
Babel, a multilingual package for use with LATEX’s
standard document classes∗

Johannes Braams
Kersengaarde 33

2723 BP Zoetermeer
The Netherlands

babel@braams.cistron.nl

Printed May 28, 2005

Abstract

The standard distribution of LATEX contains a number of document
classes that are meant to be used, but also serve as examples for other
users to create their own document classes. These document classes have
become very popular among LATEX users. But it should be kept in mind
that they were designed for American tastes and typography. At one time
they contained a number of hard-wired texts. This report describes babel,
a package that makes use of the new capabilities of TEX version 3 to pro-
vide an environment in which documents can be typeset in a non-American
language, or in more than one language.

Contents
1 The user interface 5

1.1 Languages supported by
Babel 6

1.2 Workarounds 7

2 Changes for LATEX2ε 7

3 Changes in Babel version 3.7 8

4 Changes in Babel version 3.6 9

5 Changes in Babel version 3.5 10

6 The interface between the

core of babel and the lan-
guage definition files 11
6.1 Support for active char-

acters 13
6.2 Support for saving macro

definitions 13
6.3 Support for extending

macros 14
6.4 Macros common to a

number of languages . . . 14

7 Compatibility with german.sty 14

8 Compatibility with ngerman.sty 15
∗During the development ideas from Nico Poppelier, Piet van Oostrum and many others have

been used. Bernd Raichle has provided many helpful suggestions.

1

9 Compatibility with the
french package 15

10 Identification 15

11 The Package File 16
11.1 Language options 16

12 The Kernel of Babel 20
12.1 Encoding issues (part 1) . 21
12.2 Multiple languages 21
12.3 Support for active char-

acters 37
12.4 Shorthands 38
12.5 Language attributes . . . 49
12.6 Support for saving macro

definitions 52
12.7 Support for extending

macros 53
12.8 Macros common to a

number of languages . . . 54
12.9 Making glyphs available . 55
12.10Quotation marks 55
12.11Letters 56
12.12Shorthands for quotation

marks 57
12.13Umlauts and trema’s . . . 59
12.14The redefinition of the

style commands 60
12.14.1Redefinition of

macros 61
12.15Cross referencing macros . 65
12.16marks 70
12.17Encoding issues (part 2) . 71
12.18Preventing clashes with

other packages 71
12.18.1ifthen 71
12.18.2varioref 72
12.18.3hhline 73
12.18.4General 73

13 Local Language Configura-
tion 74

14 Driver files for the docu-
mented source code 76

15 Conclusion 80

16 Acknowledgements 80

17 The Esperanto language 81

18 The Interlingua language 84

19 The Dutch language 86

20 The English language 91

21 The German language 96

22 The German language – new
orthography 101

23 The Breton language 105

24 The Welsh language 109

25 The Irish language 111

26 The Scottish language 113

27 The Greek language 115
27.1 Typing conventions 115
27.2 Greek numbering 115

28 The French language 125

29 TEXnical details 135
29.1 Initial setup 135
29.2 Caption names 138
29.3 Punctuation 140
29.4 French quotation marks . 142
29.5 French lists 144
29.6 French indentation of

sections 147
29.7 Formatting footnotes . . . 147
29.8 Formatting numbers . . . 148
29.9 Dots. 152
29.10Global layout 152
29.11Extra utilities 153
29.12Date and clean up 157

2

30 The Italian language 158
30.1 Support for etymological

hyphenation 161
30.2 Facilities required by the

ISO 31/XI regulations . . 163
30.3 Accents 164
30.4 Caporali or French dou-

ble quotes 165
30.5 Finishing commands . . . 168

31 The Latin language 169

32 Latin shortcuts 173

33 Etymological hyphenation 175

34 The Portuguese language 178

35 The Spanish language 183
35.1 The Code 185

36 The Catalan language 206

37 The Galician language 214

38 The Basque language 219

39 The Romanian language 223

40 The Danish language 225

41 The Icelandic language 228
41.1 Overview 228
41.2 TEXnical details 229
41.3 Captionnames and date . 231
41.4 Icelandic quotation marks 231
41.5 Old Icelandic 232
41.6 Formatting numbers . . . 233
41.7 Extra utilities 235

42 The Norwegian language 238

43 The Swedish language 243

44 The North Sami language 248
44.1 The code of samin.dtx . 248

45 The Finnish language 251

46 The Hungarian language 255

47 The Estonian language 274
47.1 Implementation 275

48 The Croatian language 279

49 The Czech language 281

50 The Polish language 284

51 The Serbocroatian language290

52 The Slovak language 294

53 The Slovenian language 299

54 The Russian language 302

55 The Bulgarian language 317

56 The Ukrainian language 330

57 The Lower Sorbian lan-
guage 345

58 The Upper Sorbian lan-
guage 347

59 The Turkish language 351

60 The Hebrew language 354
60.1 Acknowledgement 354
60.2 The docstrip modules . 355
60.3 Hebrew language defini-

tions 355
60.3.1 Hebrew numerals . 359

60.4 Right to left support . . . 367
60.4.1 Switching from

LR to RL mode
and back 367

60.4.2 Counters 371
60.4.3 Preserving logos . 372
60.4.4 List environments 372
60.4.5 Tables of moving

stuff 373
60.4.6 Two-column mode 378
60.4.7 Footnotes 379

3

60.4.8 Headings and
two-side support . 379

60.4.9 Postscript Porblems383
60.4.10Miscellaneous in-

ternal LATEX macros384
60.4.11Bibliography and

citations 386
60.4.12Additional bidi-

rectional commands388
60.5 Hebrew calendar 389

60.5.1 Introduction . . . 390
60.5.2 Registers, Com-

mands, Format-
ting Macros 391

60.5.3 Auxiliary Macros . 394
60.5.4 Gregorian Part . . 394
60.5.5 Hebrew Part . . . 396

61 Hebrew input encodings 400
61.1 Default definitions for

characters 402
61.2 The SI-960 encoding . . . 403
61.3 The ISO 8859-8 encod-

ing and the MS Windows
cp1255 encoding 403

61.4 The IBM code page 862 . 406

62 Hebrew font encodings 408
62.1 THIS SECTION IS OUT

OF DATE. UPDATE
DOCS TO MATCH HE8
ENCODING 408

62.2 The docstrip modules . 409
62.3 The LHEencoding defini-

tion file 411
62.4 The font definition files

(in LHE encoding) 412
62.4.1 Hebrew default font412
62.4.2 Hebrew sans-serif

font 413
62.4.3 Hebrew type-

writer font 413
62.4.4 Hebrew classic font 414

62.4.5 Hebrew shalom
fonts 415

62.4.6 Hebrew frank-
ruehl font 415

62.4.7 Hebrew carmel font 416
62.4.8 Hebrew redis font . 417

62.5 The HE8encoding defini-
tion file 418
62.5.1 CHECK HERE

FOR HE8 UP-
DATES 418

62.6 The font definition files
(in HE8 encoding) 420
62.6.1 Hebrew default font420
62.6.2 Hebrew sans-serif

font 420
62.6.3 Hebrew type-

writer font 421
62.6.4 8Bit OmegaHe-

brew font 421
62.6.5 8Bit Aharoni font 422
62.6.6 8Bit David font . . 422
62.6.7 8Bit Drugulin font 422
62.6.8 8Bit Ellinia font . 423
62.6.9 8Bit FrankRuehl

font 423
62.6.108Bit KtavYad font 423
62.6.118Bit Miri-

amMono font . . . 424
62.6.128Bit Nachlieli font 424
62.6.13Hebrew font

switching com-
mands 424

63 Hebrew in LATEX 2.09 com-
patibility mode 427
63.1 The docstrip modules . 428
63.2 Obsolete style files 428

64 The Bahasa language 429

65 Not renaming hyphen.tex 431

66 Support for formats based
on plainTEX 432

4

1 The user interface
The user interface of this package is quite simple. It consists of a set of commands
that switch from one language to another, and a set of commands that deal with
shorthands. It is also possible to find out what the current language is.

When a user wants to switch from one language to another he can do so using\selectlanguage
the macro \selectlanguage. This macro takes the language, defined previously
by a language definition file, as its argument. It calls several macros that should
be defined in the language definition files to activate the special definitions for the
language chosen.

The environment otherlanguage does basically the same as \selectlanguage,otherlanguage
except the language change is local to the environment. This environment is re-
quired for intermixing left-to-right typesetting with right-to-left typesetting. The
language to switch to is specified as an argument to \begin{otherlanguage}.

The command \foreignlanguage takes two arguments; the second argument\foreignlanguage
is a phrase to be typeset according to the rules of the language named in its first
argument. This command only switches the extra definitions and the hyphenation
rules for the language, not the names and dates.

In the environment otherlanguage* only the typesetting is done according tootherlanguage*
the rules of the other language, but the text-strings such as ‘figure’, ‘table’, etc.
are left as they were set outside this environment.

The environment hyphenrules can be used to select only the hyphenationhyphenrules
rules to be used. This can for instance be used to select ‘nohyphenation’, pro-
vided that in language.dat the ‘language’ nohyphenation is defined by loading
serohyph.tex.

The control sequence \languagename contains the name of the current lan-\languagename
guage.

If more than one language is used, it might be necessary to know which lan-\iflanguage
guage is active at a specific time. This can be checked by a call to \iflanguage.
This macro takes three arguments. The first argument is the name of a language;
the second and third arguments are the actions to take if the result of the test is
true or false respectively.

The command \useshorthands initiates the definition of user-defined short-\useshorthands
hand sequences. It has one argument, the character that starts these personal
shorthands.

The command \defineshorthand takes two arguments: the first is a one-\defineshorthand
or two-character shorthand sequence, and the second is the code the shorthand
should expand to.

The command \aliasshorthand can be used to let another character perform\aliasshorthand
the same functions as the default shorthand character. If one prefers for example to
use the character / over " in typing polish texts, this can be achieved by entering
\aliasshorthand{"}{/}. Please note that the substitute shorthand character
must have been declared in the preamble of your document, using a command
such as \useshorthands{/} in this example.

The command \languageshorthands can be used to switch the shorthands on\languageshorthands
the language level. It takes one argument, the name of a language. Note that for

5

this to work the language should have been specified as an option when loading
the babel package.

It is sometimes necessary to switch a shorthand character off temporarily, be-\shorthandon
\shorthandoff cause it must be used in an entirely different way. For this purpose, the user

commands \shorthandoff and \shorthandon are provided. They each take a
list of characters as their arguments. The command \shorthandoff sets the
\catcode for each of the characters in its argument to other (12); the command
\shorthandon sets the \catcode to active (13). Both commands only work on
‘known’ shorthand characters. If a character is not known to be a shorthand
character its category code will be left unchanged.

This is a user-level command, to be used in the preamble of a document (after\languageattribute
\usepackage[...]{babel}), that declares which attributes are to be used for a
given language. It takes two arguments: the first is the name of the language;
the second, a (list of) attribute(s) to used. The command checks whether the
language is known in this document and whether the attribute(s) are known for
this language.

1.1 Languages supported by Babel
In the following table all the languages supported by Babel are listed, together
with the names of the options with which you can load babel for each language.

Language Option(s)
Afrikaans afrikaans
Bahasa bahasa
Basque basque
Breton breton
Bulgarian bulgarian
Catalan catalan
Croatian croatian
Czech czech
Danish danish
Dutch dutch
English english, USenglish, american, UKenglish, british,

canadian, australian, newzealand
Esperanto esperanto
Estonian estonian
Finnish finnish
French french, francais, canadien, acadian
Galician galician
German austrian, german, germanb, ngerman, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Hungarian magyar, hungarian
Icelandic icelandic

6

Language Option(s)
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

For some languages babel supports the options activeacute and activegrave; for
typestting Russian texts, babel knows about the options LWN and LCY to specify
the fontencoding of the cyrillic font used. Currently only LWN is supported.

1.2 Workarounds
If you use the document class book and you use \ref inside the argument of
\chapter, LATEX will keep complaining about an undefined label. The reason is
that the argument of \ref is passed through \uppercase at some time during
processing. To prevent such problems, you could revert to using uppercase labels,
or you can use \lowercase{\ref{foo}} inside the argument of \chapter.

2 Changes for LATEX2ε

With the advent of LATEX2ε the interface to babel in the preamble of the document
has changed. With LATEX2.09 one used to call up the babel system with a line
such as:

\documentstyle[dutch,english]{article}

which would tell LATEX that the document would be written in two languages,
Dutch and English, and that English would be the first language in use.

The LATEX2ε way of providing the same information is:

7

\documentclass{article}
\usepackage[dutch,english]{babel}

or, making dutch and english global options in order to let other packages detect
and use them:

\documentclass[dutch,english]{article}
\usepackage{babel}
\usepackage{varioref}

In this last example, the package varioref will also see the options and will
be able to use them.

3 Changes in Babel version 3.7
In Babel version 3.7 a number of bugs that were found in version 3.6 are fixed.
Also a number of changes and additions have occurred:

• Shorthands are expandable again. The disadvantage is that one has to type
’{}a when the acute accent is used as a shorthand character. The advantage
is that a number of other problems (such as the breaking of ligatures, etc.)
have vanished.

• Two new commands, \shorthandon and \shorthandoff have been intro-
duced to enable to temporarily switch off one or more shorthands.

• Support for typesetting Greek has been enhanced. Code from the kdgreek
package (suggested by the author) was added and \greeknumeral has been
added.

• Support for typesetting Basque is now available thanks to Juan Aguirre-
gabiria.

• Support for typesetting Serbian with Latin script is now available thanks to
Dejan Muhamedagić and Jankovic Slobodan.

• Support for typesetting Hebrew (and potential support for typesetting other
right-to-left written languages) is now available thanks to Rama Porrat and
Boris Lavva.

• Support for typesetting Bulgarian is now available thanks to Georgi Bosh-
nakov.

• Support for typesetting Latin is now available, thanks to Claudio Beccari
and Krzysztof Konrad Żelechowski.

• Support for typesetting North Sami is now available, thanks to Regnor
Jernsletten.

8

• The options canadian, canadien and acadien have been added for Canadian
English and French use.

• A language attribute has been added to the \mark... commands in order to
make sure that a Greek header line comes out right on the last page before
a language switch.

• Hyphenation pattern files are now read inside a group; therefore any changes
a pattern file needs to make to lowercase codes, uppercase codes, and cate-
gory codes are kept local to that group. If they are needed for the language,
these changes will need to be repeated and stored in \extras...

• The concept of language attributes is introduced. It is intended to give the
user some control over the features a language-definition file provides. Its
first use is for the Greek language, where the user can choose the πoλυτoνκó
(“Polutoniko” or multi-accented) Greek way of typesetting texts. These at-
tributes will possibly find wider use in future releases.

• The environment hyphenrules is introduced.

• The syntax of the file language.dat has been extended to allow (optionally)
specifying the font encoding to be used while processing the patterns file.

• The command \providehyphenmins should now be used in language defi-
nition files in order to be able to keep any settings provided by the pattern
file.

4 Changes in Babel version 3.6
In Babel version 3.6 a number of bugs that were found in version 3.5 are fixed.
Also a number of changes and additions have occurred:

• A new environment otherlanguage* is introduced. it only switches the ‘spe-
cials’, but leaves the ‘captions’ untouched.

• The shorthands are no longer fully expandable. Some problems could only be
solved by peeking at the token following an active character. The advantage
is that ’{}a works as expected for languages that have the ’ active.

• Support for typesetting french texts is much enhanced; the file francais.ldf
is now replaced by frenchb.ldf which is maintained by Daniel Flipo.

• Support for typesetting the russian language is again available. The lan-
guage definition file was originally developed by Olga Lapko from CyrTUG.
The fonts needed to typeset the russian language are now part of the babel
distribution. The support is not yet up to the level which is needed according
to Olga, but this is a start.

9

• Support for typesetting greek texts is now also available. What is offered
in this release is a first attempt; it will be enhanced later on by Yannis
Haralambous.

• in babel 3.6j some hooks have been added for the development of support
for Hebrew typesetting.

• Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in
South Africa) has been added to dutch.ldf.

• Support for typesetting Welsh texts is now available.

• A new command \aliasshorthand is introduced. It seems that in Poland
various conventions are used to type the necessary Polish letters. It is now
possible to use the character / as a shorthand character instead of the char-
acter ", by issuing the command \aliasshorthand{"}{/}.

• The shorthand mechanism now deals correctly with characters that are al-
ready active.

• Shorthand characters are made active at \begin{document}, not earlier.
This is to prevent problems with other packages.

• A preambleonly command \substitutefontfamily has been added to cre-
ate .fd files on the fly when the font families of the Latin text differ from
the families used for the Cyrillic or Greek parts of the text.

• Three new commands \LdfInit, \ldf@quit and \ldf@finish are intro-
duced that perform a number of standard tasks.

• In babel 3.6k the language Ukrainian has been added and the support for
Russian typesetting has been adapted to the package ’cyrillic’ to be released
with the December 1998 release of LATEX2ε.

5 Changes in Babel version 3.5
In Babel version 3.5 a lot of changes have been made when compared with the
previous release. Here is a list of the most important ones:

• the selection of the language is delayed until \begin{document}, which
means you must add appropriate \selectlanguage commands if you in-
clude \hyphenation lists in the preamble of your document.

• babel now has a language environment and a new command \foreignlanguage;

• the way active characters are dealt with is completely changed. They are
called ‘shorthands’; one can have three levels of shorthands: on the user
level, the language level, and on ‘system level’. A consequence of the new
way of handling active characters is that they are now written to auxiliary
files ‘verbatim’;

10

• A language change now also writes information in the .aux file, as the change
might also affect typesetting the table of contents. The consequence is that
an .aux file generated by a LaTeX format with babel preloaded gives errors
when read with a LaTeX format without babel; but I think this probably
doesn’t occur;

• babel is now compatible with the inputenc and fontenc packages;

• the language definition files now have a new extension, ldf;

• the syntax of the file language.dat is extended to be compatible with the
french package by Bernard Gaulle;

• each language definition file looks for a configuration file which has the same
name, but the extension .cfg. It can contain any valid LATEX code.

6 The interface between the core of babel and the
language definition files

In the core of the babel system, several macros are defined for use in language
definition files. Their purpose is to make a new language known.

The macro \addlanguage is a non-outer version of the macro \newlanguage,\addlanguage
defined in plain.tex version 3.x. For older versions of plain.tex and lplain.tex
a substitute definition is used.

The macro \adddialect can be used when two languages can (or must) use\adddialect
the same hyphenation patterns. This can also be useful for languages for which
no patterns are preloaded in the format. In such cases the default behaviour of
the babel system is to define this language as a ‘dialect’ of the language for which
the patterns were loaded as \language0.

The language definition files must conform to a number of conventions, because
these files have to fill in the gaps left by the common code in babel.def, i. e.,
the definitions of the macros that produce texts. Also the language-switching
possibility which has been built into the babel system has its implications.

The following assumptions are made:

• Some of the language-specific definitions might be used by plain TEX users,
so the files have to be coded so that they can be read by both LATEX and
plain TEX. The current format can be checked by looking at the value of
the macro \fmtname.

• The common part of the babel system redefines a number of macros and
environments (defined previously in the document style) to put in the names
of macros that replace the previously hard-wired texts. These macros have
to be defined in the language definition files.

• The language definition files define five macros, used to activate and deacti-
vate the language-specific definitions. These macros are \〈lang〉hyphenmins,

11

\captions〈lang〉, \date〈lang〉, \extras〈lang〉 and \noextras〈lang〉; where
〈lang〉 is either the name of the language definition file or the name of the
LATEX option that is to be used. These macros and their functions are dis-
cussed below.

• When a language definition file is loaded, it can define \l@〈lang〉 to be a
dialect of \language0 when \l@〈lang〉 is undefined.

• The language definition files can be read in the preamble of the document,
but also in the middle of document processing. This means that they have
to function independently of the current \catcode of the @ sign.

The macro \providehyphenmins should be used in the language definition files\providehyphenmins
to set the \lefthyphenmin and \righthyphenmin. This macro will check whether
these parameters were provided by the hyphenation file before it takes any action.

The macro \〈lang〉hyphenmins is used to store the values of the \lefthyphenmin\langhyphenmins
and \righthyphenmin.

The macro \captions〈lang〉 defines the macros that hold the texts to replace\captionslang
the original hard-wired texts.

The macro \date〈lang〉 defines \today and\datelang
The macro \extras〈lang〉 contains all the extra definitions needed for a specific\extraslang

language.
Because we want to let the user switch between languages, but we do not know\noextraslang

what state TEX might be in after the execution of \extras〈lang〉, a macro that
brings TEX into a predefined state is needed. It will be no surprise that the name
of this macro is \noextras〈lang〉.

This is a command to be used in the language definition files for declaring\bbl@declare@ttribute
a language attribute. It takes three arguments: the name of the language, the
attribute to be defined, and the code to be executed when the attribute is to be
used.

To postpone the activation of the definitions needed for a language until the\main@language
beginning of a document, all language definition files should use \main@language
instead of \selectlanguage. This will just store the name of the language, and
the proper language will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language\ProvidesLanguage
definition files. Its syntax is similar to the syntax of the LATEX command
\ProvidesPackage.

The macro \LdfInit performs a couple of standard checks that must be made\LdfInit
at the beginning of a language definition file, such as checking the category code
of the @-sign, preventing the .ldf file from being processed twice, etc.

The macro \ldf@quit does work needed if a .ldf file was processed earlier.\ldf@quit
This includes resetting the category code of the @-sign, preparing the language to
be activated at \begin{document} time, and ending the input stream.

The macro \ldf@finish does work needed at the end of each .ldf file. This\ldf@finish
includes resetting the category code of the @-sign, loading a local configuration
file, and preparing the language to be activated at \begin{document} time.

After processing a language definition file, LATEX can be instructed to load\loadlocalcfg

12

a local configuration file. This file can, for instance, be used to add strings to
\captions〈lang〉 to support local document classes. The user will be informed
that this configuration file has been loaded. This macro is called by \ldf@finish.

This command takes three arguments, a font encoding and two font family\substitutefontfamily
names. It creates a font description file for the first font in the given encoding.
This .fd file will instruct LATEX to use a font from the second family when a font
from the first family in the given encoding seems to be needed.

6.1 Support for active characters
In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files\initiate@active@char
to instruct LATEX to give a character the category code ‘active’. When a character
has been made active it will remain that way until the end of the document. Its
definition may vary.

The command \bbl@activate is used to change the way an active character\bbl@activate
\bbl@deactivate expands. \bbl@activate ‘switches on’ the active behaviour of the character.

\bbl@deactivate lets the active character expand to its former (mostly) non-
active self.

The macro \declare@shorthand is used to define the various shorthands. It\declare@shorthand
takes three arguments: the name for the collection of shorthands this definition
belongs to; the character (sequence) that makes up the shorthand, i.e. ~ or "a;
and the code to be executed when the shorthand is encountered.

The TEXbook states: “Plain TEX includes a macro called \dospecials that\bbl@add@special
\bbl@remove@special is essentially a set macro, representing the set of all characters that have a spe-

cial category code.” [1, p. 380] It is used to set text ‘verbatim’. To make this
work if more characters get a special category code, you have to add this char-
acter to the macro \dospecial. LATEX adds another macro called \@sanitize
representing the same character set, but without the curly braces. The macros
\bbl@add@special〈char〉 and \bbl@remove@special〈char〉 add and remove the
character 〈char〉 to these two sets.

6.2 Support for saving macro definitions
Language definition files may want to redefine macros that already exist. Therefor
a mechanism for saving (and restoring) the original definition of those macros is
provided. We provide two macros for this1.

To save the current meaning of any control sequence, the macro \babel@save\babel@save
is provided. It takes one argument, 〈csname〉, the control sequence for which the
meaning has to be saved.

A second macro is provided to save the current value of a variable. In this\babel@savevariable
context, anything that is allowed after the \the primitive is considered to be a
variable. The macro takes one argument, the 〈variable〉.

1This mechanism was introduced by Bernd Raichle.

13

The effect of the preceding macros is to append a piece of code to the current
definition of \originalTeX. When \originalTeX is expanded, this code restores
the previous definition of the control sequence or the previous value of the variable.

6.3 Support for extending macros
The macro \addto{〈control sequence〉}{〈TEX code〉} can be used to extend the\addto
definition of a macro. The macro need not be defined. This macro can, for
instance, be used in adding instructions to a macro like \extrasenglish.

6.4 Macros common to a number of languages
In a couple of European languages compound words are used. This means that\allowhyphens
when TEX has to hyphenate such a compound word, it only does so at the ‘-’ that
is used in such words. To allow hyphenation in the rest of such a compound word,
the macro \allowhyphens can be used.

For some languages, quotes need to be lowered to the baseline. For this pur-\set@low@box
pose the macro \set@low@box is available. It takes one argument and puts that
argument in an \hbox, at the baseline. The result is available in \box0 for further
processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose\save@sf@q
the macro \save@sf@q is available. It takes one argument, saves the current
spacefactor, executes the argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be\bbl@frenchspacing
\bbl@nonfrenchspacing used to properly switch French spacing on and off.

7 Compatibility with german.sty

The file german.sty has been one of the sources of inspiration for the babel sys-
tem. Because of this I wanted to include german.sty in the babel system. To
be able to do that I had to allow for one incompatibility: in the definition of the
macro \selectlanguage in german.sty the argument is used as the 〈number〉
for an \ifcase. So in this case a call to \selectlanguage might look like
\selectlanguage{\german}.

In the definition of the macro \selectlanguage in babel.def the argument
is used as a part of other macronames, so a call to \selectlanguage now looks
like \selectlanguage{german}. Notice the absence of the escape character. As
of version 3.1a of babel both syntaxes are allowed.

All other features of the original german.sty have been copied into a new file,
called germanb.sty2.

Although the babel system was developed to be used with LATEX, some of the
features implemented in the language definition files might be needed by plain
TEX users. Care has been taken that all files in the system can be processed by
plain TEX.

2The ‘b’ is added to the name to distinguish the file from Partls’ file.

14

8 Compatibility with ngerman.sty

When used with the options ngerman or naustrian, babel will provide all features of
the package ngerman. There is however one exception: The commands for special
hyphenation of double consonants ("ff etc.) and ck ("ck), which are no longer
required with the new German orthography, are undefined. With the ngerman
package, however, these commands will generate appropriate warning messages
only.

9 Compatibility with the french package
It has been reported to me that the package french by Bernard Gaulle
(gaulle@idris.fr) works together with babel. On the other hand, it seems not
to work well together with a lot of other packages. Therefore I have decided to no
longer load french.ldf by default. Instead, when you want to use the package by
Bernard Gaulle, you will have to request it specifically, by passing either frenchle
or frenchpro as an option to babel.

10 Identification
The file babel.sty3 is meant for LATEX2ε, therefor we make sure that the format
file used is the right one.

\ProvidesLanguage The identification code for each file is something that was introduced in LATEX2ε.
When the command \ProvidesFile does not exist, a dummy definition is
provided temporarily. For use in the language definition file the command
\ProvidesLanguage is defined by babel.

10.1 〈∗!package〉
10.2 \ifx\ProvidesFile\@undefined
10.3 \def\ProvidesFile#1[#2 #3 #4]{%
10.4 \wlog{File: #1 #4 #3 <#2>}%
10.5 〈∗kernel & patterns〉
10.6 \toks8{Babel <#3> and hyphenation patterns for }%
10.7 〈/kernel & patterns〉
10.8 \let\ProvidesFile\@undefined
10.9 }

As an alternative for \ProvidesFile we define \ProvidesLanguage here to be
used in the language definition files.

10.10 〈∗kernel〉
10.11 \def\ProvidesLanguage#1[#2 #3 #4]{%
10.12 \wlog{Language: #1 #4 #3 <#2>}%
10.13 }
10.14 \else

3The file described in this section is called babel.dtx, has version number v3.8g and was last
revised on 2005/05/21.

15

In this case we save the original definition of \ProvidesFile in \bbl@tempa and
restore it after we have stored the version of the file in \toks8.

10.15 〈∗kernel & patterns〉
10.16 \let\bbl@tempa\ProvidesFile
10.17 \def\ProvidesFile#1[#2 #3 #4]{%
10.18 \toks8{Babel <#3> and hyphenation patterns for }%
10.19 \bbl@tempa#1[#2 #3 #4]%
10.20 \let\ProvidesFile\bbl@tempa}
10.21 〈/kernel & patterns〉

When \ProvidesFile is defined we give \ProvidesLanguage a similar definition.
10.22 \def\ProvidesLanguage#1{%
10.23 \begingroup
10.24 \catcode‘\ 10 %
10.25 \@makeother\/%
10.26 \@ifnextchar[%]
10.27 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}
10.28 \def\@provideslanguage#1[#2]{%
10.29 \wlog{Language: #1 #2}%
10.30 \expandafter\xdef\csname ver@#1.ldf\endcsname{#2}%
10.31 \endgroup}
10.32 〈/kernel〉
10.33 \fi
10.34 〈/!package〉

Identify each file that is produced from this source file.
10.35 〈+package〉\ProvidesPackage{babel}
10.36 〈+core〉\ProvidesFile{babel.def}
10.37 〈+kernel & patterns〉\ProvidesFile{hyphen.cfg}
10.38 〈+kernel&!patterns〉\ProvidesFile{switch.def}
10.39 〈+driver&!user〉\ProvidesFile{babel.drv}
10.40 〈+driver & user〉\ProvidesFile{user.drv}
10.41 [2005/05/21 v3.8g %
10.42 〈+package〉 The Babel package]
10.43 〈+core〉 Babel common definitions]
10.44 〈+kernel〉 Babel language switching mechanism]
10.45 〈+driver〉]

11 The Package File
In order to make use of the features of LATEX2ε, the babel system contains a
package file, babel.sty. This file is loaded by the \usepackage command and
defines all the language options known in the babel system. It also takes care of a
number of compatibility issues with other packages.

11.1 Language options
11.1 〈∗package〉

16

11.2 \ifx\LdfInit\@undefined\input babel.def\relax\fi

For all the languages supported we need to declare an option.
11.3 \DeclareOption{acadian}{\input{frenchb.ldf}}
11.4 \DeclareOption{afrikaans}{\input{dutch.ldf}}
11.5 \DeclareOption{american}{\input{english.ldf}}
11.6 \DeclareOption{australian}{\input{english.ldf}}

Austrian is really a dialect of German.
11.7 \DeclareOption{austrian}{\input{germanb.ldf}}
11.8 \DeclareOption{bahasa}{\input{bahasa.ldf}}
11.9 \DeclareOption{basque}{\input{basque.ldf}}

11.10 \DeclareOption{brazil}{\input{portuges.ldf}}

11.11 \DeclareOption{brazilian}{\input{portuges.ldf}}
11.12 \DeclareOption{breton}{\input{breton.ldf}}

11.13 \DeclareOption{british}{\input{english.ldf}}
11.14 \DeclareOption{bulgarian}{\input{bulgarian.ldf}}
11.15 \DeclareOption{canadian}{\input{english.ldf}}
11.16 \DeclareOption{canadien}{\input{frenchb.ldf}}
11.17 \DeclareOption{catalan}{\input{catalan.ldf}}
11.18 \DeclareOption{croatian}{\input{croatian.ldf}}
11.19 \DeclareOption{czech}{\input{czech.ldf}}
11.20 \DeclareOption{danish}{\input{danish.ldf}}
11.21 \DeclareOption{dutch}{\input{dutch.ldf}}

11.22 \DeclareOption{english}{\input{english.ldf}}
11.23 \DeclareOption{esperanto}{\input{esperanto.ldf}}
11.24 \DeclareOption{estonian}{\input{estonian.ldf}}
11.25 \DeclareOption{finnish}{\input{finnish.ldf}}

The babel support or French used to be stored in francais.ldf; therefor the
LATEX2.09 option used to be francais. The hyphenation patterns may be loaded as
either ‘french’ or as ‘francais’.

11.26 \DeclareOption{francais}{\input{frenchb.ldf}}
11.27 \DeclareOption{frenchb}{\input{frenchb.ldf}}

With LATEX2ε we can now also use the option french and still call the file
frenchb.ldf.

11.28 \DeclareOption{french}{\input{frenchb.ldf}}%
11.29 \DeclareOption{galician}{\input{galician.ldf}}
11.30 \DeclareOption{german}{\input{germanb.ldf}}
11.31 \DeclareOption{germanb}{\input{germanb.ldf}}

11.32 \DeclareOption{greek}{\input{greek.ldf}}
11.33 \DeclareOption{polutonikogreek}{%
11.34 \input{greek.ldf}%
11.35 \languageattribute{greek}{polutoniko}}

11.36 \DeclareOption{hebrew}{%
11.37 \input{rlbabel.def}%
11.38 \input{hebrew.ldf}}

hungarian is just a synonym for magyar

17

11.39 \DeclareOption{hungarian}{\input{magyar.ldf}}
11.40 \DeclareOption{icelandic}{\input{icelandic.ldf}}
11.41 \DeclareOption{interlingua}{\input{interlingua.ldf}}
11.42 \DeclareOption{irish}{\input{irish.ldf}}
11.43 \DeclareOption{italian}{\input{italian.ldf}}
11.44 \DeclareOption{latin}{\input{latin.ldf}}
11.45 \DeclareOption{lowersorbian}{\input{lsorbian.ldf}}
11.46 %^^A\DeclareOption{kannada}{\input{kannada.ldf}}
11.47 \DeclareOption{magyar}{\input{magyar.ldf}}
11.48 %^^A\DeclareOption{nagari}{\input{nagari.ldf}}

‘New’ German orthography, including Austrian variant:
11.49 \DeclareOption{naustrian}{\input{ngermanb.ldf}}
11.50 \DeclareOption{newzealand}{\input{english.ldf}}
11.51 \DeclareOption{ngerman}{\input{ngermanb.ldf}}
11.52 \DeclareOption{norsk}{\input{norsk.ldf}}
11.53 \DeclareOption{samin}{\input{samin.ldf}}

For Norwegian two spelling variants are provided.
11.54 \DeclareOption{nynorsk}{\input{norsk.ldf}}
11.55 \DeclareOption{polish}{\input{polish.ldf}}
11.56 \DeclareOption{portuges}{\input{portuges.ldf}}
11.57 \DeclareOption{portuguese}{\input{portuges.ldf}}
11.58 \DeclareOption{romanian}{\input{romanian.ldf}}
11.59 \DeclareOption{russian}{\input{russianb.ldf}}
11.60 %^^A\DeclareOption{sanskrit}{\input{sanskrit.ldf}}
11.61 \DeclareOption{scottish}{\input{scottish.ldf}}
11.62 \DeclareOption{serbian}{\input{serbian.ldf}}
11.63 \DeclareOption{slovak}{\input{slovak.ldf}}
11.64 \DeclareOption{slovene}{\input{slovene.ldf}}
11.65 \DeclareOption{spanish}{\input{spanish.ldf}}
11.66 \DeclareOption{swedish}{\input{swedish.ldf}}
11.67 %^^A\DeclareOption{tamil}{\input{tamil.ldf}}
11.68 \DeclareOption{turkish}{\input{turkish.ldf}}
11.69 \DeclareOption{ukrainian}{\input{ukraineb.ldf}}
11.70 \DeclareOption{uppersorbian}{\input{usorbian.ldf}}
11.71 \DeclareOption{welsh}{\input{welsh.ldf}}

11.72 \DeclareOption{UKenglish}{\input{english.ldf}}
11.73 \DeclareOption{USenglish}{\input{english.ldf}}

For all those languages for which the option name is the same as the name of
the language specific file we specify a default option, which tries to load the file
specified. If this doesn’t succeed an error is signalled.

11.74 \DeclareOption*{%
11.75 \InputIfFileExists{\CurrentOption.ldf}{}{%
11.76 \PackageError{babel}{%
11.77 Language definition file \CurrentOption.ldf not found}{%
11.78 Maybe you misspelled the language option?}}%
11.79 }

Another way to extend the list of ‘known’ options for babel is to create the file
bblopts.cfg in which one can add option declarations.

18

11.80 \InputIfFileExists{bblopts.cfg}{%
11.81 \typeout{*************************************^^J%
11.82 * Local config file bblopts.cfg used^^J%
11.83 *}%
11.84 }{}

Apart from all the language options we also have a few options that influence
the behaviour of language definition files.

The following options don’t do anything themselves, they are just defined in
order to make it possible for language definition files to check if one of them was
specified by the user.

11.85 \DeclareOption{activeacute}{}
11.86 \DeclareOption{activegrave}{}

The next option tells babel to leave shorthand characters active at the end of
processing the package. This is not the default as it can cause problems with
other packages, but for those who want to use the shorthand characters in the
preamble of their documents this can help.

11.87 \DeclareOption{KeepShorthandsActive}{}

The options have to be processed in the order in which the user specified them:
11.88 \ProcessOptions*

In order to catch the case where the user forgot to specify a language we check
whether \bbl@main@language, has become defined. If not, no language has been
loaded and an error message is displayed.

11.89 \ifx\bbl@main@language\@undefined
11.90 \PackageError{babel}{%
11.91 You haven’t specified a language option}{%
11.92 You need to specify a language, either as a global
11.93 option\MessageBreak
11.94 or as an optional argument to the \string\usepackage\space
11.95 command; \MessageBreak
11.96 You shouldn’t try to proceed from here, type x to quit.}

To prevent undefined command errors when the user insists on continuing we load
babel.def here. He should expect more errors though.

11.97 \input{babel.def}
11.98 \fi

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first
argument is an encoding mnemonic, the second and third arguments are font
family names.

11.99 \def\substitutefontfamily#1#2#3{%
11.100 \lowercase{\immediate\openout15=#1#2.fd\relax}%
11.101 \immediate\write15{%
11.102 \string\ProvidesFile{#1#2.fd}%
11.103 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}
11.104 \space generated font description file]^^J
11.105 \string\DeclareFontFamily{#1}{#2}{}^^J
11.106 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}^^J
11.107 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}^^J

19

11.108 \string\DeclareFontShape{#1}{#2}{m}{sl}{<->ssub * #3/m/sl}{}^^J
11.109 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}^^J
11.110 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}^^J
11.111 \string\DeclareFontShape{#1}{#2}{b}{it}{<->ssub * #3/bx/it}{}^^J
11.112 \string\DeclareFontShape{#1}{#2}{b}{sl}{<->ssub * #3/bx/sl}{}^^J
11.113 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}^^J
11.114 }%
11.115 \closeout15
11.116 }

This command should only be used in the preamble of a document.
11.117 \@onlypreamble\substitutefontfamily

11.118 〈/package〉

12 The Kernel of Babel
The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file hyphen.cfg is a file that can be loaded into the format,
which is necessary when you want to be able to switch hyphenation patterns.
The file babel.def contains some TEX code that can be read in at run time.
When babel.def is loaded it checks if hyphen.cfg is in the format; if not the file
switch.def is loaded.

Because plain TEX users might want to use some of the features of the babel
system too, care has to be taken that plain TEX can process the files. For this
reason the current format will have to be checked in a number of places. Some
of the code below is common to plain TEX and LATEX, some of it is for the LATEX
case only.

When the command \AtBeginDocument doesn’t exist we assume that we are
dealing with a plain-based format. In that case the file plain.def is needed.

12.1 〈∗kernel | core〉
12.2 \ifx\AtBeginDocument\@undefined

But we need to use the second part of plain.def (when we load it from
switch.def) which we can do by defining \adddialect.

12.3 〈kernel&!patterns〉 \def\adddialect{}
12.4 \input plain.def\relax
12.5 \fi
12.6 〈/kernel | core〉

Check the presence of the command \iflanguage, if it is undefined read the
file switch.def.

12.7 〈∗core〉
12.8 \ifx\iflanguage\@undefined
12.9 \input switch.def\relax

12.10 \fi
12.11 〈/core〉

20

12.1 Encoding issues (part 1)
The first thing we need to do is to determine, at \begin{document}, which latin
fontencoding to use.

\latinencoding When text is being typeset in an encoding other than ‘latin’ (OT1 or T1), it would
be nice to still have Roman numerals come out in the Latin encoding. So we first
assume that the current encoding at the end of processing the package is the Latin
encoding.

12.12 〈∗core〉
12.13 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefor
we check at the execution of \begin{document} whether it was loaded with the
T1 option. The normal way to do this (using \@ifpackageloaded) is disabled for
this package. Now we have to revert to parsing the internal macro \@filelist
which contains all the filenames loaded.

12.14 \AtBeginDocument{%
12.15 \gdef\latinencoding{OT1}%
12.16 \ifx\cf@encoding\bbl@t@one
12.17 \xdef\latinencoding{\bbl@t@one}%
12.18 \else
12.19 \@ifl@aded{def}{t1enc}{\xdef\latinencoding{\bbl@t@one}}{}%
12.20 \fi
12.21 }

\latintext Then we can define the command \latintext which is a declarative switch to a
latin font-encoding.

12.22 \DeclareRobustCommand{\latintext}{%
12.23 \fontencoding{\latinencoding}\selectfont
12.24 \def\encodingdefault{\latinencoding}}

\textlatin This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

12.25 \ifx\@undefined\DeclareTextFontCommand
12.26 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}
12.27 \else
12.28 \DeclareTextFontCommand{\textlatin}{\latintext}
12.29 \fi
12.30 〈/core〉

We also need to redefine a number of commands to ensure that the right font
encoding is used, but this can’t be done before babel.def is loaded.

12.2 Multiple languages
With TEX version 3.0 it has become possible to load hyphenation patterns for more
than one language. This means that some extra administration has to be taken

21

care of. The user has to know for which languages patterns have been loaded, and
what values of \language have been used.

Some discussion has been going on in the TEX world about how to use
\language. Some have suggested to set a fixed standard, i. e., patterns for each
language should always be loaded in the same location. It has also been suggested
to use the iso list for this purpose. Others have pointed out that the iso list
contains more than 256 languages, which have not been numbered consecutively.

I think the best way to use \language, is to use it dynamically. This code
implements an algorithm to do so. It uses an external file in which the person who
maintains a TEX environment has to record for which languages he has hyphen-
ation patterns and in which files these are stored4. When hyphenation exceptions
are stored in a separate file this can be indicated by naming that file after the file
with the hyphenation patterns.

This “configuration file” can contain empty lines and comments, as well as
lines which start with an equals (=) sign. Such a line will instruct LATEX that the
hyphenation patterns just processed have to be known under an alternative name.
Here is an example:

% File : language.dat
% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations
=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger

As the file switch.def needs to be read only once, we check whether it was
read before. If it was, the command \iflanguage is already defined, so we can
stop processing.

12.31 〈∗kernel〉
12.32 〈∗!patterns〉
12.33 \expandafter\ifx\csname iflanguage\endcsname\relax \else
12.34 \expandafter\endinput
12.35 \fi
12.36 〈/!patterns〉

\language Plain TEX version 3.0 provides the primitive \language that is used to store
the current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter.

12.37 \ifx\language\@undefined
12.38 \csname newcount\endcsname\language
12.39 \fi

\last@language Another counter is used to store the last language defined. For pre-3.0 formats an
extra counter has to be allocated,

4This is because different operating systems sometimes use very different file-naming conven-
tions.

22

12.40 \ifx\newlanguage\@undefined
12.41 \csname newcount\endcsname\last@language

plain TEX version 3.0 uses \count 19 for this purpose.
12.42 \else
12.43 \countdef\last@language=19
12.44 \fi

\addlanguage To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage,
in a pre-3.0 environment a similar macro has to be provided. For both cases a
new macro is defined here, because the original \newlanguage was defined to be
\outer.

For a format based on plain version 2.x, the definition of \newlanguage can
not be copied because \count 19 is used for other purposes in these formats.
Therefor \addlanguage is defined using a definition based on the macros used to
define \newlanguage in plain TEX version 3.0.

12.45 \ifx\newlanguage\@undefined
12.46 \def\addlanguage#1{%
12.47 \global\advance\last@language \@ne
12.48 \ifnum\last@language<\@cclvi
12.49 \else
12.50 \errmessage{No room for a new \string\language!}%
12.51 \fi
12.52 \global\chardef#1\last@language
12.53 \wlog{\string#1 = \string\language\the\last@language}}

For formats based on plain version 3.0 the definition of \newlanguage can be
simply copied, removing \outer.

12.54 \else
12.55 \def\addlanguage{\alloc@9\language\chardef\@cclvi}
12.56 \fi

\adddialect The macro \adddialect can be used to add the name of a dialect or variant
language, for which an already defined hyphenation table can be used.

12.57 \def\adddialect#1#2{%
12.58 \global\chardef#1#2\relax
12.59 \wlog{\string#1 = a dialect from \string\language#2}}

\iflanguage Users might want to test (in a private package for instance) which language is
currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on
the result of the comparison, it executes either the second or the third argument.

12.60 \def\iflanguage#1{%
12.61 \expandafter\ifx\csname l@#1\endcsname\relax
12.62 \@nolanerr{#1}%
12.63 \else
12.64 \bbl@afterfi{\ifnum\csname l@#1\endcsname=\language

23

12.65 \expandafter\@firstoftwo
12.66 \else
12.67 \expandafter\@secondoftwo
12.68 \fi}%
12.69 \fi}

\selectlanguage The macro \selectlanguage checks whether the language is already defined
before it performs its actual task, which is to update \language and activate
language-specific definitions.

To allow the call of \selectlanguage either with a control sequence name or
with a simple string as argument, we have to use a trick to delete the optional
escape character.

To convert a control sequence to a string, we use the \string primitive. Next
we have to look at the first character of this string and compare it with the escape
character. Because this escape character can be changed by setting the internal
integer \escapechar to a character number, we have to compare this number with
the character of the string. To do this we have to use TEX’s backquote notation
to specify the character as a number.

If the first character of the \string’ed argument is the current escape char-
acter, the comparison has stripped this character and the rest in the ‘then’ part
consists of the rest of the control sequence name. Otherwise we know that either
the argument is not a control sequence or \escapechar is set to a value outside
of the character range 0–255.

If the user gives an empty argument, we provide a default argument for
\string. This argument should expand to nothing.

12.70 \edef\selectlanguage{%
12.71 \noexpand\protect
12.72 \expandafter\noexpand\csname selectlanguage \endcsname
12.73 }

Because the command \selectlanguage could be used in a moving argument it
expands to \protect\selectlanguage␣. Therefor, we have to make sure that a
macro \protect exists. If it doesn’t it is \let to \relax.

12.74 \ifx\@undefined\protect\let\protect\relax\fi

As LATEX 2.09 writes to files expanded whereas LATEX2ε takes care not to expand
the arguments of \write statements we need to be a bit clever about the way we
add information to .aux files. Therefor we introduce the macro \xstring which
should expand to the right amount of \string’s.

12.75 \ifx\documentclass\@undefined
12.76 \def\xstring{\string\string\string}
12.77 \else
12.78 \let\xstring\string
12.79 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset
table of contents etc. in the correct language environment.

24

\bbl@pop@language But when the language change happens inside a group the end of the group
doesn’t write anything to the auxiliary files. Therefor we need TEX’s aftergroup
mechanism to help us. The command \aftergroup stores the token immediately
following it to be executed when the current group is closed. So we define a
temporary control sequence \bbl@pop@language to be executed at the end of the
group. It calls \bbl@set@language with the name of the current language as its
argument.

\bbl@language@stack The previous solution works for one level of nesting groups, but as soon as
more levels are used it is no longer adequate. For that case we need to keep
track of the nested languages using a stack mechanism. This stack is called
\bbl@language@stack and initially empty.

12.80 \xdef\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to
retrieve the information afterwards.

\bbl@push@language
\bbl@pop@language

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

12.81 \def\bbl@push@language{%
12.82 \xdef\bbl@language@stack{\languagename+\bbl@language@stack}%
12.83 }

Retrieving information from the stack is a little bit less simple, as we need to
remove the element from the stack while storing it in the macro \languagename.
For this we first define a helper function.

\bbl@pop@lang This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string (delimited by ‘-’) in its third
argument.

12.84 \def\bbl@pop@lang#1+#2-#3{%
12.85 \def\languagename{#1}\xdef#3{#2}%
12.86 }

The reason for the somewhat weird arrangement of arguments to the helper func-
tion is the fact it is called in the following way:

12.87 \def\bbl@pop@language{%
12.88 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack

This means that before \bbl@pop@lang is executed TEX first expands the stack,
stored in \bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign
(zero language names won’t occur as this macro will only be called after something
has been pushed on the stack) followed by the ‘-’-sign and finally the reference to
the stack.

12.89 $$
12.90 \expandafter\bbl@set@language\expandafter{\languagename}%
12.91 }

25

Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs
switching.

12.92 \expandafter\def\csname selectlanguage \endcsname#1{%
12.93 \bbl@push@language
12.94 \aftergroup\bbl@pop@language
12.95 \bbl@set@language{#1}}

\bbl@set@language The macro \bbl@set@language takes care of switching the language environment
and of writing entries on the auxiliary files.

12.96 \def\bbl@set@language#1{%
12.97 \edef\languagename{%
12.98 \ifnum\escapechar=\expandafter‘\string#1\@empty
12.99 \else \string#1\@empty\fi}%

12.100 \select@language{\languagename}%

We also write a command to change the current language in the auxiliary files.
12.101 \if@filesw
12.102 \protected@write\@auxout{}{\string\select@language{\languagename}}%
12.103 \addtocontents{toc}{\xstring\select@language{\languagename}}%
12.104 \addtocontents{lof}{\xstring\select@language{\languagename}}%
12.105 \addtocontents{lot}{\xstring\select@language{\languagename}}%
12.106 \fi}

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring TEX in a certain pre-defined state.

12.107 \def\select@language#1{%
12.108 \expandafter\ifx\csname l@#1\endcsname\relax
12.109 \@nolanerr{#1}%
12.110 \else
12.111 \expandafter\ifx\csname date#1\endcsname\relax
12.112 \@noopterr{#1}%
12.113 \else
12.114 \language=\csname l@#1\endcsname\relax
12.115 \originalTeX

The name of the language is stored in the control sequence \languagename. The
contents of this control sequence could be tested in the following way:

\edef\tmp{\string english}
\ifx\languagename\tmp

...
\else

...
\fi

The construction with \string is necessary because \languagename returns the
name with characters of category code 12 (other). Then we have to redefine

26

\originalTeX to compensate for the things that have been activated. To save
memory space for the macro definition of \originalTeX, we construct the control
sequence name for the \noextras〈lang〉 command at definition time by expanding
the \csname primitive.

12.116 \expandafter\def\expandafter\originalTeX
12.117 \expandafter{\csname noextras#1\endcsname
12.118 \let\originalTeX\@empty}%

12.119 \languageshorthands{none}%
12.120 \babel@beginsave

Now activate the language-specific definitions. This is done by constructing
the names of three macros by concatenating three words with the argument of
\selectlanguage, and calling these macros.

12.121 \csname captions#1\endcsname
12.122 \csname date#1\endcsname
12.123 \csname extras#1\endcsname\relax

The switching of the values of \lefthyphenmin and \righthyphenmin is some-
what different. First we save their current values, then we check if \〈lang〉hyphenmins
is defined. If it is not, we set default values (2 and 3), otherwise the values in
\〈lang〉hyphenmins will be used.

12.124 \babel@savevariable\lefthyphenmin
12.125 \babel@savevariable\righthyphenmin
12.126 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
12.127 \set@hyphenmins\tw@\thr@@\relax
12.128 \else
12.129 \expandafter\expandafter\expandafter\set@hyphenmins
12.130 \csname #1hyphenmins\endcsname\relax
12.131 \fi
12.132 \fi
12.133 \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document
which mixes left-to-right and right-to-left typesetting you have to use this envi-
ronment in order to let things work as you expect them to.

The first thing this environment does is store the name of the language in
\languagename; it then calls \selectlanguage␣ to switch on everything that is
needed for this language The \ignorespaces command is necessary to hide the
environment when it is entered in horizontal mode.

12.134 \long\def\otherlanguage#1{%
12.135 \csname selectlanguage \endcsname{#1}%
12.136 \ignorespaces
12.137 }

The \endotherlanguage part of the environment calls \originalTeX to restore
(most of) the settings and tries to hide itself when it is called in horizontal mode.

12.138 \long\def\endotherlanguage{%

27

12.139 \originalTeX
12.140 \global\@ignoretrue\ignorespaces
12.141 }

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from
a different language needs to be typeset, but without changing the translation of
words such as ‘figure’.

This environment makes use of \foreign@language.
12.142 \expandafter\def\csname otherlanguage*\endcsname#1{%
12.143 \foreign@language{#1}%
12.144 }

At the end of the environment we need to switch off the extra definitions. The
grouping mechanism of the environment will take care of resetting the correct
hyphenation rules.

12.145 \expandafter\def\csname endotherlanguage*\endcsname{%
12.146 \csname noextras\languagename\endcsname
12.147 }

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage
command. This command takes two arguments, the first argument is the name of
the language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only
switches the hyphenation rules and the extra definitions for the language specified.
It does this within a group and assumes the \extras〈lang〉 command doesn’t make
any \global changes. The coding is very similar to part of \selectlanguage.

12.148 \def\foreignlanguage{\protect\csname foreignlanguage \endcsname}
12.149 \expandafter\def\csname foreignlanguage \endcsname#1#2{%
12.150 \begingroup
12.151 \originalTeX
12.152 \foreign@language{#1}%
12.153 #2%
12.154 \csname noextras#1\endcsname
12.155 \endgroup
12.156 }

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environ-
ment.

