphenate
	@w{@fam =@ttfam @def rm{tt}@tentt @char 123}text{@fam =@ttfam @def rm{tt}@tentt @char 125}: Prevent Line Breaks
	@tie{@fam =@ttfam @def rm{tt}@tentt @char 123}{@fam =@ttfam @def rm{tt}@tentt @char 125}: Inserting an Unbreakable Space
	@sp n: Insert Blank Lines
	@page: Start a New Page
	@group: Prevent Page Breaks
	@need mils: Prevent Page Breaks

	Definition Commands
	The Template for a Definition
	Definition Command Continuation Lines
	Optional and Repeated Arguments
	Two or More `First' Lines
	The Definition Commands
	Functions and Similar Entities
	Variables and Similar Entities
	Functions in Typed Languages
	Variables in Typed Languages
	Data Types
	Object-Oriented Programming
	Object-Oriented Variables
	Object-Oriented Methods

	Conventions for Writing Definitions
	A Sample Function Definition

	Conditionally Visible Text
	Conditional Commands
	Conditional Not Commands
	Raw Formatter Commands
	@set, @clear, and @value
	@set and @value
	@ifset and @ifclear
	@value Example

	Conditional Nesting

	Internationalization
	@documentlanguage cc: Set the Document Language
	@documentencoding enc: Set Input Encoding

	Defining New Texinfo Commands
	Defining Macros
	Invoking Macros
	Macro Details
	@alias new=existing
	definfoenclose: Customized Highlighting

	Formatting and Printing Hardcopy
	Use TeX{}
	Format with tex and texindex
	Format with texi2dvi
	Shell Print Using lpr -d
	From an Emacs Shell
	Formatting and Printing in Texinfo Mode
	Using the Local Variables List
	TeX{} Formatting Requirements Summary
	Preparing for TeX{}
	Overfull ``hboxes''
	Printing ``Small'' Books
	Printing on A4 Paper
	@pagesizes [width][, height]: Custom Page Sizes
	Cropmarks and Magnification
	PDF Output
	How to Obtain TeX{}

	Creating and Installing Info Files
	Creating an Info File
	makeinfo Preferred
	Running makeinfo from a Shell
	Options for makeinfo
	Pointer Validation
	Running makeinfo Within Emacs
	The texinfo-format...{} Commands
	Batch Formatting
	Tag Files and Split Files

	Installing an Info File
	The Directory File dir
	Listing a New Info File
	Info Files in Other Directories
	Installing Info Directory Files
	Invoking install-info

	Generating HTML
	HTML Translation
	HTML Splitting
	HTML CSS
	HTML Cross-references
	HTML Cross-reference Link Basics
	HTML Cross-reference Node Name Expansion
	HTML Cross-reference Command Expansion
	HTML Cross-reference 8-bit Character Expansion
	HTML Cross-reference Mismatch

	@-Command List
	@-Command Syntax

	Tips and Hints
	Sample Texinfo Files
	Short Sample
	GNU Sample Texts
	Verbatim Copying License
	All-permissive Copying License

	Include Files
	How to Use Include Files
	texinfo-multiple-files-update
	Include Files Requirements
	Sample File with @include
	Evolution of Include Files

	Page Headings
	Headings Introduced
	Standard Heading Formats
	Specifying the Type of Heading
	How to Make Your Own Headings

	Formatting Mistakes
	makeinfo Find Errors
	Catching Errors with Info Formatting
	Catching Errors with TeX{} Formatting
	Using texinfo-show-structure
	Using occur
	Finding Badly Referenced Nodes
	Running Info-validate
	Creating an Unsplit File
	Tagifying a File
	Splitting a File Manually

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Command and Variable Index
	Concept Index