12.157 \def\foreign@language#1{%

First we need to store the name of the language and check that it is a known
language.

12.158 \def\languagename{#1}%
12.159 \expandafter\ifx\csname l@#1\endcsname\relax
12.160 \@nolanerr{#1}%
12.161 \else

If it is we can select the proper hyphenation table and switch on the extra defini-
tions for this language.

28

12.162 \language=\csname l@#1\endcsname\relax
12.163 \languageshorthands{none}%

Then we set the left- and right hyphenmin variables.
12.164 \csname extras#1\endcsname
12.165 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
12.166 \set@hyphenmins\tw@\thr@@\relax
12.167 \else
12.168 \expandafter\expandafter\expandafter\set@hyphenmins
12.169 \csname #1hyphenmins\endcsname\relax
12.170 \fi
12.171 \fi
12.172 }

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules.
This environment does not change \languagename and when the hyphenation
rules specified were not loaded it has no effect.

12.173 \def\hyphenrules#1{%
12.174 \expandafter\ifx\csname l@#1\endcsname\@undefined
12.175 \@nolanerr{#1}%
12.176 \else
12.177 \language=\csname l@#1\endcsname\relax
12.178 \languageshorthands{none}%
12.179 \fi
12.180 }
12.181 \def\endhyphenrules{}

\providehyphenmins The macro \providehyphenmins should be used in the language definition files
to provide a default setting for the hyphenation parameters \lefthyphenmin and
\righthyphenmin. If the macro \〈lang〉hyphenmins is already defined this com-
mand has no effect.

12.182 \def\providehyphenmins#1#2{%
12.183 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
12.184 \@namedef{#1hyphenmins}{#2}%
12.185 \fi}

\set@hyphenmins This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects
two values as its argument.

12.186 \def\set@hyphenmins#1#2{\lefthyphenmin#1\righthyphenmin#2}

\LdfInit This macro is defined in two versions. The first version is to be part of the ‘kernel’
of babel, ie. the part that is loaded in the format; the second version is defined
in babel.def. The version in the format just checks the category code of the
ampersand and then loads babel.def.

12.187 \def\LdfInit{%
12.188 \chardef\atcatcode=\catcode‘\@
12.189 \catcode‘\@=11\relax
12.190 \input babel.def\relax

29

The category code of the ampersand is restored and the macro calls itself again
with the new definition from babel.def

12.191 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.192 \LdfInit}
12.193 〈/kernel〉

The second version of this macro takes two arguments. The first argument is the
name of the language that will be defined in the language definition file; the second
argument is either a control sequence or a string from which a control sequence
should be constructed. The existence of the control sequence indicates that the
file has been processed before.

At the start of processing a language definition file we always check the category
code of the ampersand. We make sure that it is a ‘letter’ during the processing of
the file.

12.194 〈∗core〉
12.195 \def\LdfInit#1#2{%
12.196 \chardef\atcatcode=\catcode‘\@
12.197 \catcode‘\@=11\relax

Another character that needs to have the correct category code during processing
of language definition files is the equals sign, ‘=’, because it is sometimes used in
constructions with the \let primitive. Therefor we store its current catcode and
restore it later on.

12.198 \chardef\eqcatcode=\catcode‘\=
12.199 \catcode‘\==12\relax

Now we check whether we should perhaps stop the processing of this file. To do
this we first need to check whether the second argument that is passed to \LdfInit
is a control sequence. We do that by looking at the first token after passing #2
through string. When it is equal to \@backslashchar we are dealing with a
control sequence which we can compare with \@undefined.

12.200 \let\bbl@tempa\relax
12.201 \expandafter\if\expandafter\@backslashchar
12.202 \expandafter\@car\string#2\@nil
12.203 \ifx#2\@undefined
12.204 \else

If so, we call \ldf@quit (but after the end of this \if construction) to set the
main language, restore the category code of the @-sign and call \endinput.

12.205 \def\bbl@tempa{\ldf@quit{#1}}
12.206 \fi
12.207 \else

When #2 was not a control sequence we construct one and compare it with \relax.
12.208 \expandafter\ifx\csname#2\endcsname\relax
12.209 \else
12.210 \def\bbl@tempa{\ldf@quit{#1}}
12.211 \fi
12.212 \fi
12.213 \bbl@tempa

30

Finally we check \originalTeX.
12.214 \ifx\originalTeX\@undefined
12.215 \let\originalTeX\@empty
12.216 \else
12.217 \originalTeX
12.218 \fi}

\ldf@quit This macro interrupts the processing of a language definition file.
12.219 \def\ldf@quit#1{%
12.220 \expandafter\main@language\expandafter{#1}%
12.221 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.222 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.223 \endinput
12.224 }

\ldf@finish This macro takes one argument. It is the name of the language that was defined
in the language definition file.

We load the local configuration file if one is present, we set the main language
(taking into account that the argument might be a control sequence that needs to
be expanded) and reset the category code of the @-sign.

12.225 \def\ldf@finish#1{%
12.226 \loadlocalcfg{#1}%
12.227 \expandafter\main@language\expandafter{#1}%
12.228 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.229 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.230 }

After the preamble of the document the commands \LdfInit, \ldf@quit and
\ldf@finish are no longer needed. Therefor they are turned into warning mes-
sages in LATEX.

12.231 \@onlypreamble\LdfInit
12.232 \@onlypreamble\ldf@quit
12.233 \@onlypreamble\ldf@finish

\main@language
\bbl@main@language

This command should be used in the various language definition files. It stores its
argument in \bbl@main@language; to be used to switch to the correct language
at the beginning of the document.

12.234 \def\main@language#1{%
12.235 \def\bbl@main@language{#1}%
12.236 \let\languagename\bbl@main@language
12.237 \language=\csname l@\languagename\endcsname\relax
12.238 }

The default is to use English as the main language.
12.239 \ifx\l@english\@undefined
12.240 \let\l@english\z@
12.241 \fi
12.242 \main@language{english}

31

We also have to make sure that some code gets executed at the beginning of the
document.

12.243 \AtBeginDocument{%
12.244 \expandafter\selectlanguage\expandafter{\bbl@main@language}}
12.245 〈/core〉

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to
be expandable we \let it to \@empty instead of \relax.

12.246 〈∗kernel〉
12.247 \ifx\originalTeX\@undefined\let\originalTeX\@empty\fi

Because this part of the code can be included in a format, we make sure that the
macro which initialises the save mechanism, \babel@beginsave, is not considered
to be undefined.

12.248 \ifx\babel@beginsave\@undefined\let\babel@beginsave\relax\fi

\@nolanerr
\@nopatterns

The babel package will signal an error when a documents tries to select a language
that hasn’t been defined earlier. When a user selects a language for which no
hyphenation patterns were loaded into the format he will be given a warning
about that fact. We revert to the patterns for \language=0 in that case. In most
formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as ex-
pected. An error message is issued in that case.

When the format knows about \PackageError it must be LATEX2ε, so we can
safely use its error handling interface. Otherwise we’ll have to ‘keep it simple’.

12.249 \ifx\PackageError\@undefined
12.250 \def\@nolanerr#1{%
12.251 \errhelp{Your command will be ignored, type <return> to proceed}%
12.252 \errmessage{You haven’t defined the language #1\space yet}}
12.253 \def\@nopatterns#1{%
12.254 \message{No hyphenation patterns were loaded for}%
12.255 \message{the language ‘#1’}%
12.256 \message{I will use the patterns loaded for \string\language=0
12.257 instead}}
12.258 \def\@noopterr#1{%
12.259 \errmessage{The option #1 was not specified in \string\usepackage}
12.260 \errhelp{You may continue, but expect unexpected results}}
12.261 \def\@activated#1{%
12.262 \wlog{Package babel Info: Making #1 an active character}}
12.263 \else
12.264 \newcommand*{\@nolanerr}[1]{%
12.265 \PackageError{babel}%
12.266 {You haven’t defined the language #1\space yet}%
12.267 {Your command will be ignored, type <return> to proceed}}
12.268 \newcommand*{\@nopatterns}[1]{%
12.269 \PackageWarningNoLine{babel}%
12.270 {No hyphenation patterns were loaded for\MessageBreak
12.271 the language ‘#1’\MessageBreak

32

12.272 I will use the patterns loaded for \string\language=0
12.273 instead}}
12.274 \newcommand*{\@noopterr}[1]{%
12.275 \PackageError{babel}%
12.276 {You haven’t loaded the option #1\space yet}%
12.277 {You may proceed, but expect unexpected results}}
12.278 \newcommand*{\@activated}[1]{%
12.279 \PackageInfo{babel}{%
12.280 Making #1 an active character}}
12.281 \fi

The following code is meant to be read by iniTEX because it should instruct
TEX to read hyphenation patterns. To this end the docstrip option patterns
can be used to include this code in the file hyphen.cfg.

12.282 〈∗patterns〉

\process@line Each line in the file language.dat is processed by \process@line after it is read.
The first thing this macro does is to check whether the line starts with =. When
the first token of a line is an =, the macro \process@synonym is called; otherwise
the macro \process@language will continue.

12.283 \def\process@line#1#2 #3/{%
12.284 \ifx=#1
12.285 \process@synonym#2 /
12.286 \else
12.287 \process@language#1#2 #3/%
12.288 \fi
12.289 }

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token
register to begin with.

12.290 \toks@{}
12.291 \def\process@synonym#1 /{%
12.292 \ifnum\last@language=\m@ne

When no languages have been loaded yet, the name following the = will be a
synonym for hyphenation register 0.

12.293 \expandafter\chardef\csname l@#1\endcsname0\relax
12.294 \wlog{\string\l@#1=\string\language0}

As no hyphenation patterns are read in yet, we can not yet set the hyphenmin
parameters. Therefor a commands to do so is stored in a token register and
executed when the first pattern file has been processed.

12.295 \toks@\expandafter{\the\toks@
12.296 \expandafter\let\csname #1hyphenmins\expandafter\endcsname
12.297 \csname\languagename hyphenmins\endcsname}%
12.298 \else

Otherwise the name will be a synonym for the language loaded last.
12.299 \expandafter\chardef\csname l@#1\endcsname\last@language
12.300 \wlog{\string\l@#1=\string\language\the\last@language}

33

We also need to copy the hyphenmin parameters for the synonym.
12.301 \expandafter\let\csname #1hyphenmins\expandafter\endcsname
12.302 \csname\languagename hyphenmins\endcsname
12.303 \fi
12.304 }

\process@language The macro \process@language is used to process a non-empty line from the ‘con-
figuration file’. It has three arguments, each delimited by white space. The third
argument is optional, so a / character is expected to delimit the last argument.
The first argument is the ‘name’ of a language; the second is the name of the
file that contains the patterns. The optional third argument is the name of a file
containing hyphenation exceptions.

The first thing to do is call \addlanguage to allocate a pattern register and
to make that register ‘active’.

12.305 \def\process@language#1 #2 #3/{%
12.306 \expandafter\addlanguage\csname l@#1\endcsname
12.307 \expandafter\language\csname l@#1\endcsname
12.308 \def\languagename{#1}%

Then the ‘name’ of the language that will be loaded now is added to the token
register \toks8. and finally the pattern file is read.

12.309 \global\toks8\expandafter{\the\toks8#1, }%

For some hyphenation patterns it is needed to load them with a specific font
encoding selected. This can be specified in the file language.dat by adding for
instance ‘:T1’ to the name of the language. The macro \bbl@get@enc extracts
the font encoding from the language name and stores it in \bbl@hyph@enc.

12.310 \begingroup
12.311 \bbl@get@enc#1:\@@@
12.312 \ifx\bbl@hyph@enc\@empty
12.313 \else
12.314 \fontencoding{\bbl@hyph@enc}\selectfont
12.315 \fi

Some pattern files contain assignments to \lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefor we try to detect such as-
signments and store them in the \〈lang〉hyphenmins macro. When no assignments
were made we provide a default setting.

12.316 \lefthyphenmin\m@ne

Some pattern files contain changes to the \lccode en \uccode arrays. Such
changes should remain local to the language; therefor we process the pattern file
in a group; the \patterns command acts globally so its effect will be remembered.

12.317 \input #2\relax

Now we globally store the settings of \lefthyphenmin and \righthyphenmin and
close the group.

12.318 \ifnum\lefthyphenmin=\m@ne
12.319 \else

34

12.320 \expandafter\xdef\csname #1hyphenmins\endcsname{%
12.321 \the\lefthyphenmin\the\righthyphenmin}%
12.322 \fi
12.323 \endgroup

If the counter \language is still equal to zero we set the hyphenmin parameters
to the values for the language loaded on pattern register 0.

12.324 \ifnum\the\language=\z@
12.325 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
12.326 \set@hyphenmins\tw@\thr@@\relax
12.327 \else
12.328 \expandafter\expandafter\expandafter\set@hyphenmins
12.329 \csname #1hyphenmins\endcsname
12.330 \fi

Now execute the contents of token register zero as it may contain commands
which set the hyphenmin parameters for synonyms that were defined before the
first pattern file is read in.

12.331 \the\toks@
12.332 \fi

Empty the token register after use.
12.333 \toks@{}%

When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third argument
is not empty and when it does not contain a space token.

12.334 \def\bbl@tempa{#3}%
12.335 \ifx\bbl@tempa\@empty
12.336 \else
12.337 \ifx\bbl@tempa\space
12.338 \else
12.339 \input #3\relax
12.340 \fi
12.341 \fi
12.342 }

\bbl@get@enc
\bbl@hyph@enc

The macro \bbl@get@enc extracts the font encoding from the language name and
stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.

12.343 \def\bbl@get@enc#1:#2\@@@{%

First store both arguments in temporary macros,
12.344 \def\bbl@tempa{#1}%
12.345 \def\bbl@tempb{#2}%

then, if the second argument was empty, no font encoding was specified and we’re
done.

12.346 \ifx\bbl@tempb\@empty
12.347 \let\bbl@hyph@enc\@empty
12.348 \else

35

But if the second argument was not empty it will now have a superfluous colon
attached to it which we need to remove. This done by feeding it to \bbl@get@enc.
The string that we are after will then be in the first argument and be stored in
\bbl@tempa.

12.349 \bbl@get@enc#2\@@@
12.350 \edef\bbl@hyph@enc{\bbl@tempa}%
12.351 \fi}

\readconfigfile The configuration file can now be opened for reading.
12.352 \openin1 = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The
user will be informed about this.

12.353 \ifeof1
12.354 \message{I couldn’t find the file language.dat,\space
12.355 I will try the file hyphen.tex}
12.356 \input hyphen.tex\relax
12.357 \else

Pattern registers are allocated using count register \last@language. Its initial
value is 0. The definition of the macro \newlanguage is such that it first incre-
ments the count register and then defines the language. In order to have the first
patterns loaded in pattern register number 0 we initialize \last@language with
the value −1.

12.358 \last@language\m@ne

We now read lines from the file until the end is found

12.359 \loop

While reading from the input, it is useful to switch off recognition of the end-
of-line character. This saves us stripping off spaces from the contents of the control
sequence.

12.360 \endlinechar\m@ne
12.361 \read1 to \bbl@line
12.362 \endlinechar‘\^^M

Empty lines are skipped.
12.363 \ifx\bbl@line\@empty
12.364 \else

Now we add a space and a / character to the end of \bbl@line. This is needed
to be able to recognize the third, optional, argument of \process@language later
on.

12.365 \edef\bbl@line{\bbl@line\space/}%
12.366 \expandafter\process@line\bbl@line
12.367 \fi

Check for the end of the file. To avoid a new if control sequence we create
the necessary \iftrue or \iffalse with the help of \csname. But there is one

36

complication with this approach: when skipping the loop...repeat TEX has to
read \if/\fi pairs. So we have to insert a ‘dummy’ \iftrue.

12.368 \iftrue \csname fi\endcsname
12.369 \csname if\ifeof1 false\else true\fi\endcsname
12.370 \repeat

Reactivate the default patterns,
12.371 \language=0
12.372 \fi

and close the configuration file.
12.373 \closein1

Also remove some macros from memory
12.374 \let\process@language\@undefined
12.375 \let\process@synonym\@undefined
12.376 \let\process@line\@undefined
12.377 \let\bbl@tempa\@undefined
12.378 \let\bbl@tempb\@undefined
12.379 \let\bbl@eq@\@undefined
12.380 \let\bbl@line\@undefined
12.381 \let\bbl@get@enc\@undefined

We add a message about the fact that babel is loaded in the format and with
which language patterns to the \everyjob register.

12.382 \ifx\addto@hook\@undefined
12.383 \else
12.384 \expandafter\addto@hook\expandafter\everyjob\expandafter{%
12.385 \expandafter\typeout\expandafter{\the\toks8 loaded.}}
12.386 \fi

Here the code for iniTEX ends.
12.387 〈/patterns〉
12.388 〈/kernel〉

12.3 Support for active characters
\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character

control sequence) to the macro \dospecials (and \@sanitize if LATEX is used).
To keep all changes local, we begin a new group. Then we redefine the macros

\do and \@makeother to add themselves and the given character without expan-
sion.

12.389 〈∗core | shorthands〉
12.390 \def\bbl@add@special#1{\begingroup
12.391 \def\do{\noexpand\do\noexpand}%
12.392 \def\@makeother{\noexpand\@makeother\noexpand}%

To add the character to the macros, we expand the original macros with the
additional character inside the redefinition of the macros. Because \@sanitize
can be undefined, we put the definition inside a conditional.

12.393 \edef\x{\endgroup

37

12.394 \def\noexpand\dospecials{\dospecials\do#1}%
12.395 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.396 \def\noexpand\@sanitize{\@sanitize\@makeother#1}%
12.397 \fi}%

The macro \x contains at this moment the following:
\endgroup\def\dospecials{old contents \do〈char〉}.
If \@sanitize is defined, it contains an additional definition of this macro.

The last thing we have to do, is the expansion of \x. Then \endgroup is executed,
which restores the old meaning of \x, \do and \@makeother. After the group is
closed, the new definition of \dospecials (and \@sanitize) is assigned.

12.398 \x}

\bbl@remove@special The companion of the former macro is \bbl@remove@special. It is used to remove
a character from the set macros \dospecials and \@sanitize.

To keep all changes local, we begin a new group. Then we define a help macro
\x, which expands to empty if the characters match, otherwise it expands to its
nonexpandable input. Because TEX inserts a \relax, if the corresponding \else
or \fi is scanned before the comparison is evaluated, we provide a ‘stop sign’
which should expand to nothing.

12.399 \def\bbl@remove@special#1{\begingroup
12.400 \def\x##1##2{\ifnum‘#1=‘##2\noexpand\@empty
12.401 \else\noexpand##1\noexpand##2\fi}%

With the help of this macro we define \do and \make@other.
12.402 \def\do{\x\do}%
12.403 \def\@makeother{\x\@makeother}%

The rest of the work is similar to \bbl@add@special.
12.404 \edef\x{\endgroup
12.405 \def\noexpand\dospecials{\dospecials}%
12.406 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.407 \def\noexpand\@sanitize{\@sanitize}%
12.408 \fi}%
12.409 \x}

12.4 Shorthands
\initiate@active@char A language definition file can call this macro to make a character active. This

macro takes one argument, the character that is to be made active. When the
character was already active this macro does nothing. Otherwise, this macro
defines the control sequence \normal@char〈char〉 to expand to the character in its
‘normal state’ and it defines the active character to expand to \normal@char〈char〉
by default (〈char〉 being the character to be made active). Later its definition can
be changed to expand to \active@char〈char〉 by calling \bbl@activate{〈char〉}.

For example, to make the double quote character active one could have the
following line in a language definition file:

\initiate@active@char{"}

38

\bbl@afterelse
\bbl@afterfi

Because the code that is used in the handling of active characters may need to
look ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an
\if-statement5. These macros will break if another \if...\fi statement appears
in one of the arguments.

12.410 \long\def\bbl@afterelse#1\else#2\fi{\fi#1}
12.411 \long\def\bbl@afterfi#1\fi{\fi#1}

\peek@token To prevent error messages when a shorthand, which normally takes an argument,
sees a \par, or }, or similar tokens, we need to be able to ‘peek’ at what is coming
up next in the input stream. Depending on the category code of the token that
is seen, we need to either continue the code for the active character, or insert
the non-active version of that character in the output. The macro \peek@token
therefore takes two arguments, with which it constructs the control sequence to
expand next. It \let’s \bbl@nexta and \bbl@nextb to the two possible macros.
This is necessary for \bbl@test@token to take the right decision.

12.412 %\def\peek@token#1#2{%
12.413 % \expandafter\let\expandafter\bbl@nexta\csname #1\string#2\endcsname
12.414 % \expandafter\let\expandafter\bbl@nextb
12.415 % \csname system@active\string#2\endcsname
12.416 % \futurelet\bbl@token\bbl@test@token}

\bbl@test@token When the result of peeking at the next token has yielded a token with category
‘letter’, ‘other’ or ‘active’ it is safe to proceed with evaluating the code for the
shorthand. When a token is found with any other category code proceeding is
unsafe and therefor the original shorthand character is inserted in the output. The
macro that calls \bbl@test@token needs to setup \bbl@nexta and \bbl@nextb
in order to achieve this.

12.417 %\def\bbl@test@token{%
12.418 % \let\bbl@next\bbl@nexta
12.419 % \ifcat\noexpand\bbl@token a%
12.420 % \else
12.421 % \ifcat\noexpand\bbl@token=%
12.422 % \else
12.423 % \ifcat\noexpand\bbl@token\noexpand\bbl@next
12.424 % \else
12.425 % \let\bbl@next\bbl@nextb
12.426 % \fi
12.427 % \fi
12.428 % \fi
12.429 % \bbl@next}

The macro \initiate@active@char takes all the necessary actions to make
its argument a shorthand character. The real work is performed once for each
character.

5This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion
Power Lemma” by Sonja Maus.

39

12.430 \def\initiate@active@char#1{%
12.431 \expandafter\ifx\csname active@char\string##1\endcsname\relax
12.432 \bbl@afterfi{\@initiate@active@char{#1}}%
12.433 \fi}

Note that the definition of \@initiate@active@char needs an active character,
for this the ~ is used. Some of the changes we need, do not have to become
available later on, so we do it inside a group.

12.434 \begingroup
12.435 \catcode‘\~\active
12.436 \def\x{\endgroup
12.437 \def\@initiate@active@char##1{%

If the character is already active we provide the default expansion under this
shorthand mechanism.

12.438 \ifcat\noexpand##1\noexpand~\relax
12.439 \@ifundefined{normal@char\string##1}{%
12.440 \expandafter\let\csname normal@char\string##1\endcsname##1%
12.441 \expandafter\gdef
12.442 \expandafter##1%
12.443 \expandafter{%
12.444 \expandafter\active@prefix\expandafter##1%
12.445 \csname normal@char\string##1\endcsname}}{}%
12.446 \else

Otherwise we write a message in the transcript file,
12.447 \@activated{##1}%

and define \normal@char〈char〉 to expand to the character in its default state.
12.448 \@namedef{normal@char\string##1}{##1}%

If we are making the right quote active we need to change \pr@m@s as well.
12.449 \ifx##1’%
12.450 \let\prim@s\bbl@prim@s

Also, make sure that a single ’ in math mode ‘does the right thing’.
12.451 \@namedef{normal@char\string##1}{%
12.452 \textormath{##1}{^\bgroup\prim@s}}%
12.453 \fi

If we are using the caret as a shorthand character special care should be taken
to make sure math still works. Therefor an extra level of expansion is introduced
with a check for math mode on the upper level.

12.454 \ifx##1^%
12.455 \gdef\bbl@act@caret{%
12.456 \ifmmode
12.457 \csname normal@char\string^\endcsname
12.458 \else
12.459 \bbl@afterfi
12.460 {\if@safe@actives
12.461 \bbl@afterelse\csname normal@char\string##1\endcsname
12.462 \else

40

12.463 \bbl@afterfi\csname user@active\string##1\endcsname
12.464 \fi}%
12.465 \fi}
12.466 \fi

To prevent problems with the loading of other packages after babel we reset the
catcode of the character at the end of the package.

12.467 \@ifpackagewith{babel}{KeepShorthandsActive}{}{%
12.468 \edef\bbl@tempa{\catcode‘\noexpand##1\the\catcode‘##1}%
12.469 \expandafter\AtEndOfPackage\expandafter{\bbl@tempa}}%

Now we set the lowercase code of the ~ equal to that of the character to be made
active and execute the rest of the code inside a \lowercase ‘environment’.

12.470 \@tempcnta=\lccode‘\~
12.471 \lccode‘~=‘##1%
12.472 \lowercase{%

Make the character active and add it to \dospecials and \@sanitize.
12.473 \catcode‘~\active
12.474 \expandafter\bbl@add@special
12.475 \csname \string##1\endcsname

Also re-activate it again at \begin{document}.
12.476 \AtBeginDocument{%
12.477 \catcode‘##1\active

We also need to make sure that the shorthands are active during the processing
of the .aux file. Otherwise some citations may give unexpected results in the
printout when a shorthand was used in the optional argument of \bibitem for
example.

12.478 \if@filesw
12.479 \immediate\write\@mainaux{%
12.480 \string\catcode‘##1\string\active}%
12.481 \fi}%

Define the character to expand to

\active@prefix 〈char〉 \normal@char〈char〉

(where \active@char〈char〉 is one control sequence!).
12.482 \expandafter\gdef
12.483 \expandafter~%
12.484 \expandafter{%
12.485 \expandafter\active@prefix\expandafter##1%
12.486 \csname normal@char\string##1\endcsname}}%
12.487 \lccode‘\~\@tempcnta
12.488 \fi

For the active caret we first expand to \bbl@act@caret in order to be able to
handle math mode correctly.

12.489 \ifx##1^%
12.490 \@namedef{active@char\string##1}{\bbl@act@caret}%
12.491 \else

41

We define the first level expansion of \active@char〈char〉 to check the status of
the @safe@actives flag. If it is set to true we expand to the ‘normal’ version of
this character, otherwise we call \@active@char〈char〉.

12.492 \@namedef{active@char\string##1}{%
12.493 \if@safe@actives
12.494 \bbl@afterelse\csname normal@char\string##1\endcsname
12.495 \else
12.496 \bbl@afterfi\csname user@active\string##1\endcsname
12.497 \fi}%
12.498 \fi

The next level of the code checks whether a user has defined a shorthand for
himself with this character. First we check for a single character shorthand. If
that doesn’t exist we check for a shorthand with an argument.

12.499 \@namedef{user@active\string##1}{%
12.500 \expandafter\ifx
12.501 \csname \user@group @sh@\string##1@\endcsname
12.502 \relax
12.503 \bbl@afterelse\bbl@sh@select\user@group##1%
12.504 {user@active@arg\string##1}{language@active\string##1}%
12.505 \else
12.506 \bbl@afterfi\csname \user@group @sh@\string##1@\endcsname
12.507 \fi}%

When there is also no user-level shorthand with an argument we will check whether
there is a language defined shorthand for this active character. Before the next
token is absorbed as argument we need to make sure that this is safe. Therefor
\peek@token is called to decide that.

12.508 \long\@namedef{user@active@arg\string##1}####1{%
12.509 \expandafter\ifx
12.510 \csname \user@group @sh@\string##1@\string####1@\endcsname
12.511 \relax
12.512 \bbl@afterelse
12.513 \csname language@active\string##1\endcsname####1%
12.514 \else
12.515 \bbl@afterfi
12.516 \csname \user@group @sh@\string##1@\string####1@%
12.517 \endcsname
12.518 \fi}%

In order to do the right thing when a shorthand with an argument is used by itself
at the end of the line we provide a definition for the case of an empty argument.
For that case we let the shorthand character expand to its non-active self.

12.519 \@namedef{\user@group @sh@\string##1@@}{%
12.520 \csname normal@char\string##1\endcsname}

Like the shorthands that can be defined by the user, a language definition file
can also define shorthands with and without an argument, so we need two more
macros to check if they exist.

12.521 \@namedef{language@active\string##1}{%

42

12.522 \expandafter\ifx
12.523 \csname \language@group @sh@\string##1@\endcsname
12.524 \relax
12.525 \bbl@afterelse\bbl@sh@select\language@group##1%
12.526 {language@active@arg\string##1}{system@active\string##1}%
12.527 \else
12.528 \bbl@afterfi
12.529 \csname \language@group @sh@\string##1@\endcsname
12.530 \fi}%

12.531 \long\@namedef{language@active@arg\string##1}####1{%
12.532 \expandafter\ifx
12.533 \csname \language@group @sh@\string##1@\string####1@\endcsname
12.534 \relax
12.535 \bbl@afterelse
12.536 \csname system@active\string##1\endcsname####1%
12.537 \else
12.538 \bbl@afterfi
12.539 \csname \language@group @sh@\string##1@\string####1@%
12.540 \endcsname
12.541 \fi}%

And the same goes for the system level.
12.542 \@namedef{system@active\string##1}{%
12.543 \expandafter\ifx
12.544 \csname \system@group @sh@\string##1@\endcsname
12.545 \relax
12.546 \bbl@afterelse\bbl@sh@select\system@group##1%
12.547 {system@active@arg\string##1}{normal@char\string##1}%
12.548 \else
12.549 \bbl@afterfi\csname \system@group @sh@\string##1@\endcsname
12.550 \fi}%

When no shorthands were found the ‘normal’ version of the active character is
inserted.

12.551 \long\@namedef{system@active@arg\string##1}####1{%
12.552 \expandafter\ifx
12.553 \csname \system@group @sh@\string##1@\string####1@\endcsname
12.554 \relax
12.555 \bbl@afterelse\csname normal@char\string##1\endcsname####1%
12.556 \else
12.557 \bbl@afterfi
12.558 \csname \system@group @sh@\string##1@\string####1@\endcsname
12.559 \fi}%

When a shorthand combination such as ’’ ends up in a heading TEX would see
\protect’\protect’. To prevent this from happening a shorthand needs to be
defined at user level.

12.560 \@namedef{user@sh@\string##1@\string\protect@}{%
12.561 \csname user@active\string##1\endcsname}%
12.562 }%

43

12.563 }\x

\bbl@sh@select This command helps the shorthand supporting macros to select how to proceed.
Note that this macro needs to be expandable as do all the shorthand macros in
order for them to work in expansion-only environments such as the argument of
\hyphenation.

This macro expects the name of a group of shorthands in its first argument
and a shorthand character in its second argument. It will expand to either
\bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.

12.564 \def\bbl@sh@select#1#2{%
12.565 \expandafter\ifx\csname#1@sh@\string#2@sel\endcsname\relax
12.566 \bbl@afterelse\bbl@scndcs
12.567 \else
12.568 \bbl@afterfi\csname#1@sh@\string#2@sel\endcsname
12.569 \fi
12.570 }

\active@prefix The command \active@prefix which is used in the expansion of active charac-
ters has a function similar to \OT1-cmd in that it \protects the active character
whenever \protect is not \@typeset@protect.

12.571 \def\active@prefix#1{%
12.572 \ifx\protect\@typeset@protect
12.573 \else

When \protect is set to \@unexpandable@protect we make sure that the active
character is als not expanded by inserting \noexpand in front of it. The \@gobble
is needed to remove a token such as \activechar: (when the double colon was
the active character to be dealt with).

12.574 \ifx\protect\@unexpandable@protect
12.575 \bbl@afterelse\bbl@afterfi\noexpand#1\@gobble
12.576 \else
12.577 \bbl@afterfi\bbl@afterfi\protect#1\@gobble
12.578 \fi
12.579 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an
active character on the fly. For this purpose the switch @safe@actives is avail-
able. The setting of this switch should be checked in the first level expansion of
\active@char〈char〉.

12.580 \newif\if@safe@actives
12.581 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this
must be undone in the headers to prevent unexpected typeset results. For this
situation we define a command to make them “unsafe” again.

12.582 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

44

\bbl@activate This macro takes one argument, like \initiate@active@char. The macro is used
to change the definition of an active character to expand to \active@char〈char〉
instead of \normal@char〈char〉.

12.583 \def\bbl@activate#1{%
12.584 \expandafter\def
12.585 \expandafter#1\expandafter{%
12.586 \expandafter\active@prefix
12.587 \expandafter#1\csname active@char\string#1\endcsname}%
12.588 }

\bbl@deactivate This macro takes one argument, like \bbl@activate. The macro doesn’t
really make a character non-active; it changes its definition to expand to
\normal@char〈char〉.

12.589 \def\bbl@deactivate#1{%
12.590 \expandafter\def
12.591 \expandafter#1\expandafter{%
12.592 \expandafter\active@prefix
12.593 \expandafter#1\csname normal@char\string#1\endcsname}%
12.594 }

\bbl@firstcs
\bbl@scndcs

These macros have two arguments. They use one of their arguments to build a
control sequence from.

12.595 \def\bbl@firstcs#1#2{\csname#1\endcsname}
12.596 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain
level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;

2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

12.597 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}
12.598 \def\@decl@short#1#2#3\@nil#4{%
12.599 \def\bbl@tempa{#3}%
12.600 \ifx\bbl@tempa\@empty
12.601 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@scndcs
12.602 \@namedef{#1@sh@\string#2@}{#4}%
12.603 \else
12.604 \expandafter\let\csname #1@sh@\string#2@sel\endcsname\bbl@firstcs
12.605 \@namedef{#1@sh@\string#2@\string#3@}{#4}%
12.606 \fi}

\textormath Some of the shorthands that will be declared by the language definition files
have to be usable in both text and mathmode. To achieve this the helper macro
\textormath is provided.

12.607 \def\textormath#1#2{%

45

12.608 \ifmmode
12.609 \bbl@afterelse#2%
12.610 \else
12.611 \bbl@afterfi#1%
12.612 \fi}

\user@group
\language@group

\system@group

The current concept of ‘shorthands’ supports three levels or groups of shorthands.
For each level the name of the level or group is stored in a macro. The default is
to have a user group; use language group ‘english’ and have a system group called
‘system’.

12.613 \def\user@group{user}
12.614 \def\language@group{english}
12.615 \def\system@group{system}

\useshorthands This is the user level command to tell LATEX that user level shorthands will be used
in the document. It takes one argument, the character that starts a shorthand.

12.616 \def\useshorthands#1{%

First note that this is user level.
12.617 \def\user@group{user}%

Then initialize the character for use as a shorthand character.
12.618 \initiate@active@char{#1}%

Now that TEX has seen the character its category code is fixed, but for the actions
of \bbl@activate to succeed we need it to be active. Hence the trick with the
\lccode to circumvent this.

12.619 \@tempcnta\lccode‘\~
12.620 \lccode‘~=‘#1%
12.621 \lowercase{\catcode‘~\active\bbl@activate{~}}%
12.622 \lccode‘\~\@tempcnta}

\defineshorthand Currently we only support one group of user level shorthands, called ‘user’.
12.623 \def\defineshorthand{\declare@shorthand{user}}

\languageshorthands A user level command to change the language from which shorthands are used.
12.624 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand

12.625 \def\aliasshorthand#1#2{%

First the new shorthand needs to be initialized,
12.626 \expandafter\ifx\csname active@char\string#2\endcsname\relax
12.627 \ifx\document\@notprerr
12.628 \@notshorthand{#2}
12.629 \else
12.630 \initiate@active@char{#2}%

46

Then we need to use the \lccode trick to make the new shorthand behave like
the old one. Therefore we save the current \lccode of the ~-character and restore
it later. Then we \let the new shorthand character be equal to the original.

12.631 \@tempcnta\lccode‘\~
12.632 \lccode‘~=‘#2%
12.633 \lowercase{\let~#1}%
12.634 \lccode‘\~\@tempcnta
12.635 \fi
12.636 \fi
12.637 }

\@notshorthand

12.638 \def\@notshorthand#1{%
12.639 \PackageError{babel}{%
12.640 The character ‘\string #1ť should be made
12.641 a shorthand character;\MessageBreak
12.642 add the command \string\useshorthands\string{#1\string} to
12.643 the preamble.\MessageBreak
12.644 I will ignore your instruction}{}%
12.645 }

\shorthandon
\shorthandoff

The first level definition of these macros just passes the argument on to
\bbl@switch@sh, adding \@nil at the end to denote the end of the list of char-
acters.

12.646 \newcommand*\shorthandon[1]{\bbl@switch@sh{on}#1\@nil}
12.647 \newcommand*\shorthandoff[1]{\bbl@switch@sh{off}#1\@nil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to
the first argument of \bbl@switch@sh.

12.648 \def\bbl@switch@sh#1#2#3\@nil{%

But before any of this switching takes place we make sure that the character we
are dealing with is known as a shorthand character. If it is, a macro such as
\active@char" should exist.

12.649 \@ifundefined{active@char\string#2}{%
12.650 \PackageError{babel}{%
12.651 The character ’\string #2’ is not a shorthand character
12.652 in \languagename}{%
12.653 Maybe you made a typing mistake?\MessageBreak
12.654 I will ignore your instruction}}{%
12.655 \csname bbl@switch@sh@#1\endcsname#2}%

Now that, as the first character in the list has been taken care of, we pass the rest
of the list back to \bbl@switch@sh.

12.656 \ifx#3\@empty\else
12.657 \bbl@afterfi\bbl@switch@sh{#1}#3\@nil
12.658 \fi}

47

\bbl@switch@sh@off All that is left to do is define the actual switching macros. Switching off is easy,
we just set the category code to ‘other’ (12).

12.659 \def\bbl@switch@sh@off#1{\catcode‘#112\relax}

\bbl@switch@sh@on But switching the shorthand character back on is a bit more tricky. It involves
making sure that we have an active character to begin with when the macro is
being defined. It also needs the use of \lowercase and \lccode trickery to get
everything to work out as expected. And to keep things local that need to remain
local a group is opened, which is closed as soon as \x gets executed.

12.660 \begingroup
12.661 \catcode‘\~\active
12.662 \def\x{\endgroup
12.663 \def\bbl@switch@sh@on##1{%
12.664 \lccode‘~=‘##1%
12.665 \lowercase{%
12.666 \catcode‘~\active
12.667 }%
12.668 }%
12.669 }

The next operation makes the above definition effective.
12.670 \x
12.671 %

To prevent problems with constructs such as \char"01A when the double quote
is made active, we define a shorthand on system level.

12.672 \declare@shorthand{system}{"}{\csname normal@char\string"\endcsname}

When the right quote is made active we need to take care of handling it cor-
rectly in mathmode. Therefore we define a shorthand at system level to make it
expand to a non-active right quote in textmode, but expand to its original defini-
tion in mathmode. (Note that the right quote is ‘active’ in mathmode because of
its mathcode.)

12.673 \declare@shorthand{system}{’}{%
12.674 \textormath{\csname normal@char\string’\endcsname}%
12.675 {\sp\bgroup\prim@s}}

When the left quote is made active we need to take care of handling it correctly
when it is followed by for instance an open brace token. Therefore we define a
shorthand at system level to make it expand to a non-active left quote.

12.676 \declare@shorthand{system}{‘}{\csname normal@char\string‘\endcsname}

\bbl@prim@s
\bbl@pr@m@s

One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted
to look for an active right quote.

12.677 \def\bbl@prim@s{%
12.678 \prime\futurelet\@let@token\bbl@pr@m@s}

48

12.679 \begingroup
12.680 \catcode‘\’\active\let’\relax
12.681 \def\x{\endgroup
12.682 \def\bbl@pr@m@s{%
12.683 \ifx’\@let@token
12.684 \expandafter\pr@@@s
12.685 \else
12.686 \ifx^\@let@token
12.687 \expandafter\expandafter\expandafter\pr@@@t
12.688 \else
12.689 \egroup
12.690 \fi
12.691 \fi}%
12.692 }
12.693 \x

12.694 〈/core | shorthands〉

Normally the ~ is active and expands to \penalty\@M\␣. When it is written
to the .aux file it is written expanded. To prevent that and to be able to use
the character ~ as a start character for a shorthand, it is redefined here as a one
character shorthand on system level.

12.695 〈∗core〉
12.696 \initiate@active@char{~}
12.697 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }
12.698 \bbl@activate{~}

\OT1dqpos
\T1dqpos

The position of the double quote character is different for the OT1 and T1 encod-
ings. It will later be selected using the \f@encoding macro. Therefor we define
two macros here to store the position of the character in these encodings.

12.699 \expandafter\def\csname OT1dqpos\endcsname{127}
12.700 \expandafter\def\csname T1dqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here
to expand to OT1

12.701 \ifx\f@encoding\@undefined
12.702 \def\f@encoding{OT1}
12.703 \fi

12.5 Language attributes
Language attributes provide a means to give the user control over which features
of the language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute.

12.704 \newcommand\languageattribute[2]{%

First check whether the language is known.
12.705 \expandafter\ifx\csname l@#1\endcsname\relax

49

12.706 \@nolanerr{#1}%
12.707 \else

Than process each attribute in the list.
12.708 \@for\bbl@attr:=#2\do{%

We want to make sure that each attribute is selected only once; therefor we store
the already selected attributes in \bbl@known@attribs. When that control se-
quence is not yet defined this attribute is certainly not selected before.

12.709 \ifx\bbl@known@attribs\@undefined
12.710 \in@false
12.711 \else

Now we need to see if the attribute occurs in the list of already selected attributes.
12.712 \edef\bbl@tempa{\noexpand\in@{,#1-\bbl@attr,}%
12.713 {,\bbl@known@attribs,}}%
12.714 \bbl@tempa
12.715 \fi

When the attribute was in the list we issue a warning; this might not be the users
intention.

12.716 \ifin@
12.717 \PackageWarning{Babel}{%
12.718 You have more than once selected the attribute
12.719 ’\bbl@attr’\MessageBreak for language #1}%
12.720 \else

When we end up here the attribute is not selected before. So, we add it to the list
of selected attributes and execute the associated TEX-code.

12.721 \edef\bbl@tempa{%
12.722 \noexpand\bbl@add@list\noexpand\bbl@known@attribs{#1-\bbl@attr}}%
12.723 \bbl@tempa
12.724 \edef\bbl@tempa{#1-\bbl@attr}%
12.725 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes%
12.726 {\csname#1@attr@\bbl@attr\endcsname}%
12.727 {\@attrerr{#1}{\bbl@attr}}%
12.728 \fi
12.729 }
12.730 \fi}

This command should only be used in the preamble of a document.
12.731 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.
12.732 \newcommand*{\@attrerr}[2]{%
12.733 \PackageError{babel}%
12.734 {The attribute #2 is unknown for language #1.}%
12.735 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known
attributes.

12.736 \def\bbl@declare@ttribute#1#2#3{%
12.737 \bbl@add@list\bbl@attributes{#1-#2}%

50

Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras... for the current
language is extended, otherwise the attribute will not work as its code is removed
from memory at \begin{document}.

12.738 \expandafter\def\csname#1@attr@#2\endcsname{#3}%
12.739 }

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based
on whether a certain attribute was set. This command should appear inside the
argument to \AtBeginDocument because the attributes are set in the document
preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being
checked, and the third and fourth arguments are the true and false clauses.

12.740 \def\bbl@ifattributeset#1#2#3#4{%

First we need to find out if any attributes were set; if not we’re done.
12.741 \ifx\bbl@known@attribs\@undefined
12.742 \in@false
12.743 \else

The we need to check the list of known attributes.
12.744 \edef\bbl@tempa{\noexpand\in@{,#1-#2,}%
12.745 {,\bbl@known@attribs,}}%
12.746 \bbl@tempa
12.747 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was
set or not. Just to be safe the code to be executed is ‘thrown over the \fi’.

12.748 \ifin@
12.749 \bbl@afterelse#3%
12.750 \else
12.751 \bbl@afterfi#4%
12.752 \fi
12.753 }

\bbl@add@list This internal macro adds its second argument to a comma separated list in its
first argument. When the list is not defined yet (or empty), it will be initiated

12.754 \def\bbl@add@list#1#2{%
12.755 \ifx#1\@undefined
12.756 \def#1{#2}%
12.757 \else
12.758 \ifx#1\@empty
12.759 \def#1{#2}%
12.760 \else
12.761 \edef#1{#1,#2}%
12.762 \fi
12.763 \fi
12.764 }

51

\bbl@ifknown@ttrib An internal macro to check whether a given language/attribute is known. The
macro takes 4 arguments, the language/attribute, the attribute list, the TEX-code
to be executed when the attribute is known and the TEX-code to be executed
otherwise.

12.765 \def\bbl@ifknown@ttrib#1#2{%

We first assume the attribute is unknown.
12.766 \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.
12.767 \@for\bbl@tempb:=#2\do{%
12.768 \expandafter\in@\expandafter{\expandafter,\bbl@tempb,}{,#1,}%
12.769 \ifin@

When a match is found the definition of \bbl@tempa is changed.
12.770 \let\bbl@tempa\@firstoftwo
12.771 \else
12.772 \fi}%

Finally we execute \bbl@tempa.
12.773 \bbl@tempa
12.774 }

\bbl@clear@ttribs This macro removes all the attribute code from LATEX’s memory at \begin{document}
time (if any is present).

12.775 \def\bbl@clear@ttribs{%
12.776 \ifx\bbl@attributes\@undefined\else
12.777 \@for\bbl@tempa:=\bbl@attributes\do{%
12.778 \expandafter\bbl@clear@ttrib\bbl@tempa.
12.779 }%
12.780 \let\bbl@attributes\@undefined
12.781 \fi
12.782 }
12.783 \def\bbl@clear@ttrib#1-#2.{%
12.784 \expandafter\let\csname#1@attr@#2\endcsname\@undefined}
12.785 \AtBeginDocument{\bbl@clear@ttribs}

12.6 Support for saving macro definitions
To save the meaning of control sequences using \babel@save, we use temporary
control sequences. To save hash table entries for these control sequences, we don’t
use the name of the control sequence to be saved to construct the temporary
name. Instead we simply use the value of a counter, which is reset to zero each
time we begin to save new values. This works well because we release the saved
meanings before we begin to save a new set of control sequence meanings (see
\selectlanguage and \originalTeX).

\babel@savecnt
\babel@beginsave

The initialization of a new save cycle: reset the counter to zero.
12.786 \def\babel@beginsave{\babel@savecnt\z@}

52

Before it’s forgotten, allocate the counter and initialize all.
12.787 \newcount\babel@savecnt
12.788 \babel@beginsave

\babel@save The macro \babel@save〈csname〉 saves the current meaning of the control se-
quence 〈csname〉 to \originalTeX6. To do this, we let the current meaning to a
temporary control sequence, the restore commands are appended to \originalTeX
and the counter is incremented.

12.789 \def\babel@save#1{%
12.790 \expandafter\let\csname babel@\number\babel@savecnt\endcsname #1\relax
12.791 \begingroup
12.792 \toks@\expandafter{\originalTeX \let#1=}%
12.793 \edef\x{\endgroup
12.794 \def\noexpand\originalTeX{\the\toks@ \expandafter\noexpand
12.795 \csname babel@\number\babel@savecnt\endcsname\relax}}%
12.796 \x
12.797 \advance\babel@savecnt\@ne}

\babel@savevariable The macro \babel@savevariable〈variable〉 saves the value of the variable.
〈variable〉 can be anything allowed after the \the primitive.

12.798 \def\babel@savevariable#1{\begingroup
12.799 \toks@\expandafter{\originalTeX #1=}%
12.800 \edef\x{\endgroup
12.801 \def\noexpand\originalTeX{\the\toks@ \the#1\relax}}%
12.802 \x}

\bbl@frenchspacing
\bbl@nonfrenchspacing

Some languages need to have \frenchspacing in effect. Others don’t want that.
The command \bbl@frenchspacing switches it on when it isn’t already in effect
and \bbl@nonfrenchspacing switches it off if necessary.

12.803 \def\bbl@frenchspacing{%
12.804 \ifnum\the\sfcode‘\.=\@m
12.805 \let\bbl@nonfrenchspacing\relax
12.806 \else
12.807 \frenchspacing
12.808 \let\bbl@nonfrenchspacing\nonfrenchspacing
12.809 \fi}
12.810 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.7 Support for extending macros
\addto For each language four control sequences have to be defined that control the

language-specific definitions. To be able to add something to these macro once
they have been defined the macro \addto is introduced. It takes two arguments,
a 〈control sequence〉 and TEX-code to be added to the 〈control sequence〉.

If the 〈control sequence〉 has not been defined before it is defined now.
12.811 \def\addto#1#2{%

6\originalTeX has to be expandable, i. e. you shouldn’t let it to \relax.

53

12.812 \ifx#1\@undefined
12.813 \def#1{#2}%
12.814 \else

The control sequence could also expand to \relax, in which case a circular defi-
nition results. The net result is a stack overflow.

12.815 \ifx#1\relax
12.816 \def#1{#2}%
12.817 \else

Otherwise the replacement text for the 〈control sequence〉 is expanded and stored
in a token register, together with the TEX-code to be added. Finally the 〈control
sequence〉 is redefined, using the contents of the token register.

12.818 {\toks@\expandafter{#1#2}%
12.819 \xdef#1{\the\toks@}}%
12.820 \fi
12.821 \fi
12.822 }

12.8 Macros common to a number of languages
\allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more

than \nobreak \hskip 0pt plus 0pt7.
12.823 \def\bbl@t@one{T1}
12.824 \def\allowhyphens{%
12.825 \ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}
12.826 \def\bbl@allowhyphens{\nobreak\hskip\z@skip}

\set@low@box The following macro is used to lower quotes to the same level as the comma. It
prepares its argument in box register 0.

12.827 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}%
12.828 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@%
12.829 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.
12.830 \def\save@sf@q #1{\leavevmode
12.831 \begingroup
12.832 \edef\@SF{\spacefactor \the\spacefactor}#1\@SF
12.833 \endgroup
12.834 }

\bbl@disc For some languages the macro \bbl@disc is used to ease the insertion of discre-
tionaries for letters that behave ‘abnormally’ at a breakpoint.

12.835 \def\bbl@disc#1#2{%
12.836 \nobreak\discretionary{#2-}{}{#1}\allowhyphens}

7TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak
at this glue node.

54

12.9 Making glyphs available
The file babel.dtx8 makes a number of glyphs available that either do not exist
in the OT1 encoding and have to be ‘faked’, or that are not accessible through
T1enc.def.

12.10 Quotation marks
\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a

separate character, accessible via \quotedblbase. In the OT1 encoding it is not
available, therefor we make it available by lowering the normal open quote char-
acter to the baseline.

12.837 \ProvideTextCommand{\quotedblbase}{OT1}{%
12.838 \save@sf@q{\set@low@box{\textquotedblright\/}%
12.839 \box\z@\kern-.04em\allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still
be typeset.

12.840 \ProvideTextCommandDefault{\quotedblbase}{%
12.841 \UseTextSymbol{OT1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.
12.842 \ProvideTextCommand{\quotesinglbase}{OT1}{%
12.843 \save@sf@q{\set@low@box{\textquoteright\/}%
12.844 \box\z@\kern-.04em\allowhyphens}}

Make sure that when an encoding other than OT1 or T1 is used this glyph can still
be typeset.

12.845 \ProvideTextCommandDefault{\quotesinglbase}{%
12.846 \UseTextSymbol{OT1}{\quotesinglbase}}

\guillemotleft
\guillemotright

The guillemet characters are not available in OT1 encoding. They are faked.
12.847 \ProvideTextCommand{\guillemotleft}{OT1}{%
12.848 \ifmmode
12.849 \ll
12.850 \else
12.851 \save@sf@q{\nobreak
12.852 \raise.2ex\hbox{$\scriptscriptstyle\ll$}\allowhyphens}%
12.853 \fi}
12.854 \ProvideTextCommand{\guillemotright}{OT1}{%
12.855 \ifmmode
12.856 \gg
12.857 \else
12.858 \save@sf@q{\nobreak
12.859 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\allowhyphens}%
12.860 \fi}

8The file described in this section has version number v3.8g, and was last revised on
2005/05/21.

55

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

12.861 \ProvideTextCommandDefault{\guillemotleft}{%
12.862 \UseTextSymbol{OT1}{\guillemotleft}}
12.863 \ProvideTextCommandDefault{\guillemotright}{%
12.864 \UseTextSymbol{OT1}{\guillemotright}}

\guilsinglleft
\guilsinglright

The single guillemets are not available in OT1 encoding. They are faked.
12.865 \ProvideTextCommand{\guilsinglleft}{OT1}{%
12.866 \ifmmode
12.867 <%
12.868 \else
12.869 \save@sf@q{\nobreak
12.870 \raise.2ex\hbox{$\scriptscriptstyle<$}\allowhyphens}%
12.871 \fi}
12.872 \ProvideTextCommand{\guilsinglright}{OT1}{%
12.873 \ifmmode
12.874 >%
12.875 \else
12.876 \save@sf@q{\nobreak
12.877 \raise.2ex\hbox{$\scriptscriptstyle>$}\allowhyphens}%
12.878 \fi}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

12.879 \ProvideTextCommandDefault{\guilsinglleft}{%
12.880 \UseTextSymbol{OT1}{\guilsinglleft}}
12.881 \ProvideTextCommandDefault{\guilsinglright}{%
12.882 \UseTextSymbol{OT1}{\guilsinglright}}

12.11 Letters
\ij
\IJ

The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not
in the OT1 encoded fonts. Therefor we fake it for the OT1 encoding.

12.883 \DeclareTextCommand{\ij}{OT1}{%
12.884 \allowhyphens i\kern-0.02em j\allowhyphens}
12.885 \DeclareTextCommand{\IJ}{OT1}{%
12.886 \allowhyphens I\kern-0.02em J\allowhyphens}
12.887 \DeclareTextCommand{\ij}{T1}{\char188}
12.888 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

12.889 \ProvideTextCommandDefault{\ij}{%
12.890 \UseTextSymbol{OT1}{\ij}}
12.891 \ProvideTextCommandDefault{\IJ}{%
12.892 \UseTextSymbol{OT1}{\IJ}}

\dj
\DJ

The croatian language needs the letters \dj and \DJ; they are available in the T1
encoding, but not in the OT1 encoding by default.

56

Some code to construct these glyphs for the OT1 encoding was made available
to me by Stipcevic Mario, (stipcevic@olimp.irb.hr).

12.893 \def\crrtic@{\hrule height0.1ex width0.3em}
12.894 \def\crttic@{\hrule height0.1ex width0.33em}
12.895 %
12.896 \def\ddj@{%
12.897 \setbox0\hbox{d}\dimen@=\ht0
12.898 \advance\dimen@1ex
12.899 \dimen@.45\dimen@
12.900 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@
12.901 \advance\dimen@ii.5ex
12.902 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
12.903 \def\DDJ@{%
12.904 \setbox0\hbox{D}\dimen@=.55\ht0
12.905 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@
12.906 \advance\dimen@ii.15ex % correction for the dash position
12.907 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font
12.908 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen@
12.909 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
12.910 %
12.911 \DeclareTextCommand{\dj}{OT1}{\ddj@ d}
12.912 \DeclareTextCommand{\DJ}{OT1}{\DDJ@ D}

Make sure that when an encoding other than OT1 or T1 is used these glyphs can
still be typeset.

12.913 \ProvideTextCommandDefault{\dj}{%
12.914 \UseTextSymbol{OT1}{\dj}}
12.915 \ProvideTextCommandDefault{\DJ}{%
12.916 \UseTextSymbol{OT1}{\DJ}}

\SS For the T1 encoding \SS is defined and selects a specific glyph from the font, but
for other encodings it is not available. Therefor we make it available here.

12.917 \DeclareTextCommand{\SS}{OT1}{SS}
12.918 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{OT1}{\SS}}

12.12 Shorthands for quotation marks
Shorthands are provided for a number of different quotation marks, which make
them usable both outside and inside mathmode.

\glq
\grq

The ‘german’ single quotes.
12.919 \ProvideTextCommand{\glq}{OT1}{%
12.920 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
12.921 \ProvideTextCommand{\glq}{T1}{%
12.922 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
12.923 \ProvideTextCommandDefault{\glq}{\UseTextSymbol{OT1}\glq}

The definition of \grq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

57

12.924 \ProvideTextCommand{\grq}{T1}{%
12.925 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}
12.926 \ProvideTextCommand{\grq}{OT1}{%
12.927 \save@sf@q{\kern-.0125em%
12.928 \textormath{\textquoteleft}{\mbox{\textquoteleft}}%
12.929 \kern.07em\relax}}
12.930 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{OT1}\grq}

\glqq
\grqq

The ‘german’ double quotes.
12.931 \ProvideTextCommand{\glqq}{OT1}{%
12.932 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
12.933 \ProvideTextCommand{\glqq}{T1}{%
12.934 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
12.935 \ProvideTextCommandDefault{\glqq}{\UseTextSymbol{OT1}\glqq}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.936 \ProvideTextCommand{\grqq}{T1}{%
12.937 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
12.938 \ProvideTextCommand{\grqq}{OT1}{%
12.939 \save@sf@q{\kern-.07em%
12.940 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}%
12.941 \kern.07em\relax}}
12.942 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{OT1}\grqq}

\flq
\frq

The ‘french’ single guillemets.
12.943 \ProvideTextCommand{\flq}{OT1}{%
12.944 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.945 \ProvideTextCommand{\flq}{T1}{%
12.946 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.947 \ProvideTextCommandDefault{\flq}{\UseTextSymbol{OT1}\flq}

12.948 \ProvideTextCommand{\frq}{OT1}{%
12.949 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.950 \ProvideTextCommand{\frq}{T1}{%
12.951 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.952 \ProvideTextCommandDefault{\frq}{\UseTextSymbol{OT1}\frq}

\flqq
\frqq

The ‘french’ double guillemets.
12.953 \ProvideTextCommand{\flqq}{OT1}{%
12.954 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.955 \ProvideTextCommand{\flqq}{T1}{%
12.956 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.957 \ProvideTextCommandDefault{\flqq}{\UseTextSymbol{OT1}\flqq}

12.958 \ProvideTextCommand{\frqq}{OT1}{%
12.959 \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.960 \ProvideTextCommand{\frqq}{T1}{%
12.961 \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.962 \ProvideTextCommandDefault{\frqq}{\UseTextSymbol{OT1}\frqq}

58

12.13 Umlauts and trema’s
The command \" needs to have a different effect for different languages. For
German for instance, the ‘umlaut’ should be positioned lower than the default
position for placing it over the letters a, o, u, A, O and U. When placed over an
e, i, E or I it can retain its normal position. For Dutch the same glyph is always
placed in the lower position.

\umlauthigh
\umlautlow

To be able to provide both positions of \" we provide two commands to switch
the positioning, the default will be \umlauthigh (the normal positioning).

12.963 \def\umlauthigh{%
12.964 \def\bbl@umlauta##1{\leavevmode\bgroup%
12.965 \expandafter\accent\csname\f@encoding dqpos\endcsname
12.966 ##1\allowhyphens\egroup}%
12.967 \let\bbl@umlaute\bbl@umlauta}
12.968 \def\umlautlow{%
12.969 \def\bbl@umlauta{\protect\lower@umlaut}}
12.970 \def\umlautelow{%
12.971 \def\bbl@umlaute{\protect\lower@umlaut}}
12.972 \umlauthigh

\lower@umlaut The command \lower@umlaut is used to position the \" closer the the letter.
We want the umlaut character lowered, nearer to the letter. To do this we

need an extra 〈dimen〉 register.
12.973 \expandafter\ifx\csname U@D\endcsname\relax
12.974 \csname newdimen\endcsname\U@D
12.975 \fi

The following code fools TEX’s make_accent procedure about the current x-height
of the font to force another placement of the umlaut character.

12.976 \def\lower@umlaut#1{%

First we have to save the current x-height of the font, because we’ll change this
font dimension and this is always done globally.

12.977 \leavevmode\bgroup
12.978 \U@D 1ex%

Then we compute the new x-height in such a way that the umlaut character is
lowered to the base character. The value of .45ex depends on the METAFONT

parameters with which the fonts were built. (Just try out, which value will look
best.)

12.979 {\setbox\z@\hbox{%
12.980 \expandafter\char\csname\f@encoding dqpos\endcsname}%
12.981 \dimen@ -.45ex\advance\dimen@\ht\z@

If the new x-height is too low, it is not changed.
12.982 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%

Finally we call the \accent primitive, reset the old x-height and insert the base
character in the argument.

59

12.983 \expandafter\accent\csname\f@encoding dqpos\endcsname
12.984 \fontdimen5\font\U@D #1%
12.985 \egroup}

For all vowels we declare \" to be a composite command which uses
\bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to
be sure that these definitions override the ones that are provided when the pack-
age fontenc with option OT1 is used. Therefor these declarations are postponed
until the beginning of the document.

12.986 \AtBeginDocument{%
12.987 \DeclareTextCompositeCommand{\"}{OT1}{a}{\bbl@umlauta{a}}%
12.988 \DeclareTextCompositeCommand{\"}{OT1}{e}{\bbl@umlaute{e}}%
12.989 \DeclareTextCompositeCommand{\"}{OT1}{i}{\bbl@umlaute{\i}}%
12.990 \DeclareTextCompositeCommand{\"}{OT1}{\i}{\bbl@umlaute{\i}}%
12.991 \DeclareTextCompositeCommand{\"}{OT1}{o}{\bbl@umlauta{o}}%
12.992 \DeclareTextCompositeCommand{\"}{OT1}{u}{\bbl@umlauta{u}}%
12.993 \DeclareTextCompositeCommand{\"}{OT1}{A}{\bbl@umlauta{A}}%
12.994 \DeclareTextCompositeCommand{\"}{OT1}{E}{\bbl@umlaute{E}}%
12.995 \DeclareTextCompositeCommand{\"}{OT1}{I}{\bbl@umlaute{I}}%
12.996 \DeclareTextCompositeCommand{\"}{OT1}{O}{\bbl@umlauta{O}}%
12.997 \DeclareTextCompositeCommand{\"}{OT1}{U}{\bbl@umlauta{U}}%
12.998 }

12.14 The redefinition of the style commands
The rest of the code in this file can only be processed by LATEX, so we check the
current format. If it is plain TEX, processing should stop here. But, because of the
need to limit the scope of the definition of \format, a macro that is used locally in
the following \if statement, this comparison is done inside a group. To prevent
TEX from complaining about an unclosed group, the processing of the command
\endinput is deferred until after the group is closed. This is accomplished by the
command \aftergroup.

12.999 {\def\format{lplain}
12.1000 \ifx\fmtname\format
12.1001 \else
12.1002 \def\format{LaTeX2e}
12.1003 \ifx\fmtname\format
12.1004 \else
12.1005 \aftergroup\endinput
12.1006 \fi
12.1007 \fi}

Now that we’re sure that the code is seen by LATEX only, we have to find out
what the main (primary) document style is because we want to redefine some
macros. This is only necessary for releases of LATEX dated before December 1991.
Therefor this part of the code can optionally be included in babel.def by speci-
fying the docstrip option names.

12.1008 〈∗names〉

60

The standard styles can be distinguished by checking whether some macros are
defined. In table 1 an overview is given of the macros that can be used for this
purpose.

article : both the \chapter and \opening macros are unde-
fined

report and book : the \chapter macro is defined and the \opening is
undefined

letter : the \chapter macro is undefined and the \opening
is defined

Table 1: How to determine the main document style

The macros that have to be redefined for the report and book document styles
happen to be the same, so there is no need to distinguish between those two styles.

\doc@style First a parameter \doc@style is defined to identify the current document style.
This parameter might have been defined by a document style that already uses
macros instead of hard-wired texts, such as artikel1.sty [6], so the existence of
\doc@style is checked. If this macro is undefined, i. e., if the document style is
unknown and could therefore contain hard-wired texts, \doc@style is defined to
the default value ‘0’.

12.1009 \ifx\@undefined\doc@style
12.1010 \def\doc@style{0}%

This parameter is defined in the following if construction (see table 1):

12.1011 \ifx\@undefined\opening
12.1012 \ifx\@undefined\chapter
12.1013 \def\doc@style{1}%
12.1014 \else
12.1015 \def\doc@style{2}%
12.1016 \fi
12.1017 \else
12.1018 \def\doc@style{3}%
12.1019 \fi%
12.1020 \fi%

12.14.1 Redefinition of macros

Now here comes the real work: we start to redefine things and replace hard-wired
texts by macros. These redefinitions should be carried out conditionally, in case
it has already been done.

For the figure and table environments we have in all styles:
12.1021 \@ifundefined{figurename}{\def\fnum@figure{\figurename{} \thefigure}}{}
12.1022 \@ifundefined{tablename}{\def\fnum@table{\tablename{} \thetable}}{}

61

The rest of the macros have to be treated differently for each style. When
\doc@style still has its default value nothing needs to be done.

12.1023 \ifcase \doc@style\relax
12.1024 \or

This means that babel.def is read after the article style, where no \chapter
and \opening commands are defined9.

First we have the \tableofcontents, \listoffigures and \listoftables:
12.1025 \@ifundefined{contentsname}%
12.1026 {\def\tableofcontents{\section*{\contentsname\@mkboth
12.1027 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}%
12.1028 \@starttoc{toc}}}{}
12.1029
12.1030 \@ifundefined{listfigurename}%
12.1031 {\def\listoffigures{\section*{\listfigurename\@mkboth
12.1032 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}%
12.1033 \@starttoc{lof}}}{}
12.1034
12.1035 \@ifundefined{listtablename}%
12.1036 {\def\listoftables{\section*{\listtablename\@mkboth
12.1037 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}%
12.1038 \@starttoc{lot}}}{}

Then the \thebibliography and \theindex environments.

12.1039 \@ifundefined{refname}%
12.1040 {\def\thebibliography#1{\section*{\refname
12.1041 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}}%
12.1042 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}%
12.1043 \leftmargin\labelwidth
12.1044 \advance\leftmargin\labelsep
12.1045 \usecounter{enumi}}%
12.1046 \def\newblock{\hskip.11em plus.33em minus.07em}%
12.1047 \sloppy\clubpenalty4000\widowpenalty\clubpenalty
12.1048 \sfcode‘\.=1000\relax}}{}
12.1049
12.1050 \@ifundefined{indexname}%
12.1051 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
12.1052 \columnseprule \z@
12.1053 \columnsep 35pt\twocolumn[\section*{\indexname}]%
12.1054 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}%
12.1055 \thispagestyle{plain}%
12.1056 \parskip\z@ plus.3pt\parindent\z@\let\item\@idxitem}}{}

The abstract environment:

12.1057 \@ifundefined{abstractname}%
12.1058 {\def\abstract{\if@twocolumn
12.1059 \section*{\abstractname}%

9A fact that was pointed out to me by Nico Poppelier and was already used in Piet van
Oostrum’s document style option nl.

62

12.1060 \else \small
12.1061 \begin{center}%
12.1062 {\bf \abstractname\vspace{-.5em}\vspace{\z@}}%
12.1063 \end{center}%
12.1064 \quotation
12.1065 \fi}}{}

And last but not least, the macro \part:

12.1066 \@ifundefined{partname}%
12.1067 {\def\@part[#1]#2{\ifnum \c@secnumdepth >\m@ne
12.1068 \refstepcounter{part}%
12.1069 \addcontentsline{toc}{part}{\thepart
12.1070 \hspace{1em}#1}\else
12.1071 \addcontentsline{toc}{part}{#1}\fi
12.1072 {\parindent\z@ \raggedright
12.1073 \ifnum \c@secnumdepth >\m@ne
12.1074 \Large \bf \partname{} \thepart
12.1075 \par \nobreak
12.1076 \fi
12.1077 \huge \bf
12.1078 #2\markboth{}{}\par}%
12.1079 \nobreak
12.1080 \vskip 3ex\@afterheading}%
12.1081 }{}

This is all that needs to be done for the article style.

12.1082 \or

The next case is formed by the two styles book and report. Basically we have
to do the same as for the article style, except now we must also change the
\chapter command.

The tables of contents, figures and tables:
12.1083 \@ifundefined{contentsname}%
12.1084 {\def\tableofcontents{\@restonecolfalse
12.1085 \if@twocolumn\@restonecoltrue\onecolumn
12.1086 \fi\chapter*{\contentsname\@mkboth
12.1087 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}%
12.1088 \@starttoc{toc}%
12.1089 \csname if@restonecol\endcsname\twocolumn
12.1090 \csname fi\endcsname}}{}
12.1091
12.1092 \@ifundefined{listfigurename}%
12.1093 {\def\listoffigures{\@restonecolfalse
12.1094 \if@twocolumn\@restonecoltrue\onecolumn
12.1095 \fi\chapter*{\listfigurename\@mkboth
12.1096 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}%
12.1097 \@starttoc{lof}%
12.1098 \csname if@restonecol\endcsname\twocolumn
12.1099 \csname fi\endcsname}}{}
12.1100

63

12.1101 \@ifundefined{listtablename}%
12.1102 {\def\listoftables{\@restonecolfalse
12.1103 \if@twocolumn\@restonecoltrue\onecolumn
12.1104 \fi\chapter*{\listtablename\@mkboth
12.1105 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}%
12.1106 \@starttoc{lot}%
12.1107 \csname if@restonecol\endcsname\twocolumn
12.1108 \csname fi\endcsname}}{}

Again, the bibliography and index environments; notice that in this case we
use \bibname instead of \refname as in the definitions for the article style. The
reason for this is that in the article document style the term ‘References’ is used
in the definition of \thebibliography. In the report and book document styles
the term ‘Bibliography’ is used.

12.1109 \@ifundefined{bibname}%
12.1110 {\def\thebibliography#1{\chapter*{\bibname
12.1111 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}}%
12.1112 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}%
12.1113 \leftmargin\labelwidth \advance\leftmargin\labelsep
12.1114 \usecounter{enumi}}%
12.1115 \def\newblock{\hskip.11em plus.33em minus.07em}%
12.1116 \sloppy\clubpenalty4000\widowpenalty\clubpenalty
12.1117 \sfcode‘\.=1000\relax}}{}
12.1118
12.1119 \@ifundefined{indexname}%
12.1120 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
12.1121 \columnseprule \z@
12.1122 \columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}]%
12.1123 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}%
12.1124 \thispagestyle{plain}%
12.1125 \parskip\z@ plus.3pt\parindent\z@ \let\item\@idxitem}}{}

Here is the abstract environment:
12.1126 \@ifundefined{abstractname}%
12.1127 {\def\abstract{\titlepage
12.1128 \null\vfil
12.1129 \begin{center}%
12.1130 {\bf \abstractname}%
12.1131 \end{center}}}{}

And last but not least the \chapter, \appendix and \part macros.
12.1132 \@ifundefined{chaptername}{\def\@chapapp{\chaptername}}{}
12.1133 %
12.1134 \@ifundefined{appendixname}%
12.1135 {\def\appendix{\par
12.1136 \setcounter{chapter}{0}%
12.1137 \setcounter{section}{0}%
12.1138 \def\@chapapp{\appendixname}%
12.1139 \def\thechapter{\Alph{chapter}}}}{}
12.1140 %
12.1141 \@ifundefined{partname}%

64

12.1142 {\def\@part[#1]#2{\ifnum \c@secnumdepth >-2\relax
12.1143 \refstepcounter{part}%
12.1144 \addcontentsline{toc}{part}{\thepart
12.1145 \hspace{1em}#1}\else
12.1146 \addcontentsline{toc}{part}{#1}\fi
12.1147 \markboth{}{}%
12.1148 {\centering
12.1149 \ifnum \c@secnumdepth >-2\relax
12.1150 \huge\bf \partname{} \thepart
12.1151 \par
12.1152 \vskip 20pt \fi
12.1153 \Huge \bf
12.1154 #1\par}\@endpart}}{}%

12.1155 \or

Now we address the case where babel.def is read after the letter style.
The letter document style defines the macro \opening and some other macros
that are specific to letter. This means that we have to redefine other macros,
compared to the previous two cases.

First two macros for the material at the end of a letter, the \cc and \encl
macros.

12.1156 \@ifundefined{ccname}%
12.1157 {\def\cc#1{\par\noindent
12.1158 \parbox[t]{\textwidth}%
12.1159 {\@hangfrom{\rm \ccname : }\ignorespaces #1\strut}\par}}{}
12.1160
12.1161 \@ifundefined{enclname}%
12.1162 {\def\encl#1{\par\noindent
12.1163 \parbox[t]{\textwidth}%
12.1164 {\@hangfrom{\rm \enclname : }\ignorespaces #1\strut}\par}}{}

The last thing we have to do here is to redefine the headings pagestyle:
12.1165 \@ifundefined{headtoname}%
12.1166 {\def\ps@headings{%
12.1167 \def\@oddhead{\sl \headtoname{} \ignorespaces\toname \hfil
12.1168 \@date \hfil \pagename{} \thepage}%
12.1169 \def\@oddfoot{}}}{}

This was the last of the four standard document styles, so if \doc@style has
another value we do nothing and just close the if construction.

12.1170 \fi

Here ends the code that can be optionally included when a version of LATEX is in
use that is dated before December 1991.

12.1171 〈/names〉
12.1172 〈/core〉

12.15 Cross referencing macros
The LATEX book states:

65

The key argument is any sequence of letters, digits, and punctuation
symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a lan-
guage that has active characters, special care has to be taken of the category
codes of these characters when they appear in an argument of the cross referenc-
ing macros.

When a cross referencing command processes its argument, all tokens in this
argument should be character tokens with category ‘letter’ or ‘other’.

The only way to accomplish this in most cases is to use the trick described in
the TEXbook [1] (Appendix D, page 382). The primitive \meaning applied to a
token expands to the current meaning of this token. For example, ‘\meaning\A’
with \A defined as ‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with
all category codes set to ‘other’ or ‘space’.

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine
it to call the original macro with the ‘sanitized’ argument. The reason why we do
it this way is that we don’t want to redefine the LATEX macros completely in case
their definitions change (they have changed in the past).

Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence,
\org@...

12.1173 〈∗core | shorthands〉
12.1174 \def\bbl@redefine#1{%
12.1175 \edef\bbl@tempa{\expandafter\@gobble\string#1}%
12.1176 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1177 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.
12.1178 \@onlypreamble\bbl@redefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such
as \ifthenelse.

12.1179 \def\bbl@redefine@long#1{%
12.1180 \edef\bbl@tempa{\expandafter\@gobble\string#1}%
12.1181 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1182 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}
12.1183 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly
more intelligent macro. A robust command foo is defined to expand to
\protect\foo␣. So it is necessary to check whether \foo␣ exists.

12.1184 \def\bbl@redefinerobust#1{%
12.1185 \edef\bbl@tempa{\expandafter\@gobble\string#1}%
12.1186 \expandafter\ifx\csname \bbl@tempa\space\endcsname\relax
12.1187 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1188 \expandafter\edef\csname\bbl@tempa\endcsname{\noexpand\protect
12.1189 \expandafter\noexpand\csname\bbl@tempa\space\endcsname}%

66

12.1190 \else
12.1191 \expandafter\let\csname org@\bbl@tempa\expandafter\endcsname
12.1192 \csname\bbl@tempa\space\endcsname
12.1193 \fi

The result of the code above is that the command that is being redefined is always
robust afterwards. Therefor all we need to do now is define \foo␣.

12.1194 \expandafter\def\csname\bbl@tempa\space\endcsname}

This command should only be used in the preamble of the document.
12.1195 \@onlypreamble\bbl@redefinerobust

\newlabel The macro \label writes a line with a \newlabel command into the .aux file to
define labels.

12.1196 %\bbl@redefine\newlabel#1#2{%
12.1197 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

\@newl@bel We need to change the definition of the LATEX-internal macro \@newl@bel. This
is needed because we need to make sure that shorthand characters expand to their
non-active version.

12.1198 \def\@newl@bel#1#2#3{%

First we open a new group to keep the changed setting of \protect local and then
we set the @safe@actives switch to true to make sure that any shorthand that
appears in any of the arguments immediately expands to its non-active self.

12.1199 {%
12.1200 \@safe@activestrue
12.1201 \@ifundefined{#1@#2}%
12.1202 \relax
12.1203 {%
12.1204 \gdef \@multiplelabels {%
12.1205 \@latex@warning@no@line{There were multiply-defined labels}}%
12.1206 \@latex@warning@no@line{Label ‘#2’ multiply defined}%
12.1207 }%
12.1208 \global\@namedef{#1@#2}{#3}%
12.1209 }%
12.1210 }

\@testdef An internal LATEX macro used to test if the labels that have been written on the
.aux file have changed. It is called by the \enddocument macro. This macro needs
to be completely rewritten, using \meaning. The reason for this is that in some
cases the expansion of \#1@#2 contains the same characters as the #3; but the
character codes differ. Therefor LATEX keeps reporting that the labels may have
changed.

12.1211 \CheckCommand*\@testdef[3]{%
12.1212 \def\reserved@a{#3}%
12.1213 \expandafter \ifx \csname #1@#2\endcsname \reserved@a
12.1214 \else
12.1215 \@tempswatrue
12.1216 \fi}

67

Now that we made sure that \@testdef still has the same definition we can rewrite
it. First we make the shorthands ‘safe’.

12.1217 \def\@testdef #1#2#3{%
12.1218 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which
is being checked.

12.1219 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname

Then we define \bbl@tempb just as \@newl@bel does it.
12.1220 \def\bbl@tempb{#3}%
12.1221 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.
12.1222 \ifx\bbl@tempa\relax
12.1223 \else
12.1224 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempa}%
12.1225 \fi

We do the same for \bbl@tempb.
12.1226 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}%

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.
12.1227 \ifx \bbl@tempa \bbl@tempb
12.1228 \else
12.1229 \@tempswatrue
12.1230 \fi}

\ref
\pageref

The same holds for the macro \ref that references a label and \pageref to refer-
ence a page. So we redefine \ref and \pageref. While we change these macros,
we make them robust as well (if they weren’t already) to prevent problems if they
should become expanded at the wrong moment.

12.1231 \bbl@redefinerobust\ref#1{%
12.1232 \@safe@activestrue\org@ref{#1}\@safe@activesfalse}
12.1233 \bbl@redefinerobust\pageref#1{%
12.1234 \@safe@activestrue\org@pageref{#1}\@safe@activesfalse}

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro,
\@citex. It is this internal macro that picks up the argument(s), so we rede-
fine this internal macro and leave \cite alone. The first argument is used for
typesetting, so the shorthands need only be deactivated in the second argument.

12.1235 \bbl@redefine\@citex[#1]#2{%
12.1236 \@safe@activestrue\edef\@tempa{#2}\@safe@activesfalse
12.1237 \org@@citex[#1]{\@tempa}}

Unfortunately, the packages natbib and cite need a different definition of
\@citex... To begin with, natbib has a definition for \@citex with three ar-
guments... We only know that a package is loaded when \begin{document} is
executed, so we need to postpone the different redefinition.

12.1238 \AtBeginDocument{%
12.1239 \@ifpackageloaded{natbib}{%

68

Notice that we use \def here instead of \bbl@redefine because \org@@citex is
already defined and we don’t want to overwrite that definition (it would result in
parameter stack overflow because of a circular definition).

12.1240 \def\@citex[#1][#2]#3{%
12.1241 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse
12.1242 \org@@citex[#1][#2]{\@tempa}}%
12.1243 }{}}

The package cite has a definition of \@citex where the shorthands need to be
turned off in both arguments.

12.1244 \AtBeginDocument{%
12.1245 \@ifpackageloaded{cite}{%
12.1246 \def\@citex[#1]#2{%
12.1247 \@safe@activestrue\org@@citex[#1]{#2}\@safe@activesfalse}%
12.1248 }{}}

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references
from the database.

12.1249 \bbl@redefine\nocite#1{%
12.1250 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages
such as natbib or cite are not loaded its second argument is used to typeset the
citation label. In that case, this second argument can contain active characters
but is used in an environment where \@safe@activestrue is in effect. This switch
needs to be reset inside the \hbox which contains the citation label. In order to
determine during .aux file processing which definition of \bibcite is needed we
define \bibcite in such a way that it redefines itself with the proper definition.

12.1251 \bbl@redefine\bibcite{%

We call \bbl@cite@choice to select the proper definition for \bibcite. This new
definition is then activated.

12.1252 \bbl@cite@choice
12.1253 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither
natbib nor cite is loaded.

12.1254 \def\bbl@bibcite#1#2{%
12.1255 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.
12.1256 \def\bbl@cite@choice{%

First we give \bibcite its default definition.
12.1257 \global\let\bibcite\bbl@bibcite

Then, when natbib is loaded we restore the original definition of \bibcite .
12.1258 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

69

For cite we do the same.
12.1259 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%

Make sure this only happens once.
12.1260 \global\let\bbl@cite@choice\relax
12.1261 }

When a document is run for the first time, no .aux file is available, and
\bibcite will not yet be properly defined. In this case, this has to happen before
the document starts.

12.1262 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal LATEX macros called by \bibitem that write the citation
label on the .aux file.

12.1263 \bbl@redefine\@bibitem#1{%
12.1264 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

12.16 marks
\markright
\markboth

Because the output routine is asynchronous, we must pass the current language
attribute to the head lines, together with the text that is put into them. To achieve
this we need to adapt the definition of \markright and \markboth somewhat.

12.1265 \bbl@redefine\markright#1{%

First of all we temporarily store the language switching command, using an ex-
panded definition in order to get the current value of \languagename.

12.1266 \edef\bbl@tempb{\noexpand\protect
12.1267 \noexpand\foreignlanguage{\languagename}}%

Then, we check whether the argument is empty; if it is, we just make sure the
scratch token register is empty.

12.1268 \def\bbl@arg{#1}%
12.1269 \ifx\bbl@arg\@empty
12.1270 \toks@{}%
12.1271 \else

Next, we store the argument to \markright in the scratch token register, together
with the expansion of \bbl@tempb (containing the language switching command)
as defined before. This way these commands will not be expanded by using \edef
later on, and we make sure that the text is typeset using the correct language set-
tings. While doing so, we make sure that active characters that may end up in the
mark are not disabled by the output routine kicking in while \@safe@activestrue
is in effect.

12.1272 \expandafter\toks@\expandafter{%
12.1273 \bbl@tempb{\protect\bbl@restore@actives#1}}%
12.1274 \fi

Then we define a temporary control sequence using \edef.
12.1275 \edef\bbl@tempa{%

70

When \bbl@tempa is executed, only \languagename will be expanded, because of
the way the token register was filled.

12.1276 \noexpand\org@markright{\the\toks@}}%
12.1277 \bbl@tempa
12.1278 }

The definition of \markboth is equivalent to that of \markright, except that we
need two token registers.

12.1279 \bbl@redefine\markboth#1#2{%
12.1280 \edef\bbl@tempb{\noexpand\protect
12.1281 \noexpand\foreignlanguage{\languagename}}%
12.1282 \def\bbl@arg{#1}%
12.1283 \ifx\bbl@arg\@empty
12.1284 \toks@{}%
12.1285 \else
12.1286 \expandafter\toks@\expandafter{%
12.1287 \bbl@tempb{\protect\bbl@restore@actives#1}}%
12.1288 \fi
12.1289 \def\bbl@arg{#2}%
12.1290 \ifx\bbl@arg\@empty
12.1291 \toks8{}%
12.1292 \else
12.1293 \expandafter\toks8\expandafter{%
12.1294 \bbl@tempb{\protect\bbl@restore@actives#2}}%
12.1295 \fi
12.1296 \edef\bbl@tempa{%
12.1297 \noexpand\org@markboth{\the\toks@}{\the\toks8}}%
12.1298 \bbl@tempa
12.1299 }
12.1300 〈/core | shorthands〉

12.17 Encoding issues (part 2)
\TeX

\LaTeX
Because documents may use font encodings other than one of the latin encodings,
we make sure that the logos of TEX and LATEX always come out in the right
encoding.

12.1301 〈∗core〉
12.1302 \bbl@redefine\TeX{\textlatin{\org@TeX}}
12.1303 \bbl@redefine\LaTeX{\textlatin{\org@LaTeX}}
12.1304 〈/core〉

12.18 Preventing clashes with other packages
12.18.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the
page a certain fragment of text appears on. This can be achieved by the following
piece of code:

71

\ifthenelse{\isodd{\pageref{some:label}}}
{code for odd pages}
{code for even pages}

In order for this to work the argument of \isodd needs to be fully expandable.
With the above redefinition of \pageref it is not in the case of this example. To
overcome that, we add some code to the definition of \ifthenelse to make things
work.

The first thing we need to do is check if the package ifthen is loaded. This
should be done at \begin{document} time.

12.1305 〈∗package〉
12.1306 \AtBeginDocument{%
12.1307 \@ifpackageloaded{ifthen}{%

Then we can redefine \ifthenelse:
12.1308 \bbl@redefine@long\ifthenelse#1#2#3{%

We want to revert the definition of \pageref to its original definition for the
duration of \ifthenelse, so we first need to store its current meaning.

12.1309 \let\bbl@tempa\pageref
12.1310 \let\pageref\org@pageref

Then we can set the \@safe@actives switch and call the original \ifthenelse.
In order to be able to use shorthands in the second and third arguments of
\ifthenelse the resetting of the switch and the definition of \pageref happens
inside those arguments.

12.1311 \@safe@activestrue
12.1312 \org@ifthenelse{#1}{%
12.1313 \let\pageref\bbl@tempa
12.1314 \@safe@activesfalse
12.1315 #2}{%
12.1316 \let\pageref\bbl@tempa
12.1317 \@safe@activesfalse
12.1318 #3}%
12.1319 }%

When the package wasn’t loaded we do nothing.
12.1320 }{}%
12.1321 }

12.18.2 varioref

\@@vpageref
\vrefpagenum

\Ref

When the package varioref is in use we need to modify its internal command
\@@vpageref in order to prevent problems when an active character ends up in
the argument of \vref.

12.1322 \AtBeginDocument{%
12.1323 \@ifpackageloaded{varioref}{%
12.1324 \bbl@redefine\@@vpageref#1[#2]#3{%
12.1325 \@safe@activestrue

72

12.1326 \org@@@vpageref{#1}[#2]{#3}%
12.1327 \@safe@activesfalse}%

The same needs to happen for \vrefpagenum.
12.1328 \bbl@redefine\vrefpagenum#1#2{%
12.1329 \@safe@activestrue
12.1330 \org@vrefpagenum{#1}{#2}%
12.1331 \@safe@activesfalse}%

The package varioref defines \Ref to be a robust command wich uppercases
the first character of the reference text. In order to be able to do that it needs
to access the exandable form of \ref. So we employ a little trick here. We
redefine the (internal) command \Ref␣ to call \org@ref instead of \ref. The
disadvantgage of this solution is that whenever the derfinition of \Ref changes,
this definition needs to be updated as well.

12.1332 \expandafter\def\csname Ref \endcsname#1{%
12.1333 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}
12.1334 }{}%
12.1335 }

12.18.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with
the hhline package. The reason is that it uses the ‘:’ character which is made
active by the french support in babel. Therefor we need to reload the package
when the ‘:’ is an active character.

So at \begin{document} we check whether hhline is loaded.
12.1336 \AtBeginDocument{%
12.1337 \@ifpackageloaded{hhline}%

Then we check whether the expansion of \normal@char: is not equal to \relax.
12.1338 {\expandafter\ifx\csname normal@char\string:\endcsname\relax
12.1339 \else

In that case we simply reload the package. Note that this happens after the
category code of the @-sign has been changed to other, so we need to temporarily
change it to letter again.

12.1340 \makeatletter
12.1341 \def\@currname{hhline}\input{hhline.sty}\makeatother
12.1342 \fi}%
12.1343 {}}

12.18.4 General

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat dif-
ferently as the standard classes. A symptom of this is that the command
\foreignlanguage which babel adds to the marks can end up inside the ar-
gument of \MakeUppercase. To prevent unexpected results we need to define
\FOREIGNLANGUAGE here.

73

12.1344 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%
12.1345 \lowercase{\foreignlanguage{#1}}}
12.1346 〈/package〉

\nfss@catcodes LATEX’s font selection scheme sometimes wants to read font definition files in the
middle of processing the document. In order to guard against any characters
having the wrong \catcodes it always calls \nfss@catcodes before loading a file.
Unfortunately, the characters " and ’ are not dealt with. Therefor we have to add
them until LATEX does that herself.

12.1347 〈∗core | shorthands〉
12.1348 \ifx\nfss@catcodes\@undefined
12.1349 \else
12.1350 \addto\nfss@catcodes{%
12.1351 \@makeother\’%
12.1352 \@makeother\"%
12.1353 }
12.1354 \fi

12.1355 〈/core | shorthands〉

13 Local Language Configuration
\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language defini-

tion file. This can be done by creating a file with the same name as the language
definition file, but with the extension .cfg. For instance the file norsk.cfg will
be loaded when the language definition file norsk.ldf is loaded.

13.1 〈∗core〉

For plain-based formats we don’t want to override the definition of \loadlocalcfg
from plain.def.

13.2 \ifx\loadlocalcfg\@undefined
13.3 \def\loadlocalcfg#1{%
13.4 \InputIfFileExists{#1.cfg}
13.5 {\typeout{*************************************^^J%
13.6 * Local config file #1.cfg used^^J%
13.7 *}%
13.8 }
13.9 {}}

13.10 \fi

Just to be compatible with LATEX 2.09 we add a few more lines of code:
13.11 \ifx\@unexpandable@protect\@undefined
13.12 \def\@unexpandable@protect{\noexpand\protect\noexpand}
13.13 \long\def \protected@write#1#2#3{%
13.14 \begingroup
13.15 \let\thepage\relax
13.16 #2%
13.17 \let\protect\@unexpandable@protect

74

13.18 \edef\reserved@a{\write#1{#3}}%
13.19 \reserved@a
13.20 \endgroup
13.21 \if@nobreak\ifvmode\nobreak\fi\fi
13.22 }
13.23 \fi
13.24 〈/core〉

75

14 Driver files for the documented source code
Since babel version 3.4 all source files that are part of the babel system can be
typeset separately. But to typeset them all in one document, the file babel.drv
can be used. If you only want the information on how to use the babel system
and what goodies are provided by the language-specific files, you can run the file
user.drv through LATEX to get a user guide.

14.1 〈∗driver〉
14.2 \documentclass{ltxdoc}
14.3 \usepackage{url,t1enc,supertabular}
14.4 \usepackage[icelandic,english]{babel}
14.5 \DoNotIndex{\!,\’,\,,\.,\-,\:,\;,\?,\/,\^,\‘,\@M}
14.6 \DoNotIndex{\@,\@ne,\@m,\@afterheading,\@date,\@endpart}
14.7 \DoNotIndex{\@hangfrom,\@idxitem,\@makeschapterhead,\@mkboth}
14.8 \DoNotIndex{\@oddfoot,\@oddhead,\@restonecolfalse,\@restonecoltrue}
14.9 \DoNotIndex{\@starttoc,\@unused}

14.10 \DoNotIndex{\accent,\active}
14.11 \DoNotIndex{\addcontentsline,\advance,\Alph,\arabic}
14.12 \DoNotIndex{\baselineskip,\begin,\begingroup,\bf,\box,\c@secnumdepth}
14.13 \DoNotIndex{\catcode,\centering,\char,\chardef,\clubpenalty}
14.14 \DoNotIndex{\columnsep,\columnseprule,\crcr,\csname}
14.15 \DoNotIndex{\day,\def,\dimen,\discretionary,\divide,\dp,\do}
14.16 \DoNotIndex{\edef,\else,\@empty,\end,\endgroup,\endcsname,\endinput}
14.17 \DoNotIndex{\errhelp,\errmessage,\expandafter,\fi,\filedate}
14.18 \DoNotIndex{\fileversion,\fmtname,\fnum@figure,\fnum@table,\fontdimen}
14.19 \DoNotIndex{\gdef,\global}
14.20 \DoNotIndex{\hbox,\hidewidth,\hfil,\hskip,\hspace,\ht,\Huge,\huge}
14.21 \DoNotIndex{\ialign,\if@twocolumn,\ifcase,\ifcat,\ifhmode,\ifmmode}
14.22 \DoNotIndex{\ifnum,\ifx,\immediate,\ignorespaces,\input,\item}
14.23 \DoNotIndex{\kern}
14.24 \DoNotIndex{\labelsep,\Large,\large,\labelwidth,\lccode,\leftmargin}
14.25 \DoNotIndex{\lineskip,\leavevmode,\let,\list,\ll,\long,\lower}
14.26 \DoNotIndex{\m@ne,\mathchar,\mathaccent,\markboth,\month,\multiply}
14.27 \DoNotIndex{\newblock,\newbox,\newcount,\newdimen,\newif,\newwrite}
14.28 \DoNotIndex{\nobreak,\noexpand,\noindent,\null,\number}
14.29 \DoNotIndex{\onecolumn,\or}
14.30 \DoNotIndex{\p@,par, \parbox,\parindent,\parskip,\penalty}
14.31 \DoNotIndex{\protect,\ps@headings}
14.32 \DoNotIndex{\quotation}
14.33 \DoNotIndex{\raggedright,\raise,\refstepcounter,\relax,\rm,\setbox}
14.34 \DoNotIndex{\section,\setcounter,\settowidth,\scriptscriptstyle}
14.35 \DoNotIndex{\sfcode,\sl,\sloppy,\small,\space,\spacefactor,\strut}
14.36 \DoNotIndex{\string}
14.37 \DoNotIndex{\textwidth,\the,\thechapter,\thefigure,\thepage,\thepart}
14.38 \DoNotIndex{\thetable,\thispagestyle,\titlepage,\tracingmacros}
14.39 \DoNotIndex{\tw@,\twocolumn,\typeout,\uppercase,\usecounter}
14.40 \DoNotIndex{\vbox,\vfil,\vskip,\vspace,\vss}
14.41 \DoNotIndex{\widowpenalty,\write,\xdef,\year,\z@,\z@skip}

76

Here \dlqq is defined so that an example of "’ can be given.
14.42 \makeatletter
14.43 \gdef\dlqq{{\setbox\tw@=\hbox{,}\setbox\z@=\hbox{’’}%
14.44 \dimen\z@=\ht\z@ \advance\dimen\z@-\ht\tw@
14.45 \setbox\z@=\hbox{\lower\dimen\z@\box\z@}\ht\z@=\ht\tw@
14.46 \dp\z@=\dp\tw@ \box\z@\kern-.04em}}

The code lines are numbered within sections,
14.47 〈∗!user〉
14.48 \@addtoreset{CodelineNo}{section}
14.49 \renewcommand\theCodelineNo{%
14.50 \reset@font\scriptsize\thesection.\arabic{CodelineNo}}

which should also be visible in the index; hence this redefinition of a macro from
doc.sty.

14.51 \renewcommand\codeline@wrindex[1]{\if@filesw
14.52 \immediate\write\@indexfile
14.53 {\string\indexentry{#1}%
14.54 {\number\c@section.\number\c@CodelineNo}}\fi}

The glossary environment is used or the change log, but its definition needs
changing for this document.

14.55 \renewenvironment{theglossary}{%
14.56 \glossary@prologue%
14.57 \GlossaryParms \let\item\@idxitem \ignorespaces}%
14.58 {}
14.59 〈/!user〉
14.60 \makeatother

A few shorthands used in the documentation
14.61 \font\manual=logo10 % font used for the METAFONT logo, etc.
14.62 \newcommand*\MF{{\manual META}\-{\manual FONT}}
14.63 \newcommand*\TeXhax{\TeX hax}
14.64 \newcommand*\babel{\textsf{babel}}
14.65 \newcommand*\Babel{\textsf{Babel}}
14.66 \newcommand*\m[1]{\mbox{\langle\it#1\/\rangle}}
14.67 \newcommand*\langvar{\m{lang}}

Some more definitions needed in the documentation.
14.68 %\newcommand*\note[1]{\textbf{#1}}
14.69 \newcommand*\note[1]{}
14.70 \newcommand*\bsl{\protect\bslash}
14.71 \newcommand*\Lopt[1]{\textsf{#1}}
14.72 \newcommand*\Lenv[1]{\textsf{#1}}
14.73 \newcommand*\file[1]{\texttt{#1}}
14.74 \newcommand*\cls[1]{\texttt{#1}}
14.75 \newcommand*\pkg[1]{\texttt{#1}}
14.76 \newcommand*\langdeffile[1]{%
14.77 〈−user〉 \clearpage
14.78 \DocInput{#1}}

77

When a full index should be generated uncomment the line with \EnableCrossrefs.
Beware, processing may take some time. Use \DisableCrossrefs when the index
is ready.

14.79 % \EnableCrossrefs
14.80 \DisableCrossrefs

Inlude the change log.
14.81 〈−user〉\RecordChanges

The index should use the linenumbers of the code.
14.82 〈−user〉\CodelineIndex

Set everything in \MacroFont instead of \AltMacroFont
14.83 \setcounter{StandardModuleDepth}{1}

For the user guide we only want the description parts of all the files.
14.84 〈+user〉\OnlyDescription

Here starts the document
14.85 \begin{document}
14.86 \DocInput{babel.dtx}

All the language definition files.
14.87 〈+user〉\clearpage
14.88 \langdeffile{esperanto.dtx}
14.89 \langdeffile{interlingua.dtx}
14.90 %
14.91 \langdeffile{dutch.dtx}
14.92 \langdeffile{english.dtx}
14.93 \langdeffile{germanb.dtx}
14.94 \langdeffile{ngermanb.dtx}
14.95 %
14.96 \langdeffile{breton.dtx}
14.97 \langdeffile{welsh.dtx}
14.98 \langdeffile{irish.dtx}
14.99 \langdeffile{scottish.dtx}

14.100 %
14.101 \langdeffile{greek.dtx}
14.102 %
14.103 \langdeffile{frenchb.dtx}
14.104 \langdeffile{italian.dtx}
14.105 \langdeffile{latin.dtx}
14.106 \langdeffile{portuges.dtx}
14.107 \langdeffile{spanish.dtx}
14.108 \langdeffile{catalan.dtx}
14.109 \langdeffile{galician.dtx}
14.110 \langdeffile{basque.dtx}
14.111 \langdeffile{romanian.dtx}
14.112 %
14.113 \langdeffile{danish.dtx}
14.114 \langdeffile{icelandic.dtx}
14.115 \langdeffile{norsk.dtx}

78

14.116 \langdeffile{swedish.dtx}
14.117 \langdeffile{samin.dtx}
14.118 %
14.119 \langdeffile{finnish.dtx}
14.120 \langdeffile{magyar.dtx}
14.121 \langdeffile{estonian.dtx}
14.122 %
14.123 \langdeffile{croatian.dtx}
14.124 \langdeffile{czech.dtx}
14.125 \langdeffile{polish.dtx}
14.126 \langdeffile{serbian.dtx}
14.127 \langdeffile{slovak.dtx}
14.128 \langdeffile{slovene.dtx}
14.129 \langdeffile{russianb.dtx}
14.130 \langdeffile{bulgarian.dtx}
14.131 \langdeffile{ukraineb.dtx}
14.132 %
14.133 \langdeffile{lsorbian.dtx}
14.134 \langdeffile{usorbian.dtx}
14.135 \langdeffile{turkish.dtx}
14.136 %
14.137 \langdeffile{hebrew.dtx}
14.138 \DocInput{hebinp.dtx}
14.139 \DocInput{hebrew.fdd}
14.140 \DocInput{heb209.dtx}
14.141 \langdeffile{bahasa.dtx}
14.142 %\langdeffile{sanskrit.dtx}
14.143 %\langdeffile{kannada.dtx}
14.144 %\langdeffile{nagari.dtx}
14.145 %\langdeffile{tamil.dtx}
14.146 \clearpage
14.147 \DocInput{bbplain.dtx}

Finally print the index and change log (not for the user guide).
14.148 〈∗!user〉
14.149 \clearpage
14.150 \def\filename{index}
14.151 \PrintIndex
14.152 \clearpage
14.153 \def\filename{changes}
14.154 \PrintChanges
14.155 〈/!user〉
14.156 \end{document}
14.157 〈/driver〉

79

15 Conclusion
A system of document options has been presented that enable the user of LATEX
to adapt the standard document classes of LATEX to the language he or she prefers
to use. These options offer the possibility of switching between languages in one
document. The basic interface consists of using one option, which is the same for
all standard document classes.

In some cases the language definition files provide macros that can be useful to
plain TEX users as well as to LATEX users. The babel system has been implemented
so that it can be used by both groups of users.

16 Acknowledgements
I would like to thank all who volunteered as β-testers for their time. I would like to
mention Julio Sanchez who supplied the option file for the Spanish language and
Maurizio Codogno who supplied the option file for the Italian language. Michel
Goossens supplied contributions for most of the other languages. Nico Poppelier
helped polish the text of the documentation and supplied parts of the macros for
the Dutch language. Paul Wackers and Werenfried Spit helped find and repair
bugs.

During the further development of the babel system I received much help from
Bernd Raichle, for which I am grateful.

References
[1] Donald E. Knuth, The TEXbook, Addison-Wesley, 1986.

[2] Leslie Lamport, LATEX, A document preparation System, Addison-Wesley,
1986.

[3] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst. SDU
Uitgeverij (’s-Gravenhage, 1988). A Dutch book on layout design and typog-
raphy.

[4] Hubert Partl, German TEX, TUGboat 9 (1988) #1, p. 70–72.

[5] Leslie Lamport, in: TEXhax Digest, Volume 89, #13, 17 February 1989.

[6] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of
national LATEX styles, TUGboat 10 (1989) #3, p. 401–406.

[7] Joachim Schrod, International LATEX is ready to use, TUGboat 11 (1990) #1,
p. 87–90.

80

17 The Esperanto language
The file esperanto.dtx10 defines all the language-specific macros for the Es-
peranto language.

For this language the character ^ is made active. In table 2 an overview is
given of its purpose.

^c gives ĉ with hyphenation in the rest of the word al-
lowed, this works for c, C, g, G, H, J, s, S, z, Z

^h prevents ĥ from becoming too tall
^j gives ̂
^u gives ŭ, with hyphenation in the rest of the word

allowed
^U gives Ŭ, with hyphenation in the rest of the word

allowed
^| inserts a \discretionary{-}{}{}

Table 2: The functions of the active character for Esperanto.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

17.1 〈∗code〉
17.2 \LdfInit{esperanto}\captionsesperanto

When this file is read as an option, i.e. by the \usepackage command,
esperanto will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \l@esperanto to see whether we have to do some-
thing here.

17.3 \ifx\l@esperanto\@undefined
17.4 \@nopatterns{Esperanto}
17.5 \adddialect\l@esperanto0\fi

The next step consists of defining commands to switch to the Esperanto lan-
guage. The reason for this is that a user might want to switch back and forth
between languages.

\captionsesperanto The macro \captionsesperanto defines all strings used in the four standard
documentclasses provided with LATEX.

17.6 \addto\captionsesperanto{%
17.7 \def\prefacename{Anta\u{u}parolo}%
17.8 \def\refname{Cita\^\j{}oj}%
17.9 \def\abstractname{Resumo}%

17.10 \def\bibname{Bibliografio}%
17.11 \def\chaptername{{\^C}apitro}%
17.12 \def\appendixname{Apendico}%

10The file described in this section has version number ? and was last revised on ?. A con-
tribution was made by Ruiz-Altaba Marti (ruizaltb@cernvm.cern.ch). Code from the file
esperant.sty by Jörg Knappen (knappen@vkpmzd.kph.uni-mainz.de) was included.

81

17.13 \def\contentsname{Enhavo}%
17.14 \def\listfigurename{Listo de figuroj}%
17.15 \def\listtablename{Listo de tabeloj}%
17.16 \def\indexname{Indekso}%
17.17 \def\figurename{Figuro}%
17.18 \def\tablename{Tabelo}%
17.19 \def\partname{Parto}%
17.20 \def\enclname{Aldono(j)}%
17.21 \def\ccname{Kopie al}%
17.22 \def\headtoname{Al}%
17.23 \def\pagename{Pa\^go}%
17.24 \def\subjectname{Temo}%
17.25 \def\seename{vidu}% a^u: vd.
17.26 \def\alsoname{vidu anka\u{u}}% a^u vd. anka\u{u}
17.27 \def\proofname{Pruvo}%
17.28 \def\glossaryname{Glosaro}%
17.29 }

\dateesperanto The macro \dateesperanto redefines the command \today to produce Esperanto
dates.

17.30 \def\dateesperanto{%
17.31 \def\today{\number\day{--a}~de~\ifcase\month\or
17.32 januaro\or februaro\or marto\or aprilo\or majo\or junio\or
17.33 julio\or a\u{u}gusto\or septembro\or oktobro\or novembro\or
17.34 decembro\fi,\space \number\year}}

\extrasesperanto
\noextrasesperanto

The macro \extrasesperanto performs all the extra definitions needed for the
Esperanto language. The macro \noextrasesperanto is used to cancel the actions
of \extrasesperanto.

For Esperanto the ^ character is made active. This is done once, later on its
definition may vary.

17.35 \initiate@active@char{^}

Because the character ^ is used in math mode with quite a different purpose we
need to add an extra level of evaluation to the definition of the active ^. It checks
whether math mode is active; if so the shorthand mechanism is bypassed by a
direct call of \normal@char^.

17.36 \addto\extrasesperanto{\languageshorthands{esperanto}}
17.37 \addto\extrasesperanto{\bbl@activate{^}}
17.38 \addto\noextrasesperanto{\bbl@deactivate{^}}

In order to prevent problems with the active ^ we add a shorthand on system
level which expands to a ‘normal ^.

17.39 \declare@shorthand{system}{^}{\csname normal@char\string^\endcsname}

And here are the uses of the active ^:
17.40 \declare@shorthand{esperanto}{^c}{\^{c}\allowhyphens}
17.41 \declare@shorthand{esperanto}{^C}{\^{C}\allowhyphens}
17.42 \declare@shorthand{esperanto}{^g}{\^{g}\allowhyphens}

82

17.43 \declare@shorthand{esperanto}{^G}{\^{G}\allowhyphens}
17.44 \declare@shorthand{esperanto}{^h}{h\llap{\^{}}\allowhyphens}
17.45 \declare@shorthand{esperanto}{^H}{\^{H}\allowhyphens}
17.46 \declare@shorthand{esperanto}{^j}{\^{\j}\allowhyphens}
17.47 \declare@shorthand{esperanto}{^J}{\^{J}\allowhyphens}
17.48 \declare@shorthand{esperanto}{^s}{\^{s}\allowhyphens}
17.49 \declare@shorthand{esperanto}{^S}{\^{S}\allowhyphens}
17.50 \declare@shorthand{esperanto}{^u}{\u u\allowhyphens}
17.51 \declare@shorthand{esperanto}{^U}{\u U\allowhyphens}
17.52 \declare@shorthand{esperanto}{^|}{\discretionary{-}{}{}\allowhyphens}

\Esper
\esper

In esperant.sty Jörg Knappen provides the macros \esper and \Esper that can
be used instead of \alph and \Alph. These macros are available in this file as
well.

Their definition takes place in two steps. First the toplevel.
17.53 \def\esper#1{\@esper{\@nameuse{c@#1}}}
17.54 \def\Esper#1{\@Esper{\@nameuse{c@#1}}}

Then the second level.
17.55 \def\@esper#1{%
17.56 \ifcase#1\or a\or b\or c\or \^c\or d\or e\or f\or g\or \^g\or
17.57 h\or h\llap{\^{}}\or i\or j\or \^\j\or k\or l\or m\or n\or o\or
17.58 p\or s\or \^s\or t\or u\or \u{u}\or v\or z\else\@ctrerr\fi}
17.59 \def\@Esper#1{%
17.60 \ifcase#1\or A\or B\or C\or \^C\or D\or E\or F\or G\or \^G\or
17.61 H\or \^H\or I\or J\or \^J\or K\or L\or M\or N\or O\or
17.62 P\or S\or \^S\or T\or U\or \u{U}\or V\or Z\else\@ctrerr\fi}

\hodiau
\hodiaun

In esperant.sty Jörg Knappen provides two alternative macros for \today,
\hodiau and \hodiaun. The second macro produces an accusative version of
the date in Esperanto.

17.63 \addto\dateesperanto{\def\hodiau{la \today}}
17.64 \def\hodiaun{la \number\day --an~de~\ifcase\month\or
17.65 januaro\or februaro\or marto\or aprilo\or majo\or junio\or
17.66 julio\or a\u{u}gusto\or septembro\or oktobro\or novembro\or
17.67 decembro\fi, \space \number\year}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

17.68 \ldf@finish{esperanto}
17.69 〈/code〉

83

18 The Interlingua language
The file interlingua.dtx11 defines all the language definition macros for the
Interlingua language. This file was contributed by Peter Kleiweg, kleiweg at
let.rug.nl.

Interlingua is an auxiliary language, built from the common vocabulary of
Spanish/Portuguese, English, Italian and French, with some normalisation of
spelling. The grammar is very easy, more similar to English’s than to neolatin
languages. The site http://www.interlingua.com is mostly written in interlin-
gua (as is http://interlingua.altervista.org), in case you want to read some
sample of it.

You can have a look at the grammar at http://www.geocities.com/linguablau
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
18.1 〈∗code〉
18.2 \LdfInit{interlingua}{captionsinterlingua}

When this file is read as an option, i.e. by the \usepackage command,
interlingua could be an ‘unknown’ language in which case we have to make
it known. So we check for the existence of \l@interlingua to see whether we
have to do something here.

18.3 \ifx\undefined\l@interlingua
18.4 \@nopatterns{Interlingua}
18.5 \adddialect\l@interlingua0\fi

The next step consists of defining commands to switch to (and from) the In-
terlingua language.

\interlinguahyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

18.6 \providehyphenmins{interlingua}{\tw@\tw@}

\captionsinterlingua The macro \captionsinterlingua defines all strings used in the four standard
documentclasses provided with LATEX.

18.7 \def\captionsinterlingua{%
18.8 \def\prefacename{Prefacio}%
18.9 \def\refname{Referentias}%

18.10 \def\abstractname{Summario}%
18.11 \def\bibname{Bibliographia}%
18.12 \def\chaptername{Capitulo}%
18.13 \def\appendixname{Appendice}%
18.14 \def\contentsname{Contento}%
18.15 \def\listfigurename{Lista de figuras}%
18.16 \def\listtablename{Lista de tabellas}%
18.17 \def\indexname{Indice}%
18.18 \def\figurename{Figura}%
18.19 \def\tablename{Tabella}%

11The file described in this section has version number v1.6 and was last revised on 2005/03/30.

84

18.20 \def\partname{Parte}%
18.21 \def\enclname{Incluso}%
18.22 \def\ccname{Copia}%
18.23 \def\headtoname{A}%
18.24 \def\pagename{Pagina}%
18.25 \def\seename{vide}%
18.26 \def\alsoname{vide etiam}%
18.27 \def\proofname{Prova}%
18.28 \def\glossaryname{Glossario}%
18.29 }

\dateinterlingua The macro \dateinterlingua redefines the command \today to produce Inter-
lingua dates.

18.30 \def\dateinterlingua{%
18.31 \def\today{le~\number\day\space de \ifcase\month\or
18.32 januario\or februario\or martio\or april\or maio\or junio\or
18.33 julio\or augusto\or septembre\or octobre\or novembre\or
18.34 decembre\fi
18.35 \space \number\year}}

\extrasinterlingua
\noextrasinterlingua

The macro \extrasinterlingua will perform all the extra definitions needed for
the Interlingua language. The macro \noextrasinterlingua is used to cancel
the actions of \extrasinterlingua. For the moment these macros are empty but
they are defined for compatibility with the other language definition files.

18.36 \addto\extrasinterlingua{}
18.37 \addto\noextrasinterlingua{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

18.38 \ldf@finish{interlingua}
18.39 〈/code〉

85

19 The Dutch language
The file dutch.dtx12 defines all the language-specific macros for the Dutch lan-
guage and the ‘Afrikaans’ version13 of it.

For this language the character " is made active. In table 3 an overview is
given of its purpose. One of the reasons for this is that in the Dutch language
a word with a dieresis can be hyphenated just before the letter with the umlaut,
but the dieresis has to disappear if the word is broken between the previous letter
and the accented letter.

In [3] the quoting conventions for the Dutch language are discussed. The
preferred convention is the single-quote Anglo-American convention, i.e. ‘This is
a quote’. An alternative is the slightly old-fashioned Dutch method with initial
double quotes lowered to the baseline, ”This is a quote”, which should be typed as
"‘This is a quote"’.

"a \"a which hyphenates as -a; also implemented for
the other letters.

"y puts a negative kern between i and j
"Y puts a negative kern between I and J
"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"~ to produce a hyphencharcter without the following

\discretionary{}{}{}.
"" to produce an invisible ‘breakpoint’.
"‘ lowered double left quotes (see example below).
"’ normal double right quotes.
\- like the old \-, but allowing hyphenation in the rest

of the word.

Table 3: The extra definitions made by dutch.ldf

19.1 % \changes{dutch-3.8a}{1996/10/04}{made check dependant on
19.2 % \cs{CurrentOption}}
19.3 %
19.4 % The macro |\LdfInit| takes care of preventing that this file is
19.5 % loaded more than once, checking the category code of the
19.6 % \texttt{@} sign, etc.
19.7 % \changes{dutch-3.8a}{1996/10/30}{Now use \cs{LdfInit} to perform
19.8 % initial checks}
19.9 % \begin{macrocode}

19.10 〈∗code〉
19.11 \LdfInit\CurrentOption{captions\CurrentOption}

12The file described in this section has version number v3.8i, and was last revised on
2005/03/30.

13contributed by Stoffel Lombard (lombc@b31pc87.up.ac.za)

86

When this file is read as an option, i.e. by the \usepackage command, dutch
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@dutch or l@afrikaans to see whether we have to do
something here.

First we try to establish with which option we are being processed.

19.12 \def\bbl@tempa{dutch}
19.13 \ifx\CurrentOption\bbl@tempa

If it is dutch then we first check if the Dutch hyphenation patterns wer loaded,
19.14 \ifx\l@dutch\undefined

if no we issue a warning and make dutch a ‘dialect’ of either the hyphenation
patterns that were loaded in slot 0 or of ‘afrikaans’ when it is available.

19.15 \@nopatterns{Dutch}
19.16 \ifx\l@afrikaans\undefined
19.17 \adddialect\l@dutch0
19.18 \else
19.19 \adddialect\l@dutch\l@afrikaans
19.20 \fi
19.21 \fi

The next step consists of defining commands to switch to (and from) the Dutch
language.

\captionsdutch The macro \captionsdutch defines all strings used in the four standard document
classes provided with LATEX.

19.22 \begingroup
19.23 \catcode‘\"\active
19.24 \def\x{\endgroup
19.25 \def\captionsdutch{%
19.26 \def\prefacename{Voorwoord}%
19.27 \def\refname{Referenties}%
19.28 \def\abstractname{Samenvatting}%
19.29 \def\bibname{Bibliografie}%
19.30 \def\chaptername{Hoofdstuk}%
19.31 \def\appendixname{B"ylage}%
19.32 \def\contentsname{Inhoudsopgave}%
19.33 \def\listfigurename{L"yst van figuren}%
19.34 \def\listtablename{L"yst van tabellen}%
19.35 \def\indexname{Index}%
19.36 \def\figurename{Figuur}%
19.37 \def\tablename{Tabel}%
19.38 \def\partname{Deel}%
19.39 \def\enclname{B"ylage(n)}%
19.40 \def\ccname{cc}%
19.41 \def\headtoname{Aan}%
19.42 \def\pagename{Pagina}%
19.43 \def\seename{zie}%
19.44 \def\alsoname{zie ook}%
19.45 \def\proofname{Bew"ys}%

87

19.46 \def\glossaryname{Verklarende Woordenl"yst}%
19.47 }
19.48 }\x

\datedutch The macro \datedutch redefines the command \today to produce Dutch dates.

19.49 \def\datedutch{%
19.50 \def\today{\number\day~\ifcase\month\or
19.51 januari\or februari\or maart\or april\or mei\or juni\or
19.52 juli\or augustus\or september\or oktober\or november\or
19.53 december\fi
19.54 \space \number\year}}

When the option with which this file is being process was not dutch we assume
it was afrikaans. We perform a similar check on the availability of the hyphenation
paterns.

19.55 \else
19.56 \ifx\l@afrikaans\undefined
19.57 \@nopatterns{Afrikaans}
19.58 \ifx\l@dutch\undefined
19.59 \adddialect\l@afrikaans0
19.60 \else
19.61 \adddialect\l@afrikaans\l@dutch
19.62 \fi
19.63 \fi

\captionsafrikaans Now is the time to define the words for ‘Afrikaans’.
19.64 \def\captionsafrikaans{%
19.65 \def\prefacename{Voorwoord}%
19.66 \def\refname{Verwysings}%
19.67 \def\abstractname{Samevatting}%
19.68 \def\bibname{Bibliografie}%
19.69 \def\chaptername{Hoofstuk}%
19.70 \def\appendixname{Bylae}%
19.71 \def\contentsname{Inhoudsopgawe}%
19.72 \def\listfigurename{Lys van figure}%
19.73 \def\listtablename{Lys van tabelle}%
19.74 \def\indexname{Inhoud}%
19.75 \def\figurename{Figuur}%
19.76 \def\tablename{Tabel}%
19.77 \def\partname{Deel}%
19.78 \def\enclname{Bylae(n)}%
19.79 \def\ccname{a.a.}%
19.80 \def\headtoname{Aan}%
19.81 \def\pagename{Bladsy}%
19.82 \def\seename{sien}%
19.83 \def\alsoname{sien ook}%
19.84 \def\proofname{Bewys}%
19.85 }

88

\dateafrikaans Here is the ‘Afrikaans’ version of the date macro.
19.86 \def\dateafrikaans{%
19.87 \def\today{\number\day~\ifcase\month\or
19.88 Januarie\or Februarie\or Maart\or April\or Mei\or Junie\or
19.89 Julie\or Augustus\or September\or Oktober\or November\or
19.90 Desember\fi
19.91 \space \number\year}}
19.92 \fi

\extrasdutch
\extrasafrikaans

\noextrasdutch
\noextrasafrikaans

The macros \extrasdutch and \captionsafrikaans will perform all the ex-
tra definitions needed for the Dutch language. The macros \noextrasdutch
and noextrasafrikaans is used to cancel the actions of \extrasdutch and
\captionsafrikaans.

For Dutch the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the dutch group of shorthands should
be used.

19.93 \initiate@active@char{"}

Both version of the language use the same set of shorthand definitions althoug the
‘ij’ is not used in Afrikaans.

19.94 \@namedef{extras\CurrentOption}{\languageshorthands{dutch}}
19.95 \expandafter\addto\csname extras\CurrentOption\endcsname{%
19.96 \bbl@activate{"}}

The ‘umlaut’ character should be positioned lower on all vowels in Dutch texts.
19.97 \expandafter\addto\csname extras\CurrentOption\endcsname{%
19.98 \umlautlow\umlautelow}
19.99 \@namedef{noextras\CurrentOption}{%

19.100 \umlauthigh}

\dutchhyphenmins
\afrikaanshyphenmins

The dutch hyphenation patterns can be used with \lefthyphenmin set to 2 and
\righthyphenmin set to 3.

19.101 \providehyphenmins{\CurrentOption}{\tw@\thr@@}

\@trema In the Dutch language vowels with a trema are treated specially. If a hyphenation
occurs before a vowel-plus-trema, the trema should disappear. To be able to do
this we could first define the hyphenation break behaviour for the five vowels, both
lowercase and uppercase, in terms of \discretionary. But this results in a large
\if-construct in the definition of the active ". Because we think a user should not
use " when he really means something like ’’ we chose not to distinguish between
vowels and consonants. Therefore we have one macro \@trema which specifies the
hyphenation break behaviour for all letters.

19.102 \def\@trema#1{\allowhyphens\discretionary{-}{#1}{\"{#1}}\allowhyphens}

Now we can define the doublequote macros: the tremas,

19.103 \declare@shorthand{dutch}{"a}{\textormath{\@trema a}{\ddot a}}

89

19.104 \declare@shorthand{dutch}{"e}{\textormath{\@trema e}{\ddot e}}
19.105 \declare@shorthand{dutch}{"i}{\textormath
19.106 {\allowhyphens\discretionary{-}{i}{\"{\i}}\allowhyphens}%
19.107 {\ddot \imath}}
19.108 \declare@shorthand{dutch}{"o}{\textormath{\@trema o}{\ddot o}}
19.109 \declare@shorthand{dutch}{"u}{\textormath{\@trema u}{\ddot u}}

dutch quotes,
19.110 \declare@shorthand{dutch}{"‘}{%
19.111 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
19.112 \declare@shorthand{dutch}{"’}{%
19.113 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}

and some additional commands:
19.114 \declare@shorthand{dutch}{"-}{\nobreak-\bbl@allowhyphens}
19.115 \declare@shorthand{dutch}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
19.116 \declare@shorthand{dutch}{"|}{%
19.117 \textormath{\discretionary{-}{}{\kern.03em}}{}}
19.118 \declare@shorthand{dutch}{""}{\hskip\z@skip}
19.119 \declare@shorthand{dutch}{"y}{\textormath{\ij{}}{\ddot y}}
19.120 \declare@shorthand{dutch}{"Y}{\textormath{\IJ{}}{\ddot Y}}

To enable hyphenation in two words, written together but separated by a slash,
as in ‘uitdrukking/opmerking’ we define the command "/.

19.121 \declare@shorthand{dutch}{"/}{\textormath
19.122 {\bbl@allowhyphens\discretionary{/}{}{/}\bbl@allowhyphens}{}}

\- All that is left now is the redefinition of \-. The new version of \- should indicate
an extra hyphenation position, while allowing other hyphenation positions to be
generated automatically. The standard behaviour of TEX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words
are quite normal and all one needs is a means to indicate an extra hyphenation
position on top of the ones that TEX can generate from the hyphenation patterns.

19.123 \expandafter\addto\csname extras\CurrentOption\endcsname{%
19.124 \babel@save\-}
19.125 \expandafter\addto\csname extras\CurrentOption\endcsname{%
19.126 \def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

19.127 \ldf@finish\CurrentOption
19.128 〈/code〉

90

20 The English language
The file english.dtx14 defines all the language definition macros for the English
language as well as for the American and Australian version of this language. For
the Australian version the British hyphenation patterns will be used, if available,
for the Canadian variant the American patterns are selected.

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
20.1 〈∗code〉
20.2 \LdfInit\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, english
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@english to see whether we have to do something
here.

We allow for the british english patterns to be loaded as either ‘british’, or
‘UKenglish’. When neither of those is known we try to define \l@english as an
alias for \l@american or \l@USenglish.

20.3 \ifx\l@english\@undefined
20.4 \ifx\l@UKenglish\@undefined
20.5 \ifx\l@british\@undefined
20.6 \ifx\l@american\@undefined
20.7 \ifx\l@USenglish\@undefined
20.8 \ifx\l@canadian\@undefined
20.9 \ifx\l@australian\@undefined

20.10 \ifx\l@newzealand\@undefined
20.11 \@nopatterns{English}
20.12 \adddialect\l@english0
20.13 \else
20.14 \let\l@english\l@newzealand
20.15 \fi
20.16 \else
20.17 \let\l@english\l@australian
20.18 \fi
20.19 \else
20.20 \let\l@english\l@canadian
20.21 \fi
20.22 \else
20.23 \let\l@english\l@USenglish
20.24 \fi
20.25 \else
20.26 \let\l@english\l@american
20.27 \fi
20.28 \else
20.29 \let\l@english\l@british

14The file described in this section has version number v3.3o and was last revised on
2005/03/30.

91

20.30 \fi
20.31 \else
20.32 \let\l@english\l@UKenglish
20.33 \fi
20.34 \fi

Because we allow ‘british’ to be used as the babel option we need to make sure
that it will be recognised by \selectlanguage. In the code above we have made
sure that \l@english was defined. Now we want to make sure that \l@british
and \l@UKenglish are defined as well. When either of them is we make them
equal to each other, when neither is we fall back to the default, \l@english.

20.35 \ifx\l@british\@undefined
20.36 \ifx\l@UKenglish\@undefined
20.37 \adddialect\l@british\l@english
20.38 \adddialect\l@UKenglish\l@english
20.39 \else
20.40 \let\l@british\l@UKenglish
20.41 \fi
20.42 \else
20.43 \let\l@UKenglish\l@british
20.44 \fi

‘American’ is a version of ‘English’ which can have its own hyphenation patterns.
The default english patterns are in fact for american english. We allow for the
patterns to be loaded as ‘english’ ‘american’ or ‘USenglish’.

20.45 \ifx\l@american\@undefined
20.46 \ifx\l@USenglish\@undefined

When the patterns are not know as ‘american’ or ‘USenglish’ we add a “dialect”.
20.47 \adddialect\l@american\l@english
20.48 \else
20.49 \let\l@american\l@USenglish
20.50 \fi
20.51 \else

Make sure that USenglish is known, even if the patterns were loaded as ‘american’.

20.52 \ifx\l@USenglish\@undefined
20.53 \let\l@USenglish\l@american
20.54 \fi
20.55 \fi

‘Canadian’ english spelling is a hybrid of British and American spelling. Al-
though so far no special ‘translations’ have been reported we allow this file to be
loaded by the option candian as well.

20.56 \ifx\l@canadian\@undefined
20.57 \adddialect\l@canadian\l@american
20.58 \fi

‘Australian’ and ‘New Zealand’ english spelling seem to be the same as British
spelling. Although so far no special ‘translations’ have been reported we allow
this file to be loaded by the options australian and newzealand as well.

92

20.59 \ifx\l@australian\@undefined
20.60 \adddialect\l@australian\l@british
20.61 \fi
20.62 \ifx\l@newzealand\@undefined
20.63 \adddialect\l@newzealand\l@british
20.64 \fi

\englishhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

20.65 \providehyphenmins{\CurrentOption}{\tw@\thr@@}

The next step consists of defining commands to switch to (and from) the En-
glish language.

\captionsenglish The macro \captionsenglish defines all strings used in the four standard docu-
ment classes provided with LATEX.

20.66 \@namedef{captions\CurrentOption}{%
20.67 \def\prefacename{Preface}%
20.68 \def\refname{References}%
20.69 \def\abstractname{Abstract}%
20.70 \def\bibname{Bibliography}%
20.71 \def\chaptername{Chapter}%
20.72 \def\appendixname{Appendix}%
20.73 \def\contentsname{Contents}%
20.74 \def\listfigurename{List of Figures}%
20.75 \def\listtablename{List of Tables}%
20.76 \def\indexname{Index}%
20.77 \def\figurename{Figure}%
20.78 \def\tablename{Table}%
20.79 \def\partname{Part}%
20.80 \def\enclname{encl}%
20.81 \def\ccname{cc}%
20.82 \def\headtoname{To}%
20.83 \def\pagename{Page}%
20.84 \def\seename{see}%
20.85 \def\alsoname{see also}%
20.86 \def\proofname{Proof}%
20.87 \def\glossaryname{Glossary}%
20.88 }

\dateenglish In order to define \today correctly we need to know whether it should be ‘en-
glish’, ‘australian’, or ‘american’. We can find this out by checking the value of
\CurrentOption.

20.89 \def\bbl@tempa{british}
20.90 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{UK}\fi
20.91 \def\bbl@tempa{UKenglish}
20.92 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{UK}\fi
20.93 \def\bbl@tempa{american}
20.94 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{US}\fi

93

20.95 \def\bbl@tempa{USenglish}
20.96 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{US}\fi
20.97 \def\bbl@tempa{canadian}
20.98 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{US}\fi
20.99 \def\bbl@tempa{australian}

20.100 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{AU}\fi
20.101 \def\bbl@tempa{newzealand}
20.102 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{AU}\fi

The macro \dateenglish redefines the command \today to produce English
dates.

20.103 \def\bbl@tempa{UK}
20.104 \ifx\bbl@tempa\bbl@tempb
20.105 \@namedef{date\CurrentOption}{%
20.106 \def\today{\ifcase\day\or
20.107 1st\or 2nd\or 3rd\or 4th\or 5th\or
20.108 6th\or 7th\or 8th\or 9th\or 10th\or
20.109 11th\or 12th\or 13th\or 14th\or 15th\or
20.110 16th\or 17th\or 18th\or 19th\or 20th\or
20.111 21st\or 22nd\or 23rd\or 24th\or 25th\or
20.112 26th\or 27th\or 28th\or 29th\or 30th\or
20.113 31st\fi~\ifcase\month\or
20.114 January\or February\or March\or April\or May\or June\or
20.115 July\or August\or September\or October\or November\or
20.116 December\fi\space \number\year}}

\dateaustralian Now, test for ‘australian’ or ‘american’.
20.117 \else

The macro \dateaustralian redefines the command \today to produce Aus-
tralian resp. New Zealand dates.

20.118 \def\bbl@tempa{AU}
20.119 \ifx\bbl@tempa\bbl@tempb
20.120 \@namedef{date\CurrentOption}{%
20.121 \def\today{\number\day~\ifcase\month\or
20.122 January\or February\or March\or April\or May\or June\or
20.123 July\or August\or September\or October\or November\or
20.124 December\fi\space \number\year}}

\dateamerican The macro \dateamerican redefines the command \today to produce American
dates.

20.125 \else
20.126 \@namedef{date\CurrentOption}{%
20.127 \def\today{\ifcase\month\or
20.128 January\or February\or March\or April\or May\or June\or
20.129 July\or August\or September\or October\or November\or
20.130 December\fi \space\number\day, \number\year}}
20.131 \fi
20.132 \fi

94

\extrasenglish
\noextrasenglish

The macro \extrasenglish will perform all the extra definitions needed for the
English language. The macro \noextrasenglish is used to cancel the actions of
\extrasenglish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

20.133 \@namedef{extras\CurrentOption}{}
20.134 \@namedef{noextras\CurrentOption}{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

20.135 \ldf@finish\CurrentOption
20.136 〈/code〉

95

21 The German language
The file germanb.dtx15 defines all the language definition macros for the German
language as well as for the Austrian dialect of this language16.

For this language the character " is made active. In table 4 an overview is given
of its purpose. One of the reasons for this is that in the German language some
character combinations change when a word is broken between the combination.
Also the vertical placement of the umlaut can be controlled this way. The quotes

"a \"a, also implemented for the other lowercase and
uppercase vowels.

"s to produce the German ß (like \ss{}).
"z to produce the German ß (like \ss{}).
"ck for ck to be hyphenated as k-k.
"ff for ff to be hyphenated as ff-f, this is also imple-

mented for l, m, n, p, r and t
"S for SS to be \uppercase{"s}.
"Z for SZ to be \uppercase{"z}.
"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y).
"~ for a compound word mark without a breakpoint.
"= for a compound word mark with a breakpoint, allow-

ing hyphenation in the composing words.
"‘ for German left double quotes (looks like „).
"’ for German right double quotes.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 4: The extra definitions made by german.ldf

in table 4 can also be typeset by using the commands in table 5.
When this file was read through the option germanb we make it behave as if

german was specified.
21.1 \def\bbl@tempa{germanb}
21.2 \ifx\CurrentOption\bbl@tempa
21.3 \def\CurrentOption{german}
21.4 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

15The file described in this section has version number v2.6k and was last revised on
2004/02/19.

16This file is a re-implementation of Hubert Partl’s german.sty version 2.5b, see [4].

96

\glqq for German left double quotes (looks like „).
\grqq for German right double quotes (looks like “).
\glq for German left single quotes (looks like ,).
\grq for German right single quotes (looks like ‘).
\flqq for French left double quotes (similar to <<).
\frqq for French right double quotes (similar to >>).
\flq for (French) left single quotes (similar to <).
\frq for (French) right single quotes (similar to >).
\dq the original quotes character (").

Table 5: More commands which produce quotes, defined by german.ldf

21.5 〈∗code〉
21.6 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command, german
will be an ‘unknown’ language, so we have to make it known. So we check for the
existence of \l@german to see whether we have to do something here.

21.7 \ifx\l@german\@undefined
21.8 \@nopatterns{German}
21.9 \adddialect\l@german0

21.10 \fi

For the Austrian version of these definitions we just add another language.
21.11 \adddialect\l@austrian\l@german

The next step consists of defining commands to switch to (and from) the Ger-
man language.

\captionsgerman
\captionsaustrian

Either the macro \captionsgerman or the macro \captionsaustrian will define
all strings used in the four standard document classes provided with LATEX.

21.12 \@namedef{captions\CurrentOption}{%
21.13 \def\prefacename{Vorwort}%
21.14 \def\refname{Literatur}%
21.15 \def\abstractname{Zusammenfassung}%
21.16 \def\bibname{Literaturverzeichnis}%
21.17 \def\chaptername{Kapitel}%
21.18 \def\appendixname{Anhang}%
21.19 \def\contentsname{Inhaltsverzeichnis}% % oder nur: Inhalt
21.20 \def\listfigurename{Abbildungsverzeichnis}%
21.21 \def\listtablename{Tabellenverzeichnis}%
21.22 \def\indexname{Index}%
21.23 \def\figurename{Abbildung}%
21.24 \def\tablename{Tabelle}% % oder: Tafel
21.25 \def\partname{Teil}%
21.26 \def\enclname{Anlage(n)}% % oder: Beilage(n)
21.27 \def\ccname{Verteiler}% % oder: Kopien an
21.28 \def\headtoname{An}%

97

21.29 \def\pagename{Seite}%
21.30 \def\seename{siehe}%
21.31 \def\alsoname{siehe auch}%
21.32 \def\proofname{Beweis}%
21.33 \def\glossaryname{Glossar}%
21.34 }

\dategerman The macro \dategerman redefines the command \today to produce German dates.

21.35 \def\month@german{\ifcase\month\or
21.36 Januar\or Februar\or M\"arz\or April\or Mai\or Juni\or
21.37 Juli\or August\or September\or Oktober\or November\or Dezember\fi}
21.38 \def\dategerman{\def\today{\number\day.~\month@german
21.39 \space\number\year}}

\dateaustrian The macro \dateaustrian redefines the command \today to produce Austrian
version of the German dates.

21.40 \def\dateaustrian{\def\today{\number\day.~\ifnum1=\month
21.41 J\"anner\else \month@german\fi \space\number\year}}

\extrasgerman
\extrasaustrian
\noextrasgerman

\noextrasaustrian

Either the macro \extrasgerman or the macros \extrasaustrian will per-
form all the extra definitions needed for the German language. The macro
\noextrasgerman is used to cancel the actions of \extrasgerman.

For German (as well as for Dutch) the " character is made active. This is done
once, later on its definition may vary.

21.42 \initiate@active@char{"}
21.43 \@namedef{extras\CurrentOption}{%
21.44 \languageshorthands{german}}
21.45 \expandafter\addto\csname extras\CurrentOption\endcsname{%
21.46 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
21.47 \addto\noextrasgerman{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German words which contain ‘ß’
(in the OT1 position ^^Y) we have to give the character a nonzero \lccode (see
Appendix H, the TEXbook).

21.48 \expandafter\addto\csname extras\CurrentOption\endcsname{%
21.49 \babel@savevariable{\lccode25}%
21.50 \lccode25=25}

The umlaut accent macro \" is changed to lower the umlaut dots. The redefi-
nition is done with the help of \umlautlow.

21.51 \expandafter\addto\csname extras\CurrentOption\endcsname{%
21.52 \babel@save\"\umlautlow}
21.53 \@namedef{noextras\CurrentOption}{\umlauthigh}

The german hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

21.54 \providehyphenmins{\CurrentOption}{\tw@\tw@}

98

For German texts we need to make sure that \frenchspacing is turned on.
21.55 \expandafter\addto\csname extras\CurrentOption\endcsname{%
21.56 \bbl@frenchspacing}
21.57 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
21.58 \bbl@nonfrenchspacing}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 4.

To be able to define the function of ", we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

21.59 \begingroup \catcode‘\"12
21.60 \def\x{\endgroup
21.61 \def\@SS{\mathchar"7019 }
21.62 \def\dq{"}}
21.63 \x

Now we can define the doublequote macros: the umlauts,
21.64 \declare@shorthand{german}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
21.65 \declare@shorthand{german}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
21.66 \declare@shorthand{german}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
21.67 \declare@shorthand{german}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
21.68 \declare@shorthand{german}{"O}{\textormath{\"{O}\allowhyphens}{\ddot O}}
21.69 \declare@shorthand{german}{"U}{\textormath{\"{U}\allowhyphens}{\ddot U}}

tremas,
21.70 \declare@shorthand{german}{"e}{\textormath{\"{e}}{\ddot e}}
21.71 \declare@shorthand{german}{"E}{\textormath{\"{E}}{\ddot E}}
21.72 \declare@shorthand{german}{"i}{\textormath{\"{\i}}%
21.73 {\ddot\imath}}
21.74 \declare@shorthand{german}{"I}{\textormath{\"{I}}{\ddot I}}

german es-zet (sharp s),
21.75 \declare@shorthand{german}{"s}{\textormath{\ss}{\@SS{}}}
21.76 \declare@shorthand{german}{"S}{\SS}
21.77 \declare@shorthand{german}{"z}{\textormath{\ss}{\@SS{}}}
21.78 \declare@shorthand{german}{"Z}{SZ}

german and french quotes,
21.79 \declare@shorthand{german}{"‘}{\glqq}
21.80 \declare@shorthand{german}{"’}{\grqq}
21.81 \declare@shorthand{german}{"<}{\flqq}
21.82 \declare@shorthand{german}{">}{\frqq}

discretionary commands
21.83 \declare@shorthand{german}{"c}{\textormath{\bbl@disc ck}{c}}
21.84 \declare@shorthand{german}{"C}{\textormath{\bbl@disc CK}{C}}
21.85 \declare@shorthand{german}{"F}{\textormath{\bbl@disc F{FF}}{F}}
21.86 \declare@shorthand{german}{"l}{\textormath{\bbl@disc l{ll}}{l}}

99

21.87 \declare@shorthand{german}{"L}{\textormath{\bbl@disc L{LL}}{L}}
21.88 \declare@shorthand{german}{"m}{\textormath{\bbl@disc m{mm}}{m}}
21.89 \declare@shorthand{german}{"M}{\textormath{\bbl@disc M{MM}}{M}}
21.90 \declare@shorthand{german}{"n}{\textormath{\bbl@disc n{nn}}{n}}
21.91 \declare@shorthand{german}{"N}{\textormath{\bbl@disc N{NN}}{N}}
21.92 \declare@shorthand{german}{"p}{\textormath{\bbl@disc p{pp}}{p}}
21.93 \declare@shorthand{german}{"P}{\textormath{\bbl@disc P{PP}}{P}}
21.94 \declare@shorthand{german}{"r}{\textormath{\bbl@disc r{rr}}{r}}
21.95 \declare@shorthand{german}{"R}{\textormath{\bbl@disc R{RR}}{R}}
21.96 \declare@shorthand{german}{"t}{\textormath{\bbl@disc t{tt}}{t}}
21.97 \declare@shorthand{german}{"T}{\textormath{\bbl@disc T{TT}}{T}}

We need to treat "f a bit differently in order to preserve the ff-ligature.
21.98 \declare@shorthand{german}{"f}{\textormath{\bbl@discff}{f}}
21.99 \def\bbl@discff{\penalty\@M

21.100 \afterassignment\bbl@insertff \let\bbl@nextff= }
21.101 \def\bbl@insertff{%
21.102 \if f\bbl@nextff
21.103 \expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi
21.104 {\relax\discretionary{ff-}{f}{ff}\allowhyphens}{f\bbl@nextff}}
21.105 \let\bbl@nextff=f

and some additional commands:
21.106 \declare@shorthand{german}{"-}{\nobreak\-\bbl@allowhyphens}
21.107 \declare@shorthand{german}{"|}{%
21.108 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%
21.109 \allowhyphens}{}}
21.110 \declare@shorthand{german}{""}{\hskip\z@skip}
21.111 \declare@shorthand{german}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
21.112 \declare@shorthand{german}{"=}{\penalty\@M-\hskip\z@skip}

\mdqon
\mdqoff

\ck

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with german.sty.

21.113 \def\mdqon{\shorthandon{"}}
21.114 \def\mdqoff{\shorthandoff{"}}
21.115 \def\ck{\allowhyphens\discretionary{k-}{k}{ck}\allowhyphens}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

21.116 \ldf@finish\CurrentOption
21.117 〈/code〉

100

22 The German language – new orthography
The file ngermanb.dtx17 defines all the language definition macros for the German
language with the ‘new orthography’ introduced in August 1998. This includes
also the Austrian dialect of this language.

As with the ‘traditional’ German orthography, the character " is made active,
and the commands in table 4 can be used, except for "ck and "ff etc., which are
no longer required.

The internal language names are ngerman and naustrian.
When this file was read through the option ngermanb we make it behave as if

ngerman was specified.
22.1 \def\bbl@tempa{ngermanb}
22.2 \ifx\CurrentOption\bbl@tempa
22.3 \def\CurrentOption{ngerman}
22.4 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

22.5 〈∗code〉
22.6 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command, ngerman
will be an ‘unknown’ language, so we have to make it known. So we check for the
existence of \l@ngerman to see whether we have to do something here.

22.7 \ifx\l@ngerman\@undefined
22.8 \@nopatterns{ngerman}
22.9 \adddialect\l@ngerman0

22.10 \fi

For the Austrian version of these definitions we just add another language.
22.11 \adddialect\l@naustrian\l@ngerman

The next step consists of defining commands to switch to (and from) the Ger-
man language.

\captionsngerman
\captionsnaustrian

Either the macro \captionnsgerman or the macro \captionsnaustrian will de-
fine all strings used in the four standard document classes provided with LATEX.

22.12 \@namedef{captions\CurrentOption}{%
22.13 \def\prefacename{Vorwort}%
22.14 \def\refname{Literatur}%
22.15 \def\abstractname{Zusammenfassung}%
22.16 \def\bibname{Literaturverzeichnis}%
22.17 \def\chaptername{Kapitel}%
22.18 \def\appendixname{Anhang}%
22.19 \def\contentsname{Inhaltsverzeichnis}% % oder nur: Inhalt
22.20 \def\listfigurename{Abbildungsverzeichnis}%
22.21 \def\listtablename{Tabellenverzeichnis}%

17The file described in this section has version number v2.6m and was last revised on
2004/02/20.

101

22.22 \def\indexname{Index}%
22.23 \def\figurename{Abbildung}%
22.24 \def\tablename{Tabelle}% % oder: Tafel
22.25 \def\partname{Teil}%
22.26 \def\enclname{Anlage(n)}% % oder: Beilage(n)
22.27 \def\ccname{Verteiler}% % oder: Kopien an
22.28 \def\headtoname{An}%
22.29 \def\pagename{Seite}%
22.30 \def\seename{siehe}%
22.31 \def\alsoname{siehe auch}%
22.32 \def\proofname{Beweis}%
22.33 \def\glossaryname{Glossar}%
22.34 }

\datengerman The macro \datengerman redefines the command \today to produce German
dates.

22.35 \def\month@ngerman{\ifcase\month\or
22.36 Januar\or Februar\or M\"arz\or April\or Mai\or Juni\or
22.37 Juli\or August\or September\or Oktober\or November\or Dezember\fi}
22.38 \def\datengerman{\def\today{\number\day.~\month@ngerman
22.39 \space\number\year}}

\dateanustrian The macro \datenaustrian redefines the command \today to produce Austrian
version of the German dates.

22.40 \def\datenaustrian{\def\today{\number\day.~\ifnum1=\month
22.41 J\"anner\else \month@ngerman\fi \space\number\year}}

\extrasngerman
\extrasnaustrian
\noextrasngerman

\noextrasnaustrian

Either the macro \extrasngerman or the macros \extrasnaustrian will per-
form all the extra definitions needed for the German language. The macro
\noextrasngerman is used to cancel the actions of \extrasngerman.

For German (as well as for Dutch) the " character is made active. This is done
once, later on its definition may vary.

22.42 \initiate@active@char{"}
22.43 \@namedef{extras\CurrentOption}{%
22.44 \languageshorthands{ngerman}}
22.45 \expandafter\addto\csname extras\CurrentOption\endcsname{%
22.46 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
22.47 \addto\noextrasngerman{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German words which contain ‘ß’
(in the OT1 position ^^Y) we have to give the character a nonzero \lccode (see
Appendix H, the TEXbook).

22.48 \expandafter\addto\csname extras\CurrentOption\endcsname{%
22.49 \babel@savevariable{\lccode25}%
22.50 \lccode25=25}

The umlaut accent macro \" is changed to lower the umlaut dots. The redefi-
nition is done with the help of \umlautlow.

102

22.51 \expandafter\addto\csname extras\CurrentOption\endcsname{%
22.52 \babel@save\"\umlautlow}
22.53 \@namedef{noextras\CurrentOption}{\umlauthigh}

The current version of the ‘new’ German hyphenation patterns (dehyphn.tex is
to be used with \lefthyphenmin and \righthyphenmin set to 2.

22.54 \providehyphenmins{\CurrentOption}{\tw@\tw@}

For German texts we need to make sure that \frenchspacing is turned on.
22.55 \expandafter\addto\csname extras\CurrentOption\endcsname{%
22.56 \bbl@frenchspacing}
22.57 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
22.58 \bbl@nonfrenchspacing}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 4.

To be able to define the function of ", we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

22.59 \begingroup \catcode‘\"12
22.60 \def\x{\endgroup
22.61 \def\@SS{\mathchar"7019 }
22.62 \def\dq{"}}
22.63 \x

Now we can define the doublequote macros: the umlauts,
22.64 \declare@shorthand{ngerman}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
22.65 \declare@shorthand{ngerman}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
22.66 \declare@shorthand{ngerman}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
22.67 \declare@shorthand{ngerman}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
22.68 \declare@shorthand{ngerman}{"O}{\textormath{\"{O}\allowhyphens}{\ddot O}}
22.69 \declare@shorthand{ngerman}{"U}{\textormath{\"{U}\allowhyphens}{\ddot U}}

tremas,
22.70 \declare@shorthand{ngerman}{"e}{\textormath{\"{e}}{\ddot e}}
22.71 \declare@shorthand{ngerman}{"E}{\textormath{\"{E}}{\ddot E}}
22.72 \declare@shorthand{ngerman}{"i}{\textormath{\"{\i}}%
22.73 {\ddot\imath}}
22.74 \declare@shorthand{ngerman}{"I}{\textormath{\"{I}}{\ddot I}}

german es-zet (sharp s),
22.75 \declare@shorthand{ngerman}{"s}{\textormath{\ss}{\@SS{}}}
22.76 \declare@shorthand{ngerman}{"S}{\SS}
22.77 \declare@shorthand{ngerman}{"z}{\textormath{\ss}{\@SS{}}}
22.78 \declare@shorthand{ngerman}{"Z}{SZ}

german and french quotes,
22.79 \declare@shorthand{ngerman}{"‘}{\glqq}
22.80 \declare@shorthand{ngerman}{"’}{\grqq}

103

22.81 \declare@shorthand{ngerman}{"<}{\flqq}
22.82 \declare@shorthand{ngerman}{">}{\frqq}

and some additional commands:
22.83 \declare@shorthand{ngerman}{"-}{\nobreak\-\bbl@allowhyphens}
22.84 \declare@shorthand{ngerman}{"|}{%
22.85 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%
22.86 \allowhyphens}{}}
22.87 \declare@shorthand{ngerman}{""}{\hskip\z@skip}
22.88 \declare@shorthand{ngerman}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
22.89 \declare@shorthand{ngerman}{"=}{\penalty\@M-\hskip\z@skip}

\mdqon
\mdqoff

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with german.sty.

22.90 \def\mdqon{\shorthandon{"}}
22.91 \def\mdqoff{\shorthandoff{"}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

22.92 \ldf@finish\CurrentOption
22.93 〈/code〉

104

23 The Breton language
The file breton.dtx18 defines all the language-specific macros for the Breton lan-
guage.

There are not really typographic rules for the Breton language. It is a local
language (it’s one of the celtic languages) which is spoken in Brittany (West of
France). So we have a synthesis between french typographic rules and english
typographic rules. The characters :, ;, ! and ? are made active in order to get a
whitespace automatically before these characters.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

23.1 〈∗code〉
23.2 \LdfInit{breton}\captionsbreton

When this file is read as an option, i.e. by the \usepackage command, breton
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@breton to see whether we have to do something here.

23.3 \ifx\l@breton\@undefined
23.4 \@nopatterns{Breton}
23.5 \adddialect\l@breton0\fi

The next step consists of defining commands to switch to the English language.
The reason for this is that a user might want to switch back and forth between
languages.

\captionsbreton The macro \captionsbreton defines all strings used in the four standard docu-
ment classes provided with LATEX.

23.6 \addto\captionsbreton{%
23.7 \def\prefacename{Rakskrid}%
23.8 \def\refname{Daveenno\‘u}%
23.9 \def\abstractname{Dvierra\~n}%

23.10 \def\bibname{Lennadurezh}%
23.11 \def\chaptername{Pennad}%
23.12 \def\appendixname{Stagadenn}%
23.13 \def\contentsname{Taolenn}%
23.14 \def\listfigurename{Listenn ar Figurenno\‘u}%
23.15 \def\listtablename{Listenn an taolenno\‘u}%
23.16 \def\indexname{Meneger}%
23.17 \def\figurename{Figurenn}%
23.18 \def\tablename{Taolenn}%
23.19 \def\partname{Lodenn}%
23.20 \def\enclname{Diello\‘u kevret}%
23.21 \def\ccname{Eilskrid da}%
23.22 \def\headtoname{evit}
23.23 \def\pagename{Pajenn}%
23.24 \def\seename{Gwelout}%

18The file described in this section has version number v1.0h and was last revised on
2005/03/29.

105

23.25 \def\alsoname{Gwelout ivez}%
23.26 \def\proofname{Proof}% <-- needs translation
23.27 \def\glossaryname{Glossary}% <-- Needs translation
23.28 }

\datebreton The macro \datebreton redefines the command \today to produce Breton dates.

23.29 \def\datebreton{%
23.30 \def\today{\ifnum\day=1\relax 1\/$^{\rm a\tilde{n}}$\else
23.31 \number\day\fi \space a\space viz\space\ifcase\month\or
23.32 Genver\or C’hwevrer\or Meurzh\or Ebrel\or Mae\or Mezheven\or
23.33 Gouere\or Eost\or Gwengolo\or Here\or Du\or Kerzu\fi
23.34 \space\number\year}}

\extrasbreton
\noextrasbreton

The macro \extrasbreton will perform all the extra definitions needed for the
Breton language. The macro \noextrasbreton is used to cancel the actions of
\extrasbreton.

The category code of the characters :, ;, ! and ? is made \active to insert
a little white space.

23.35 \initiate@active@char{:}
23.36 \initiate@active@char{;}
23.37 \initiate@active@char{!}
23.38 \initiate@active@char{?}

We specify that the breton group of shorthands should be used.
23.39 \addto\extrasbreton{\languageshorthands{breton}}

These characters are ‘turned on’ once, later their definition may vary.
23.40 \addto\extrasbreton{%
23.41 \bbl@activate{:}\bbl@activate{;}%
23.42 \bbl@activate{!}\bbl@activate{?}}

Don’t forget to turn the shorthands off again.
23.43 \addto\noextrasbreton{%
23.44 \bbl@deactivate{:}\bbl@deactivate{;}%
23.45 \bbl@deactivate{!}\bbl@deactivate{?}}

The last thing \extrasbreton needs to do is to make sure that \frenchspacing
is in effect. If this is not the case the execution of \noextrasbreton will switch
it of again.

23.46 \addto\extrasbreton{\bbl@frenchspacing}
23.47 \addto\noextrasbreton{\bbl@nonfrenchspacing}

\breton@sh@;@ We have to reduce the amount of white space before ;, : and ! when the user types
a space in front of these characters. This should only happen outside mathmode,
hence the test with \ifmmode.

23.48 \declare@shorthand{breton}{;}{%
23.49 \ifmmode
23.50 \string;\space
23.51 \else\relax

106

In horizontal mode we check for the presence of a ‘space’ and replace it by a
\thinspace.

23.52 \ifhmode
23.53 \ifdim\lastskip>\z@
23.54 \unskip\penalty\@M\thinspace
23.55 \fi
23.56 \fi
23.57 \string;\space
23.58 \fi}%

\breton@sh@:@
\breton@sh@!@

Because these definitions are very similar only one is displayed in a way that the
definition can be easily checked.

23.59 \declare@shorthand{breton}{:}{%
23.60 \ifmmode\string:\space
23.61 \else\relax
23.62 \ifhmode
23.63 \ifdim\lastskip>\z@\unskip\penalty\@M\thinspace\fi
23.64 \fi
23.65 \string:\space
23.66 \fi}
23.67 \declare@shorthand{breton}{!}{%
23.68 \ifmmode\string!\space
23.69 \else\relax
23.70 \ifhmode
23.71 \ifdim\lastskip>\z@\unskip\penalty\@M\thinspace\fi
23.72 \fi
23.73 \string!\space
23.74 \fi}

\breton@sh@?@ For the question mark something different has to be done. In this case the amount
of white space that replaces the space character depends on the dimensions of the
font.

23.75 \declare@shorthand{breton}{?}{%
23.76 \ifmmode
23.77 \string?\space
23.78 \else\relax
23.79 \ifhmode
23.80 \ifdim\lastskip>\z@
23.81 \unskip
23.82 \kern\fontdimen2\font
23.83 \kern-1.4\fontdimen3\font
23.84 \fi
23.85 \fi
23.86 \string?\space
23.87 \fi}

All that is left to do now is provide the breton user with some extra utilities.
Some definitions for special characters.

23.88 \DeclareTextSymbol{\at}{OT1}{64}

107

23.89 \DeclareTextSymbol{\at}{T1}{64}
23.90 \DeclareTextSymbolDefault{\at}{OT1}
23.91 \DeclareTextSymbol{\boi}{OT1}{92}
23.92 \DeclareTextSymbol{\boi}{T1}{16}
23.93 \DeclareTextSymbolDefault{\boi}{OT1}
23.94 \DeclareTextSymbol{\circonflexe}{OT1}{94}
23.95 \DeclareTextSymbol{\circonflexe}{T1}{2}
23.96 \DeclareTextSymbolDefault{\circonflexe}{OT1}
23.97 \DeclareTextSymbol{\tild}{OT1}{126}
23.98 \DeclareTextSymbol{\tild}{T1}{3}
23.99 \DeclareTextSymbolDefault{\tild}{OT1}

23.100 \DeclareTextSymbol{\degre}{OT1}{23}
23.101 \DeclareTextSymbol{\degre}{T1}{6}
23.102 \DeclareTextSymbolDefault{\degre}{OT1}

The following macros are used in the redefinition of \^ and \" to handle the
letter i.

23.103 \AtBeginDocument{%
23.104 \DeclareTextCompositeCommand{\^}{OT1}{i}{\^\i}
23.105 \DeclareTextCompositeCommand{\"}{OT1}{i}{\"\i}}

And some more macros for numbering.
23.106 \def\kentan{1\/${}^{\rm a\tilde{n}}$}
23.107 \def\eil{2\/${}^{\rm l}$}
23.108 \def\re{\/${}^{\rm re}$}
23.109 \def\trede{3\re}
23.110 \def\pevare{4\re}
23.111 \def\vet{\/${}^{\rm vet}$}
23.112 \def\pempvet{5\vet}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

23.113 \ldf@finish{breton}
23.114 〈/code〉

108

24 The Welsh language
The file welsh.dtx19 defines all the language definition macros for the Welsh
language.

For this language currently no special definitions are needed or available.
The macro \ldf@init takes care of preventing that this file is loaded more

than once, checking the category code of the @ sign, etc.
24.1 〈∗code〉
24.2 \LdfInit{welsh}{captionswelsh}

When this file is read as an option, i.e. by the \usepackage command, welsh
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@welsh to see whether we have to do something here.

24.3 \ifx\undefined\l@welsh
24.4 \@nopatterns{welsh}
24.5 \adddialect\l@welsh0\fi

The next step consists of defining commands to switch to (and from) the Welsh
language.

\welshhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

24.6 \providehyphenmins{\CurrentOption}{\tw@\thr@@}

\captionswelsh The macro \captionswelsh defines all strings used in the four standard docu-
mentclasses provided with LATEX.

24.7 \def\captionswelsh{%
24.8 \def\prefacename{Rhagair}%
24.9 \def\refname{Cyfeiriadau}%

24.10 \def\abstractname{Crynodeb}%
24.11 \def\bibname{Llyfryddiaeth}%
24.12 \def\chaptername{Pennod}%
24.13 \def\appendixname{Atodiad}%
24.14 \def\contentsname{Cynnwys}%
24.15 \def\listfigurename{Rhestr Ddarluniau}%
24.16 \def\listtablename{Rhestr Dablau}%
24.17 \def\indexname{Mynegai}%
24.18 \def\figurename{Darlun}%
24.19 \def\tablename{Taflen}%
24.20 \def\partname{Rhan}%
24.21 \def\enclname{amgae\"edig}%
24.22 \def\ccname{cop\"\i au}%
24.23 \def\headtoname{At}% % ‘at’ on letters meaning ‘to (a person)’
24.24 % ‘to (a place)’ is ‘i’ in Welsh
24.25 \def\pagename{tudalen}%
24.26 \def\seename{gweler}%
24.27 \def\alsoname{gweler hefyd}%

19The file described in this section has version number v1.0d and was last revised on
2005/03/31.

109

24.28 \def\proofname{Prawf}%
24.29 \def\glossaryname{Rhestr termau}%
24.30 }

\datewelsh The macro \datewelsh redefines the command \today to produce welsh dates.
24.31 \def\datewelsh{%
24.32 \def\today{\ifnum\day=1\relax 1\/$^{\mathrm{a\tilde{n}}}$\else
24.33 \number\day\fi\space\ifcase\month\or
24.34 Ionawr\or Chwefror\or Mawrth\or Ebrill\or
24.35 Mai\or Mehefin\or Gorffennaf\or Awst\or
24.36 Medi\or Hydref\or Tachwedd\or Rhagfyr\fi
24.37 \space\number\year}}

\extraswelsh
\noextraswelsh

The macro \extraswelsh will perform all the extra definitions needed for the
welsh language. The macro \noextraswelsh is used to cancel the actions of
\extraswelsh. For the moment these macros are empty but they are defined for
compatibility with the other language definition files.

24.38 \addto\extraswelsh{}
24.39 \addto\noextraswelsh{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

24.40 \ldf@finish{welsh}
24.41 〈/code〉

110

25 The Irish language
The file irish.dtx20 defines all the language definition macros for the Irish lan-
guage.

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
25.1 〈∗code〉
25.2 \LdfInit{irish}\captionsirish

When this file is read as an option, i.e. by the \usepackage command, irish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@irish to see whether we have to do something here.

25.3 \ifx\l@irish\@undefined
25.4 \@nopatterns{irish}
25.5 \adddialect\l@irish0\fi

The next step consists of defining commands to switch to (and from) the Irish
language.

\irishhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

25.6 \providehyphenmins{\CurrentOption}{\tw@\thr@@}

\captionsirish The macro \captionsirish defines all strings used in the four standard docu-
mentclasses provided with LATEX.

25.7 \addto\captionsirish{%
25.8 \def\prefacename{R\’eamhr\’a}% <-- also "Brollach"
25.9 \def\refname{Tagairt\’{\i}}%

25.10 \def\abstractname{Achoimre}%
25.11 \def\bibname{Leabharliosta}%
25.12 \def\chaptername{Caibidil}%
25.13 \def\appendixname{Aguis\’{\i}n}%
25.14 \def\contentsname{Cl\’ar \’Abhair}%
25.15 \def\listfigurename{L\’ear\’aid\’{\i}}%
25.16 \def\listtablename{T\’abla\’{\i}}%
25.17 \def\indexname{Inn\’eacs}%
25.18 \def\figurename{L\’ear\’aid}%
25.19 \def\tablename{T\’abla}%
25.20 \def\partname{Cuid}%
25.21 \def\enclname{faoi iamh}%
25.22 \def\ccname{cc}% abrv. ‘c\’oip chuig’
25.23 \def\headtoname{Go}%
25.24 \def\pagename{Leathanach}%
25.25 \def\seename{f\’each}%
25.26 \def\alsoname{f\’each freisin}%
25.27 \def\proofname{Cruth\’unas}%

20The file described in this section has version number v1.0h and was last revised on
2005/03/30. A contribution was made by Marion Gunn.

111

25.28 \def\glossaryname{Glossary}% <-- Needs translation
25.29 }

\dateirish The macro \dateirish redefines the command \today to produce Irish dates.
25.30 \def\dateirish{%
25.31 \def\today{%
25.32 \number\day\space \ifcase\month\or
25.33 Ean\’air\or Feabhra\or M\’arta\or Aibre\’an\or
25.34 Bealtaine\or Meitheamh\or I\’uil\or L\’unasa\or
25.35 Me\’an F\’omhair\or Deireadh F\’omhair\or
25.36 M\’{\i} na Samhna\or M\’{\i} na Nollag\fi
25.37 \space \number\year}}

\extrasirish
\noextrasirish

The macro \extrasirish will perform all the extra definitions needed for the
Irish language. The macro \noextrasirish is used to cancel the actions of
\extrasirish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

25.38 \addto\extrasirish{}
25.39 \addto\noextrasirish{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

25.40 \ldf@finish{irish}
25.41 〈/code〉

112

26 The Scottish language
The file scottish.dtx21 defines all the language definition macros for the Scottish
language.

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
26.1 〈∗code〉
26.2 \LdfInit{scottish}\captionsscottish

When this file is read as an option, i.e. by the \usepackage command,
scottish could be an ‘unknown’ language in which case we have to make it
known. So we check for the existence of \l@scottish to see whether we have to
do something here.

26.3 \ifx\l@scottish\@undefined
26.4 \@nopatterns{scottish}
26.5 \adddialect\l@scottish0\fi

The next step consists of defining commands to switch to (and from) the Scottish
language.

\captionsscottish The macro \captionsscottish defines all strings used in the four standard doc-
umentclasses provided with LATEX.

26.6 \addto\captionsscottish{%
26.7 \def\prefacename{Preface}% <-- needs translation
26.8 \def\refname{Iomraidh}%
26.9 \def\abstractname{Br\‘{\i}gh}%

26.10 \def\bibname{Leabhraichean}%
26.11 \def\chaptername{Caibideil}%
26.12 \def\appendixname{Ath-sgr‘{\i}obhadh}%
26.13 \def\contentsname{Cl\‘ar-obrach}%
26.14 \def\listfigurename{Liosta Dhealbh }%
26.15 \def\listtablename{Liosta Chl\‘ar}%
26.16 \def\indexname{Cl\‘ar-innse}%
26.17 \def\figurename{Dealbh}%
26.18 \def\tablename{Cl\‘ar}%
26.19 \def\partname{Cuid}%
26.20 \def\enclname{a-staigh}%
26.21 \def\ccname{lethbhreac gu}%
26.22 \def\headtoname{gu}%
26.23 \def\pagename{t.d.}% abrv. ‘taobh duilleag’
26.24 \def\seename{see}% <-- needs translation
26.25 \def\alsoname{see also}% <-- needs translation
26.26 \def\proofname{Proof}% <-- needs translation
26.27 \def\glossaryname{Glossary}% <-- Needs translation
26.28 }

21The file described in this section has version number v1.0g and was last revised on
2005/03/31. A contribution was made by Fraser Grant (FRASER@CERNVM).

113

\datescottish The macro \datescottish redefines the command \today to produce Scottish
dates.

26.29 \def\datescottish{%
26.30 \def\today{%
26.31 \number\day\space \ifcase\month\or
26.32 am Faoilteach\or an Gearran\or am M\‘art\or an Giblean\or
26.33 an C\‘eitean\or an t-\‘Og mhios\or an t-Iuchar\or
26.34 L\‘unasdal\or an Sultuine\or an D\‘amhar\or
26.35 an t-Samhainn\or an Dubhlachd\fi
26.36 \space \number\year}}

\extrasscottish
\noextrasscottish

The macro \extrasscottish will perform all the extra definitions needed for the
Scottish language. The macro \noextrasscottish is used to cancel the actions of
\extrasscottish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

26.37 \addto\extrasscottish{}
26.38 \addto\noextrasscottish{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

26.39 \ldf@finish{scottish}
26.40 〈/code〉

114

27 The Greek language
The file greek.dtx22 defines all the language definition macros for the Greek
language, i.e., as it used today with only one accent, and the attribute πoλυτoνκó
(“Polutoniko”) for typesetting greek text with all accents. This separation arose
out of the need to simplify things, for only very few people will be really interested
to typeset polytonic Greek text.

The commands \greektext and \latintext can be used to switch to greek\greektext
\latintext or latin fonts. These are declarations.

The commands \textgreek and \textlatin both take one argument which is\textgreek
\textlatin then typeset using the requested font encoding. The command \greekol switches

\textol to the greek outline font family, while the command \textol typests a short text
in outline font. A number of extra greek characters are made available through the
added text commands \stigma, \qoppa, \sampi, \ddigamma, \Digamma, \euro,
\permill, and \vardigamma.

27.1 Typing conventions
Entering greek text can be quite difficult because of the many diacritical signs that
need to be added for various purposes. The fonts that are used to typeset Greek
make this a lot easier by offering a lot of ligatures. But in order for this to work,
some characters need to be considered as letters. These characters are <, >, ~, ‘,
’, " and |. Therefore their \lccode is changed when Greek is in effect. In order
to let \uppercase give correct results, the \uccode of these characters is set to a
non-existing character to make them disappear. Of course not all characters are
needed when typesetting “modern” µoνoτoνικó. In that case we only need the ’
and " symbols which are treated in the proper way.

27.2 Greek numbering
The Greek alphabetical numbering system, like the Roman one, is still used in
everyday life for short enumerations. Unfortunately most Greeks don’t know how
to write Greek numbers bigger than 20 or 30. Nevertheless, in official editions of
the last century and beginning of this century this numbering system was also used
for dates and numbers in the range of several thousands. Nowadays this numbering
system is primary used by the Eastern Orthodox Church and by certain scholars.
It is hence necessary to be able to typeset any Greek numeral up to 999 999. Here
are the conventions:

• There is no Greek numeral for any number less than or equal to 0.

• Numbers from 1 to 9 are denoted by letters alpha, beta, gamma, delta,
epsilon, stigma, zeta, eta, theta, followed by a mark similar to the math-

22The file described in this section has version number v1.3l and was last revised on
2005/03/30. The original author is Apostolos Syropoulos (apostolo@platon.ee.duth.gr), code
from kdgreek.sty by David Kastrup dak@neuroinformatik.ruhr-uni-bochum.de was used to
enhance the support for typesetting greek texts.

115

ematical symbol “prime”. (Nowadays instead of letter stigma the digraph
sigma tau is used for number 6. Mainly because the letter stigma is not
always available, so people opt to write down the first two letters of its name
as an alternative. In our implementation we produce the letter stigma, not
the digraph sigma tau.)

• Decades from 10 to 90 are denoted by letters iota, kappa, lambda, mu, nu,
xi, omikron, pi, qoppa, again followed by the numeric mark. The qoppa used
for this purpose has a special zig-zag form, which doesn’t resemble at all the
original ‘q’-like qoppa.

• Hundreds from 100 to 900 are denoted by letters rho, sigma, tau, upsilon,
phi, chi, psi, omega, sampi, followed by the numeric mark.

• Any number between 1 and 999 is obtained by a group of letters denoting
the hundreds decades and units, followed by a numeric mark.

• To denote thousands one uses the same method, but this time the mark is
placed in front of the letter, and under the baseline (it is inverted by 180
degrees). When a group of letters denoting thousands is followed by a group
of letters denoting a number under 1000, then both marks are used.

Using these conventions one obtains numbers up to 999 999. The command\greeknumeral
\greeknumeral makes it possible to typeset Greek numerals. There is also an
“uppercase” version of this macro: \Greeknumeral.\Greeknumeral

Another system which was in wide use only in Athens, could express any
positive number. This system is implemented in package athnum.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

27.1 〈∗code〉
27.2 \LdfInit\CurrentOption{captions\CurrentOption}

When the option polutonikogreek was used, redefine \CurrentOption to prevent
problems later on.

27.3 \gdef\CurrentOption{greek}%

When this file is read as an option, i.e. by the \usepackage command, greek
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@greek to see whether we have to do something here.

27.4 \ifx\l@greek\@undefined
27.5 \@nopatterns{greek}
27.6 \adddialect\l@greek0\fi

Now we declare the polutoniko language attribute.
27.7 \bbl@declare@ttribute{greek}{polutoniko}{%

This code adds the expansion of \extraspolutonikogreek to \extrasgreek and
changes the definition of \today for Greek to produce polytonic month names.

27.8 \expandafter\addto\expandafter\extrasgreek
27.9 \expandafter{\extraspolutonikogreek}%

116

27.10 \let\captionsgreek\captionspolutonikogreek
27.11 \let\gr@month\gr@c@month

We need to take some extra precautions in order not to break older documents
which still use the old polutonikogreek option.

27.12 \let\l@polutonikogreek\l@greek
27.13 \let\datepolutonikogreek\dategreek
27.14 \let\extraspolutonikogreek\extrasgreek
27.15 \let\noextraspolutonikogreek\noextrasgreek
27.16 }

Typesetting Greek texts implies that a special set of fonts needs to be used.
The current support for greek uses the cb fonts created by Claudio Beccari23.
The cb fonts provide all sorts of font combinations. In order to use these fonts we
define the Local GReek encoding (LGR, see the file greek.fdd). We make sure
that this encoding is known to LATEX, and if it isn’t we abort.

27.17 \InputIfFileExists{lgrenc.def}{%
27.18 \message{Loading the definitions for the Greek font encoding}}{%
27.19 \errhelp{I can’t find the lgrenc.def file for the Greek fonts}%
27.20 \errmessage{Since I do not know what the LGR encoding means^^J
27.21 I can’t typeset Greek.^^J
27.22 I stop here, while you get a suitable lgrenc.def file}\@@end
27.23 }

Now we define two commands that offer the possibility to switch between Greek
and Roman encodings.

\greektext The command \greektext will switch from Latin font encoding to the Greek font
encoding. This assumes that the ‘normal’ font encoding is a Latin one. This
command is a declaration, for shorter pieces of text the command \textgreek
should be used.

27.24 \DeclareRobustCommand{\greektext}{%
27.25 \fontencoding{LGR}\selectfont
27.26 \def\encodingdefault{LGR}}

\textgreek This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

27.27 \DeclareRobustCommand{\textgreek}[1]{\leavevmode{\greektext #1}}

\textol A last aspect of the set of fonts provided with this version of support for typesetting
Greek texts is that it contains an outline family. In order to make it available we
define the command \textol.

27.28 \def\outlfamily{\usefont{LGR}{cmro}{m}{n}}
27.29 \DeclareTextFontCommand{\textol}{\outlfamily}

The next step consists in defining commands to switch to (and from) the Greek
language.

23Apostolos Syropoulos wishes to thank him for his patience, collaboration, cooments and
suggestions.

117

\greekhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

27.30 % Yannis Haralambous has suggested this value
27.31 \providehyphenmins{\CurrentOption}{\@ne\@ne}

\captionsgreek The macro \captionsgreek defines all strings used in the four standard document
classes provided with LATEX.

27.32 \addto\captionsgreek{%
27.33 \def\prefacename{Pr’ologos}%
27.34 \def\refname{Anafor’es}%
27.35 \def\abstractname{Per’ilhyh}%
27.36 \def\bibname{Bibliograf’ia}%
27.37 \def\chaptername{Kef’alaio}%
27.38 \def\appendixname{Par’arthma}%
27.39 \def\contentsname{Perieq’omena}%
27.40 \def\listfigurename{Kat’alogos Sqhm’atwn}%
27.41 \def\listtablename{Kat’alogos Pin’akwn}%
27.42 \def\indexname{Euret’hrio}%
27.43 \def\figurename{Sq’hma}%
27.44 \def\tablename{P’inakas}%
27.45 \def\partname{M’eros}%
27.46 \def\enclname{Sunhmm’ena}%
27.47 \def\ccname{Koinopo’ihsh}%
27.48 \def\headtoname{Pros}%
27.49 \def\pagename{Sel’ida}%
27.50 \def\seename{bl’epe}%
27.51 \def\alsoname{bl’epe ep’ishs}%
27.52 \def\proofname{Ap’odeixh}%
27.53 \def\glossaryname{Glwss’ari}%
27.54 }

\captionspolutonikogreek For texts written in the πoλυτoνκó (polytonic greek) the translations are the
same as above, but some words are spelled differently. For now we just add extra
definitions to \captionsgreek in order to override the earlier definitions.

27.55 \let\captionspolutonikogreek\captionsgreek
27.56 \addto\captionspolutonikogreek{%
27.57 \def\refname{>Anafor‘es}%
27.58 \def\indexname{E<uret’hrio}%
27.59 \def\figurename{Sq~hma}%
27.60 \def\headtoname{Pr‘os}%
27.61 \def\alsoname{bl’epe >ep’ishs}%
27.62 \def\proofname{>Ap’odeixh}%
27.63 }

\gr@month
\dategreek

The macro \dategreek redefines the command \today to produce greek dates.
The name of the month is now produced by the macro \gr@month since it is needed
in the definition of the macro \Grtoday.

118

27.64 \def\gr@month{%
27.65 \ifcase\month\or
27.66 Ianouar’iou\or Febrouar’iou\or Mart’iou\or April’iou\or
27.67 Ma’"iou\or Ioun’iou\or Ioul’iou\or Augo’ustou\or
27.68 Septembr’iou\or Oktwbr’iou\or Noembr’iou\or Dekembr’iou\fi}
27.69 \def\dategreek{%
27.70 \def\today{\number\day \space \gr@month\space \number\year}}

\gr@c@greek

27.71 \def\gr@c@month{%
27.72 \ifcase\month\or >Ianouar’iou\or
27.73 Febrouar’iou\or Mart’iou\or >April’iou\or Ma"’iou\or
27.74 >Ioun’iou\or >Ioul’iou\or A>ugo’ustou\or Septembr’iou\or
27.75 >Oktwbr’iou\or Noembr’iou\or Dekembr’iou\fi}

\Grtoday The macro \Grtoday produces the current date, only that the month and the day
are shown as greek numerals instead of arabic as it is usually the case.

27.76 \def\Grtoday{%
27.77 \expandafter\Greeknumeral\expandafter{\the\day}\space
27.78 \gr@c@month \space
27.79 \expandafter\Greeknumeral\expandafter{\the\year}}

\extrasgreek
\noextrasgreek

The macro \extrasgreek will perform all the extra definitions needed for the
Greek language. The macro \noextrasgreek is used to cancel the actions of
\extrasgreek. For the moment these macros switch the fontencoding used and
the definition of the internal macros \@alph and \@Alph because in Greek we do
use the Greek numerals.

27.80 \addto\extrasgreek{\greektext}
27.81 \addto\noextrasgreek{\latintext}

\gr@ill@value When the argument of \greeknumeral has a value outside of the acceptable
bounds (0 < x < 999999) a warning will be issued (and nothing will be printed).

27.82 \def\gr@ill@value#1{%
27.83 \PackageWarning{babel}{Illegal value (#1) for greeknumeral}}

\anw@true
\anw@false
\anw@print

When a a large number with three trailing zero’s is to be printed those zeros and
the numeric mark need to be discarded. As each ‘digit’ is processed by a separate
macro and because the processing needs to be expandable we need some helper
macros that help remember to not print the numeric mark (\anwtonos).

The command \anw@false switches the printing of the numeric mark off by
making \anw@print expand to nothing. The command \anw@true (re)enables the
printing of the numeric marc. These macro’s need to be robust in order to prevent
improper expansion during writing to files or during \uppercase.

27.84 \DeclareRobustCommand\anw@false{%
27.85 \DeclareRobustCommand\anw@print{}}
27.86 \DeclareRobustCommand\anw@true{%
27.87 \DeclareRobustCommand\anw@print{\anwtonos}}
27.88 \anw@true

119

\greeknumeral The command \greeknumeral needs to be fully expandable in order to get the
right information in auxiliary files. Therefore we use a big \if-construction to
check the value of the argument and start the parsing at the right level.

27.89 \def\greeknumeral#1{%

If the value is negative or zero nothing is printed and a warning is issued.
27.90 \ifnum#1<\@ne\space\gr@ill@value{#1}%
27.91 \else
27.92 \ifnum#1<10\expandafter\gr@num@i\number#1%
27.93 \else
27.94 \ifnum#1<100\expandafter\gr@num@ii\number#1%
27.95 \else

We use the available shorthands for 1.000 (\@m) and 10.000 (\@M) to save a few
tokens.

27.96 \ifnum#1<\@m\expandafter\gr@num@iii\number#1%
27.97 \else
27.98 \ifnum#1<\@M\expandafter\gr@num@iv\number#1%
27.99 \else

27.100 \ifnum#1<100000\expandafter\gr@num@v\number#1%
27.101 \else
27.102 \ifnum#1<1000000\expandafter\gr@num@vi\number#1%
27.103 \else

If the value is too large, nothing is printed and a warning is issued.
27.104 \space\gr@ill@value{#1}%
27.105 \fi
27.106 \fi
27.107 \fi
27.108 \fi
27.109 \fi
27.110 \fi
27.111 \fi
27.112 }

\Greeknumeral The command \Greeknumeral prints uppercase greek numerals. The parsing is
performed by the macro \greeknumeral.

27.113 \def\Greeknumeral#1{%
27.114 \expandafter\MakeUppercase\expandafter{\greeknumeral{#1}}}

\greek@alph
\greek@Alph

In the previous release of this language definition the commands \greek@aplh and
\greek@Alph were kept just for reasons of compatibility. Here again they become
meaningful macros. They are definited in a way that even page numbering with
greek numerals is possible. Since the macros \@alph and \@Alph will lose their
original meaning while the Greek option is active, we must save their original
value. macros \@alph

27.115 \let\latin@alph\@alph
27.116 \let\latin@Alph\@Alph

120

Then we define the Greek versions; the additional \expandafters are needed
in order to make sure the table of contents will be correct, e.g., when we have
appendixes.

27.117 \def\greek@alph#1{\expandafter\greeknumeral\expandafter{\the#1}}
27.118 \def\greek@Alph#1{\expandafter\Greeknumeral\expandafter{\the#1}}

Now we can set up the switching.
27.119 \addto\extrasgreek{%
27.120 \let\@alph\greek@alph
27.121 \let\@Alph\greek@Alph}
27.122 \addto\noextrasgreek{%
27.123 \let\@alph\latin@alph
27.124 \let\@Alph\latin@Alph}

\greek@roman
\greek@Roman

To prevent roman numerals being typeset in greek letters we need to adopt the
internal LATEX commands \@roman and \@Roman. Note that this may cause
errors where roman ends up in a situation where it needs to be expanded;
problems are known to exist with the AMS document classes.

27.125 \let\latin@roman\@roman
27.126 \let\latin@Roman\@Roman
27.127 \def\greek@roman#1{\textlatin{\latin@roman{#1}}}
27.128 \def\greek@Roman#1{\textlatin{\latin@Roman{#1}}}
27.129 \addto\extrasgreek{%
27.130 \let\@roman\greek@roman
27.131 \let\@Roman\greek@Roman}
27.132 \addto\noextrasgreek{%
27.133 \let\@roman\latin@roman
27.134 \let\@Roman\latin@Roman}

\greek@amp
\ltx@amp

The greek fonts do not contain an ampersand, so the LATEX command \& dosn’t
give the expected result if we do not do something about it.

27.135 \let\ltx@amp\&
27.136 \def\greek@amp{\textlatin{\ltx@amp}}
27.137 \addto\extrasgreek{\let\&\greek@amp}
27.138 \addto\noextrasgreek{\let\&\ltx@amp}

What is left now is the definition of a set of macros to produce the various
digits.

\gr@num@i
\gr@num@ii

\gr@num@iii

As there is no representation for 0 in this system the zeros are simply discarded.
When we have a large number with three trailing zero’s also the numeric mark
is discarded. Therefore these macros need to pass the information to each other
about the (non-)translation of a zero.

27.139 \def\gr@num@i#1{%
27.140 \ifcase#1\or a\or b\or g\or d\or e\or \stigma\or z\or h\or j\fi
27.141 \ifnum#1=\z@\else\anw@true\fi\anw@print}
27.142 \def\gr@num@ii#1{%
27.143 \ifcase#1\or i\or k\or l\or m\or n\or x\or o\or p\or \qoppa\fi
27.144 \ifnum#1=\z@\else\anw@true\fi\gr@num@i}

121

27.145 \def\gr@num@iii#1{%
27.146 \ifcase#1\or r\or sv\or t\or u\or f\or q\or y\or w\or \sampi\fi
27.147 \ifnum#1=\z@\anw@false\else\anw@true\fi\gr@num@ii}

\gr@num@iv
\gr@num@v

\gr@num@vi

The first three ‘digits’ always have the numeric mark, except when one is discarded
because it’s value is zero.

27.148 \def\gr@num@iv#1{%
27.149 \ifnum#1=\z@\else\katwtonos\fi
27.150 \ifcase#1\or a\or b\or g\or d\or e\or \stigma\or z\or h\or j\fi
27.151 \gr@num@iii}
27.152 \def\gr@num@v#1{%
27.153 \ifnum#1=\z@\else\katwtonos\fi
27.154 \ifcase#1\or i\or k\or l\or m\or n\or x\or o\or p\or \qoppa\fi
27.155 \gr@num@iv}
27.156 \def\gr@num@vi#1{%
27.157 \katwtonos
27.158 \ifcase#1\or r\or sv\or t\or u\or f\or q\or y\or w\or \sampi\fi
27.159 \gr@num@v}

\greek@tilde In greek typesetting we need a number of characters with more than one accent. In
the underlying family of fonts (the cb fonts) this is solved using Knuth’s ligature
mechanism. Characters we need to have ligatures with are the tilde, the acute
and grave accent characters, the rough and smooth breathings, the subscript,
and the double quote character. In text input the ~ is normaly used to produce
an unbreakable space. The command \~ normally produces a tilde accent. For
polytonic Greek we change the definition of \~ to produce the tilde character itself,
making sure it has category code 12.

27.160 \begingroup
27.161 \@ifundefined{active@char\string!}{}{\catcode‘!=12\relax}
27.162 \catcode‘\~=12
27.163 \lccode‘\!=‘\~
27.164 \lowercase{\def\x{\endgroup
27.165 \def\greek@tilde{!}}\x}
27.166 \addto\extraspolutonikogreek{%
27.167 \babel@save\~\let\~\greek@tilde}

In order to get correct hyphenation we need to set the lower case code of a number
of characters. The ‘v’ character has a special usage for the cb fonts: in fact this
ligature mechanism detects the end of a word and assures that a final sigma is
typeset with the proper sign wich is different from that of an initial or medial
sigma; the ‘v ’after an isolated sigma fools the ligature mechanism in order to
typeset σ in place of ς. Because of this we make sure its lowercase code is not
changed. For “modern” greek we have to deal only with ’ and " and so things are
easy.

27.168 \addto\extrasgreek{%
27.169 \babel@savevariable{\lccode‘v}\lccode‘v=‘v%
27.170 \babel@savevariable{\lccode‘\’}\lccode‘\’=‘\’%
27.171 \babel@savevariable{\lccode‘\"}\lccode‘\"=‘\"}

122

27.172 \addto\extraspolutonikogreek{%
27.173 \babel@savevariable{\lccode‘\<}\lccode‘\<=‘\<%
27.174 \babel@savevariable{\lccode‘\>}\lccode‘\>=‘\>%
27.175 \babel@savevariable{\lccode‘\~}\lccode‘\~=‘\~%
27.176 \babel@savevariable{\lccode‘\|}\lccode‘\|=‘\|%
27.177 \babel@savevariable{\lccode‘\‘}\lccode‘\‘=‘\‘}

And in order to get rid of all accents and breathings when a string is \uppercased
we also change a number of uppercase codes.

27.178 \addto\extrasgreek{%
27.179 \babel@savevariable{\uccode‘\"}\uccode‘\"=‘\"%
27.180 \babel@savevariable{\uccode‘\’}\uccode‘\’=159} %% 159 == ^^9f
27.181 \addto\extraspolutonikogreek{%
27.182 \babel@savevariable{\uccode‘\~}\uccode‘\~=159%
27.183 \babel@savevariable{\uccode‘\>}\uccode‘\>=159%
27.184 \babel@savevariable{\uccode‘\<}\uccode‘\<=159%
27.185 \babel@savevariable{\uccode‘\|}\uccode‘\|=‘\|%
27.186 \babel@savevariable{\uccode‘\‘}\uccode‘\‘=159}

For this to work we make the character ^^9f a shorthand that expands to nothing.
In order for this to work we need to make a character look like ^^9f in TEX’s eyes.
The trick is to have another character and assign it a different lowercase code.
The execute the macros needed in a \lowercase environment. Usually the tile
~ character is used for such purposes. Before we do this we save it’s original
lowercase code to restore it once we’re done.

27.187 \@tempcnta=\lccode‘\~
27.188 \lccode‘\~=159
27.189 \lowercase{%
27.190 \initiate@active@char{~}%
27.191 \declare@shorthand{greek}{~}{}}
27.192 \lccode‘\~=\@tempcnta

We can also make the tilde character itself expand to a tilde with category code
12 to make the typing of texts easier.

27.193 \addto\extraspolutonikogreek{\languageshorthands{greek}}%
27.194 \declare@shorthand{greek}{~}{\greek@tilde}

We now define a few symbols which are used in the typesetting of greek nu-
merals, as well as some other symbols which are usefull, such as the ευρω symbol,
etc.

27.195 \DeclareTextCommand{\anwtonos}{LGR}{\char"FE\relax}
27.196 \DeclareTextCommand{\katwtonos}{LGR}{\char"FF\relax}
27.197 \DeclareTextCommand{\qoppa}{LGR}{\char"12\relax}
27.198 \DeclareTextCommand{\stigma}{LGR}{\char"06\relax}
27.199 \DeclareTextCommand{\sampi}{LGR}{\char"1B\relax}
27.200 \DeclareTextCommand{\Digamma}{LGR}{\char"C3\relax}
27.201 \DeclareTextCommand{\ddigamma}{LGR}{\char"93\relax}
27.202 \DeclareTextCommand{\vardigamma}{LGR}{\char"07\relax}
27.203 \DeclareTextCommand{\euro}{LGR}{\char"18\relax}
27.204 \DeclareTextCommand{\permill}{LGR}{\char"19\relax}

123

Since the ~ cannot be used to produce an unbreakable white space we must
redefine at least the commands \fnum@figure and \fnum@table so they do not
produce a ~ instead of white space.

27.205 %\def\fnum@figure{\figurename\nobreakspace\thefigure}
27.206 %\def\fnum@table{\tablename\nobreakspace\thetable}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

27.207 \ldf@finish{\CurrentOption}
27.208 〈/code〉

124

28 The French language
The file frenchb.dtx24, derived from frenchy.sty, defines all the language defi-
nition macros for the French language.

Customization for the French language is achieved following the book “Lexique
des règles typographiques en usage à l’Imprimerie nationale” troisième édition
(1994), ISBN-2-11-081075-0.

This file has been designed to be used with LATEX2ε, LATEX-2.09 and PlainTEX
formats. If you are still using LATEX-2.09, you should consider switching to
LATEX2ε!

The command \selectlanguage{french} switches to the French language 25,
with the following effects:

1. French hyphenation patterns are made active;

2. ‘double punctuation’ is made active for correct spacing in French;

3. \today prints the date in French;

4. the caption names are translated into French (LATEX only);

5. the default items in itemize environment are set to ‘–’ instead of •, and all
vertical spacing and glue is deleted, a hook to reset standard LATEX spacing
is provided (\FrenchItemizeSpacingfalse); it is possible to change ‘–’ to
something else (‘—’ for instance) by redefining \FrenchLabelItem; apart
from the global hook \FrenchLabelItem, it is also possible to change the
‘labelitems’ at any level (1 to 4) in French, using the standard LATEX syntax,
for instance: \renewcommand{\labelitemii}{\textbullet}; in order to
be effective in French, the redefinitions have to be made when French is
the current language (i.e. after the \begin{document}), the changes are
saved when switching to another language and will be remembered of, when
switching back to French;

6. vertical spacing in general LATEX lists is shortened, a hook to reset standard
LATEX settings is provided (\FrenchListSpacingfalse) ;

7. the first paragraph of each section is indented (LATEX only);

8. the space after \dots is removed in French.

Some commands are provided in frenchb to make typesetting easier:

1. French quotation marks can be entered using the commands \og and \fg
which work in LATEX2ε, LATEX-2.09 and PlainTEX, their appearance depend-
ing on what is available to draw them; if you use LATEX2ε and T1-encoding
you can also enter them as <<~French quotation marks~>> but then don’t

24The file described in this section has version number ? and was last revised on ?.
25\selectlanguage{francais} and \selectlanguage{frenchb} are kept for backward com-

patibility but should no longer be used.

125

forget the unbreakable spaces, (\og and \fg provide for correct line breaks
and better horizontal spacing). \og and \fg can be used outside French,
they provide then English quotes “ and ”.

2. A command \up is provided to typeset superscripts like M\up{me} (abbrevi-
ation for “Madame”), 1\up{er} (for “premier”).

3. Family names should be typeset in small capitals and never be hyphenated,
the macro \bsc (boxed small caps) does this, e.g., Leslie~\bsc{Lamport}
will produce Leslie Lamport.

4. Commands \primo, \secundo, \tertio and \quarto may be used to enu-
merate in lists.

5. Abbreviations for “Numéro” and “numéro” are obtained via the commands
\No, \no.

6. Two commands are provided to typeset the symbol for “degré”: \degre prints
the raw character and \degres should be used to typeset temperatures (e.g.,
“20~\degres C” with an unbreakable space), or for alcohols’ strengths (e.g.,
“45\degres” with no space in French).

7. In math mode the comma has to be surrounded with braces to avoid a
spurious space being inserted after it, in decimal numbers for instance (see
the TEXbook p. 134). The command \DecimalMathComma makes the comma
be an ordinary character in French only (no space added); as a counterpart,
if \DecimalMathComma is active, an explicit space has to be added in lists
and intervals: $[0,\ 1]$, $(x,\ y)$. \StandardMathComma switches back
to the standard behaviour of the comma.

8. A command \nombre is provided to easily typeset numbers: it works both
in text and in math mode: inputting \nombre{3141,592653} will format
this number properly according to the current language (French or non-
French): each slice of three digits will be separated either with a comma in
English or with a space in French (if you prefer a thin space instead of a
normal space, just add the command \ThinSpaceInFrenchNumbers to the
preamble of your document, or to frenchb.cfg). The command \nombre is
a contribution of Vincent Jalby using ideas of David Carlisle in comma.sty.

9. frenchb has been designed to take advantage of the xspace package if
present: adding \usepackage{xspace} in the preamble will force macros
like \fg, \ier, \ieme, \dots, . . . , to respect the spaces you type after them,
for instance typing ‘1\ier juin’ will print ‘1er juin’ (no need for a forced
space after 1\ier).

10. Two commands, \FrenchLayout and \StandardLayout (to be used only in
the preamble) are provided to unify the layout of multilingual documents (it
mainly concerns lists) regardless the current language (see section 29.10 for
details).

126

11. Two commands \AddThinSpaceBeforeFootnotes and \FrenchFootnotes
enable to customize the layout of footnotes following the French IN’s specifi-
cations; the first one, which can only be used before the \begin{document},
adds a thinspace in the running text before the number or symbol calling the
footnote; the second one modifies the footnote’s layout: it typesets leading
numbers as ‘1. ’ instead of ‘1’. \FrenchFootnotes has no effect on footnotes
numbered with symbols (as in the \thanks command).
None of these commands are active by default, both can be best added to
frenchb.cfg or to the preamble of the document. \FrenchFootnotes and
\StandardFootnotes, which cancels the effect of \FrenchFootnotes for the
text coming next, can be used anywhere in the document. The command
\StandardFootnotes may be useful when some footnotes are numbered with
letters (inside minipages for instance).
\AddThinSpaceBeforeFootnotes and \FrenchFootnotes act on all foot-
notes whatever the current language is.

All commands previously available in francais.ldf have been included in
frenchb.ldf for compatibility, sometimes with updated definitions.

The french package, by Bernard Gaulle, was not designed to run with babel
(although the latest versions claim to be babel compatible), but rather as a stand-
alone package for the French language. It provides many more functionalities (like
\lettrine, \sommaire. . .) not available in frenchb, at the cost of a much greater
complexity and possible incompatibilities with other languages.

As french is known to produce the best layout available for French typography,
I have borrowed many ideas from Bernard’s file. I did my best to help users of
both packages (french and frenchb) to exchange their sources files easily (see the
example configuration file below in section 28), with one exception which affects
the way French quotation marks are entered: frenchb uses macros (\og and \fg)
while french uses active characters (<< and >>).

French typographic rules specify that some white space should be present be-
fore ‘double punctuation’ characters. These characters are ; ! ? and :. In order to
get this white space automatically, the category code of these characters is made
\active. In French, the user should input these four characters preceded with a
space, but as many people forget about it (even among native French writers!),
the default behaviour of frenchb is to automatically add a \thinspace before
‘;’ ‘!’ ‘?’ and a normal (unbreakable) space before ‘:’ (this is the rule in French
typography). It’s up to the user to add or not a space after ‘double punctuation’
characters: usually a space is necessary, but not always (before a full point or a
closing brace for instance), so this cannot done automatically.

In (rare) cases where no space should be added before a ‘double punctu-
ation’, either use \string; \string: \string! \string? instead of ; : !
?, or switch locally to English. For instance you can type C\string:TEX or
\begin{otherlanguage}{english}{C:TEX}\end{otherlanguage} to avoid the
space before : in a MS-DOS path.

127

Some users dislike this automatic insertion of a space before ‘double punctu-
ation’, and prefer to decide themselves whether a space should be added or not;
so a hook \NoAutoSpaceBeforeFDP is provided: if this command is added (in file
frenchb.cfg, or anywhere in a document) frenchb will respect your typing, and
introduce a suitable space before ‘double punctuation’ if and only if a space is
typed in the source file before those signs.

The command \AutoSpaceBeforeFDP switches back to the default behaviour
of frenchb.

Once you have built your format, a good precaution would be to perform some
basic tests about hyphenation in French. For LATEX2ε I suggest this:

• run the following file, with the encoding suitable for your machine (my-
encoding will be latin1 for unix machines and PCs running Windows,
applemac for Macintoshs, or cp850 for PCs running DOS).

%%% Test file for French hyphenation.
\documentclass{article}
\usepackage[my-encoding]{inputenc}
\usepackage[T1]{fontenc} % Use EC fonts for French
%\usepackage{aeguill} % Uncomment this line and

% comment out the preceeding one
% to use AE virtual fonts.

\usepackage[francais]{babel}
\begin{document}
\showhyphens{signal container \’ev\’enement alg\‘ebre}
\showhyphens{signal container événement algèbre}
\end{document}

• check the hyphenations proposed by TEX in your log-file; in French you
should get with both 7-bit and 8-bit encodings
si-gnal contai-ner évé-ne-ment al-gèbre.
Do not care about how accented characters are displayed in the log-file, what
matters is the position of the ‘-’ hyphen signs only.

If they are all correct, your installation (probably) works fine, if one (or more) is
(are) wrong, ask a local wizard to see what’s going wrong and perform the test
again (or e-mail me about what happens).

Frequent mismatches:

• you get sig-nal con-tainer, this probably means that the hyphenation
patterns you are using are for US-English, not for French;

• you get no hyphen at all in évé-ne-ment, this probably means that you
are using CM fonts and the macro \accent to produce accented characters.
Using EC fonts with built-in accented characters or MlTEX with CM fonts
avoids this type of mismatch.

128

frenchb has been improved using helpful suggestions from many people, the
main contributions came from Vincent Jalby. Thanks to all of them!

Changes
First version released: 1.1 as of 1996/05/31 part of babel-3.6beta.

Changes in version 1.1b: update for babel-3.6.
Changes in version 1.2: new command \nombre to format numbers; re-

moved command \fup borrowed from the french package (\up does a better job
in LATEX2ε); also removed aliases \french and \english (frenchb.cfg is a better
place for these).

Changes in version 1.3:

• The ‘xspace’ package, when present, now controls spacing after all (sensible)
macros, formerly ‘xspace’ worked on \fg (suggested by Vincent Jalby);

• spacing after opening and before closing guillemets improved as suggested
by Thierry Bouche;

• a replacement for poor looking guillemets in OT1 encoding (math fonts are
used to emulate them) is provided if the file ot2wncyr.fd is found: this
file defines an OT2 encoding using AMS Cyrillic fonts; these have built-
in guillemets, they are text fonts, are free, and are distributed as META-
FONT and Type1 fonts (good for pdftex!), the replacement was suggested
by Gérard Degrez; if the files ot2wncyr.fd, wncy*.mf, wncy*.tfm, and
wncy*.pfb aren’t available on your system, you should get them from CTAN;
if your system complains about missing wncy*.tfm fonts, it means your TEX
system is incomplete, as a quick fix, you can either remove ot2wncyr.fd or
add the command \LasyGuillemets to the preamble of your document or
to frenchb.cfg, then frenchb will behave as it did in the previous versions.
In case Cyrillic guillemets do not fit, it is possible to pick French guillemets
from any font using the command \FrenchGuillemetsFrom which requires 4
arguments \FrenchGuillemetsFrom{coding}{font}{char-left}{char-right},
for instance, add \FrenchGuillemetsFrom{T1}{ppl}{19}{20} to the pream-
ble of your document or to frenchb.cfg, to pick French guillemets from
Palatino (fontname=ppl, char 19 and 20 are left and right guillemets in
T1-encoding). This was suggested by Michel Bovani.

• the environment ‘itemize’ has been redesigned in French according to spec-
ifications from Jacques André and Thierry Bouche; it is possible to switch
back to the settings of version 1.2: add \FrenchItemizeSpacingfalse after
loading frenchb in the preamble (this can be useful to process old docu-
ments);

• two switches have been added to go back to standard LATEX list spacing
\FrenchItemizeSpacingfalse and \FrenchListSpacingfalse;

• \nombre now properly handles signs in LATEX2ε;

129

• definition of \dots changed in French;

• in French, with the standard LATEX classes, captions in figures and tables
are printed with an endash instead of a colon.

Changes in version 1.4:

• the redefinition of\@makecaption is changed not to overwrite the changes
made by some classes (koma-script, amsart, ua-thesis. . .) as pointed out by
Werner Lemberg;

• a hook, \FrenchGuillemetsFrom, is provided to pick French guillemets from
any font (suggested by Michel Bovani, works only in OT1-encoding);

• a hook, \FrenchLabelItem, is provided to enable marks other than ‘–’
(\textendash) in French lists (also suggested by Michel Bovani);

• \DecimalMathComma, \StandardMathComma, \ThinSpaceInFrenchNumbers
added;

• \FrenchLayout and \StandardLayout added;

• an example of customization file frenchb.cfg is included in frenchb.dtx.

Changes in version 1.5:

• The settings for spacing in French lists are no longer tuned at the \@trivlist
level but within \list; this enables the users to provide their own settings
for the lists they define with \list (suggested by P. Pichaureau). Although
the layout of the standard lists has not changed, some lists, based directly
on \@trivlist or \trivlist, could possibly be typeset differently when
upgrading from version 1.4 to 1.5. The command \FrenchOldTrivlisttrue
could then, be useful to process older documents.

• Apart from the global hook \FrenchLabelItem, it is now also possible to
change the ‘labelitems’ at any level (1 to 4) in French, using the standard
LATEX syntax, for instance: \renewcommand{\labelitemii}{\textbullet}.

• The internal name for the French language has been changed from frenchb
to french, it means that \captionsfrench, \datefrench, \extrasfrench,
\noextrasfrench, are to be used now instead of \captionsfrenchb,
\datefrenchb, \extrasfrenchb, \noextrasfrenchb.

• From version 1.5f on, it is possible to customize the space inserted be-
fore a colon in French; its default value is \space (as in previous ver-
sions of frenchb), but it can now be changed to \thinspace by redefining
\Fcolonspace.

Changes in version 1.6:

130

• Two new commands are provided: \AddThinSpaceBeforeFootnotes and
\FrenchFootnotes; they enable to typeset footnotes according to the French
IN’s specifications (suggested by Jacques André).

• frenchb will make use of \textdegree (TS1 encoding) to typeset degrees
whenever possible.

• Default guillemets have been changed in OT1 encoding only in version 1.6c:
the former ones were picked up in the wncyr fonts, which forced the cyril-
lic encoding to OT2 when babel was loaded with option frenchb before a
cyrillic language (russian, ukrainian or bulgarian). Now, LM fonts for
T1-encoding are available, we pick up the guillemets from them, for OT1-
encoding.

• The config file frenchb.cfg is now loaded only when LATEX2ε is used (from
version 1.6g).

• The command \degres now works also in math mode (from version 1.6g),
but not in bold versions (it is a text character basically).

Customizing frenchb: an example of configuration file
28.1 〈∗cfg〉
28.2 %%
28.3 %% If you want to customize frenchb, please DO NOT hack into the code,
28.4 %% copy this file into a directory searched by TeX, preferably a
28.5 %% personal one on multi-user systems, and customize it as you like.
28.6 %%
28.7 %% WARNING: If you exchange your documents with colleagues using
28.8 %% a different TeX installation, it is best NOT TO HAVE a frenchb.cfg
28.9 %% file, and add instead the customization commands to the preamble

28.10 %% of your documents after babel and frenchb have been loaded.
28.11 %%
28.12 %%
28.13 %% Uncomment the following line if you dislike frenchb automatically
28.14 %% adding a space before French double punctuation (see frenchb.dtx
28.15 %% for more information).
28.16 %%
28.17 %%\NoAutoSpaceBeforeFDP
28.18 %%
28.19 %% frenchb inserts a normal space before a colon in French (following
28.20 %% I.N. specifications), but some people prefer a thinspace instead;
28.21 %% uncomment the following line if you prefer a thinspace.
28.22 %%
28.23 %%\renewcommand{\Fcolonspace}{\thinspace}
28.24 %%
28.25 %% Uncomment the following line to force lasy font emulation for
28.26 %% French guillemets in OT1 encoding; Polish guillemets are
28.27 %% FAR BETTER LOOKING, you should normally leave this line commented out.
28.28 %%

131

28.29 %%\LasyGuillemets
28.30 %%
28.31 %% The following option is for backward compatibility ONLY
28.32 %% (it might conflict with the russian option of babel).
28.33 %% Uncomment the following line if you want to get back to
28.34 %% the default guillemets used in versions $<$ 1.6b for OT1-encoding
28.35 %% (no effect in T1-encoding).
28.36 %%
28.37 %%\CyrillicGuillemets
28.38 %%
28.39 %% If you dislike Polish guillemets in OT1-encoding, you can easily
28.40 %% pick up yours from other fonts, examples below: Palatino or
28.41 %% cyrillic CMR T2A encoded font.
28.42 %% The four arguments are: encoding, font name, character codes of
28.43 %% the opening and closing guillemets in the selected font.
28.44 %%
28.45 %%\FrenchGuillemetsFrom{T1}{ppl}{19}{20}
28.46 %%\FrenchGuillemetsFrom{T2A}{cmr}{190}{191}
28.47 %%
28.48 %% Uncomment the following line if you don’t want frenchb to change
28.49 %% LaTeX standard settings for vertical spacing in ’itemize’ lists.
28.50 %% LaTeX standard settings were used by frenchb in versions < 1.3,
28.51 %% so you may want to uncomment the following line to process older
28.52 %% documents.
28.53 %%
28.54 %%\FrenchItemizeSpacingfalse
28.55 %%
28.56 %% frenchb tunes vertical spaces in all lists (at \list level),
28.57 %% uncomment the following line if you prefer LaTeX standard settings
28.58 %% (this flag is new in version 1.3). When \ifFrenchItemizeSpacing is
28.59 %% ‘true’ (default setting), this flag has no effect on itemize lists.
28.60 %%
28.61 %%\FrenchListSpacingfalse
28.62 %%
28.63 %% The command \FrenchLabelItem can be used to set the ‘labelitems’
28.64 %% for all levels in French. For instance, to get long dashes, use:
28.65 %%
28.66 %%\renewcommand{\FrenchLabelItem}{\textemdash}
28.67 %%
28.68 %% You can also have different ‘labelitems’ for each level in French:
28.69 %%
28.70 %%\renewcommand{\Frlabelitemi}{\textemdash}
28.71 %%\renewcommand{\Frlabelitemii}{\bfseries\textendash}
28.72 %%\renewcommand{\Frlabelitemiii}{\textbullet}
28.73 %%\renewcommand{\Frlabelitemiv}{}
28.74 %%
28.75 %% Uncomment the following line if you want a thinspace to be added
28.76 %% in the running text before the footnote number or symbol.
28.77 %%
28.78 %%\AddThinSpaceBeforeFootnotes

132

28.79 %%
28.80 %% Uncomment the following line if you want footnotes to be typeset
28.81 %% according the specifications of the French ‘Imprimerie Nationale’.
28.82 %%
28.83 %%\FrenchFootnotes
28.84 %%
28.85 %% Uncomment the following line if you want the command \nombre to
28.86 %% insert thin spaces (1/6em) instead of normal spaces (0.3em)
28.87 %% between slices of 3 digits when typesetting numbers in French.
28.88 %%
28.89 %%\ThinSpaceInFrenchNumbers
28.90 %%
28.91 %% If you are bored to type {,} every time you want a decimal comma in
28.92 %% math mode, uncomment the following line (and don’t forget to add a
28.93 %% forced space after the comma in lists and intervals: $(x,\ y)$ and
28.94 %% $[0,\ 1]$). I suggest NOT TO UNCOMMENT the following line,
28.95 %% and to switch between the decimal comma and the standard comma
28.96 %% using \DecimalMathComma and \StandardMathComma inside the document.
28.97 %%
28.98 %%\DecimalMathComma
28.99 %%

28.100 %% If you do not want the appearance of lists to depend on the current
28.101 %% language, add ONE of these two commands: \FrenchLayout (for a
28.102 %% document mainly in French) or \StandardLayout (for a document
28.103 %% mainly in English).
28.104 %%
28.105 %%\FrenchLayout
28.106 %%\StandardLayout
28.107 %%
28.108 %% With the standard LaTeX classes (article.cls, report.cls, book.cls)
28.109 %% you can change the separator used in figure and table captions in
28.110 %% French with \CaptionSeparator, for instance (the default value of
28.111 %% \CaptionSeparator in French is ’\space\textendash\space’):
28.112 %%
28.113 %%\addto\captionsfrench{\def\CaptionSeparator{\space\textemdash\space}}
28.114 %%
28.115 %% You might want to change some of the translations of caption names,
28.116 %% you can do it this way, for instance:
28.117 %%
28.118 %%\addto\captionsfrench{\def\figurename{{\scshape Figure}}}
28.119 %%\addto\captionsfrench{\def\tablename{{\scshape Table}}}
28.120 %%\addto\captionsfrench{\def\proofname{Preuve}}
28.121 %%
28.122 %% If French guillemets are available on your keyboard, you can use
28.123 %% them instead of the commands \og and \fg: REPLACE << and >> in
28.124 %% the following code by your ready-made guillemets (2 occurrences
28.125 %% for each) AND uncomment the resulting code.
28.126 %% WARNINGS:
28.127 %% 1) This will reduce the portability of your source files!
28.128 %% 2) This adds two active characters.

133

28.129 %% 3) If you add this stuff to the preamble of a document, you’ll
28.130 %% need to wrap it in \makeatletter ... \makeatother.
28.131 %%
28.132 %% \ifx\mule@def\undefined
28.133 %% \initiate@active@char{<<}
28.134 %% \initiate@active@char{>>}
28.135 %% \AtBeginDocument{%
28.136 %% \def<<{\og\ignorespaces}%
28.137 %% \def>>{{\fg}}%
28.138 %% }%
28.139 %% \else %%% For the CJK package, see MULEenc.sty.
28.140 %% \mule@def{11}{\og\ignorespaces}
28.141 %% \mule@def{27}{{\fg}}
28.142 %% \fi
28.143 %%
28.144 %% The rest is for compatibility with Bernard Gaulle’s french.sty:
28.145 %% if you want to typeset with babel/frenchb files originally written
28.146 %% for french.sty, you will probably want to uncomment these lines.
28.147 %%
28.148 %% Uncomment these lines if you want the aliases \numero and \Numero
28.149 %% (as in french.sty) for \no and \No.
28.150 %%
28.151 %%\let\numero=\no
28.152 %%\let\Numero=\No
28.153 %%
28.154 %% Uncomment the following lines if you want to substitute ‘\bsc’ to
28.155 %% either (or both) of french.sty macros ‘\fsc’ and ‘\lsc’.
28.156 %%
28.157 %%\let\fsc=\bsc
28.158 %%\let\lsc=\bsc
28.159 %%
28.160 %% Uncomment the following line if you want to substitute ‘\up’ to
28.161 %% french.sty macro ‘\fup’.
28.162 %%
28.163 %%\let\fup=\up
28.164 %%
28.165 %% Uncomment the following lines if you intend to use commands \french
28.166 %% and \english to switch between languages, as in french.sty.
28.167 %%
28.168 %%\def\french{\leavevmode\selectlanguage{french}}
28.169 %%\def\english{\leavevmode\selectlanguage{english}}
28.170 %%
28.171 %% Uncomment the following lines if you intend to use the command
28.172 %% \AllTeX to refer to all flavours of TeX, (this command has been
28.173 %% made popular by french.sty).
28.174 %%
28.175 %%\newcommand*{\AllTeX}{%
28.176 %% (L\kern-.36em\raise.3ex\hbox{\sc a}\kern-.15em)%
28.177 %% T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}
28.178 〈/cfg〉

134

29 TEXnical details

29.1 Initial setup
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

29.1 〈∗code〉
29.2 %%
29.3 \LdfInit\CurrentOption\datefrench

\ifLaTeX
\ifLaTeXe

To check the format in use (plain, LATEX or LATEX2ε), we’ll need two new ‘if’.
29.4 \newif\ifLaTeX
29.5 \ifx\magnification\@undefined\LaTeXtrue\fi
29.6 \newif\ifLaTeXe
29.7 \ifx\@compatibilitytrue\@undefined\else\LaTeXetrue\fi

\if@Two@E We will need another ‘if’ : \if@Two@E is true if and only if LATEX2ε is run-
ning not in compatibility mode. It is used in the definitions of the command
\nombre and \up. The definition is somewhat complicated, due to the fact that
\if@compatibility is not recognized as a \if in LATEX-2.09 based formats.

29.8 \newif\if@Two@E \@Two@Etrue
29.9 \def\@FI@{\fi}

29.10 \ifx\@compatibilitytrue\@undefined
29.11 \@Two@Efalse \def\@FI@{\relax}
29.12 \else
29.13 \if@compatibility \@Two@Efalse \fi
29.14 \@FI@

Check if hyphenation patterns for the French language have been loaded in
language.dat; we allow for the names ‘french’, ‘francais’, ‘canadien’ or ‘acadian’.
The latter two are both names used in Canada for variants of French that are in
use in that country.

29.15 \ifx\l@french\@undefined
29.16 \ifx\l@francais\@undefined
29.17 \ifx\l@canadien\@undefined
29.18 \ifx\l@acadian\@undefined
29.19 \@nopatterns{French}
29.20 \adddialect\l@french0
29.21 \else
29.22 \let\l@french\l@acadian
29.23 \fi
29.24 \else
29.25 \let\l@french\l@canadien
29.26 \fi
29.27 \else
29.28 \let\l@french\l@francais
29.29 \fi
29.30 \fi

135

After the statement above \l@french is sure to always be defined.
The internal name for the French language will be ‘french’; ‘francais’ and

‘frenchb’ will be synonymous for ‘french’: first let both names use the same
hyphenation patterns. Later we will have to set aliases for \captionsfrench,
\datefrench, \extrasfrench and \noextrasfrench. As French uses the stan-
dard values of \lefthyphenmin (2) and \righthyphenmin (3), no special setting
is required here.

29.31 \def\CurrentOption{french}
29.32 \ifx\l@francais\@undefined
29.33 \let\l@francais\l@french
29.34 \fi
29.35 \ifx\l@frenchb\@undefined
29.36 \let\l@frenchb\l@french
29.37 \fi

When this language definition file was loaded for one of the Canadian versions of
French we need to make sure that a suitable hyphenation pattern register will be
found by TEX.

29.38 \ifx\l@canadien\@undefined
29.39 \let\l@canadien\l@french
29.40 \fi
29.41 \ifx\l@acadian\@undefined
29.42 \let\l@acadian\l@french
29.43 \fi

This language definition can be loaded for different variants of the French
language. The ‘key’ babel macros are only defined once, using ‘french’ as
the language name, but frenchb and francais are synonymous. As some
users who choose frenchb or francais as option of babel, might customize
\captionsfrenchb or \captionsfrancais in the preamble, we merge their
changes at the \begin{document} when they do so (only possible in LATEX2ε).
The other three commands for \date, \extras, and \noextras are not likely to
be modified by end-users. The other variants of languages are defined by checking
if the relevant option was used and then adding one extra level of expansion.

29.44 \def\datefrancais{\datefrench}
29.45 \def\extrasfrancais{\extrasfrench}
29.46 \def\noextrasfrancais{\noextrasfrench}
29.47 \def\datefrenchb{\datefrench}
29.48 \def\extrasfrenchb{\extrasfrench}
29.49 \def\noextrasfrenchb{\noextrasfrench}
29.50 \ifLaTeXe
29.51 \AtBeginDocument{\let\captions@French\captionsfrench
29.52 \ifx\captionsfrenchb\@undefined
29.53 \let\captions@Frenchb\relax
29.54 \else
29.55 \let\captions@Frenchb\captionsfrenchb
29.56 \fi
29.57 \ifx\captionsfrancais\@undefined

136

29.58 \let\captions@Francais\relax
29.59 \else
29.60 \let\captions@Francais\captionsfrancais
29.61 \fi
29.62 \def\captionsfrench{\captions@French
29.63 \captions@Francais\captions@Frenchb}%
29.64 \def\captionsfrancais{\captionsfrench}%
29.65 \def\captionsfrenchb{\captionsfrench}%
29.66 \iflanguage{french}{\captionsfrench}{}%
29.67 }
29.68 \else
29.69 \def\captionsfrancais{\captionsfrench}
29.70 \def\captionsfrenchb{\captionsfrench}
29.71 \fi
29.72 \@ifpackagewith{babel}{canadien}{%
29.73 \def\captionscanadien{\captionsfrench}%
29.74 \def\datecanadien{\datefrench}%
29.75 \def\extrascanadien{\extrasfrench}%
29.76 \def\noextrascanadien{\noextrasfrench}%
29.77 }{}
29.78 \@ifpackagewith{babel}{acadian}{%
29.79 \def\captionsacadian{\captionsfrench}%
29.80 \def\dateacadian{\datefrench}%
29.81 \def\extrasacadian{\extrasfrench}%
29.82 \def\noextrasacadian{\noextrasfrench}%
29.83 }{}

\extrasfrench
\noextrasfrench

The macro \extrasfrench will perform all the extra definitions needed for the
French language. The macro \noextrasfrench is used to cancel the actions of
\extrasfrench.

In French “apostrophe” is used in hyphenation in expressions like l’ambulance
(French patterns provide entries for this kind of words). This means that the
\lccode of “apostrophe” has to be non null in French for proper hyphenation of
those expressions, and to be reset to null when exiting French.

29.84 \@namedef{extras\CurrentOption}{\lccode‘\’=‘\’}
29.85 \@namedef{noextras\CurrentOption}{\lccode‘\’=0}

It is best to use LATEX2ε’s font changing commands, and to emulated those we
need when they are not available, as in PlainTEX or LATEX-2.09. Be aware that
old commands \sc, \it, etc. exist in LATEX2ε, but they behave like they did in
LATEX-2.09 (i. e., they switch back to \normalfont instead of keeping the other
font attributes unchanged).

29.86 \ifx\scshape\@undefined
29.87 \ifx\sc\@undefined
29.88 \let\scshape\relax
29.89 \else
29.90 \let\scshape\sc
29.91 \fi
29.92 \fi

137

29.93 \ifx\emph\@undefined
29.94 \ifx\em\@undefined
29.95 \let\emph\relax
29.96 \else
29.97 \def\emph#1{\em #1}
29.98 \fi
29.99 \fi

29.2 Caption names
The next step consists of defining the French equivalents for the LATEX caption
names.

In French, captions in figures and tables should be printed with endash (‘–
’) instead of the standard ‘:’. If another separator is preferred, see in the ex-
ample configuration file above (section 28) how to change the default value of
\CaptionSeparator.

We first store the standard definition of \@makecaption (e.g., the one pro-
vided in article.cls, report.cls, book.cls which is frozen for LATEX2ε according
to Frank Mittelbach), in \STD@makecaption. ‘ATBeginDocument’ we compare
it to its current definition (some classes like koma-script classes, AMS classes,
ua-thesis.cls. . . change it). If they are identical, frenchb just adds a hook called
\CaptionSeparator to \@makecaption, \CaptionSeparator defaults to ’: ’ as
in the standard \@makecaption, and will be changed to ’ – ’ in French. If the
definitions differ, frenchb doesn’t overwrite the changes, but prints a message in
the .log file.

29.100 \ifLaTeXe
29.101 \long\def\STD@makecaption#1#2{%
29.102 \vskip\abovecaptionskip
29.103 \sbox\@tempboxa{#1: #2}%
29.104 \ifdim \wd\@tempboxa >\hsize
29.105 #1: #2\par
29.106 \else
29.107 \global \@minipagefalse
29.108 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
29.109 \fi
29.110 \vskip\belowcaptionskip}
29.111 \def\CaptionSeparator{\string:\space}
29.112 \long\def\FB@makecaption#1#2{%
29.113 \vskip\abovecaptionskip
29.114 \sbox\@tempboxa{#1\CaptionSeparator #2}%
29.115 \ifdim \wd\@tempboxa >\hsize
29.116 #1\CaptionSeparator #2\par
29.117 \else
29.118 \global \@minipagefalse
29.119 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
29.120 \fi
29.121 \vskip\belowcaptionskip}
29.122 \AtBeginDocument{%

138

29.123 \ifx\@makecaption\STD@makecaption
29.124 \let\@makecaption\FB@makecaption
29.125 \else
29.126 \ifx\@makecaption\@undefined\else
29.127 \PackageWarning{frenchb.ldf}%
29.128 {The definition of \protect\@makecaption\space
29.129 has been changed,\MessageBreak
29.130 frenchb will NOT customize it;\MessageBreak reported}%
29.131 \fi
29.132 \fi
29.133 \let\FB@makecaption\relax
29.134 \let\STD@makecaption\relax}
29.135 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.136 \def\CaptionSeparator{\string:\space}}
29.137 \fi

\captionsfrench The macro \captionsfrench defines all strings used in the four standard docu-
ment classes provided with LATEX. Some authors do not like some of these names;
it is easy to change them in the preamble after loading frenchb (or in your file
frenchb.cfg), e.g \addto\captionsfrench{\def\figurename{Figure}} will
print ‘Figure’ in Roman instead of ‘Fig.’.

29.138 \ifLaTeX
29.139 \@namedef{captions\CurrentOption}{%
29.140 \def\refname{R\’ef\’erences}%
29.141 \def\abstractname{R\’esum\’e}%
29.142 \def\bibname{Bibliographie}%
29.143 \def\prefacename{Pr\’eface}%
29.144 \def\chaptername{Chapitre}%
29.145 \def\appendixname{Annexe}%
29.146 \def\contentsname{Table des mati\‘eres}%
29.147 \def\listfigurename{Table des figures}%
29.148 \def\listtablename{Liste des tableaux}%
29.149 \def\indexname{Index}%
29.150 \def\figurename{{\scshape Fig.}}%
29.151 \def\tablename{{\scshape Tab.}}%
29.152 \def\CaptionSeparator{\space\textendash\space}%

“Première partie” instead of “Part I”
29.153 \def\partname{\protect\@Fpt partie}%
29.154 \def\@Fpt{{\ifcase\value{part}\or Premi\‘ere\or Deuxi\‘eme\or
29.155 Troisi\‘eme\or Quatri\‘eme\or Cinqui\‘eme\or Sixi\‘eme\or
29.156 Septi\‘eme\or Huiti\‘eme\or Neuvi\‘eme\or Dixi\‘eme\or Onzi\‘eme\or
29.157 Douzi\‘eme\or Treizi\‘eme\or Quatorzi\‘eme\or Quinzi\‘eme\or
29.158 Seizi\‘eme\or Dix-septi\‘eme\or Dix-huiti\‘eme\or Dix-neuvi\‘eme\or
29.159 Vingti\‘eme\fi}\space\def\thepart{}}%
29.160 \def\pagename{page}%
29.161 \def\seename{{\emph{voir}}}%
29.162 \def\alsoname{{\emph{voir aussi}}}%
29.163 \def\enclname{P.~J. }%

139

29.164 \def\ccname{Copie \‘a }%
29.165 \def\headtoname{}%
29.166 \def\proofname{D\’emonstration}% for AMS-\LaTeX
29.167 \def\glossaryname{Glossaire}%
29.168 }
29.169 \fi

29.3 Punctuation
The ‘double punctuation’ characters (; ! ? and :) have to be made \active for
an automatic control of the amount of space to insert before them.

29.170 \initiate@active@char{:}
29.171 \initiate@active@char{;}
29.172 \initiate@active@char{!}
29.173 \initiate@active@char{?}

We specify that the French group of shorthands should be used.
29.174 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.175 \languageshorthands{french}}

These characters are ‘turned on’ once, later their definition may vary.
29.176 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.177 \bbl@activate{:}\bbl@activate{;}%
29.178 \bbl@activate{!}\bbl@activate{?}}
29.179 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.180 \bbl@deactivate{:}\bbl@deactivate{;}%
29.181 \bbl@deactivate{!}\bbl@deactivate{?}}

One more thing \extrasfrench needs to do is to make sure that \frenchspacing
is in effect. If this is not the case the execution of \noextrasfrench will switch
it off again.

29.182 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.183 \bbl@frenchspacing}
29.184 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.185 \bbl@nonfrenchspacing}

\french@sh@;@ We have to tune the amount of white space before ; ! ? and :. This should only
happen in horizontal mode, hence the test \ifhmode.

In horizontal mode, if a space has been typed before ‘;’ we remove it and
put an unbreakable \thinspace instead. If no space has been typed, we add
\FDP@thinspace which will be defined, up to the user’s wishes, as an automatic
added thin space, or as \@empty.

29.186 \declare@shorthand{french}{;}{%
29.187 \ifhmode
29.188 \ifdim\lastskip>\z@
29.189 \unskip\penalty\@M\thinspace
29.190 \else
29.191 \FDP@thinspace
29.192 \fi
29.193 \fi

140

Now we can insert a ; character.
29.194 \string;}

\french@sh@!@
\french@sh@?@

Because these definitions are very similar only one is displayed in a way that the
definition can be easily checked.

29.195 \declare@shorthand{french}{!}{%
29.196 \ifhmode
29.197 \ifdim\lastskip>\z@
29.198 \unskip\penalty\@M\thinspace
29.199 \else
29.200 \FDP@thinspace
29.201 \fi
29.202 \fi
29.203 \string!}

29.204 \declare@shorthand{french}{?}{%
29.205 \ifhmode
29.206 \ifdim\lastskip>\z@
29.207 \unskip\penalty\@M\thinspace
29.208 \else
29.209 \FDP@thinspace
29.210 \fi
29.211 \fi
29.212 \string?}

\french@sh@:@ The ‘:’ requires a normal space before it, instead of a \thinspace.

29.213 \declare@shorthand{french}{:}{%
29.214 \ifhmode
29.215 \ifdim\lastskip>\z@
29.216 \unskip\penalty\@M\Fcolonspace
29.217 \else
29.218 \FDP@colonspace
29.219 \fi
29.220 \fi
29.221 \string:}

\Fcolonspace
\AutoSpaceBeforeFDP

\NoAutoSpaceBeforeFDP

\FDP@thinspace and \FDP@space are defined as unbreakable spaces by
\AutoSpaceBeforeFDP or as \@empty by \NoAutoSpaceBeforeFDP.
Default is \AutoSpaceBeforeFDP.

29.222 \newcommand{\Fcolonspace}{\space}
29.223 \def\AutoSpaceBeforeFDP{%
29.224 \def\FDP@thinspace{\penalty\@M\thinspace}%
29.225 \def\FDP@colonspace{\penalty\@M\Fcolonspace}}
29.226 \def\NoAutoSpaceBeforeFDP{\let\FDP@thinspace\@empty
29.227 \let\FDP@colonspace\@empty}
29.228 \AutoSpaceBeforeFDP

141

\system@sh@:@
\system@sh@!@
\system@sh@?@
\system@sh@;@

When the active characters appear in an environment where their French be-
haviour is not wanted they should give an ‘expected’ result. Therefore we define
shorthands at system level as well.

29.229 \declare@shorthand{system}{:}{\string:}
29.230 \declare@shorthand{system}{!}{\string!}
29.231 \declare@shorthand{system}{?}{\string?}
29.232 \declare@shorthand{system}{;}{\string;}

29.4 French quotation marks
EC/LM fonts and standard PostScript fonts have built-in guillemets, we of course
use them. CM fonts have no French guillemets built-in, so we have to emulate
them:

• if a file ‘t1lmr.fd’ is found, we expect the LM fonts to be present on the sys-
tem, so we pick up French guillemets from them; before version 1.6b, French
guillemets were borrowed from the ‘wncyr’ fonts, this has been changed be-
cause it resulted in a conflict with the russian option of babel. Former Cyrillic
guillemets are still available through the command \CyrillicGuillemets
(for backward compatibility).

• otherwise we use math symbols, either LATEX’s ‘lasy’ font if available, or
TEX symbols \ll and \gg otherwise;

The standard names for French quotation marks are \guillemotleft and
\guillemotright, these commands are defined in t1enc.def for T1-encoding.
In LATEX2ε formats, we first define these commands for OT1-encoding (for CM
fonts), using either the Polish ‘pl*’ fonts or LATEX’s ‘lasy’ fonts. Other local text
encodings should define them too, but if they don’t, the OT1 definitions will be
used. The standard PostScript fonts should always be used together with T1-
encoding (not OT1), for proper hyphenation and built-in (better looking) French
quotation marks.

The next step is to provide correct spacing after \guillemotleft and be-
fore \guillemotright : a space precedes and follows quotation marks but no
line break is allowed neither after the opening one, nor before the closing one.
\guill@spacing which does the spacing, has been fine tuned by Thierry Bouche.

The top macros for quotation marks will be called \og (“ouvrez guillemets”)
and \fg (“fermez guillemets”).

The top level definitions for French quotation marks are switched on and off
through the \extrasfrench \noextrasfrench mechanism. Outside French, \og
and \fg will typeset standard English opening and closing double quotes.

As \DeclareTextCommand cannot be used after the \begin{document} we in-
troduce internal definitions \begin@guill and \end@guill.

We’ll try to be smart to users of D. Carlisle’s xspace package: if this package
is loaded there will be no need for {} or \ to get a space after \fg.

142

\guillemotleft
\guillemotright

\og
\fg

In LATEX2ε we provide a dummy definition for \og and \fg, just to display an
error message in case \og or \fg have been defined elsewhere.

29.233 \newcommand{\og}{\@empty}
29.234 \newcommand{\fg}{\@empty}

\FrenchGuillemetsFrom

29.235 \ifLaTeXe
29.236 \def\FrenchGuillemetsFrom#1#2#3#4{%
29.237 \DeclareFontEncoding{#1}{}{}%
29.238 \DeclareFontSubstitution{#1}{#2}{m}{n}%
29.239 \DeclareTextCommand{\guillemotleft}{OT1}{%
29.240 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3}}%
29.241 \DeclareTextCommand{\guillemotright}{OT1}{%
29.242 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

\CyrillicGuillemets
\PolishGuillemets

\LasyGuillemets
\bbl@frenchguillemets

\bbl@nonfrenchguillemets

29.243 \def\CyrillicGuillemets{\FrenchGuillemetsFrom{OT2}{wncyr}{60}{62}}
29.244 \def\PolishGuillemets{\FrenchGuillemetsFrom{T1}{lmr}{19}{20}}
29.245 \def\LasyGuillemets{%
29.246 \DeclareTextCommand{\guillemotleft}{OT1}{\hbox{%
29.247 \fontencoding{U}\fontfamily{lasy}\selectfont(\kern-0.20em(}}%
29.248 \DeclareTextCommand{\guillemotright}{OT1}{\hbox{%
29.249 \fontencoding{U}\fontfamily{lasy}\selectfont)\kern-0.20em)}}}
29.250 \IfFileExists{t1lmr.fd}{\PolishGuillemets}{\LasyGuillemets}
29.251 \DeclareTextSymbolDefault{\guillemotleft}{OT1}
29.252 \DeclareTextSymbolDefault{\guillemotright}{OT1}
29.253 \def\guill@spacing{\penalty\@M\hskip.8\fontdimen2\font
29.254 plus.3\fontdimen3\font
29.255 minus.8\fontdimen4\font}
29.256 \DeclareRobustCommand*{\begin@guill}{\leavevmode
29.257 \guillemotleft\penalty\@M\guill@spacing}
29.258 \DeclareRobustCommand*{\end@guill}{\ifdim\lastskip>\z@\unskip\fi
29.259 \penalty\@M\guill@spacing\guillemotright\xspace}
29.260 \AtBeginDocument{\ifx\xspace\@undefined\let\xspace\relax\fi}
29.261 \def\bbl@frenchguillemets{\renewcommand{\og}{\begin@guill}%
29.262 \renewcommand{\fg}{\end@guill}}
29.263 \def\bbl@nonfrenchguillemets{\renewcommand{\og}{‘‘}%
29.264 \renewcommand{\fg}{\ifdim\lastskip>\z@\unskip\fi ’’}}

For PlainTEX, and LATEX-2.09 we define \begin@guill and \end@guill using
math symbols \ll and \gg.

29.265 \else
29.266 \def\begin@guill{\leavevmode\raise0.25ex
29.267 \hbox{$\scriptscriptstyle\ll$}%
29.268 \penalty\@M\hskip.8\fontdimen2\font
29.269 plus.3\fontdimen3\font
29.270 minus.3\fontdimen4\font}
29.271 \def\end@guill{\ifdim\lastskip>\z@\unskip\penalty\@M\fi
29.272 \penalty\@M\hskip.8\fontdimen2\font

143

29.273 plus.3\fontdimen3\font minus.3\fontdimen4\font
29.274 \raise0.25ex\hbox{$\scriptscriptstyle\gg$}}
29.275 \let\xspace\relax
29.276 \def\bbl@frenchguillemets{\let\og\begin@guill
29.277 \let\fg\end@guill}
29.278 \def\bbl@nonfrenchguillemets{\def\og{‘‘}%
29.279 \def\fg{\ifdim\lastskip>\z@\unskip\fi ’’}}
29.280 \fi
29.281 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.282 \bbl@frenchguillemets}
29.283 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.284 \bbl@nonfrenchguillemets}

29.5 French lists
\bbl@frenchlistspacing

\bbl@nonfrenchlistspacing
Vertical spacing in general lists should be shorter in French texts than the defaults
provided by LATEX. Note that the easy way, just changing values of vertical spac-
ing parameters when entering French and restoring them to their defaults on exit
would not work; as most lists are based on \list we will redefine \list (up to ver-
sion 1.4, the more internal command \@trivlist was redefined, this ensured that
all lists would have common settings, but didn’t allow the users to provide their
own settings, as pointed out by P. Pichaureau). If standard LaTeX settings are pre-
ferred, it is easy to issue the command \FrenchListSpacingfalse in the preamble
or in frenchb.cfg. Please note that changing the flag \FrenchListSpacing will
not take effect immediately, but next time language French is switched on.

The amount of vertical space before and after a list is given by \topsep +
\parskip (+ \partopsep if the list starts a new paragraph). IMHO, \parskip
should be added only when the list starts a new paragraph, so I subtract \parskip
from \topsep and add it back to \partopsep; this will normally make no difference
because \parskip’s default value is 0pt, but will be noticeable when \parskip is
not null.

Of course, this code is only for LATEX.

29.285 \newif\ifFrenchListSpacing \FrenchListSpacingtrue
29.286 \newif\ifFrenchOldTrivlist
29.287 \ifLaTeX
29.288 \let\listORI\list

\endlist is not redefined, but \endlistORI is provided for the users who
prefer to define their own lists from the original command, they can code:
\begin{listORI}{}{} \end{listORI}.

29.289 \let\endlistORI\endlist
29.290 \def\FR@listsettings{%
29.291 \setlength{\itemsep}{0.4ex plus 0.2ex minus 0.2ex}%
29.292 \setlength{\parsep}{0.4ex plus 0.2ex minus 0.2ex}%
29.293 \setlength{\topsep}{0.8ex plus 0.4ex minus 0.4ex}%
29.294 \setlength{\partopsep}{0.4ex plus 0.2ex minus 0.2ex}%

\parskip is of type ‘skip’, its mean value only (not the glue) should be substracted

144

from \topsep and added to \partopsep, so convert \parskip to a ‘dimen’ using
\@tempdima.

29.295 \@tempdima=\parskip
29.296 \addtolength{\topsep}{-\@tempdima}%
29.297 \addtolength{\partopsep}{\@tempdima}}%
29.298 \def\listFR#1#2{\listORI{#1}{\FR@listsettings #2}}%

Keep the \@trivlist redefinition from version 1.4 (only for compatibility rea-
sons). The flag \ifFrenchOldTrivlist could happen to be useful to process
older documents.

29.299 \let\@trivlistORI\@trivlist
29.300 \def\@trivlistFR{\FR@listsettings\@trivlistORI}
29.301 \def\bbl@frenchlistspacing{\ifFrenchListSpacing\let\list\listFR\fi
29.302 \ifFrenchOldTrivlist\let\@trivlist\@trivlistFR
29.303 \let\list\listORI\fi}
29.304 \def\bbl@nonfrenchlistspacing{\let\list\listORI
29.305 \let\@trivlist\@trivlistORI}
29.306 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.307 \bbl@frenchlistspacing}
29.308 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.309 \bbl@nonfrenchlistspacing}
29.310 \fi

\bbl@frenchitemize
\bbl@nonfrenchitemize

The layout of French itemize-lists has changed between version 1.2 and 1.3.
Jacques André and Thierry Bouche pointed out to me that vertical spacing be-
tween items, before and after the list, should null with no glue added. Moreover
horizontal spacing was not correct either: the item labels of a first level list should
be vertically aligned on the paragraph’s first character (at \parindent from the
left margin). Checking the book “Lexique des règles typographiques en usage à
l’Imprimerie nationale” confirmed their points, so the itemize environment has
been totally redefined for French in version 1.3.

Several people pointed out to me that the layout of lists can either be set by the
current language or be tuned independently of the language as part of the layout
of the document. So hooks should be provided to switch off the special settings
made in frenchb. Setting \FrenchItemizeSpacingfalse after loading frenchb
in the preamble switches back to settings of version 1.2 (this can be useful to
process old documents). If you want all list spacings to be exactly what they are
in standard LATEX2ε, then add also \FrenchListSpacingfalse in the preamble
after loading frenchb. Both switches can also be set in frenchb.cfg. Please note
that changing the flags \FrenchItemizeSpacing and \FrenchListSpacing will
not take effect immediately, but next time language French is switched on.

The • is never used in French itemize-lists, a long dash ‘–’ is preferred for all
levels. The item label used in French is stored in \FrenchLabelItem}, it defaults
to ’–’ and can be changed using \renewcommand (see the example configuration
file above).

29.311 \newif\ifFrenchItemizeSpacing \FrenchItemizeSpacingtrue
29.312 \ifLaTeX

145

29.313 \newcommand{\FrenchLabelItem}{\textendash}
29.314 \newcommand{\Frlabelitemi}{\FrenchLabelItem}
29.315 \newcommand{\Frlabelitemii}{\FrenchLabelItem}
29.316 \newcommand{\Frlabelitemiii}{\FrenchLabelItem}
29.317 \newcommand{\Frlabelitemiv}{\FrenchLabelItem}
29.318 \def\bbl@frenchitemize{%
29.319 \let\@ltiORI\labelitemi
29.320 \let\@ltiiORI\labelitemii
29.321 \let\@ltiiiORI\labelitemiii
29.322 \let\@ltivORI\labelitemiv
29.323 \let\itemizeORI\itemize
29.324 \let\labelitemi\Frlabelitemi
29.325 \let\labelitemii\Frlabelitemii
29.326 \let\labelitemiii\Frlabelitemiii
29.327 \let\labelitemiv\Frlabelitemiv
29.328 \ifFrenchItemizeSpacing

Make sure \itemize uses \@trivlistORI even with \FrenchOldTrivlisttrue.
29.329 \def\itemize{\let\@trivlist\@trivlistORI
29.330 \ifnum \@itemdepth >\thr@@\@toodeep\else
29.331 \advance\@itemdepth\@ne
29.332 \edef\@itemitem{labelitem\romannumeral\the\@itemdepth}%
29.333 \expandafter
29.334 \listORI
29.335 \csname\@itemitem\endcsname
29.336 {\settowidth{\labelwidth}{\csname\@itemitem\endcsname}%
29.337 \setlength{\leftmargin}{\labelwidth}%
29.338 \addtolength{\leftmargin}{\labelsep}%
29.339 \ifnum\@listdepth=0
29.340 \setlength{\itemindent}{\parindent}%
29.341 \else
29.342 \addtolength{\leftmargin}{\parindent}%
29.343 \fi
29.344 \setlength{\itemsep}{\z@}%
29.345 \setlength{\parsep}{\z@}%
29.346 \setlength{\topsep}{\z@}%
29.347 \setlength{\partopsep}{\z@}%

\parskip is of type ‘skip’, its mean value only (not the glue) should be substracted
from \topsep and added to \partopsep, so convert \parskip to a ‘dimen’ using
\@tempdima.

29.348 \@tempdima=\parskip
29.349 \addtolength{\topsep}{-\@tempdima}%
29.350 \addtolength{\partopsep}{\@tempdima}}%
29.351 \fi}%
29.352 \fi}

The user’s changes in labelitems are saved when leaving French for further use
when switching back to French.

29.353 \def\bbl@nonfrenchitemize{\let\Frlabelitemi\labelitemi
29.354 \let\Frlabelitemii\labelitemii

146

29.355 \let\Frlabelitemiii\labelitemiii
29.356 \let\Frlabelitemiv\labelitemiv
29.357 \let\labelitemi\@ltiORI
29.358 \let\labelitemii\@ltiiORI
29.359 \let\labelitemiii\@ltiiiORI
29.360 \let\labelitemiv\@ltivORI
29.361 \let\itemize\itemizeORI}
29.362 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.363 \bbl@frenchitemize}
29.364 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.365 \bbl@nonfrenchitemize}
29.366 \fi

29.6 French indentation of sections
\bbl@frenchindent

\bbl@nonfrenchindent
In French the first paragraph of each section should be indented, this is another
difference with US-English. Add this code only in LATEX.

29.367 \ifLaTeX
29.368 \let\@aifORI\@afterindentfalse
29.369 \def\bbl@frenchindent{\let\@afterindentfalse\@afterindenttrue
29.370 \@afterindenttrue}
29.371 \def\bbl@nonfrenchindent{\let\@afterindentfalse\@aifORI
29.372 \@afterindentfalse}
29.373 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.374 \bbl@frenchindent}
29.375 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.376 \bbl@nonfrenchindent}
29.377 \fi

29.7 Formatting footnotes
\AddThinSpaceBeforeFootnotes

\FrenchFootnotes
\StandardFootnotes

\AddThinSpaceBeforeFootnotes redefines \@footnotemark (whose definition is
saved at the \begin{document} in order to include any customization that pack-
ages might have done) to add a thinspace before the number or symbol calling a
footnote (any space typed in is removed first). \AddThinSpaceBeforeFootnotes
has no effect on the layout of the footnote itself. Note that \thanks in \maketitle
also relies on \@footnotemark, so the thinspace is added there too.

29.378 \newif\ifthinspace@FN
29.379 \newif\ifFR@fntlayout
29.380 \newdimen\parindentFFN
29.381 \ifLaTeXe
29.382 \newcommand{\AddThinSpaceBeforeFootnotes}{\thinspace@FNtrue}
29.383 \AtBeginDocument{\let\@footnotemarkORI\@footnotemark
29.384 \def\@footnotemarkFR{\leavevmode\unskip\unkern
29.385 \,\@footnotemarkORI}%
29.386 \ifthinspace@FN
29.387 \let\@footnotemark\@footnotemarkFR
29.388 \fi}

147

We then define \@makefntextFR, a variant of \@makefntext which is respon-
sible for the layout of footnotes, to match the specifications of the French ‘Im-
primerie Nationale’: Footnotes will be indented by \parindentFFN, numbers (if
any) typeset on the baseline (instead of textsuperscripts) and followed by a dot
and an half quad space. Whenever symbols are used to number footnotes (as in
\thanks for instance), we switch back to the standard layout (the French layout of
footnotes is meant for footnotes numbered by arabic or roman digits). The value
of \parindentFFN will be defined at the \begin{document}, as the maximum of
\parindent and 1.5em.

29.389 \def\ftnISsymbol{\@fnsymbol\c@footnote}
29.390 \long\def\@makefntextFR#1{\ifx\thefootnote\ftnISsymbol
29.391 \@makefntextORI{#1}%
29.392 \else
29.393 \parindent=\parindentFFN
29.394 \rule\z@\footnotesep
29.395 \setbox\@tempboxa\hbox{\@thefnmark}%
29.396 \ifdim\wd\@tempboxa>\z@
29.397 \llap{\@thefnmark}.\kern.5em
29.398 \fi #1
29.399 \fi}%

We now define two commands \FrenchFootnotes and \StandardFootnotes
which select French or Standard layout for footnotes; we have to save the stan-
dard definition of \@makefntext at the \begin{document}, and then redefine
\@makefntext according to the value of an internal flag set by \FrenchFootnotes
and reset by \StandardFootnotes.

29.400 \AtBeginDocument{\parindentFFN=\parindent
29.401 \ifdim\parindentFFN<1.5em\parindentFFN=1.5em\fi
29.402 \let\@makefntextORI\@makefntext
29.403 \long\def\@makefntext#1{%
29.404 \ifFR@fntlayout
29.405 \@makefntextFR{#1}%
29.406 \else
29.407 \@makefntextORI{#1}%
29.408 \fi
29.409 }%
29.410 }
29.411 \newcommand{\FrenchFootnotes}{\FR@fntlayouttrue}
29.412 \newcommand{\StandardFootnotes}{\FR@fntlayoutfalse}
29.413 \fi

29.8 Formatting numbers
\DecimalMathComma

\StandardMathComma
As mentioned in the TEXbook p. 134, the comma is of type \mathpunct in
math mode: it is automatically followed by a space. This is convenient in lists
and intervals but unpleasant when the comma is used as a decimal separator
in French: it has to be entered as {,}. \DecimalMathComma makes the comma

148

be an ordinary character (of type \mathord) in French only (no space added);
\StandardMathComma switches back to the standard behaviour of the comma.

29.414 \newcount\std@mcc
29.415 \newcount\dec@mcc
29.416 \std@mcc=\mathcode‘\,
29.417 \dec@mcc=\std@mcc
29.418 \@tempcnta=\std@mcc
29.419 \divide\@tempcnta by "1000
29.420 \multiply\@tempcnta by "1000
29.421 \advance\dec@mcc by -\@tempcnta
29.422 \newcommand{\DecimalMathComma}{\iflanguage{french}%
29.423 {\mathcode‘\,=\dec@mcc}{}%
29.424 \addto\extrasfrench{\mathcode‘\,=\dec@mcc}}
29.425 \newcommand{\StandardMathComma}{\mathcode‘\,=\std@mcc
29.426 \addto\extrasfrench{\mathcode‘\,=\std@mcc}}
29.427 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.428 \mathcode‘\,=\std@mcc}

In English the decimal part starts with a point and thousands should be
separated by a comma: an approximation of 1000π should be inputed as
$3{,}141.592{,}653$ in math mode and as 3,141.592,653 in text.

In French the decimal part starts with a comma and thousands should be
separated by a space; the same approximation of 1000π should be inputed as
$3\;141{,}592\;653$ in math mode and as something like 3~141,592~653 in
text: in math mode, the comma is of type \mathpunct (thus normally followed
by a space) while the point is of type \mathord (no space added).

Thierry Bouche suggested that a second type of comma, of type \mathord
would be useful in math mode, and proposed to introduce a command (named
\decimalsep in this package), the expansion of which would depend on the current
language.

Vincent Jalby suggested a command \nombre to conveniently typeset numbers:
inputting \nombre{3141,592653} either in text or in math mode will format this
number properly according to the current language (French or non-French).

\nombre accepts an optional argument which happens to be useful with the
package ‘dcolumn’, it specifies the decimal separator used in the source code:
\newcolumntype{d}{D{,}{\decimalsep}{-1}}

\begin{tabular}{d}\hline
3,14 \\
\nombre[,]{123,4567} \\
\nombre[,]{9876,543}\\\hline

\end{tabular}
will print a column of numbers aligned on the decimal point (comma or point

depending on the current language), each slice of 3 digits being separated by a
space or a comma according to the current language.

\decimalsep
\thousandsep

We need a internal definition, valid in both text and math mode, for the comma
(\@comma@) and another one for the unbreakable fixed length space (no glue) used
in French (\f@thousandsep).

149

The commands \decimalsep and \thousandsep get default definitions (for
the English language) when frenchb is loaded; these definitions will be updated
when the current language is switched to or from French.

29.429 \mathchardef\m@comma=\dec@mcc
29.430 \def\@comma@{\ifmmode\m@comma\else,\fi}
29.431 \def\f@thousandsep{\ifmmode\mskip5.5mu\else\penalty\@M\kern.3em\fi}
29.432 \def\ThinSpaceInFrenchNumbers{\def\f@thousandsep{%
29.433 \ifmmode\mskip3mu\else\penalty\@M\kern.16667em\fi}}
29.434 \newcommand{\decimalsep}{.}
29.435 \newcommand{\thousandsep}{\@comma@}
29.436 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.437 \def\decimalsep{\@comma@}%
29.438 \def\thousandsep{\f@thousandsep}}
29.439 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.440 \def\decimalsep{.}%
29.441 \def\thousandsep{\@comma@}}

Signs can now be entered inside \nombre. When \nombre is used in text-mode,
signs should be text symbols to get the series, shape... from the current text-font.
When signs are not available in text-mode, we provide some defaults.

29.442 \providecommand{\textminus}{\textendash}
29.443 \providecommand{\textplusminus}{\ensuremath{\pm}}
29.444 \providecommand{\textminusplus}{\ensuremath{\mp}}
29.445 \def\fb@minus{\ifmmode-\else\textminus\fi}
29.446 \def\fb@plusminus{\ifmmode\pm\else\textplusminus\fi}
29.447 \def\fb@minusplus{\ifmmode\mp\else\textminusplus\fi}

\nombre The decimal separator used when inputing a number with \nombre has to be a
comma. \nombre splits the inputed number into two parts: what comes before the
first comma will be formatted by \@integerpart while the rest (if not empty) will
be formatted by \@decimalpart. Both parts, once formatted separately will be
merged together with between them, either the decimal separator \decimalsep
or (in LATEX2ε only) the optional argument of \nombre.

29.448 \if@Two@E
29.449 \newcommand{\nombre}[2][\decimalsep]{\def\@decimalsep{#1}%
29.450 \@@nombre#2\@empty,\@empty,\@nil}
29.451 \else
29.452 \def\@decimalsep{\decimalsep}
29.453 \newcommand{\nombre}[1]{\@nombre#1\@empty,\@empty,\@nil}
29.454 \fi
29.455 \def\@firstofmany#1#2,{#1}
29.456 \def\@@nombre#1,#2,#3\@nil{%
29.457 \def\nb@sign{}%
29.458 \edef\nb@first{\@firstofmany #1\@empty,}%
29.459 \edef\nb@suite{\@secondoftwo #1\@empty,}%
29.460 \if+\nb@first \def\nb@sign{+}\fi
29.461 \if-\nb@first \def\nb@sign{\fb@minus}\fi
29.462 \expandafter\ifx\nb@first\pm \def\nb@sign{\fb@plusminus}\fi

150

29.463 \expandafter\ifx\nb@first\mp \def\nb@sign{\fb@minusplus}\fi
29.464 \ifx\@empty\nb@sign
29.465 \let\@tmp\nb@suite\edef\nb@suite{\nb@first\@tmp}%
29.466 \fi
29.467 \nb@sign\expandafter\@nombre\nb@suite#2,#3\@nil}
29.468 \def\@nombre#1,#2,#3\@nil{%
29.469 \ifx\@empty#2%
29.470 \@integerpart{#1}%
29.471 \else
29.472 \@integerpart{#1}\@decimalsep\@decimalpart{#2}%
29.473 \fi}

The easiest bit is the decimal part: We attempt to read the first four digits of the
decimal part, if it has less than 4 digits, we just have to print them, otherwise
\thousandsep has to be appended after the third digit, and the algorithm is
applied recursively to the rest of the decimal part.

29.474 \def\@decimalpart#1{\@@decimalpart#1\@empty\@empty\@empty}
29.475 \def\@@decimalpart#1#2#3#4{#1#2#3%
29.476 \ifx\@empty#4%
29.477 \else
29.478 \thousandsep\expandafter\@@decimalpart\expandafter#4%
29.479 \fi}

Formatting the integer part is more difficult because the slices of 3 digits start
from the bottom while the number is read from the top! This (tricky) code is
borrowed from David Carlisle’s comma.sty.

29.480 \def\@integerpart#1{\@@integerpart{}#1\@empty\@empty\@empty}
29.481 \def\@@integerpart#1#2#3#4{%
29.482 \ifx\@empty#2%
29.483 \@addthousandsep#1\relax
29.484 \else
29.485 \ifx\@empty#3%
29.486 \@addthousandsep\@empty\@empty#1#2\relax
29.487 \else
29.488 \ifx\@empty#4%
29.489 \@addthousandsep\@empty#1#2#3\relax
29.490 \else
29.491 \@@integerpartafterfi{#1#2#3#4}%
29.492 \fi
29.493 \fi
29.494 \fi}
29.495 \def\@@integerpartafterfi#1\fi\fi\fi{\fi\fi\fi\@@integerpart{#1}}
29.496 \def\@addthousandsep#1#2#3#4{#1#2#3%
29.497 \if#4\relax
29.498 \else
29.499 \thousandsep\expandafter\@addthousandsep\expandafter#4%
29.500 \fi}

151

29.9 Dots. . .
LATEX2ε’s standard definition of \dots in text-mode is \textellipsis which
includes a \kern at the end; this space is not wanted in some cases (before a
closing brace for instance) and \kern breaks hyphenation of the next word. We
define \Frtextellipsis for French (in LATEX2ε only).

The \if construction in the LATEX2ε definition of \dots doesn’t allow the use
of xspace (xspace is always followed by a \fi), so we use the AMS-LATEX con-
struction of \dots; this has to be done ‘AtBeginDocument’ not to be overwritten
when amsmath.sty is loaded after babel.

\Frtextellipsis

29.501 \ifLaTeXe
29.502 \DeclareTextCommandDefault{\Frtextellipsis}{%
29.503 .\kern\fontdimen3\font.\kern\fontdimen3\font.\xspace}

\Mdots@ and \Tdots@ORI hold the definitions of \dots in Math and Text mode.
They default to those of amsmath-2.0, and will revert to standard LATEX definitions
‘AtBeginDocument’, if amsmath has not been loaded. \Mdots@ doesn’t change
when switching from/to French, while \Tdots@ is \Frtextellipsis in French
and \Tdots@ORI otherwise.

29.504 \newcommand{\Tdots@ORI}{\@xp\textellipsis}
29.505 \newcommand{\Tdots@}{\Tdots@ORI}
29.506 \newcommand{\Mdots@}{\@xp\mdots@}
29.507 \AtBeginDocument{\DeclareRobustCommand{\dots}{\relax
29.508 \csname\ifmmode M\else T\fi dots@\endcsname}%
29.509 \ifx\@xp\@undefined\let\@xp\relax\fi
29.510 \ifx\mdots@\@undefined\let\Tdots@ORI\textellipsis
29.511 \let\Mdots@\mathellipsis\fi}
29.512 \def\bbl@frenchdots{\let\Tdots@\Frtextellipsis}
29.513 \def\bbl@nonfrenchdots{\let\Tdots@\Tdots@ORI}
29.514 \expandafter\addto\csname extras\CurrentOption\endcsname{%
29.515 \bbl@frenchdots}
29.516 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
29.517 \bbl@nonfrenchdots}
29.518 \fi

29.10 Global layout
In multilingual documents, some typographic rules must depend on the current
language (e.g., hyphenation, typesetting of numbers, spacing before double punc-
tuation. . .), others should, IMHO, be kept global to the document: especially the
layout of lists (see 29.5) and the indentation of the first paragraph of sections
(see 29.6).

\FrenchLayout
\StandardLayout

In a multilingual document, a unified look, either the French one or the standard
one, can be assigned to the whole document: adding \FrenchLayout will give a
global “French look” to the document (e.g., lists, regardless the current language,
will be typeset as in French) and \StandardLayout forces a global “US-English”

152

look. Both of these commands can only be used before the \begin{document}.
\StandardLayout can also be of interest for class designers who do not want
frenchb to interfere with their global layout choices.

As of version 1.4, \FrenchLayout and \StandardLayout only affect:

• the layout of lists (see 29.5),

• the indentation of the first paragraph of sections (see 29.6).

29.519 \ifLaTeXe
29.520 \newcommand{\FrenchLayout}{%
29.521 \renewcommand{\StandardLayout}{%
29.522 \PackageWarning{frenchb.ldf}%
29.523 {\protect\StandardLayout\space makes no change\MessageBreak
29.524 (\protect\FrenchLayout\space has been selected before
29.525 \MessageBreak for the whole document)}%
29.526 }%
29.527 \AtBeginDocument{\bbl@frenchitemize\bbl@frenchlistspacing
29.528 \bbl@frenchindent}%
29.529 \let\bbl@nonfrenchitemize\relax
29.530 \let\bbl@nonfrenchlistspacing\relax
29.531 \let\bbl@nonfrenchindent\relax}
29.532 \newcommand{\StandardLayout}{%
29.533 \renewcommand{\FrenchLayout}{%
29.534 \PackageWarning{frenchb.ldf}%
29.535 {\protect\FrenchLayout\space makes no change\MessageBreak
29.536 (\protect\StandardLayout\space has been selected before
29.537 \MessageBreak for the whole document)}%
29.538 }%
29.539 \let\@ltiORI\labelitemi
29.540 \let\@ltiiORI\labelitemii
29.541 \let\@ltiiiORI\labelitemiii
29.542 \let\@ltivORI\labelitemiv
29.543 \let\itemizeORI\itemize
29.544 \let\bbl@frenchitemize\relax
29.545 \let\bbl@frenchlistspacing\relax
29.546 \let\bbl@frenchindent\relax}
29.547 \@onlypreamble\FrenchLayout
29.548 \@onlypreamble\StandardLayout
29.549 \fi

29.11 Extra utilities
All that is left to do now is to provide the French user with some extra utilities.

\up
\ieme

\up eases the typesetting of superscripts like ‘1er’. \up relies on \textsuperscript
when available (i. e., in LATEX2ε).

\up@size The internal macro \up@size holds the size at which the superscript will be type-
set. The reason for this is that we have to specify it differently for different
formats.

153

29.550 \ifx\sevenrm\@undefined
29.551 \ifx\@ptsize\@undefined
29.552 \let\up@size\small
29.553 \else
29.554 \ifx\selectfont\@undefined

In this case the format is the original LATEX-2.09:
29.555 \ifcase\@ptsize
29.556 \let\up@size\ixpt\or
29.557 \let\up@size\xpt\or
29.558 \let\up@size\xipt
29.559 \fi

When \selectfont is defined we probably have NFSS available:
29.560 \else
29.561 \ifcase\@ptsize
29.562 \def\up@size{\fontsize\@ixpt{10pt}\selectfont}\or
29.563 \def\up@size{\fontsize\@xpt{11pt}\selectfont}\or
29.564 \def\up@size{\fontsize\@xipt{12pt}\selectfont}
29.565 \fi
29.566 \fi
29.567 \fi
29.568 \else

If we end up here it must be a plain based TEX format, so:
29.569 \let\up@size\sevenrm
29.570 \fi

Now we can define \up. When LATEX2ε runs in compatibility mode (LATEX-2.09
emulation), \textsuperscript is also defined, but does no good job, so we give
two different definitions for \up using \if@Two@E.

29.571 \if@Two@E
29.572 \DeclareRobustCommand*{\up}[1]{#1}
29.573 \else
29.574 \DeclareRobustCommand*{\up}[1]{\leavevmode\raise1ex\hbox{\up@size#1}}
29.575 \fi

\ieme is provided for compatibility with francais.sty, the other 5 for com-
patibility with french.sty:

29.576 \def\ieme{\up{\lowercase{e}}\xspace}
29.577 \def\iemes{\up{\lowercase{es}}\xspace}
29.578 \def\ier{\up{\lowercase{er}}\xspace}
29.579 \def\iers{\up{\lowercase{ers}}\xspace}
29.580 \def\iere{\up{\lowercase{re}}\xspace}
29.581 \def\ieres{\up{\lowercase{res}}\xspace}

\No
\no

\primo
\fprimo)

And some more macros for numbering, first two support macros.
29.582 \DeclareRobustCommand*{\FrenchEnumerate}[1]{%
29.583 #1\up{\lowercase{o}}\kern+.3em}
29.584 \DeclareRobustCommand*{\FrenchPopularEnumerate}[1]{%
29.585 #1\up{\lowercase{o}})\kern+.3em}

154

Typing \primo should result in ‘1o ’,
29.586 \def\primo{\FrenchEnumerate1}
29.587 \def\secundo{\FrenchEnumerate2}
29.588 \def\tertio{\FrenchEnumerate3}
29.589 \def\quarto{\FrenchEnumerate4}

while typing \fprimo) gives ‘1o) .
29.590 \def\fprimo){\FrenchPopularEnumerate1}
29.591 \def\fsecundo){\FrenchPopularEnumerate2}
29.592 \def\ftertio){\FrenchPopularEnumerate3}
29.593 \def\fquarto){\FrenchPopularEnumerate4}

Let’s provide two macros for the common abbreviations of “Numéro”.
29.594 \DeclareRobustCommand*{\No}{N\up{\lowercase{o}}\kern+.2em}
29.595 \DeclareRobustCommand*{\no}{n\up{\lowercase{o}}\kern+.2em}

\bsc As family names should be written in small capitals and never be hyphen-
ated, we provide a command (its name comes from Boxed Small Caps) to input
them easily; this is a simpler implementation of commands \fsc and \lsc from
french.sty : no automatic uppercase/lowercase conversion is performed. Usage:
Jean~\bsc{Duchemin}.

29.596 \DeclareRobustCommand*{\bsc}[1]{\leavevmode\hbox{\scshape #1}}

Some definitions for special characters. The first eight are mandatory for \oe
etc. to work properly in moving arguments, the others just for convenience. We
won’t define \tilde as a Text Symbol not to conflict with the macro \tilde for
math mode and use the name \tild instead. Note that \boi may not be used in
math mode, its name in math mode is \backslash.

\degre needs a special treatment: it is \char6 in T1-encoding and \char23
in OT1-encoding, both can be accessed by the command \r{} for ring accent.

29.597 \ifLaTeXe
29.598 \DeclareTextSymbol{\ae}{T1}{230}
29.599 \DeclareTextSymbol{\ae}{OT1}{26}
29.600 \DeclareTextSymbol{\oe}{T1}{247}
29.601 \DeclareTextSymbol{\oe}{OT1}{27}
29.602 \DeclareTextSymbol{\AE}{T1}{198}
29.603 \DeclareTextSymbol{\AE}{OT1}{29}
29.604 \DeclareTextSymbol{\OE}{T1}{215}
29.605 \DeclareTextSymbol{\OE}{OT1}{30}
29.606 \DeclareTextSymbol{\at}{T1}{64}
29.607 \DeclareTextSymbol{\at}{OT1}{64}
29.608 \DeclareTextSymbol{\circonflexe}{T1}{94}
29.609 \DeclareTextSymbol{\circonflexe}{OT1}{94}
29.610 \DeclareTextSymbol{\tild}{T1}{126}
29.611 \DeclareTextSymbol{\tild}{OT1}{126}
29.612 \DeclareTextSymbolDefault{\at}{OT1}
29.613 \DeclareTextSymbolDefault{\circonflexe}{OT1}
29.614 \DeclareTextSymbolDefault{\tild}{OT1}

155

29.615 \DeclareRobustCommand*{\boi}{\textbackslash}
29.616 \DeclareRobustCommand*{\degre}{\r{}}
29.617 \else
29.618 \def\T@one{T1}
29.619 \ifx\f@encoding\T@one
29.620 \newcommand{\degre}{\char6}
29.621 \else
29.622 \newcommand{\degre}{\char23}
29.623 \fi
29.624 \newcommand{\at}{\char64}
29.625 \newcommand{\circonflexe}{\char94}
29.626 \newcommand{\tild}{\char126}
29.627 \newcommand{\boi}{{\backslash}}
29.628 \fi

\degres We now define a macro \degres for typesetting the abbreviation for ‘degrees’
(as in ‘degrees Celsius’). As the bounding box of the character ‘degree’ has very
different widths in CM/EC and PostScript fonts, we fix the width of the bounding
box of \degres to 0.3 em, this lets the symbol ‘degree’ stick to the preceding (e.g.,
45\degres) or following character (e.g., 20~\degres C).

If the TEX Companion fonts are available (textcomp.sty), we pick up
\textdegree from them instead of using emulating ‘degrees’ from the \r{} accent.
Otherwise we overwrite the (poor) definition of \textdegree given in latin1.def,
applemac.def etc. (called by inputenc.sty) by our definition of \degres. We
also advice the user (once only) to use TS1-encoding.

29.629 \ifLaTeXe
29.630 \def\Warning@degree@TSone{%
29.631 \PackageWarning{frenchb.ldf}{%
29.632 Degrees would look better in TS1-encoding:
29.633 \MessageBreak add \protect
29.634 \usepackage{textcomp} to the preamble.
29.635 \MessageBreak Degrees used}}
29.636 \AtBeginDocument{\expandafter\ifx\csname M@TS1\endcsname\relax
29.637 \DeclareRobustCommand*{\degres}{%
29.638 \leavevmode\hbox to 0.3em{\hss\degre\hss}%
29.639 \Warning@degree@TSone
29.640 \global\let\Warning@degree@TSone\relax}%
29.641 \let\textdegree\degres
29.642 \else
29.643 \DeclareRobustCommand*{\degres}{%
29.644 \hbox{\UseTextSymbol{TS1}{\textdegree}}}%
29.645 \fi}
29.646 \else
29.647 \DeclareRobustCommand*{\degres}{%
29.648 \leavevmode\hbox to 0.3em{\hss\degre\hss}}
29.649 \fi

The following macros are used in the redefinition of \^ and \" to handle the
letter i: they allow users to type simply \^i and \"i instead of \^{\i} and \"{\i}.

156

MlTEX’s macros dealing with accents conflict with those of LATEX2ε, so we
check whether \csubinverse is defined or not. If \csubinverse is defined, we are
in MlTEX.

29.650 \ifLaTeXe
29.651 \AtBeginDocument{%
29.652 \ifx\csubinverse\@undefined
29.653 \DeclareTextCompositeCommand{\^}{OT1}{i}{\^\i}%
29.654 \DeclareTextCompositeCommand{\"}{OT1}{i}{\"\i}%
29.655 \fi}
29.656 \fi

29.12 Date and clean up
\datefrench The macro \datefrench redefines the command \today to produce French dates.

29.657 \@namedef{date\CurrentOption}{%
29.658 \def\today{\number\day
29.659 \ifnum1=\day {\ier}\fi
29.660 \space \ifcase\month
29.661 \or janvier\or f\’evrier\or mars\or avril\or mai\or juin\or
29.662 juillet\or ao\^ut\or septembre\or octobre\or novembre\or
29.663 d\’ecembre\fi
29.664 \space \number\year}}

The macro \ldf@quit takes care for setting the main language to be switched
on at \begin{document} and resetting the category code of @ to its original value.
The config file searched for has to be ‘frenchb.cfg’, and \CurrentOption has been
set to ‘french’, so \ldf@finish\CurrentOption cannot be used: we first load
‘frenchb.cfg’ (in LaTeX2e only), then call \ldf@quit\CurrentOption. The macro-
space used by some control sequences we do not need any longer, is freed.

29.665 \ifLaTeXe
29.666 \loadlocalcfg{frenchb}
29.667 \fi
29.668 \let\T@one\relax
29.669 \let\@FI@\relax
29.670 \let\ifLaTeX\@undefined
29.671 \let\LaTeXtrue\@undefined
29.672 \let\LaTeXfalse\@undefined
29.673 \let\ifLaTeXe\@undefined
29.674 \let\LaTeXetrue\@undefined
29.675 \let\LaTeXefalse\@undefined
29.676 \ldf@quit\CurrentOption
29.677 〈/code〉

157

30 The Italian language
The file italian.dtx26 defines all the language-specific macros for the Italian
language.

The features of this language definition file are the following:

1. The Italian hyphenation is invoked, provided that file ithyph.tex was
loaded when the LATEX2ε format was built; in case it was not, read the
information coming with your distribution of the TEX software, and the
babel documentation.

2. The language dependent fixed words to be inserted by such commands as
\chapter, \caption, \tableofcontents, etc. are redefined in accordance
with the Italian typographical practice.

3. Since Italian can be easily hyphenated and Italian practice allows to break
a word before the last two letters, hyphenation parameters have been
set accordingly, but a very high demerit value has been set in order to
avoid word breaks in the penultimate line of a paragraph. Specifically the
\clubpenalty, and the \widowpenalty are set to rather high values and
\finalhyphendemerits is set to such a high value that hyphenation is pro-
hibited between the last two lines of a paragraph.

4. Some language specific shortcuts have been defined so as to allow etymolog-
ical hyphenation, specifically " inserts a break point in any word boundary
that the typesetter chooses, provided it is not followed by and accented let-
ter (very unlikely in Italian, where compulsory accents fall only on the last
and ending vowel of a word, but may take place with compound words that
include foreign roots), and "| when the desired break point falls before an
accented letter.

5. The shortcut "" introduces the raised (English) opening double quotes; this
shortcut proves its usefulness when one reminds that the Italian keyboard
misses the backtick key, and the backtick on a Windows based platform may
be obtained only by pressing the Alt key while inputting the numerical code
0096; very, very annoying!

6. The shortcuts "< and "> insert the French guillemots, sometimes used in
Italian typography; with the T1 font encoding the ligatures << and >> should
insert such signs directly, but not all the virtual fonts that claim to follow
the T1 font encoding actually contain the guillemots; with the OT1 encoding
the guillemots are not available and must be faked in some way. By using
the "< and "> shortcuts (even with the T1 encoding) the necessary tests
are performed and in case the suitable glyphs are taken from other fonts
normally available with any good, modern LATEX distribution.

26The file described in this section has version number v1.2q and was last revised on
2005/02/05. The original author is Maurizio Codogno, (mau@beatles.cselt.stet.it). It has
been largely revised by Johannes Braams and Claudio Beccari

158

7. Three new specific commands \unit, \ped, and \ap are introduced so as
to enable the correct composition of technical mathematics according to the
ISO 31/XI recommendations. \unit does not get redefined if the babel pack-
age is loaded after the package units.sty whose homonymous command
plays a different role and follows a different syntax.

For this language a limited number of shortcuts has been defined, table 6,
some of which are used to overcome certain limitations of the Italian keyboard; in
section 30.3 there are other comments and hints in order to overcome some other
keyboard limitations.

" inserts a compound word mark where hyphenation
is legal; it allows etymological hyphenation which is
recommended for technical terms, chemical names
and the like; it does not work if the next character is
represented with a control sequence or is an accented
character.

"| the same as the above without the limitation on char-
acters represented with control sequences or accented
ones.

"" inserts open quotes “.
"< inserts open guillemots.
"> inserts closed guillemots.
"/ equivalent to \slash

Table 6: Shortcuts for the Italian language

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

30.1 〈∗code〉
30.2 \LdfInit{italian}{captionsitalian}%

When this file is read as an option, i.e. by the \usepackage command, italian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@italian to see whether we have to do something
here.

30.3 \ifx\l@italian\@undefined
30.4 \@nopatterns{Italian}%
30.5 \adddialect\l@italian0\fi

The next step consists of defining commands to switch to (and from) the Italian
language.

\captionsitalian The macro \captionsitalian defines all strings used in the four standard docu-
ment classes provided with LATEX.

30.6 \addto\captionsitalian{%
30.7 \def\prefacename{Prefazione}%
30.8 \def\refname{Riferimenti bibliografici}%

159

30.9 \def\abstractname{Sommario}%
30.10 \def\bibname{Bibliografia}%
30.11 \def\chaptername{Capitolo}%
30.12 \def\appendixname{Appendice}%
30.13 \def\contentsname{Indice}%
30.14 \def\listfigurename{Elenco delle figure}%
30.15 \def\listtablename{Elenco delle tabelle}%
30.16 \def\indexname{Indice analitico}%
30.17 \def\figurename{Figura}%
30.18 \def\tablename{Tabella}%
30.19 \def\partname{Parte}%
30.20 \def\enclname{Allegati}%
30.21 \def\ccname{e~p.~c.}%
30.22 \def\headtoname{Per}%
30.23 \def\pagename{Pag.}% % in Italian the abbreviation is preferred
30.24 \def\seename{vedi}%
30.25 \def\alsoname{vedi anche}%
30.26 \def\proofname{Dimostrazione}%
30.27 \def\glossaryname{Glossario}%
30.28 }%

\dateitalian The macro \dateitalian redefines the command \today to produce Italian dates.

30.29 \def\dateitalian{%
30.30 \def\today{\number\day~\ifcase\month\or
30.31 gennaio\or febbraio\or marzo\or aprile\or maggio\or giugno\or
30.32 luglio\or agosto\or settembre\or ottobre\or novembre\or
30.33 dicembre\fi\space \number\year}}%

\italianhyphenmins The italian hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

30.34 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\extrasitalian
\noextrasitalian

Lower the chance that clubs or widows occur.
30.35 \addto\extrasitalian{%
30.36 \babel@savevariable\clubpenalty
30.37 \babel@savevariable\widowpenalty
30.38 \clubpenalty3000\widowpenalty3000}%

Never ever break a word between the last two lines of a paragraph in italian
texts.

30.39 \addto\extrasitalian{%
30.40 \babel@savevariable\finalhyphendemerits
30.41 \finalhyphendemerits50000000}%

In order to enable the hyphenation of words such as “nell’altezza” we give the ’
a non-zero lower case code. When we do that TEX finds the following hyphenation
points nel-l’al-tez-za instead of none.

30.42 \addto\extrasitalian{%
30.43 \lccode‘’=‘’}%

160

30.44 \addto\noextrasitalian{%
30.45 \lccode‘’=0}%

30.1 Support for etymological hyphenation
In his article on Italian hyphenation [1] Beccari pointed out that the Italian lan-
guage gets hyphenated on a phonetic basis, although etymological hyphenation
is allowed; this is in contrast with what happens in Latin, for example, where
etymological hyphenation is always used. Since the patterns for both languages
would become too complicated in order to cope with etymological hyphenation,
in his paper Beccari proposed the definition of an active character ‘_’ such that it
could insert a “soft” discretionary hyphen at the compound word boundary. For
several reasons that idea and the specific active character proved to be unpractical
and was abandoned.

This problem is so important with the majority of the European languages, that
babel from the very beginning developed the tradition of making the " character
active so as to perform several actions that turned useful with every language.
One of these actions consisted in defining the shortcut "| that was extensively
used in German and in many other languages in order to insert a discretionary
hyphen such that hyphenation would not be precluded in the rest of the word as
it happens with the standard TEX command \-.

Meanwhile the ec fonts with the double Cork encoding (thus formerly called
the dc fonts) have become more or less standard and are widely used by virtually
all Europeans that write languages with many special national characters; by so
doing they avoid the use of the \accent primitive which would be required with
the standard cm fonts; with the latter fonts the primitive command \accent is such
that hyphenation becomes almost impossible, in any case strongly impeached.

The ec fonts contain a special character, named “compound word mark”, that
occupies position 23 in the font scheme and may be input with the sequence ^^W.
Up to now, apparently, this special character has never been used in a practical
way for the typesetting of languages rich of compound words; also it has never
been inserted in the hyphenation pattern files of any language. Beccari modified
his pattern file ithyph.tex v4.8b for Italian so as to contain five new patterns
that involve ^^W, and he tried to give the babel active character " a new shortcut
definition, so as to allow the insertion of the “compound word mark” in the proper
place within any word where two semantic fragments join up. With such facility
for marking the compound word boundaries, etymological hyphenation becomes
possible even if the patterns know nothing about etymology (but the typeset-
ter hopefully does!). In Italian such etymological hyphenation is desirable with
technical terms, chemical names, and the like.

Even this solution proved to be inconvenient on certain UN*X platforms, so
Beccari resorted to another approach that uses the babel active character " and
relies on the category code of the character that follows ".

30.46 \initiate@active@char{"}%
30.47 \addto\extrasitalian{\bbl@activate{"}\languageshorthands{italian}}%

161

\it@cwm The active character " is now defined for language italian so as to perform
different actions in math mode compared to text mode; specifically in math mode
a double quote is inserted so as to produce a double prime sign, while in text mode
the temporary macro \it@next is defined so as to defer any further action until
the next token category code has been tested.

30.48 \declare@shorthand{italian}{"}{%
30.49 \ifmmode
30.50 \def\it@next{’’}%
30.51 \else
30.52 \def\it@next{\futurelet\it@temp\it@cwm}%
30.53 \fi
30.54 \it@next
30.55 }%

\it@cwm The \it@next service control sequence is such that upon its execution a temporary
variable \it@temp is made equivalent to the next token in the input list without
actually removing it. Such temporary token is then tested by the macro \it@cwm
and if it is found to be a letter token, then it introduces a compound word separator
control sequence \it@allowhyphens whose expansion introduces a discretionary
hyphen and an unbreakable space; in case the token is not a letter, then it is
tested against |12: if so a compound word separator is inserted and the | token is
removed, otherwise another test is performed so as to see if another double quote
sign follows: in this case a double open quote mark is inserted, otherwise two
other tests are performed so as to see if guillemets have to be inserted, otherwise
nothing is done. The double quote shortcut for inserting a double open quote sign
is useful for people who are inputting Italian text by means of an Italian keyboard
that unfortunately misses the grave or backtick key. By this shortcut "" becomes
equivalent to ‘‘ for inserting raised open high double quotes.

30.56 \def\it@@cwm{\nobreak\discretionary{-}{}{}\hskip\z@skip}%
30.57 \def\it@@ocap#1{\it@ocap}\def\it@@ccap#1{\it@ccap}%
30.58 \DeclareRobustCommand*{\it@cwm}{\let\it@@next\relax
30.59 \ifcat\noexpand\it@temp a%
30.60 \def\it@@next{\it@@cwm}%
30.61 \else
30.62 \if\noexpand\it@temp \string|%
30.63 \def\it@@next{\it@@cwm\@gobble}%
30.64 \else
30.65 \if\noexpand\it@temp \string<%
30.66 \def\it@@next{\it@@ocap}%
30.67 \else
30.68 \if\noexpand\it@temp \string>%
30.69 \def\it@@next{\it@@ccap}%
30.70 \else
30.71 \if\noexpand\it@temp\string/%
30.72 \def\it@next{\slash\@gobble}%
30.73 \else
30.74 \ifx\it@temp"%
30.75 \def\it@@next{‘‘\@gobble}%

162

30.76 \fi
30.77 \fi
30.78 \fi
30.79 \fi
30.80 \fi
30.81 \fi
30.82 \it@@next}%

By this definition of " if one types macro"istruzione the possible break points
become ma-cro-istru-zio-ne, while without the " mark they would be ma-croi-stru-
zio-ne, according to the phonetic rules such that the macro prefix is not taken as a
unit. A chemical name such as des"clor"fenir"amina"cloridrato is breakable
as des-clor-fe-nir-ami-na-clo-ri-dra-to instead of de-sclor-fe-ni-ra-mi-na-...

In other language description files a shortcut is defined so as to allow a break
point without actually inserting any hyphen sign; examples are given such as
entrada/salida; actually if one wants to allow a breakpoint after the slash, it is
much clearer to type \slash instead of / and LATEX does everything by itself;
here the shortcut "/ was introduced to stand for \slash so that one can type
input"/output and allow a line break after the slash. This shortcut works only
for the slash, since in Italian such constructs are extremely rare.

Attention: the expansion of " takes place before the actual expansion of OT1
or T1 accented sequences such as \‘{a}; therefore this etymological hyphenation
facility works as it should only when the semantic word fragments do not start
with an accented letter; this in Italian is always avoidable, because compulsory
accents fall only on the last vowel, but it may be necessary to mark a compound
word where one or more components come from a foreign language and contain
diacritical marks according to the spelling rules of that language. In this case
the special shorthand "| may be used that performs exactly as " normally does,
except that the | sign is removed from the token input list: kilo"|{\"o}rsted
gets hyphenated as ki-lo-ör-sted.

30.2 Facilities required by the ISO 31/XI regulations
The ISO 31/XI regulations require that units of measure are typeset in upright
font in any circumstance, math or text, and that in text mode they are separated
from the numerical indication of the measure with an unbreakable (thin) space.
The command \unit that was defined for achieving this goal happened to conflict
with the homonymous command defined by the package units.sty; we therefore
need to test if that package has already been loaded so as to avoid conflicts; we
assume that if the user loads that package, s/he wants to use that package facilities
and command syntax.

The same regulations require also that super and subscripts (apices and
pedices) are in upright font, not in math italics, when they represent “adjectives”
or appositions to mathematical or physical variables that do not represent count-
able or measurable entities such as, for example, Vmax or Vrms for a maximum or
a root mean square voltage, compared to Vi or VT as the i-th voltage in a set,

163

or a voltage that depends on the thermodynamic temperature T . See [2] for a
complete description of the ISO regulations in connection with typesetting.

More rarely it happens to use superscripts that are not mathematical variables,
such as the notation AT to denote the transpose of matrix A; text superscripts are
useful also as ordinals or in old fashioned abbreviations in text mode; for example
the feminine ordinal 1a or the old fashioned obsolete abbreviation Flli for Fratelli
in company names (compare with “Bros.” for brothers in American English); text
subscripts are mostly used in logos.

\unit
\ap

\ped

First we define the new (internal) commands \bbl@unit, \bbl@ap, and \bbl@ped
as robust ones.

30.83 \@ifpackageloaded{units}{}{%
30.84 \DeclareRobustCommand*{\bbl@unit}[1]{%
30.85 \textormath{\,\mbox{#1}}{\,\mathrm{#1}}}%
30.86 }%
30.87 \DeclareRobustCommand*{\bbl@ap}[1]{%
30.88 \textormath{#1}{^{\mathrm{#1}}}}%
30.89 \DeclareRobustCommand*{\bbl@ped}[1]{%
30.90 \textormath{$_{\mbox{\fontsize\sf@size\z@
30.91 \selectfont#1}}$}{_\mathrm{#1}}}%

Then we can use \let to define the user level commands, but in case the macros
already have a different meaning before entering in Italian mode typesetting, we
first memorize their meaning so as to restore them on exit.

30.92 \@ifpackageloaded{units}{}{%
30.93 \addto\extrasitalian{%
30.94 \babel@save\unit\let\unit\bbl@unit}%
30.95 }%
30.96 \addto\extrasitalian{%
30.97 \babel@save\ap\let\ap\bbl@ap
30.98 \babel@save\ped\let\ped\bbl@ped
30.99 }%

30.3 Accents
Most of the other language description files introduce a number of shortcuts for
inserting accents and other language specific diacritical marks in a more comfort-
able way compared with the lengthy standard TEX conventions. When an Italian
keyboard is being used on a Windows based platform, it exhibits such limitations
that up to now no convenient shortcuts have been developed; the reason lies in the
fact that the Italian keyboard lacks the grave accent (also known as “backtick”),
which is compulsory on all accented vowels except the ‘e’, but, on the opposite, it
carries the keys with all the accented lowercase vowels; the keyboard lacks also the
tie ~ (tilde) key, while the curly braces require pressing three keys simultaneously.

The best solution Italians have found so far is to use a smart editor that accepts
shortcut definitions such that, for example, by striking "(one gets directly { on the
screen and the same sign is saved into the .tex file; the same smart editor should
be capable of translating the accented characters into the standard TEX sequences

164

when writing a file to disk (for the sake of file portability), and to transform the
standard TEX sequences into the corresponding signs when loading a .tex file
from disk to memory. Such smart editors do exist and can be downloaded from
the ctan archives.

For what concerns the missing backtick key, which is used also for inputting the
open quotes, it must be noticed that the shortcut "" described above completely
solves the problem for double raised open quotes; according to the traditions of
particular publishing houses, since there are no compulsory regulations on the
matter, the French guillemets may be used; in this case the T1 font encoding
solves the problem by means of its built in ligatures << and >>. But. . .

30.4 Caporali or French double quotes
Although the T1 font encoding ligatures solve the problem, there are some cir-
cumstances where even the T1 font encoding cannot be used, either because the
author/typesetter wants to use the OT1 encoding, or because s/he uses a font set
that does not comply completely with the T1 font encoding; some virtual fonts,
for example, are supposed to implement the double Cork font encoding but actu-
ally miss some glyphs; one such virtual font set is given by the ae virtual fonts,
because they are supposed to implement such double font encoding simply using
the cm fonts, of which the type 1 PostScript version exists and is freely available.
Since guillemets (in Italian caporali) do not exist in any cm latin font, their glyphs
must be substituted with something else that approaches them.

Since in French typesetting guillemets are compulsory, the French language
definition file resorts to a clever font substitution; such file exploits the LATEX2ε
font selection machinery so as to get the guillemets from the Cyrillic fonts, because
it suffices to locally change the default encoding. There are several sets of Cyrillic
fonts, but the ones that obey the OT2 font encoding are generally distributed
with all recent implementations of the TEX software; they are part of the American
Mathematical Society fonts and come both as METAFONT source files and Type 1
PostScript .pfb files. The availability of such fonts should be guaranteed by the
presence of the OT2cmr.fd font description file. Actually the presence of this file
does not guarantee the completeness of your TEX implementation; should LATEX
complain about a missing Cyrillic .tfm file (that kind of file that contains the
font metric parameters) and/or about missing Cyrillic (.mf) files, then your TEX
system is incomplete and you should download such fonts from the ctan archives.
Temporarily you may issue the command \LtxSymbCaporali so as to approximate
the missing glyphs with the LATEX symbol fonts. In some case warning messages
are issued so as to inform the typesetter about the necessity of resorting to some
poor man solution.

In spite of these alternate fonts, we must avoid invoking unusual fonts if the
available encoding allows to use built in caporali. As far as I know (CB) the only
T1-encoded font families that miss the guillemets are the AE ones; we therefore
first test if the default encoding id the T1 one and in this case if the AE families
are the default ones; in order for this to work properly it is necessary to load these
optional packages before babel. If the T1 encoding is not the default one when the

165

Italian language is specified, then some substitutions must be done.

\LtxSymbCaporali
\it@ocap
\it@ccap

We define some macros for substituting the default guillemets; first the emulation
by means of the LATEX symbols; each one of these macro sets actually redefines the
control sequences \it@ocap and \it@ccap that are the ones effectively activated
by the shortcuts "< and ">.

30.100 \def\LtxSymbCaporali{%
30.101 \DeclareRobustCommand*{\it@ocap}{\mbox{%
30.102 \fontencoding{U}\fontfamily{lasy}\selectfont(\kern-0.20em(}%
30.103 \ignorespaces}%
30.104 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi
30.105 \mbox{%
30.106 \fontencoding{U}\fontfamily{lasy}\selectfont)\kern-0.20em)}}%
30.107 }%

Then the substitution with any specific font that contains such glyphs; it might
be the CBgreek fonts, the Cyrillic one, the super-cm ones, the lm ones, or any
other the user might prefer (the code is adapted from the one that appears in the
frenchb.ld file; thanks to Daniel Flipo). By default if the user did not select
the T1 encoding, the existence of the CBgreek fonts is tested; if they exist the
guillemets are taken from this font, and since its families are a superset of the
default CM ones and they apply also to typeset slides with the standard class
slides. If the CBgreek fonts are not found, then the existence of the Cyrillic
ones is tested, although this choice is not suited for typesetting slides; otherwise
the poor man solution of the LATEX special symbols is used. In any case the user
can force the use of the Cyrillic guillemets substitution by issuing the declaration
\CyrillicCaporali just before the \begin{document} statement; in alternative
the user can specify with

\CaporaliFrom{〈encoding〉}{〈family〉}{〈opening number〉}{〈closing number〉}

the encoding and family of the font s/he prefers, and the slot numbers of the
opening and closing guillemets respectively. For example if the T1-encoded Latin
Modern fonts are desired the specific command should be

\CaporaliFrom{T1}{lmr}{19}{20}

These user choices might be necessary for assuring the correct typesetting with
fonts that contain the required glyphs and are available also in PostScript form so
as to use them directly di pdflatex, for example.

30.108 \def\CaporaliFrom#1#2#3#4{%
30.109 \DeclareFontEncoding{#1}{}{}%
30.110 \DeclareTextCommand{\it@ocap}{T1}{%
30.111 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}%
30.112 \DeclareTextCommand{\it@ccap}{T1}{\ifdim\lastskip>\z@\unskip\fi%
30.113 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}%
30.114 \DeclareTextCommand{\it@ocap}{OT1}{%
30.115 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}%
30.116 \DeclareTextCommand{\it@ccap}{OT1}{\ifdim\lastskip>\z@\unskip\fi%
30.117 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

166

Then we set a boolean variable and test the default family; if such family has a
name that starts with the letters “ae” then we have no built in guillemets; of course
if the AE font family is chosen after the babel package is loaded, the test does not
perform as required.

30.118 \def\get@ae#1#2#3!{\def\bbl@ae{#1#2}}%
30.119 \def\@ifT@one@noCap{\expandafter\get@ae\f@family!%
30.120 \def\bbl@temp{ae}\ifx\bbl@ae\bbl@temp\expandafter\@firstoftwo\else
30.121 \expandafter\@secondoftwo\fi}%

We set another couple of boolean variables for testing the existence of the CBgreek
or the Cyrillic fonts

30.122 \newif\if@CBgreekEncKnown
30.123 \IfFileExists{lgrcmr.fd}%
30.124 {\@CBgreekEncKnowntrue}{\@CBgreekEncKnownfalse}
30.125 \newif\if@CyrEncKnown
30.126 \IfFileExists{ot2cmr.fd}%
30.127 {\@CyrEncKnowntrue}{\@CyrEncKnownfalse}%

\CBgreekCaporali
\CyrillicCaporali

\T@unoCaporali

Next we define the macros \CBgreekCaporali, \T@unoCaporali, and \CyrillicCaporali;
with the latter one we test the loaded class, and if it’s slides nothing gets done. In
any case each one of these declarations, if used, must be specified in the preamble.

30.128 \def\CBgreekCaporali{\@ifclassloaded{slides}{%
30.129 \IfFileExists{lgrlcmss.fd}{\DeclareFontEncoding{LGR}{}{}%
30.130 \DeclareRobustCommand*{\it@ccap}%
30.131 {\ifdim\lastskip>\z@\unskip\fi
30.132 {\fontencoding{LGR}\selectfont))}}%
30.133 \DeclareRobustCommand*{\it@ocap}%
30.134 {{\fontencoding{LGR}\selectfont((}\ignorespaces}}%
30.135 {\LtxSymbCaporali}}%
30.136 {\DeclareFontEncoding{LGR}{}{}%
30.137 \DeclareRobustCommand*{\it@ccap}%
30.138 {\ifdim\lastskip>\z@\unskip
30.139 \fi{\fontencoding{LGR}\selectfont))}}%
30.140 \DeclareRobustCommand*{\it@ocap}%
30.141 {{\fontencoding{LGR}\selectfont((}\ignorespaces}}%
30.142 }%
30.143 \def\CyrillicCaporali{\@ifclassloaded{slides}{\relax}%
30.144 {\DeclareFontEncoding{OT2}{}{}%
30.145 \DeclareRobustCommand*{\it@ccap}%
30.146 {\ifdim\lastskip>\z@\unskip\fi
30.147 {\fontencoding{OT2}\selectfont\char62\relax}}%
30.148 \DeclareRobustCommand*{\it@ocap}%
30.149 {{\fontencoding{OT2}\selectfont\char60\relax}\ignorespaces}}}%
30.150 \@onlypreamble{\CBgreekCaporali}\@onlypreamble{\CyrillicCaporali}%
30.151 \def\T@unoCaporali{\DeclareRobustCommand*{\it@ocap}{<<\ignorespaces}%
30.152 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi>>}}%

Now we can do some real setting; first we start testing the encoding; if the encoding
is T1 we test if the font family is the AE one; if so, we further test for other

167

possibilities
30.153 \ifx\cf@encoding\bbl@t@one
30.154 \@ifT@one@noCap{%
30.155 \if@CBgreekEncKnown
30.156 \CBgreekCaporali
30.157 \else
30.158 \if@CyrEncKnown
30.159 \CyrilicCaporali
30.160 \else
30.161 \LtxSymbCaporali
30.162 \fi
30.163 \fi}%
30.164 {\T@unoCaporali}%

But if the default encoding is not the T1 one, then the substitutions must be
performed.

30.165 \else
30.166 \if@CBgreekEncKnown
30.167 \CBgreekCaporali
30.168 \else
30.169 \if@CyrEncKnown
30.170 \CyrilicCaporali
30.171 \else
30.172 \LtxSymbCaporali
30.173 \fi
30.174 \fi
30.175 \fi

30.5 Finishing commands
The macro \ldf@finish takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

30.176 \ldf@finish{italian}%
30.177 〈/code〉

References
[1] Beccari C., “Computer Aided Hyphenation for Italian and Modern Latin”,

TUGboat vol. 13, n. 1, pp. 23-33 (1992).

[2] Beccari C., “Typesetting mathematics for science and technology according to
ISO 31/XI”, TUGboat vol. 18, n. 1, pp. 39-48 (1997).

168

31 The Latin language
The file latin.dtx27 defines all the language-specific macros for the Latin lan-
guage both in modern and medieval spelling.

For this language two “styles” of typesetting are implemented: “regular” or
modern-spelling Latin, and medieval Latin. The medieval Latin specific com-
mands can be activated by means of the language attribute medieval; the me-
dieval spelling differs from the modern one by the systematic use of the lower case
‘u’ also where in modern spelling the letter ‘v’ is used; when typesetting with
capital letters, on the opposite, the letter ’V’ is used also in place of ’U’. Medieval
spelling also includes the ligatures \ae (æ), \oe (œ), \AE (Æ), and \OE (Œ) that
are not used in modern spelling, nor were used in the classical times.

Furthermore a third typesetting style withprosodicmarks is defined in order to
use special shortcuts for inserting breves and macrons when typesetting grammars,
dictionaries, teaching texts, and the like, where prosodic marks are important for
the complete information on the words or the verses. The shortcuts, listed in
table 7 and described in section 32, may interfere with other packages; therefore
by default this third style is off and no interference is introduced. If this third style
is used and interference is experienced, there are special commands for turning on
and off the specific short hand commands of this style.

For what concerns babel and typesetting with LATEX, the differences between
the two styles of spelling reveal themselves in the strings used to name for example
the “Preface” that becomes “Praefatio” or “Præfatio” respectively. Hyphenation
rules are also different, but the hyphenation pattern file lahyph.tex takes care of
both versions of the language. Needless to say that such patterns must be loaded
in the LATEX format by by running initex (or whatever the name of the initializer)
on latex.ltx.

The name strings for chapters, figures, tables, etcetera, are suggested by prof.
Raffaella Tabacco, a classicist of the University of Turin, Italy, to whom we address
our warmest thanks. The names suggested by Krzysztof Konrad Żelechowski,
when different, are used as the names for the medieval variety, since he made a
word and spelling choice more suited for this variety.

For this language some shortcuts are defined according to table 7; all of them
are supposed to work with both spelling styles, except where the opposite is ex-
plicitly stated.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

31.1 〈∗code〉
31.2 \LdfInit{latin}{captionslatin}

When this file is read as an option, i.e. by the \usepackage command, latin
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@latin to see whether we have to do something here.

27The file described in this section has version number v2.0f and was last revised on 2005/03/30.
The original author is Claudio Beccari with contributions by Krzysztof Konrad Żelechowski,
(kkz@alfa.mimuw.edu.pl)

169

^i inserts the breve accent as ı̆; valid also for the other
lowercase vowels, but it does not operate on the me-
dieval ligatures æ and œ.

=a inserts the macron accent as ā; valid also for the
other lowercase vowels, but it does not operate on
the medieval ligatures æ and œ.

" inserts a compound word mark where hyphenation is
legal; the next character must not be a medieval lig-
ature æ or œ, nor an accented letter (foreign names).

"| same as above, but operates also when the next char-
acter is a medieval ligature or an accented letter.

Table 7: Shortcuts defined for the Latin language. The characters ^ and = are
active only when the language attribute withprosodicmarks has been declared,
otherwise they are disabled; see section 32 for more details.

31.3 \ifx\l@latin\@undefined
31.4 \@nopatterns{Latin}
31.5 \adddialect\l@latin0\fi

Now we declare the medieval language attribute.
31.6 \bbl@declare@ttribute{latin}{medieval}{%
31.7 \addto\captionslatin{\def\prefacename{Pr{\ae}fatio}}%
31.8 \def\november{Nouembris}%
31.9 \expandafter\addto\expandafter\extraslatin

31.10 \expandafter{\extrasmedievallatin}%
31.11 }

The third typesetting style withprosodicmarks is defined here
31.12 \bbl@declare@ttribute{latin}{withprosodicmarks}{%
31.13 \expandafter\addto\expandafter\extraslatin
31.14 \expandafter{\extraswithprosodicmarks}%
31.15 }

It must be remembered that the medieval and the withprosodicmarks styles
may be used together.

The next step consists of defining commands to switch to (and from) the Latin
language28.

\captionslatin The macro \captionslatin defines all strings used in the four standard document
classes provided with LATEX.

31.16 \@namedef{captionslatin}{%
31.17 \def\prefacename{Praefatio}%
31.18 \def\refname{Conspectus librorum}%
31.19 \def\abstractname{Summarium}%
31.20 \def\bibname{Conspectus librorum}%
31.21 \def\chaptername{Caput}%

28Most of these names were kindly suggested by Raffaella Tabacco.

170

31.22 \def\appendixname{Additamentum}%
31.23 \def\contentsname{Index}%
31.24 \def\listfigurename{Conspectus descriptionum}%
31.25 \def\listtablename{Conspectus tabularum}%
31.26 \def\indexname{Index rerum notabilium}%
31.27 \def\figurename{Descriptio}%
31.28 \def\tablename{Tabula}%
31.29 \def\partname{Pars}%
31.30 \def\enclname{Adduntur}% Or " Additur" ? Or simply Add.?
31.31 \def\ccname{Exemplar}% Use the recipient’s dative
31.32 \def\headtoname{\ignorespaces}% Use the recipient’s dative
31.33 \def\pagename{Charta}%
31.34 \def\seename{cfr.}%
31.35 \def\alsoname{cfr.}% R.Tabacco never saw "cfr. atque" or similar forms
31.36 \def\proofname{Demonstratio}%
31.37 \def\glossaryname{Glossarium}%
31.38 }

In the above definitions there are some points that might change in the future or
that require a minimum of attention from the typesetter.

1. the \enclname is translated by a passive verb, that literally means “(they)
are being added”; if just one enclosure is joined to the document, the plural
passive is not suited any more; nevertheless a generic plural passive might be
incorrect but suited for most circumstances. On the opposite “Additur”, the
corresponding singular passive, might be more correct with one enclosure
and less suited in general: what about the abbreviation “Add.” that works
in both cases, but certainly is less elegant?

2. The \headtoname is empty and gobbles the possible following space; in prac-
tice the typesetter should use the dative of the recipient’s name; since nowa-
days not all such names can be translated into Latin, they might result
indeclinable. The clever use of an appellative by the typesetter such as
“Domino” or “Dominae” might solve the problem, but the header might get
too impressive. The typesetter must make a decision on his own.

3. The same holds true for the copy recipient’s name in the “Cc” field of
\ccname.

\datelatin The macro \datelatin redefines the command \today to produce Latin dates;
the choice of faked small caps Latin numerals is arbitrary and may be changed in
the future. For medieval latin the spelling of ‘Novembris’ should be Nouembris.
This is taken care of by using a control sequence which can be redefined when the
attribute ‘medieval’ is selected.

31.39 \def\datelatin{%
31.40 \def\november{Novembris}%
31.41 \def\today{%
31.42 {\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont
31.43 \uppercase\expandafter{\romannumeral\day}}\nobreakspace

171

31.44 \ifcase\month\or
31.45 Ianuarii\or Februarii\or Martii\or Aprilis\or Maii\or Iunii\or
31.46 Iulii\or Augusti\or Septembris\or Octobris\or \november\or
31.47 Decembris\fi
31.48 \space{\uppercase\expandafter{\romannumeral\year}}}}

\romandate Thomas Martin Widmann (viralbus@daimi.au.dk) developed a macro originally
named \latindate (but to be renamed \romandate so as not to conflict with the
standard babel conventions) that should compute and translate the current date
into a date ab urbe condita with days numbered according to the kalendae and idus;
for the moment this is a placeholder for Thomas’ macro, waiting for a self standing
one that keeps local all the intermediate data, counters, etc. If he succeeds, here
is the place to add his macro.

\latinhyphenmins The Latin hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

31.49 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\extraslatin
\noextraslatin

For this language the \clubpenalty, \widowpenalty are set to rather high val-
ues and \finalhyphendemerits is set to such a high value that hyphenation is
prohibited between the last two lines of a paragraph.

31.50 \addto\extraslatin{%
31.51 \babel@savevariable\clubpenalty
31.52 \babel@savevariable\widowpenalty
31.53 \clubpenalty3000\widowpenalty3000}

Never ever break a word between the last two lines of a paragraph in latin texts.
31.54 \addto\extraslatin{%
31.55 \babel@savevariable\finalhyphendemerits
31.56 \finalhyphendemerits50000000}

With medieval Latin we need the suitable correspondence between upper case
V and lower case u, since in that spelling there is only one sign, and the u shape
is the (uncial) version of the capital V. Everything else is identical with Latin.

31.57 \addto\extrasmedievallatin{%
31.58 \babel@savevariable{\lccode‘\V}%
31.59 \babel@savevariable{\uccode‘\u}%
31.60 \lccode‘\V=‘\u \uccode‘\u=‘\V}

\SetLatinLigatures We need also the lccodes for æ and œ; since they occupy different positions in
the OT1 TEX-fontencoding compared to the T1 one, we must save the lc- and the
uccodes for both encodings, but we specify the new lc- and uccodes separately as it
appears natural not to change encoding while typesetting the same language. The
encoding is assumed to be set before starting to use the Latin language, so that if
Latin is the default language, the font encoding must be chosen before requiring
the babel package with the latin option, in any case before any \selectlanguage
or \foreignlanguage command.

All this fuss is made in order to allow the use of the medieval ligatures æ and œ
while typesetting with the medieval spelling; I have my doubts that the medieval

172

spelling should be used at all in modern books, reports, and the like, as the uncial
‘u’ shape of the lower case ‘v’ and the above ligatures were used until the middle
of the XVII century. Since my opinion (CB) may be wrong, I managed to set up
the instruments and it is up to the typesetter to use them or not.

31.61 \addto\extrasmedievallatin{%
31.62 \babel@savevariable{\lccode‘\^^e6}% T1 \ae
31.63 \babel@savevariable{\uccode‘\^^e6}% T1 \ae
31.64 \babel@savevariable{\lccode‘\^^c6}% T1 \AE
31.65 \babel@savevariable{\lccode‘\^^f7}% T1 \oe
31.66 \babel@savevariable{\uccode‘\^^f7}% T1 \OE
31.67 \babel@savevariable{\lccode‘\^^d7}% T1 \OE
31.68 \babel@savevariable{\lccode‘\^^1a}% OT1 \ae
31.69 \babel@savevariable{\uccode‘\^^1a}% OT1 \ae
31.70 \babel@savevariable{\lccode‘\^^1d}% OT1 \AE
31.71 \babel@savevariable{\lccode‘\^^1b}% OT1 \oe
31.72 \babel@savevariable{\uccode‘\^^1b}% OT1 \OE
31.73 \babel@savevariable{\lccode‘\^^1e}% OT1 \OE
31.74 \SetLatinLigatures}
31.75 \providecommand\SetLatinLigatures{%
31.76 \def\@tempA{T1}\ifx\@tempA\f@encoding
31.77 \catcode‘\^^e6=11 \lccode‘\^^e6=‘\^^e6 \uccode‘\^^e6=‘\^^c6 % \ae
31.78 \catcode‘\^^c6=11 \lccode‘\^^c6=‘\^^e6 % \AE
31.79 \catcode‘\^^f7=11 \lccode‘\^^f7=‘\^^f7 \uccode‘\^^f7=‘\^^d7 % \oe
31.80 \catcode‘\^^d7=11 \lccode‘\^^d7=‘\^^f7 % \OE
31.81 \else
31.82 \catcode‘\^^1a=11 \lccode‘\^^1a=‘\^^1a \uccode‘\^^1a=‘\^^1d % \ae
31.83 \catcode‘\^^1d=11 \lccode‘\^^1d=‘\^^1a % \AE (^^])
31.84 \catcode‘\^^1b=11 \lccode‘\^^1b=‘\^^1b \uccode‘\^^1b=‘\^^1e % \oe
31.85 \catcode‘\^^1e=11 \lccode‘\^^1e=‘\^^1b % \OE (^^^)
31.86 \fi
31.87 \let\@tempA\@undefined
31.88 }

With the above definitions we are sure that \MakeUppercase works properly
and \MakeUppercase{C{\ae}sar} correctly ‘yields ‘CÆSAR”; correspondingly
\MakeUppercase{Heluetia} correctly yields “HELVETIA”.

32 Latin shortcuts
For writing dictionaries or didactic texts we defined a third language attribute, or
a third typesetting style, where a couple of other active characters are defined: ^
for marking a vowel with the breve sign, and = for marking a vowel with the macro
sign. Please take notice that neither the OT1 font encoding, nor the T1 one for
most vowels, contain directly the marked vowels, therefore hyphenation of words
containing these “accents” may become problematic; for this reason the above
active characters not only introduce the required accent, but also the necessary
code for allowing hyphenation in the rest of the word.

173

It must be remarked that the active characters ^ and = may have other mean-
ings in other contexts. For example the equals sign is used by the graphic ex-
tensions for specifying keyword options for handling the graphic elements to be
included in the document. At the same time, as mentioned in the previous para-
graph, diacritical marking in Latin is used only for typesetting certain kind of
documents, such as grammars and dictionaries. It is reasonable that the breve
and macron active characters may be switched on and off at will, and in particu-
lar that they are off by default if the attribute withprosodicmarks has not been
set.

\ProsodicMarksOn
\ProsodicMarksOff

We begin by adding to the normal typesetting style the definitions of the new
commands \ProsodicMarksOn and \ProsodicMarksOff that should produce error
messages when the third style is not declared:

32.1 \addto\extraslatin{\def\ProsodicMarksOn{%
32.2 \GenericError{(latin)\@spaces\@spaces\@spaces\@spaces}%
32.3 {Latin language error: \string\ProsodicMarksOn\space
32.4 is defined by setting the\MessageBreak
32.5 language attribute to ‘withprosodicmarks’\MessageBreak
32.6 If you continue you are likely to encounter\MessageBreak
32.7 fatal errors that I can’t recover}%
32.8 {See the Latin language description in the babel
32.9 documentation for explanation}{\@ehd}}}

32.10 \addto\extraslatin{\let\ProsodicMarksOff\relax}

Then we temporarily set the caret and the equals sign to active characters so
that they can receive their definitions:

32.11 \catcode‘\= \active
32.12 \catcode‘\^ \active

and we add the necessary declarations to the macros that are being activated when
the Latin language and its typesetting styles are declared:

32.13 \addto\extraslatin{\languageshorthands{latin}}%
32.14 \addto\extraswithprosodicmarks{\bbl@activate{^}}%
32.15 \addto\extraswithprosodicmarks{\bbl@activate{=}}%
32.16 \addto\noextraswithprosodicmarks{\bbl@deactivate{^}}%
32.17 \addto\noextraswithprosodicmarks{\bbl@deactivate{=}}%
32.18 \addto\extraswithprosodicmarks{\ProsodicMarks}

\ProsodicMarks Next we define the defining macro for the active characters
32.19 \def\ProsodicMarks{%
32.20 \def\ProsodicMarksOn{\catcode‘\^ 13\catcode‘\= 13\relax}%
32.21 \def\ProsodicMarksOff{\catcode‘\^ 7\catcode‘\= 12\relax}%

Notice that with the above redefinitions of the commands \ProsodicMarksOn and
\ProsodicMarksOff, the operation of the newly defined shortcuts may be switched
on and off at will, so that even if a picture has to be inserted in the document by
means of the commands and keyword options of the graphicx package, it suffices
to switch them off before invoking the picture including command, and switched
on again afterwards; or, even better, since the picture very likely is being inserted

174

within a figure environment, it suffices the switch them off within the environ-
ment, being conscious that their deactivation remains local to the environment.

32.22 \initiate@active@char{^}%
32.23 \initiate@active@char{=}%
32.24 \declare@shorthand{latin}{^a}{%
32.25 \textormath{\u{a}\allowhyphens}{\hat{a}}}%
32.26 \declare@shorthand{latin}{^e}{%
32.27 \textormath{\u{e}\allowhyphens}{\hat{e}}}%
32.28 \declare@shorthand{latin}{^i}{%
32.29 \textormath{\u{\i}\allowhyphens}{\hat{\imath}}}%
32.30 \declare@shorthand{latin}{^o}{%
32.31 \textormath{\u{o}\allowhyphens}{\hat{o}}}%
32.32 \declare@shorthand{latin}{^u}{%
32.33 \textormath{\u{u}\allowhyphens}{\hat{u}}}%
32.34 \declare@shorthand{latin}{=a}{%
32.35 \textormath{\={a}\allowhyphens}{\bar{a}}}%
32.36 \declare@shorthand{latin}{=e}{%
32.37 \textormath{\={e}\allowhyphens}{\bar{e}}}%
32.38 \declare@shorthand{latin}{=i}{%
32.39 \textormath{\={\i}\allowhyphens}{\bar{\imath}}}%
32.40 \declare@shorthand{latin}{=o}{%
32.41 \textormath{\={o}\allowhyphens}{\bar{o}}}%
32.42 \declare@shorthand{latin}{=u}{%
32.43 \textormath{\={u}\allowhyphens}{\bar{u}}}%
32.44 }

Notice that the short hand definitions are given only for lower case letters; it
would not be difficult to extend the set of definitions to upper case letters, but it
appears of very little use in view of the kind of documents where prosodic marks
are supposed to be used. Nevertheless in those rare cases when it’s required to
set some uppercase letters with their prosodic marks, it is always possible to
use the standard LATEX commands such as \u{I} for typesetting Ĭ, or \={A} for
typesetting Ā.

Finally we restore the caret and equals sign initial default category codes.
32.45 \catcode‘\= 12\relax
32.46 \catcode‘\^ 7\relax

It must be understood that by using the above prosodic marks, line breaking
is somewhat impeached; since such prosodic marks are used almost exclusively in
dictionaries, grammars, and poems (only in school textbooks), this shouldn’t be
of any importance for what concerns the quality of typesetting.

33 Etymological hyphenation
In order to deal in a clean way with prefixes and compound words to be divided
etymologically, the active character " is given a special definition so as to behave
as a discretionary break with hyphenation allowed after it. Most of the code for

175

dealing with the active " is already contained in the core of babel, but we are
going to use it as a single character shorthand for Latin.

33.1 \initiate@active@char{"}%
33.2 \addto\extraslatin{\bbl@activate{"}%
33.3 }

A temporary macro is defined so as to take different actions in math mode and
text mode: specifically in the former case the macro inserts a double quote as it
should in math mode, otherwise another delayed macro comes into action.

33.4 \declare@shorthand{latin}{"}{%
33.5 \ifmmode
33.6 \def\lt@@next{’’}%
33.7 \else
33.8 \def\lt@@next{\futurelet\lt@temp\lt@cwm}%
33.9 \fi

33.10 \lt@@next
33.11 }%

In text mode the \lt@next control sequence is such that upon its execution a
temporary variable \lt@temp is made equivalent to the next token in the input list
without actually removing it. Such temporary token is then tested by the macro
\lt@cwm and if it is found to be a letter token, then it introduces a compound
word separator control sequence \lt@allowhyphens whose expansion introduces
a discretionary hyphen and an unbreakable space; in case the token is not a letter,
the token is tested again to find if it is the character |, in which case it is gobbled
and a discretionary break is introduced.

33.12 \def\lt@allowhyphens{\nobreak\discretionary{-}{}{}\hskip\z@skip}
33.13 \newcommand*{\lt@cwm}{\let\lt@n@xt\relax
33.14 \ifcat\noexpand\lt@temp a%
33.15 \let\lt@n@xt\lt@allowhyphens
33.16 \else
33.17 \if\noexpand\lt@temp\string|%
33.18 \def\lt@n@xt{\lt@allowhyphens\@gobble}%
33.19 \fi
33.20 \fi
33.21 \lt@n@xt}%

Attention: the category code comparison does not work if the temporary
control sequence \lt@temp has been let equal to an implicit character, such as
\ae; therefore this etymological hyphenation facility does not work with medieval
Latin spelling when " immediately precedes a ligature. in order to overcome
this drawback the shorthand "| may be used in such cases; it behaves exactly
as ", but it does not test the implicit character control sequence. An input
such as super"|{\ae}quitas29 gets hyphenated as su-per-æqui-tas instead of
su-pe-ræ-qui-tas.

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

29This word does not exist in “regular” Latin, and it is used just as an example.

176

33.22 \ldf@finish{latin}
33.23 〈/code〉

177

34 The Portuguese language
The file portuges.dtx30 defines all the language-specific macros for the Por-
tuguese language as well as for the Brasilian version of this language.

For this language the character " is made active. In table 8 an overview is
given of its purpose.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"" like "-, but producing no hyphen sign (for words that

should break at some sign such as “entrada/salida.”
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).
\- like the old \-, but allowing hyphenation in the rest

of the word.

Table 8: The extra definitions made by portuges.ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

34.1 〈∗code〉
34.2 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command,
portuges will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \l@portuges to see whether we have to do some-
thing here. Since it is possible to load this file with any of the following four
options to babel: portuges, portuguese, brazil and brazilian we also allow that the
hyphenation patterns are loaded under any of these four names. We just have to
find out which one was used.

34.3 \ifx\l@portuges\@undefined
34.4 \ifx\l@portuguese\@undefined
34.5 \ifx\l@brazil\@undefined
34.6 \ifx\l@brazilian\@undefined
34.7 \@nopatterns{Portuguese}
34.8 \adddialect\l@portuges0
34.9 \else

34.10 \let\l@portuges\l@brazilian
34.11 \fi
34.12 \else
34.13 \let\l@portuges\l@brazil
34.14 \fi
34.15 \else
34.16 \let\l@portuges\l@portuguese

30The file described in this section has version number v1.2p and was last revised on
2005/03/31. Contributions were made by Jose Pedro Ramalhete (JRAMALHE@CERNVM or
Jose-Pedro_Ramalhete@MACMAIL) and Arnaldo Viegas de Lima arnaldo@VNET.IBM.COM.

178

34.17 \fi
34.18 \fi

By now \l@portuges is defined. When the language definition file was loaded
under a different name we make sure that the hyphenation patterns can be found.

34.19 \expandafter\ifx\csname l@\CurrentOption\endcsname\relax
34.20 \expandafter\let\csname l@\CurrentOption\endcsname\l@portuges
34.21 \fi

Now we have to decide whether this language definition file was loaded for
Portuguese or Brasilian use. This can be done by checking the contents of
\CurrentOption. When it doesn’t contain either ‘portuges’ or ‘portuguese’ we
make \bbl@tempb empty.

34.22 \def\bbl@tempa{portuguese}
34.23 \ifx\CurrentOption\bbl@tempa
34.24 \let\bbl@tempb\@empty
34.25 \else
34.26 \def\bbl@tempa{portuges}
34.27 \ifx\CurrentOption\bbl@tempa
34.28 \let\bbl@tempb\@empty
34.29 \else
34.30 \def\bbl@tempb{brazil}
34.31 \fi
34.32 \fi
34.33 \ifx\bbl@tempb\@empty

The next step consists of defining commands to switch to (and from) the Por-
tuguese language.

\captionsportuges The macro \captionsportuges defines all strings used in the four standard doc-
umentclasses provided with LATEX.

34.34 \@namedef{captions\CurrentOption}{%
34.35 \def\prefacename{Pref\’acio}%
34.36 \def\refname{Refer\^encias}%
34.37 \def\abstractname{Resumo}%
34.38 \def\bibname{Bibliografia}%
34.39 \def\chaptername{Cap\’{\i}tulo}%
34.40 \def\appendixname{Ap\^endice}%

Some discussion took place around the correct translations for ‘Table of Contents’
and ‘Index’. the translations differ for Portuguese and Brasilian based the follow-
ing history:

The whole issue is that some books without a real index at the end
misused the term ‘Índice’ as table of contents. Then, what happens is
that some books apeared with ‘Índice’ at the begining and a ‘Índice
Remissivo’ at the end. Remissivo is a redundant word in this case,
but was introduced to make up the difference. So in Brasil people
started using ‘Sumário’ and ‘Índice Remissivo’. In Portugal this seems
not to be very common, therefore we chose ‘Índice’ instead of ‘Índice
Remissivo’.

179

34.41 \def\contentsname{Conte\’udo}%
34.42 \def\listfigurename{Lista de Figuras}%
34.43 \def\listtablename{Lista de Tabelas}%
34.44 \def\indexname{\’Indice}%
34.45 \def\figurename{Figura}%
34.46 \def\tablename{Tabela}%
34.47 \def\partname{Parte}%
34.48 \def\enclname{Anexo}%
34.49 \def\ccname{Com c\’opia a}%
34.50 \def\headtoname{Para}%
34.51 \def\pagename{P\’agina}%
34.52 \def\seename{ver}%
34.53 \def\alsoname{ver tamb\’em}%

An alternate term for ‘Proof’ could be ‘Prova’.
34.54 \def\proofname{Demonstra\c{c}\~ao}%
34.55 \def\glossaryname{Gloss\’ario}%
34.56 }

\dateportuges The macro \dateportuges redefines the command \today to produce Portuguese
dates.

34.57 \@namedef{date\CurrentOption}{%
34.58 \def\today{\number\day\space de\space\ifcase\month\or
34.59 Janeiro\or Fevereiro\or Mar\c{c}o\or Abril\or Maio\or Junho\or
34.60 Julho\or Agosto\or Setembro\or Outubro\or Novembro\or Dezembro%
34.61 \fi
34.62 \space de\space\number\year}}
34.63 \else

For the Brasilian version of these definitions we just add a “dialect”.
34.64 \expandafter
34.65 \adddialect\csname l@\CurrentOption\endcsname\l@portuges

\captionsbrazil The “captions” are different for both versions of the language, so we define the
macro \captionsbrazil here.

34.66 \@namedef{captions\CurrentOption}{%
34.67 \def\prefacename{Pref\’acio}%
34.68 \def\refname{Refer\^encias}%
34.69 \def\abstractname{Resumo}%
34.70 \def\bibname{Refer\^encias Bibliogr\’aficas}%
34.71 \def\chaptername{Cap\’{\i}tulo}%
34.72 \def\appendixname{Ap\^endice}%
34.73 \def\contentsname{Sum\’ario}%
34.74 \def\listfigurename{Lista de Figuras}%
34.75 \def\listtablename{Lista de Tabelas}%
34.76 \def\indexname{\’Indice Remissivo}%
34.77 \def\figurename{Figura}%
34.78 \def\tablename{Tabela}%
34.79 \def\partname{Parte}%

180

34.80 \def\enclname{Anexo}%
34.81 \def\ccname{C\’opia para}%
34.82 \def\headtoname{Para}%
34.83 \def\pagename{P\’agina}%
34.84 \def\seename{veja}%
34.85 \def\alsoname{veja tamb\’em}%
34.86 \def\proofname{Demonstra\c{c}\~ao}%
34.87 \def\glossaryname{Glossary}% <-- Needs translation
34.88 }

\datebrazil The macro \datebrazil redefines the command \today to produce Brasilian
dates, for which the names of the months are not capitalized.

34.89 \@namedef{date\CurrentOption}{%
34.90 \def\today{\number\day\space de\space\ifcase\month\or
34.91 janeiro\or fevereiro\or mar\c{c}o\or abril\or maio\or junho\or
34.92 julho\or agosto\or setembro\or outubro\or novembro\or dezembro%
34.93 \fi
34.94 \space de\space\number\year}}
34.95 \fi

\portugeshyphenmins Set correct values for \lefthyphenmin and \righthyphenmin.
34.96 \providehyphenmins{\CurrentOption}{\tw@\thr@@}

\extrasportuges
\noextrasportuges

The macro \extrasportuges will perform all the extra definitions needed for the
Portuguese language. The macro \noextrasportuges is used to cancel the actions
of \extrasportuges.

For Portuguese the " character is made active. This is done once, later on
its definition may vary. Other languages in the same document may also use the
" character for shorthands; we specify that the portuguese group of shorthands
should be used.

34.97 \initiate@active@char{"}
34.98 \@namedef{extras\CurrentOption}{\languageshorthands{portuges}}
34.99 \expandafter\addto\csname extras\CurrentOption\endcsname{%

34.100 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
34.101 \addto\noextrasportuges{\bbl@deactivate{"}}

First we define access to the guillemets for quotations,
34.102 \declare@shorthand{portuges}{"<}{%
34.103 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
34.104 \declare@shorthand{portuges}{">}{%
34.105 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

34.106 \declare@shorthand{portuges}{"-}{\nobreak-\bbl@allowhyphens}
34.107 \declare@shorthand{portuges}{""}{\hskip\z@skip}

181

And we want to have a shorthand for disabling a ligature.
34.108 \declare@shorthand{portuges}{"|}{%
34.109 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\- All that is left now is the redefinition of \-. The new version of \- should indicate
an extra hyphenation position, while allowing other hyphenation positions to be
generated automatically. The standard behaviour of TEX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words
are quite normal and all one needs is a means to indicate an extra hyphenation
position on top of the ones that TEX can generate from the hyphenation patterns.

34.110 \expandafter\addto\csname extras\CurrentOption\endcsname{%
34.111 \babel@save\-}
34.112 \expandafter\addto\csname extras\CurrentOption\endcsname{%
34.113 \def\-{\allowhyphens\discretionary{-}{}{}\allowhyphens}}

\ord
\ro

\orda
\ra

We also provide an easy way to typeset ordinals, both in the male (\ord or \ro)
and the female (orda or \ra) form.

34.114 \def\ord{$^{\rm o}$}
34.115 \def\orda{$^{\rm a}$}
34.116 \let\ro\ord\let\ra\orda

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

34.117 \ldf@finish\CurrentOption
34.118 〈/code〉

182

35 The Spanish language
The file spanish.dtx31 defines all the language-specific macros for the Spanish
language.

Custumization is made following mainly the books on the subject by José
Martínez de Sousa. By typesetting spanish.dtx directly you will get the full
documentation (regrettably is in Spanish only, but it is pretty long). References in
this part refers to that document. There are several aditional features documented
in the Spanish version only.

This style provides:

• Translations following the International LATEX conventions, as well as
\today.

• Shorthands listed in Table 9. Examples in subsection 3.4 are illustrative.
Note that "~ has a special meaning in spanish different to other languages,
and is used mainly in linguistic contexts.

’a acute accented a. Also for: e, i, o, u (both lowercase
and uppercase).

’n ñ (also uppercase).
~n ñ (also uppercase). Deprecated.
"u ü (also uppercase).
"a Ordinal numbers (also "A, "o, "O).
"c ç (also uppercase).
"rr rr, but -r when hyphenated
"- Like \-, but allowing hyphenation in the rest the

word.
"= Like -, but allowing hyphenation in the rest the

word.
"~ The hyphen is repeated at the very beginning of the

next line if the word is hyphenated at this point.
"" Like "- but producing no hyphen sign.
~- Like - but with no break after the hyphen. Also for:

en-dashes (~--) and em-dashes (~---).
"/ A slash slightly lowered, if necessary.
"| disable ligatures at this point.
"< Left guillemets.
"> Right guillemets.
<< \begin{quoting}. (See text.)
>> \end{quoting}. (See text.)

Table 9: Extra definitions made by file spanish.ldf

31The file described in this section has version number v4.2b and was last revised on
2004/02/20. The original author from v4.0 on is Javier Bezos. Previous versions were by Julio
Sánchez.

183

• \deactivatetilden deactivates the ~n and ~N shorthands.

• In math mode a dot followed by a digit is replaced by a decimal comma.

• Spanish ordinals and abbeviations with \sptext as, for instance, 1\sptext{er}.
The preceptive dot is included.

• Accented functions: lím, máx, mín, mód. You may globally omit the accents
with \unaccentedoperators. Spaced functions: arc cos, etc. You may glob-
ally kill that space with \unspacedoperators. \dotlessi is provided for
use in math mode.

• A quoting environment and a related pair of shorthands << and >>. The
command \deactivatequoting deactivates these shorthand in case you
want to use < and > in some AMS commands and numerical comparisons.

• The command \selectspanish selects the spanish language and its short-
hands. (Intended for the preamble.)

• \frenchspacing is used.

• Ellipsis are best typed ... or, within a sentence, \...

• There is a small space before \%.

• \lsc provides lowercase small caps. (See subsection 3.10.)

Just in case spanish is the main language, the group \layoutspanish is acti-
vated, which modifies the standard classes through the whole document (it cannot
be deactivated) in the following way:

• Both enumerate and itemize are adapted to Spanish rules.

• Both \alph and \Alph include ñ after n.

• Symbol footmarks are one, two, three, etc., asteriscs.

• OT1 guillemets are generated with two lasy symbols instead of small \ll
and \gg.

• \roman is redefined to write small caps roman numerals, since lowercase
roman numerals are not allowed. However, MakeIndex rejects entries con-
taining pages in that format. The .idx file must be preprocessed if the
document has this kind of entries with the provided romanidx.tex tool—
just TEX it and follow the instructions.

• There is a dot after section numbers in titles and toc.

This group is ignored if you write \selectspanish* in the preamble.
Some additional commands are provided to be used in the spanish.cfg file:

• With \es@activeacute acute accents are always active, overriding the de-
fault babel behaviour.

184

• \es@enumerate sets the labels to be used by enumerate. The same applies
to \es@itemize and itemize.

• \es@operators stores the operator commands. All of them are canceled
with

\let\es@operators\relax

The commands \deactivatequoting, \deactivatetilden and \selectspanish
may be used in this file, too.

A subset of these commands is provided for use in Plain TEX (with \input spanish.sty).

35.1 The Code
This file provides definition for both LATEX2ε and non LATEX2ε formats.
Identify the ldf file.

35.1 〈∗code〉
35.2 \ProvidesLanguage{spanish.ldf}
35.3 [2005/03/31 v4.2b Spanish support from the babel system]

The macro \LdfInit takes care of preventing that this file is loaded more
than once, checking the category code of the @ sign, etc. When this file is read
as an option, i.e. by the \usepackage command, spanish will be an ‘unknown’
language in which case we have to make it known. So we check for the existence
of \l@spanish to see whether we have to do something here.

35.4 \LdfInit{spanish}\captionsspanish
35.5 \ifx\undefined\l@spanish
35.6 \@nopatterns{Spanish}
35.7 \adddialect\l@spanish0
35.8 \fi

We define some tools which will be used in that style file: (1) we make sure
that ~ is active, (2) \es@delayed delays the expansion of the code in conditionals
(in fact, quite similar to \bbl@afterfi).

35.9 \edef\es@savedcatcodes{%
35.10 \catcode‘\noexpand\~=\the\catcode‘\~
35.11 \catcode‘\noexpand\"=\the\catcode‘\"}
35.12 \catcode‘\~=\active
35.13 \catcode‘\"=12
35.14 \long\def\es@delayed#1\then#2\else#3\fi{%
35.15 #1%
35.16 \expandafter\@firstoftwo
35.17 \else
35.18 \expandafter\@secondoftwo
35.19 \fi
35.20 {#2}{#3}}

Two tests are introduced. The first one tells us if the format is LATEX2ε, and
the second one if the format is plain or any other. If both are false, the format is
LATEX2.09.

185

35.21 \es@delayed
35.22 \expandafter\ifx\csname documentclass\endcsname\relax\then
35.23 \let\ifes@LaTeXe\iffalse
35.24 \else
35.25 \let\ifes@LaTeXe\iftrue
35.26 \fi
35.27 \es@delayed
35.28 \expandafter\ifx\csname newenvironment\endcsname\relax\then
35.29 \let\ifes@plain\iftrue
35.30 \else
35.31 \let\ifes@plain\iffalse
35.32 \fi

Translations for captions.
35.33 \addto\captionsspanish{%
35.34 \def\prefacename{Prefacio}%
35.35 \def\refname{Referencias}%
35.36 \def\abstractname{Resumen}%
35.37 \def\bibname{Bibliograf\’{\i}a}%
35.38 \def\chaptername{Cap\’{\i}tulo}%
35.39 \def\appendixname{Ap\’endice}%
35.40 \def\listfigurename{\’Indice de figuras}%
35.41 \def\listtablename{\’Indice de cuadros}%
35.42 \def\indexname{\’Indice alfab\’etico}%
35.43 \def\figurename{Figura}%
35.44 \def\tablename{Cuadro}%
35.45 \def\partname{Parte}%
35.46 \def\enclname{Adjunto}%
35.47 \def\ccname{Copia a}%
35.48 \def\headtoname{A}%
35.49 \def\pagename{P\’agina}%
35.50 \def\seename{v\’ease}%
35.51 \def\alsoname{v\’ease tambi\’en}%
35.52 \def\proofname{Demostraci\’on}%
35.53 \def\glossaryname{Glosario}}
35.54
35.55 \expandafter\ifx\csname chapter\endcsname\relax
35.56 \addto\captionsspanish{\def\contentsname{\’Indice}}
35.57 \else
35.58 \addto\captionsspanish{\def\contentsname{\’Indice general}}
35.59 \fi

And the date.
35.60 \def\datespanish{%
35.61 \def\today{\the\day~de \ifcase\month\or enero\or febrero\or
35.62 marzo\or abril\or mayo\or junio\or julio\or agosto\or
35.63 septiembre\or octubre\or noviembre\or diciembre\fi
35.64 \ de\ifnum\year>1999\es@yearl\fi~\the\year}}
35.65 \def\spanishdatedel{\def\es@yearl{l}}
35.66 \def\spanishdatede{\let\es@yearl\@empty}
35.67 \spanishdatede

186

The basic macros to select the language, in the preamble or the config file.
Use of \selectlanguage should be avoided at this early stage because the active
chars are not yet active. \selectspanish makes them active.

35.68 \def\selectspanish{%
35.69 \def\selectspanish{%
35.70 \def\selectspanish{%
35.71 \PackageWarning{spanish}{Extra \string\selectspanish ignored}}%
35.72 \es@select}}
35.73
35.74 \@onlypreamble\selectspanish
35.75
35.76 \def\es@select{%
35.77 \let\es@select\@undefined
35.78 \selectlanguage{spanish}%
35.79 \catcode‘\"\active\catcode‘\~=\active}

Instead of joining all the extras directly in \extrasspanish, we subdivide them
in three further groups.

35.80 \def\extrasspanish{%
35.81 \textspanish
35.82 \mathspanish
35.83 \ifx\shorthandsspanish\@empty
35.84 \spanishdeactivate{."’~<>}%
35.85 \languageshorthands{none}%
35.86 \else
35.87 \shorthandsspanish
35.88 \fi}
35.89 \def\noextrasspanish{%
35.90 \ifx\textspanish\@empty\else
35.91 \notextspanish
35.92 \fi
35.93 \ifx\mathspanish\@empty\else
35.94 \nomathspanish
35.95 \fi
35.96 \ifx\shorthandsspanish\@empty\else
35.97 \noshorthandsspanish
35.98 \fi
35.99 \es@reviveshorthands}

And the first of these sub-groups is defined.
35.100 \addto\textspanish{%
35.101 \babel@save\sptext
35.102 \def\sptext{\protect\es@sptext}}

The definition of \sptext is more elaborated than that of \textsuperscript.
With uppercase superscript text the scriptscriptsize is used. The mandatory dot
is already included. There are two versions, depending on the format.

35.103 \ifes@LaTeXe %<<<<<<
35.104 \newcommand\es@sptext[1]{%
35.105 {.\setbox\z@\hbox{8}\dimen@\ht\z@
35.106 \csname S@\f@size\endcsname

187

35.107 \edef\@tempa{\def\noexpand\@tempc{#1}%
35.108 \lowercase{\def\noexpand\@tempb{#1}}}\@tempa
35.109 \ifx\@tempb\@tempc
35.110 \fontsize\sf@size\z@
35.111 \selectfont
35.112 \advance\dimen@-1.15ex
35.113 \else
35.114 \fontsize\ssf@size\z@
35.115 \selectfont
35.116 \advance\dimen@-1.5ex
35.117 \fi
35.118 \math@fontsfalse\raise\dimen@\hbox{#1}}}
35.119 \else %<<<<<<
35.120 \let\sptextfont\rm
35.121 \newcommand\es@sptext[1]{%
35.122 {.\setbox\z@\hbox{8}\dimen@\ht\z@
35.123 \edef\@tempa{\def\noexpand\@tempc{#1}%
35.124 \lowercase{\def\noexpand\@tempb{#1}}}\@tempa
35.125 \ifx\@tempb\@tempc
35.126 \advance\dimen@-0.75ex
35.127 \raise\dimen@\hbox{$\scriptstyle\sptextfont#1$}%
35.128 \else
35.129 \advance\dimen@-0.8ex
35.130 \raise\dimen@\hbox{$\scriptscriptstyle\sptextfont#1$}%
35.131 \fi}}
35.132 \fi %<<<<<<

Now, lowercase small caps. First, we test if there are actual small caps for
the current font. If not, faked small caps are used. The \selectfont in \es@lsc
could seem redundant, but it’s not.

35.133 \ifes@LaTeXe %<<<<<<
35.134 \addto\textspanish{%
35.135 \babel@save\lsc
35.136 \def\lsc{\protect\es@lsc}}
35.137
35.138 \def\es@lsc#1{%
35.139 \leavevmode
35.140 \hbox{\scshape\selectfont
35.141 \expandafter\ifx\csname\f@encoding/\f@family/\f@series
35.142 /n/\f@size\expandafter\endcsname
35.143 \csname\curr@fontshape/\f@size\endcsname
35.144 \csname S@\f@size\endcsname
35.145 \fontsize\sf@size\z@\selectfont
35.146 \PackageInfo{spanish}{Replacing undefined sc font\MessageBreak
35.147 shape by faked small caps}%
35.148 \MakeUppercase{#1}%
35.149 \else
35.150 \MakeLowercase{#1}%
35.151 \fi}}
35.152 \fi %<<<<<<

188

The quoting environment. This part is not available in Plain, hence the test.
Overriding the default \everypar is a bit tricky.

35.153 \newif\ifes@listquot
35.154
35.155 \ifes@plain\else %<<<<<<
35.156 \csname newtoks\endcsname\es@quottoks
35.157 \csname newcount\endcsname\es@quotdepth
35.158
35.159 \newenvironment{quoting}
35.160 {\leavevmode
35.161 \advance\es@quotdepth1
35.162 \csname lquot\romannumeral\es@quotdepth\endcsname%
35.163 \ifnum\es@quotdepth=\@ne
35.164 \es@listquotfalse
35.165 \let\es@quotpar\everypar
35.166 \let\everypar\es@quottoks
35.167 \everypar\expandafter{\the\es@quotpar}%
35.168 \es@quotpar{\the\everypar
35.169 \ifes@listquot\global\es@listquotfalse\else\es@quotcont\fi}%
35.170 \fi
35.171 \toks@\expandafter{\es@quotcont}%
35.172 \edef\es@quotcont{\the\toks@
35.173 \expandafter\noexpand
35.174 \csname rquot\romannumeral\es@quotdepth\endcsname}}
35.175 {\csname rquot\romannumeral\es@quotdepth\endcsname}
35.176
35.177 \def\lquoti{\guillemotleft{}}
35.178 \def\rquoti{\guillemotright{}}
35.179 \def\lquotii{‘‘}
35.180 \def\rquotii{’’}
35.181 \def\lquotiii{‘}
35.182 \def\rquotiii{’}
35.183
35.184 \let\es@quotcont\@empty

If there is a margin par inside quoting, we don’t add the quotes. \es@listqout
stores the quotes to be used before item labels; otherwise they could appear after
the labels.

35.185 \addto\@marginparreset{\let\es@quotcont\@empty}
35.186
35.187 \def\es@listquot{%
35.188 \csname rquot\romannumeral\es@quotdepth\endcsname
35.189 \global\es@listquottrue}
35.190 \fi %<<<<<<

Now, the \frenchspacing, followed by \... and \%
35.191 \addto\textspanish{\bbl@frenchspacing}
35.192 \addto\notextspanish{\bbl@nonfrenchspacing}
35.193
35.194 \addto\textspanish{%
35.195 \let\es@save@dot\.%

189

35.196 \babel@save\.%
35.197 \def\.{\@ifnextchar.{\es@dots}{\es@save@dot}}}
35.198
35.199 \def\es@dots..{\leavevmode\hbox{...}\spacefactor\@M}
35.200
35.201 \ifes@LaTeXe %<<<<<<
35.202 \addto\textspanish{%
35.203 \let\percentsign\%%
35.204 \babel@save\%%
35.205 \def\%{\unskip\,\percentsign{}}}
35.206 \else
35.207 \addto\textspanish{%
35.208 \let\percentsign\%%
35.209 \babel@save\%%
35.210 \def\%{\unskip\ifmmode\,\else$\m@th\,$\fi\percentsign{}}}
35.211 \fi

We follow with the math group. It’s not easy to add an accent in an operator.
The difficulty is that we must avoid using text (that is, \mbox) because we have no
control on font and size, and at time we should access \i, which is a text command
forbidden in math mode. \dotlessi must be converted to uppercase if necessary
in LATEX2ε. There are two versions, depending on the format.

35.212 \addto\mathspanish{%
35.213 \babel@save\dotlessi
35.214 \def\dotlessi{\protect\es@dotlessi}}
35.215
35.216 \let\nomathspanish\relax %% Unused, but called
35.217
35.218 \ifes@LaTeXe %<<<<<<
35.219 \def\es@texti{\i}
35.220 \addto\@uclclist{\dotlessi\es@texti}
35.221 \fi %<<<<<<
35.222
35.223 \ifes@LaTeXe %<<<<<<
35.224 \def\es@dotlessi{%
35.225 \ifmmode
35.226 {\ifnum\mathgroup=\m@ne
35.227 \imath
35.228 \else
35.229 \count@\escapechar \escapechar=\m@ne
35.230 \expandafter\expandafter\expandafter
35.231 \split@name\expandafter\string\the\textfont\mathgroup\@nil
35.232 \escapechar=\count@
35.233 \@ifundefined{\f@encoding\string\i}%
35.234 {\edef\f@encoding{\string?}}{}%
35.235 \expandafter\count@\the\csname\f@encoding\string\i\endcsname
35.236 \advance\count@"7000
35.237 \mathchar\count@
35.238 \fi}%
35.239 \else

190

35.240 \i
35.241 \fi}
35.242 \else %<<<<<<
35.243 \def\es@dotlessi{%
35.244 \ifmmode
35.245 \mathchar"7010
35.246 \else
35.247 \i
35.248 \fi}
35.249 \fi %<<<<<<

The switches for accents and spaces in math.
35.250 \def\accentedoperators{%
35.251 \def\es@op@ac##1{\acute{##1}}%
35.252 \def\es@op@i{\acute{\dotlessi}}}
35.253 \def\unaccentedoperators{%
35.254 \def\es@op@ac##1{##1}%
35.255 \def\es@op@i{i}}
35.256 \accentedoperators
35.257
35.258 \def\spacedoperators{\let\es@op@sp\,}
35.259 \def\unspacedoperators{\let\es@op@sp\@empty}
35.260 \spacedoperators

The operators are stored in \es@operators, which in turn is included in the
math group. Since \operator@font is defined in LATEX2ε only, we defined in the
plain variant.

35.261 \addto\mathspanish{\es@operators}
35.262
35.263 \ifes@LaTeXe\else %<<<<<<
35.264 \let\operator@font\rm
35.265 \def\@empty{}
35.266 \fi %<<<<<<
35.267
35.268 \def\es@operators{%
35.269 \babel@save\lim
35.270 \def\lim{\mathop{\operator@font l\protect\es@op@i m}}%
35.271 \babel@save\limsup
35.272 \def\limsup{\mathop{\operator@font l\es@op@i m\,sup}}%
35.273 \babel@save\liminf
35.274 \def\liminf{\mathop{\operator@font l\es@op@i m\,inf}}%
35.275 \babel@save\max
35.276 \def\max{\mathop{\operator@font m\es@op@ac ax}}%
35.277 \babel@save\inf
35.278 \def\inf{\mathop{\operator@font \protect\es@op@i nf}}%
35.279 \babel@save\min
35.280 \def\min{\mathop{\operator@font m\protect\es@op@i n}}%
35.281 \babel@save\bmod
35.282 \def\bmod{%
35.283 \nonscript\mskip-\medmuskip\mkern5mu%
35.284 \mathbin{\operator@font m\es@op@ac od}\penalty900\mkern5mu%

191

35.285 \nonscript\mskip-\medmuskip}%
35.286 \babel@save\pmod
35.287 \def\pmod##1{%
35.288 \allowbreak\mkern18mu({\operator@font m\es@op@ac od}\,\,##1)}%
35.289 \def\es@a##1 {%
35.290 \es@delayed
35.291 \if^##1^\then % is it empty? do nothing and continue
35.292 \es@a
35.293 \else
35.294 \es@delayed
35.295 \if&##1\then % is it &? do nothing and finish
35.296 \else
35.297 \begingroup
35.298 \let\,\@empty % \, is ignored when def’ing the macro name
35.299 \let\acute\@firstofone % same
35.300 \edef\es@b{\expandafter\noexpand\csname##1\endcsname}%
35.301 \def\,{\noexpand\es@op@sp}%
35.302 \def\acute####1{%
35.303 \if i####1%
35.304 \noexpand\es@op@i
35.305 \else
35.306 \noexpand\es@op@ac####1%
35.307 \fi}%
35.308 \edef\es@a{\endgroup
35.309 \noexpand\babel@save\expandafter\noexpand\es@b
35.310 \def\expandafter\noexpand\es@b{%
35.311 \mathop{\noexpand\operator@font##1}\nolimits}}%
35.312 \es@a % It restores itself
35.313 \es@a
35.314 \fi
35.315 \fi}%
35.316 \let\es@b\spanishoperators
35.317 \addto\es@b{ }%
35.318 \expandafter\es@a\es@b sen tg arc\,sen arc\,cos arc\,tg & }
35.319
35.320 \def\spanishoperators{cotg cosec senh tgh}

Now comes the text shorthands. They are grouped in \shorthandsspanish
and this style performs some operations before the babel shortands are called.
The goals are to allow espression like $a^{x’}$ and to deactivate the shorthands
making them of category ‘other.’ After providing a \’i shorthand, the new macros
are defined.

35.321 \DeclareTextCompositeCommand{\’}{OT1}{i}{\@tabacckludge’{\i}}
35.322
35.323 \def\es@set@shorthand#1{%
35.324 \expandafter\edef\csname es@savecat\string#1\endcsname
35.325 {\the\catcode‘#1}%
35.326 \initiate@active@char{#1}%
35.327 \catcode‘#1=\csname es@savecat\string#1\endcsname\relax
35.328 \expandafter\let\csname es@math\string#1\expandafter\endcsname

192

35.329 \csname normal@char\string#1\endcsname}
35.330
35.331 \def\es@use@shorthand{%
35.332 \es@delayed
35.333 \ifx\thepage\relax\then
35.334 \string
35.335 \else{%
35.336 \es@delayed
35.337 \ifx\protect\@unexpandable@protect\then
35.338 \noexpand
35.339 \else
35.340 \es@use@sh
35.341 \fi}%
35.342 \fi}
35.343
35.344 \def\es@text@sh#1{\csname active@char\string#1\endcsname}
35.345 \def\es@math@sh#1{\csname es@math\string#1\endcsname}
35.346
35.347 \def\es@use@sh{%
35.348 \es@delayed
35.349 \if@safe@actives\then
35.350 \string
35.351 \else{%
35.352 \es@delayed
35.353 \ifmmode\then
35.354 \es@math@sh
35.355 \else
35.356 \es@text@sh
35.357 \fi}%
35.358 \fi}
35.359
35.360 \gdef\es@activate#1{%
35.361 \begingroup
35.362 \lccode‘\~=‘#1
35.363 \lowercase{%
35.364 \endgroup
35.365 \def~{\es@use@shorthand~}}}
35.366
35.367 \def\spanishdeactivate#1{%
35.368 \@tfor\@tempa:=#1\do{\expandafter\es@spdeactivate\@tempa}}
35.369
35.370 \def\es@spdeactivate#1{%
35.371 \if.#1%
35.372 \mathcode‘\.=\es@period@code
35.373 \else
35.374 \begingroup
35.375 \lccode‘\~=‘#1
35.376 \lowercase{%
35.377 \endgroup
35.378 \expandafter\let\expandafter~%

193

35.379 \csname normal@char\string#1\endcsname}%
35.380 \catcode‘#1\csname es@savecat\string#1\endcsname\relax
35.381 \fi}
35.382
35.383 \def\es@reviveshorthands{%
35.384 \es@restore{"}\es@restore{~}%
35.385 \es@restore{<}\es@restore{>}%
35.386 \es@quoting}
35.387
35.388 \def\es@restore#1{%
35.389 \catcode‘#1=\active
35.390 \begingroup
35.391 \lccode‘\~=‘#1
35.392 \lowercase{%
35.393 \endgroup
35.394 \bbl@deactivate{~}}}

But spanish allows two category codes for ’, so both should be taken into
account in \bbl@pr@m@s.

35.395 \begingroup
35.396 \catcode‘\’=12
35.397 \lccode‘~=‘’ \lccode‘’=‘’
35.398 \lowercase{%
35.399 \gdef\bbl@pr@m@s{%
35.400 \es@delayed
35.401 \ifx~\@let@token\then
35.402 \pr@@@s
35.403 \else
35.404 {\es@delayed
35.405 \ifx’\@let@token\then
35.406 \pr@@@s
35.407 \else
35.408 {\es@delayed
35.409 \ifx^\@let@token\then
35.410 \pr@@@t
35.411 \else
35.412 \egroup
35.413 \fi}%
35.414 \fi}%
35.415 \fi}}
35.416 \endgroup

35.417 \expandafter\ifx\csname @tabacckludge\endcsname\relax
35.418 \let\es@tak\a
35.419 \else
35.420 \let\es@tak\@tabacckludge
35.421 \fi
35.422
35.423 \ifes@LaTeXe %<<<<<<
35.424 \def\@tabacckludge#1{\expandafter\es@tak\string#1}
35.425 \let\a\@tabacckludge

194

35.426 \else\ifes@plain %<<<<<<
35.427 \def\@tabacckludge#1{\csname\string#1\endcsname}
35.428 \else %<<<<<<
35.429 \def\@tabacckludge#1{\csname a\string#1\endcsname}
35.430 \fi\fi %<<<<<<
35.431
35.432 \expandafter\ifx\csname add@accent\endcsname\relax
35.433 \def\add@accent#1#2{\accent#1 #2}
35.434 \fi

Instead of redefining \’, we redefine the internal macro for the OT1 encoding.

35.435 \ifes@LaTeXe %<<<<<<
35.436 \def\es@accent#1#2#3{%
35.437 \expandafter\@text@composite
35.438 \csname OT1\string#1\endcsname#3\@empty\@text@composite
35.439 {\bbl@allowhyphens\add@accent{#2}{#3}\bbl@allowhyphens
35.440 \setbox\@tempboxa\hbox{#3%
35.441 \global\mathchardef\accent@spacefactor\spacefactor}%
35.442 \spacefactor\accent@spacefactor}}
35.443 \else %<<<<<<
35.444 \def\es@accent#1#2#3{%
35.445 \bbl@allowhyphens\add@accent{#2}{#3}\bbl@allowhyphens
35.446 \spacefactor\sfcode‘#3 }
35.447 \fi %<<<<<<

The shorthands are activated in the aux file. Now, we begin the shorthands
group.

35.448 \addto\shorthandsspanish{\languageshorthands{spanish}}
35.449 \let\noshorthandsspanish\relax

First, decimal comma.
35.450 \def\spanishdecimal#1{\def\es@decimal{{#1}}}
35.451 \def\decimalcomma{\spanishdecimal{,}}
35.452 \def\decimalpoint{\spanishdecimal{.}}
35.453 \decimalcomma
35.454
35.455 \es@set@shorthand{.}
35.456
35.457 \@namedef{es@math\string.}{%
35.458 \@ifnextchar\egroup
35.459 {\mathchar\es@period@code\relax}%
35.460 {\es@text@sh.}}
35.461
35.462 \declare@shorthand{system}{.}{\mathchar\es@period@code\relax}

35.463 \addto\shorthandsspanish{%
35.464 \mathchardef\es@period@code\the\mathcode‘\.%
35.465 \babel@savevariable{\mathcode‘\.}%
35.466 \mathcode‘\.="8000 %
35.467 \es@activate{.}}
35.468

195

35.469 \AtBeginDocument{%
35.470 \catcode‘\.=12
35.471 \if@filesw
35.472 \immediate\write\@mainaux{%
35.473 \string\catcode‘\string\.=12}%
35.474 \fi}
35.475
35.476 \declare@shorthand{spanish}{.1}{\es@decimal1}
35.477 \declare@shorthand{spanish}{.2}{\es@decimal2}
35.478 \declare@shorthand{spanish}{.3}{\es@decimal3}
35.479 \declare@shorthand{spanish}{.4}{\es@decimal4}
35.480 \declare@shorthand{spanish}{.5}{\es@decimal5}
35.481 \declare@shorthand{spanish}{.6}{\es@decimal6}
35.482 \declare@shorthand{spanish}{.7}{\es@decimal7}
35.483 \declare@shorthand{spanish}{.8}{\es@decimal8}
35.484 \declare@shorthand{spanish}{.9}{\es@decimal9}
35.485 \declare@shorthand{spanish}{.0}{\es@decimal0}

Now accents and tools
35.486 \es@set@shorthand{"}
35.487 \def\es@umlaut#1{%
35.488 \bbl@allowhyphens\add@accent{127}#1\bbl@allowhyphens
35.489 \spacefactor\sfcode‘#1 }

We override the default " of babel, intended for german.
35.490 \ifes@LaTeXe %<<<<<<
35.491 \addto\shorthandsspanish{%
35.492 \es@activate{"}%
35.493 \es@activate{~}%
35.494 \babel@save\bbl@umlauta
35.495 \let\bbl@umlauta\es@umlaut
35.496 \expandafter\babel@save\csname OT1\string\~\endcsname
35.497 \expandafter\def\csname OT1\string\~\endcsname{\es@accent\~{126}}%
35.498 \expandafter\babel@save\csname OT1\string\’\endcsname
35.499 \expandafter\def\csname OT1\string\’\endcsname{\es@accent\’{19}}}
35.500 \else %<<<<<<
35.501 \addto\shorthandsspanish{%
35.502 \es@activate{"}%
35.503 \es@activate{~}%
35.504 \babel@save\bbl@umlauta
35.505 \let\bbl@umlauta\es@umlaut
35.506 \babel@save\~%
35.507 \def\~{\es@accent\~{126}}%
35.508 \babel@save\’%
35.509 \def\’#1{\if#1i\es@accent\’{19}\i\else\es@accent\’{19}{#1}\fi}}
35.510 \fi %<<<<<<

35.511 \declare@shorthand{spanish}{"a}{\protect\es@sptext{a}}
35.512 \declare@shorthand{spanish}{"A}{\protect\es@sptext{A}}
35.513 \declare@shorthand{spanish}{"o}{\protect\es@sptext{o}}
35.514 \declare@shorthand{spanish}{"O}{\protect\es@sptext{O}}

196

35.515 \declare@shorthand{spanish}{"e}{\protect\es@sptext@r{e}}
35.516 \declare@shorthand{spanish}{"E}{\protect\es@sptext@r{E}}
35.517
35.518 \def\es@sptext@r#1#2{\es@sptext{#1#2}}
35.519
35.520 \declare@shorthand{spanish}{"u}{\"u}
35.521 \declare@shorthand{spanish}{"U}{\"U}
35.522
35.523 \declare@shorthand{spanish}{"c}{\c{c}}
35.524 \declare@shorthand{spanish}{"C}{\c{C}}
35.525
35.526 \declare@shorthand{spanish}{"<}{\guillemotleft{}}
35.527 \declare@shorthand{spanish}{">}{\guillemotright{}}
35.528 \declare@shorthand{spanish}{"-}{\bbl@allowhyphens\-\bbl@allowhyphens}
35.529 \declare@shorthand{spanish}{"=}%
35.530 {\bbl@allowhyphens\char\hyphenchar\font\hskip\z@skip}
35.531 \declare@shorthand{spanish}{"~}
35.532 {\bbl@allowhyphens\discretionary{\char\hyphenchar\font}%
35.533 {\char\hyphenchar\font}{\char\hyphenchar\font}\bbl@allowhyphens}
35.534 \declare@shorthand{spanish}{"r}
35.535 {\bbl@allowhyphens\discretionary{\char\hyphenchar\font}%
35.536 {}{r}\bbl@allowhyphens}
35.537 \declare@shorthand{spanish}{"R}
35.538 {\bbl@allowhyphens\discretionary{\char\hyphenchar\font}%
35.539 {}{R}\bbl@allowhyphens}
35.540 \declare@shorthand{spanish}{"y}
35.541 {\@ifundefined{scalebox}%
35.542 {\ensuremath{\tau}}%
35.543 {\raisebox{1ex}{\scalebox{-1}{\resizebox{.45em}{1ex}{2}}}}}
35.544 \declare@shorthand{spanish}{""}{\hskip\z@skip}
35.545 \declare@shorthand{spanish}{"/}
35.546 {\setbox\z@\hbox{/}%
35.547 \dimen@\ht\z@
35.548 \advance\dimen@-1ex
35.549 \advance\dimen@\dp\z@
35.550 \dimen@.31\dimen@
35.551 \advance\dimen@-\dp\z@
35.552 \ifdim\dimen@>0pt
35.553 \kern.01em\lower\dimen@\box\z@\kern.03em
35.554 \else
35.555 \box\z@
35.556 \fi}
35.557 \declare@shorthand{spanish}{"?}
35.558 {\setbox\z@\hbox{?‘}%
35.559 \leavevmode\raise\dp\z@\box\z@}
35.560 \declare@shorthand{spanish}{"!}
35.561 {\setbox\z@\hbox{!‘}%
35.562 \leavevmode\raise\dp\z@\box\z@}
35.563
35.564 \es@set@shorthand{~}

197

35.565 \declare@shorthand{spanish}{~n}{\~n}
35.566 \declare@shorthand{spanish}{~N}{\~N}
35.567 \declare@shorthand{spanish}{~-}{%
35.568 \leavevmode
35.569 \bgroup
35.570 \let\@sptoken\es@dashes % This assignation changes the
35.571 \@ifnextchar-% \@ifnextchar behaviour
35.572 {\es@dashes}%
35.573 {\hbox{\char\hyphenchar\font}\egroup}}
35.574 \def\es@dashes-{%
35.575 \@ifnextchar-%
35.576 {\bbl@allowhyphens\hbox{---}\bbl@allowhyphens\egroup\@gobble}%
35.577 {\bbl@allowhyphens\hbox{--}\bbl@allowhyphens\egroup}}
35.578
35.579 \def\deactivatetilden{%
35.580 \expandafter\let\csname spanish@sh@\string~@n@\endcsname\relax
35.581 \expandafter\let\csname spanish@sh@\string~@N@\endcsname\relax}

The shorthands for quoting.
35.582 \expandafter\ifx\csname XML@catcodes\endcsname\relax
35.583 \addto\es@select{%
35.584 \catcode‘\<\active\catcode‘\>=\active
35.585 \es@quoting}
35.586
35.587 \es@set@shorthand{<}
35.588 \es@set@shorthand{>}
35.589
35.590 \declare@shorthand{system}{<}{\csname normal@char\string<\endcsname}
35.591 \declare@shorthand{system}{>}{\csname normal@char\string>\endcsname}
35.592
35.593 \addto\shorthandsspanish{%
35.594 \es@activate{<}%
35.595 \es@activate{>}}

35.596 \ifes@LaTeXe %<<<<<<
35.597 \AtBeginDocument{%
35.598 \es@quoting
35.599 \if@filesw
35.600 \immediate\write\@mainaux{\string\es@quoting}%
35.601 \fi}%
35.602 \fi %<<<<<<
35.603
35.604 \def\activatequoting{%
35.605 \catcode‘>=\active \catcode‘<=\active
35.606 \let\es@quoting\activatequoting}
35.607 \def\deactivatequoting{%
35.608 \catcode‘>=12 \catcode‘<=12
35.609 \let\es@quoting\deactivatequoting}
35.610
35.611 \declare@shorthand{spanish}{<<}{\begin{quoting}}
35.612 \declare@shorthand{spanish}{>>}{\end{quoting}}

198

35.613 \fi
35.614
35.615 \let\es@quoting\relax
35.616 \let\deactivatequoting\relax
35.617 \let\activatequoting\relax

The acute accents are stored in a macro. If activeacute was set as an option
it’s executed. If not is not deleted for a possible later use in the cfg file. In non
LATEX2ε formats is always executed.

35.618 \def\es@activeacute{%
35.619 \es@set@shorthand{’}%
35.620 \addto\shorthandsspanish{\es@activate{’}}%
35.621 \addto\es@reviveshorthands{\es@restore{’}}%
35.622 \addto\es@select{\catcode‘’=\active}%
35.623 \declare@shorthand{spanish}{’a}{\@tabacckludge’a}%
35.624 \declare@shorthand{spanish}{’A}{\@tabacckludge’A}%
35.625 \declare@shorthand{spanish}{’e}{\@tabacckludge’e}%
35.626 \declare@shorthand{spanish}{’E}{\@tabacckludge’E}%
35.627 \declare@shorthand{spanish}{’i}{\@tabacckludge’i}%
35.628 \declare@shorthand{spanish}{’I}{\@tabacckludge’I}%
35.629 \declare@shorthand{spanish}{’o}{\@tabacckludge’o}%
35.630 \declare@shorthand{spanish}{’O}{\@tabacckludge’O}%
35.631 \declare@shorthand{spanish}{’u}{\@tabacckludge’u}%
35.632 \declare@shorthand{spanish}{’U}{\@tabacckludge’U}%
35.633 \declare@shorthand{spanish}{’n}{\~n}%
35.634 \declare@shorthand{spanish}{’N}{\~N}%
35.635 \declare@shorthand{spanish}{’’}{\textquotedblright}%
35.636 \let\es@activeacute\relax}
35.637
35.638 \ifes@LaTeXe %<<<<<<
35.639 \@ifpackagewith{babel}{activeacute}{\es@activeacute}{}
35.640 \else %<<<<<<
35.641 \es@activeacute
35.642 \fi %<<<<<<%

And the customization. By default these macros only store the values and do
nothing.

35.643 \def\es@enumerate#1#2#3#4{%
35.644 \def\es@enum{{#1}{#2}{#3}{#4}}}
35.645
35.646 \def\es@itemize#1#2#3#4{%
35.647 \def\es@item{{#1}{#2}{#3}{#4}}}

The part formerly in the .lld file comes here. It performs layout adaptation
of LATEX to “orthodox” Spanish rules.

35.648 \ifes@LaTeXe %<<<<<<
35.649
35.650 \es@enumerate{1.}{a)}{1)}{a$’$}
35.651 \def\spanishdashitems{\es@itemize{---}{---}{---}{---}}
35.652 \def\spanishsymbitems{%
35.653 \es@itemize

199

35.654 {\leavevmode\hbox to 1.2ex
35.655 {\hss\vrule height .9ex width .7ex depth -.2ex\hss}}%
35.656 {\textbullet}%
35.657 {$\m@th\circ$}%
35.658 {$\m@th\diamond$}}
35.659 \def\spanishsignitems{%
35.660 \es@itemize
35.661 {\textbullet}%
35.662 {$\m@th\circ$}%
35.663 {$\m@th\diamond$}%
35.664 {$\m@th\triangleright$}}
35.665 \spanishsymbitems
35.666
35.667 \def\es@enumdef#1#2#3\@@{%
35.668 \if#21%
35.669 \@namedef{theenum#1}{\arabic{enum#1}}%
35.670 \else\if#2a%
35.671 \@namedef{theenum#1}{\emph{\alph{enum#1}}}%
35.672 \else\if#2A%
35.673 \@namedef{theenum#1}{\Alph{enum#1}}%
35.674 \else\if#2i%
35.675 \@namedef{theenum#1}{\roman{enum#1}}%
35.676 \else\if#2I%
35.677 \@namedef{theenum#1}{\Roman{enum#1}}%
35.678 \else\if#2o%
35.679 \@namedef{theenum#1}{\arabic{enum#1}\protect\es@sptext{o}}%
35.680 \fi\fi\fi\fi\fi\fi
35.681 \toks@\expandafter{\csname theenum#1\endcsname}
35.682 \expandafter\edef\csname labelenum#1\endcsname
35.683 {\noexpand\es@listquot\the\toks@#3}}
35.684
35.685 \addto\layoutspanish{%
35.686 \def\es@enumerate##1##2##3##4{%
35.687 \es@enumdef{i}##1\@empty\@empty\@@
35.688 \es@enumdef{ii}##2\@empty\@empty\@@
35.689 \es@enumdef{iii}##3\@empty\@empty\@@
35.690 \es@enumdef{iv}##4\@empty\@empty\@@}%
35.691 \def\es@itemize##1##2##3##4{%
35.692 \def\labelitemi{\es@listquot##1}%
35.693 \def\labelitemii{\es@listquot##2}%
35.694 \def\labelitemiii{\es@listquot##3}%
35.695 \def\labelitemiv{\es@listquot##4}}%
35.696 \def\p@enumii{\theenumi}%
35.697 \def\p@enumiii{\theenumi\theenumii}%
35.698 \def\p@enumiv{\p@enumiii\theenumiii}%
35.699 \expandafter\es@enumerate\es@enum
35.700 \expandafter\es@itemize\es@item
35.701 \DeclareTextCommand{\guillemotleft}{OT1}{%
35.702 \ifmmode\ll
35.703 \else

200

35.704 \save@sf@q{\penalty\@M
35.705 \leavevmode\hbox{\usefont{U}{lasy}{m}{n}%
35.706 \char40 \kern-0.19em\char40 }}%
35.707 \fi}%
35.708 \DeclareTextCommand{\guillemotright}{OT1}{%
35.709 \ifmmode\gg
35.710 \else
35.711 \save@sf@q{\penalty\@M
35.712 \leavevmode\hbox{\usefont{U}{lasy}{m}{n}%
35.713 \char41 \kern-0.19em\char41 }}%
35.714 \fi}%
35.715 \def\@fnsymbol##1%
35.716 {\ifcase##1\or*\or**\or***\or****\or
35.717 *****\or******\else\@ctrerr\fi}%
35.718 \def\@alph##1%
35.719 {\ifcase##1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or
35.720 k\or l\or m\or n\or \~n\or o\or p\or q\or r\or s\or t\or u\or v\or
35.721 w\or x\or y\or z\else\@ctrerr\fi}%
35.722 \def\@Alph##1%
35.723 {\ifcase##1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or
35.724 K\or L\or M\or N\or \~N\or O\or P\or Q\or R\or S\or T\or U\or V\or
35.725 W\or X\or Y\or Z\else\@ctrerr\fi}%
35.726 \let\@afterindentfalse\@afterindenttrue
35.727 \@afterindenttrue
35.728 \def\@seccntformat##1{\csname the##1\endcsname.\quad}%
35.729 \def\numberline##1{\hb@xt@\@tempdima{##1\if&##1&\else.\fi\hfil}}%
35.730 \def\@roman##1{\protect\es@roman{\number##1}}%
35.731 \def\es@roman##1{\protect\es@lsc{\romannumeral##1}}%
35.732 \def\esromanindex##1##2{##1{\protect\es@lsc{##2}}}}

We need to execute the following code when babel has been run, in order to
see if spanish is the main language.

35.733 \AtEndOfPackage{%
35.734 \let\es@activeacute\@undefined
35.735 \def\bbl@tempa{spanish}%
35.736 \ifx\bbl@main@language\bbl@tempa
35.737 \AtBeginDocument{\layoutspanish}%
35.738 \addto\es@select{%
35.739 \@ifstar{\let\layoutspanish\relax}%
35.740 {\layoutspanish\let\layoutspanish\relax}}%
35.741 \fi
35.742 \selectspanish}
35.743
35.744 \fi %<<<<<<

After restoring the catcode of ~ and setting the minimal values for hyphenation,
the .ldf is finished.

35.745 \es@savedcatcodes
35.746
35.747 \providehyphenmins{\CurrentOption}{\tw@\tw@}
35.748

201

35.749 \ifes@LaTeXe %<<<<<<
35.750 \ldf@finish{spanish}
35.751 \else %<<<<<<
35.752 \es@select
35.753 \ldf@finish{spanish}
35.754 \csname activatequoting\endcsname
35.755 \fi %<<<<<<
35.756
35.757 〈/code〉

That’s all in the main file. Now the file with custom-bib macros.
35.758 〈∗bblbst〉
35.759 \def\bbland{y}
35.760 \def\bbleditors{directores} \def\bbleds{dirs.\@}
35.761 \def\bbleditor{director} \def\bbled{dir.\@}
35.762 \def\bbledby{dirigido por}
35.763 \def\bbledition{edici\’on} \def\bbledn{ed.\@}
35.764 \def\bbletal{y otros}
35.765 \def\bblvolume{vol\’umen} \def\bblvol{vol.\@}
35.766 \def\bblof{de}
35.767 \def\bblnumber{n\’umero} \def\bblno{n\sptext{o}}
35.768 \def\bblin{en}
35.769 \def\bblpages{p\’aginas} \def\bblpp{p\’ags.\@}
35.770 \def\bblpage{p\’gina} \def\bblp{p\’ag.\@}
35.771 \def\bblchapter{cap\’itulo} \def\bblchap{cap.\@}
35.772 \def\bbltechreport{informe t\’ecnico}
35.773 \def\bbltechrep{inf.\@ t\’ec.\@}
35.774 \def\bblmthesis{proyecto de fin de carrera}
35.775 \def\bblphdthesis{tesis doctoral}
35.776 \def\bblfirst {primera} \def\bblfirsto {1\sptext{a}}
35.777 \def\bblsecond{segunda} \def\bblsecondo{2\sptext{a}}
35.778 \def\bblthird {tercera} \def\bblthirdo {3\sptext{a}}
35.779 \def\bblfourth{cuarta} \def\bblfourtho{4\sptext{a}}
35.780 \def\bblfifth {quinta} \def\bblfiftho {5\sptext{a}}
35.781 \def\bblth{\sptext{a}}
35.782 \let\bblst\bblth \let\bblnd\bblth \let\bblrd\bblth
35.783 \def\bbljan{enero} \def\bblfeb{febrero} \def\bblmar{marzo}
35.784 \def\bblapr{abril} \def\bblmay{mayo} \def\bbljun{junio}
35.785 \def\bbljul{julio} \def\bblaug{agosto} \def\bblsep{septiembre}
35.786 \def\bbloct{octubre}\def\bblnov{noviembre}\def\bbldec{diciembre}
35.787 〈/bblbst〉

The spanish option writes a macro in the page field of MakeIndex in entries
with small caps number, and they are rejected. This program is a preprocessor
which moves this macro to the entry field.

35.788 〈∗indexes〉
35.789 \makeatletter
35.790
35.791 \newcount\es@converted
35.792 \newcount\es@processed
35.793

202

35.794 \def\es@encap{‘\|}
35.795 \def\es@openrange{‘\(}
35.796 \def\es@closerange{‘\)}
35.797
35.798 \def\es@split@file#1.#2\@@{#1}
35.799 \def\es@split@ext#1.#2\@@{#2}
35.800
35.801 \typein[\answer]{^^JArchivo que convertir^^J%
35.802 (extension por omision .idx):}
35.803
35.804 \@expandtwoargs\in@{.}{\answer}
35.805 \ifin@
35.806 \edef\es@input@file{\expandafter\es@split@file\answer\@@}
35.807 \edef\es@input@ext{\expandafter\es@split@ext\answer\@@}
35.808 \else
35.809 \edef\es@input@file{\answer}
35.810 \def\es@input@ext{idx}
35.811 \fi
35.812
35.813 \typein[\answer]{^^JArchivo de destino^^J%
35.814 (archivo por omision: \es@input@file.eix,^^J%
35.815 extension por omision .eix):}
35.816 \ifx\answer\@empty
35.817 \edef\es@output{\es@input@file.eix}
35.818 \else
35.819 \@expandtwoargs\in@{.}{\answer}
35.820 \ifin@
35.821 \edef\es@output{\answer}
35.822 \else
35.823 \edef\es@output{\answer.eix}
35.824 \fi
35.825 \fi
35.826
35.827 \typein[\answer]{%
35.828 ^^J?Se ha usado algun esquema especial de controles^^J%
35.829 de MakeIndex para encap, open_range o close_range?^^J%
35.830 [s/n] (n por omision)}
35.831
35.832 \if s\answer
35.833 \typein[\answer]{^^JCaracter para ’encap’^^J%
35.834 (\string| por omision)}
35.835 \ifx\answer\@empty\else
35.836 \edef\es@encap{%
35.837 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
35.838 \fi
35.839 \typein[\answer]{^^JCaracter para ’open_range’^^J%
35.840 (\string(por omision)}
35.841 \ifx\answer\@empty\else
35.842 \edef\es@openrange{%
35.843 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}

203

35.844 \fi
35.845 \typein[\answer]{^^JCaracter para ’close_range’^^J%
35.846 (\string) por omision)}
35.847 \ifx\answer\@empty\else
35.848 \edef\es@closerange{%
35.849 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
35.850 \fi
35.851 \fi
35.852
35.853 \newwrite\es@indexfile
35.854 \immediate\openout\es@indexfile=\es@output
35.855
35.856 \newif\ifes@encapsulated
35.857
35.858 \def\es@roman#1{\romannumeral#1 }
35.859 \edef\es@slash{\expandafter\@gobble\string\\}
35.860
35.861 \def\indexentry{%
35.862 \begingroup
35.863 \@sanitize
35.864 \es@indexentry}
35.865
35.866 \begingroup
35.867
35.868 \catcode‘\|=12 \lccode‘\|=\es@encap\relax
35.869 \catcode‘\(=12 \lccode‘\(=\es@openrange\relax
35.870 \catcode‘\)=12 \lccode‘\)=\es@closerange\relax
35.871
35.872 \lowercase{
35.873 \gdef\es@indexentry#1{%
35.874 \endgroup
35.875 \advance\es@processed\@ne
35.876 \es@encapsulatedfalse
35.877 \es@bar@idx#1|\@@
35.878 \es@idxentry}%
35.879 }
35.880
35.881 \lowercase{
35.882 \gdef\es@idxentry#1{%
35.883 \in@{\es@roman}{#1}%
35.884 \ifin@
35.885 \advance\es@converted\@ne
35.886 \immediate\write\es@indexfile{%
35.887 \string\indexentry{\es@b|\ifes@encapsulated\es@p\fi esromanindex%
35.888 {\ifx\es@a\@empty\else\es@slash\es@a\fi}}{#1}}%
35.889 \else
35.890 \immediate\write\es@indexfile{%
35.891 \string\indexentry{\es@b\ifes@encapsulated|\es@p\es@a\fi}{#1}}%
35.892 \fi}
35.893 }

204

35.894
35.895 \lowercase{
35.896 \gdef\es@bar@idx#1|#2\@@{%
35.897 \def\es@b{#1}\def\es@a{#2}%
35.898 \ifx\es@a\@empty\else\es@encapsulatedtrue\es@bar@eat#2\fi}
35.899 }
35.900
35.901 \lowercase{
35.902 \gdef\es@bar@eat#1#2|{\def\es@p{#1}\def\es@a{#2}%
35.903 \edef\es@t{(}\ifx\es@t\es@p
35.904 \else\edef\es@t{)}\ifx\es@t\es@p
35.905 \else
35.906 \edef\es@a{\es@p\es@a}\let\es@p\@empty%
35.907 \fi\fi}
35.908 }
35.909
35.910 \endgroup
35.911
35.912 \input \es@input@file.\es@input@ext
35.913
35.914 \immediate\closeout\es@indexfile
35.915
35.916 \typeout{*****************}
35.917 \typeout{Se ha procesado: \es@input@file.\es@input@ext }
35.918 \typeout{Lineas leidas: \the\es@processed}
35.919 \typeout{Lineas convertidas: \the\es@converted}
35.920 \typeout{Resultado en: \es@output}
35.921 \ifnum\es@converted>\z@
35.922 \typeout{Genere el indice a partir de ese archivo}
35.923 \else
35.924 \typeout{No se ha realizado ningun tipo de conversion}
35.925 \typeout{Se puede generar el archivo directamente^^J%
35.926 de \es@input@file.\es@input@ext}
35.927 \fi
35.928 \typeout{*****************}
35.929 \@@end
35.930 〈/indexes〉

205

36 The Catalan language
The file catalan.dtx32 defines all the language-specific macro’s for the Catalan
language.

For this language only the double quote character (") is made active by default.
In table 10 an overview is given of the new macros defined and the new meanings
of ". Additionally to that, the user can explicitly activate the acute accent or
apostrophe (’) and/or the grave accent (‘) characters by using the activeacute and
activegrave options. In that case, the definitions shown in table 11 also become
available33.

\l.l geminated-l digraph (similar to l·l). \L.L produces
the uppercase version.

\lgem geminated-l digraph (similar to l·l). \Lgem produces
the uppercase version.

\up Macro to help typing raised ordinals, like 1er. Takes
one argument.

\- like the old \-, but allowing hyphenation in the rest
of the word.

"i i with diaeresis, allowing hyphenation in the rest of
the word. Valid for the following vowels: i, u (both
lowercase and uppercase).

"c c-cedilla (ç). Valid for both uppercase and lowercase
c.

"l geminated-l digraph (similar to l·l). Valid for both
uppercase and lowercase l.

"< French left double quotes (similar to <<).
"> French right double quotes (similar to >>).
"- explicit hyphen sign, allowing hyphenation in the rest

of the word.
"| disable ligature at this position.

Table 10: Extra definitions made by file catalan.ldf (activated by default)

These active accents characters behave according to their original definitions
if not followed by one of the characters indicated in that table.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

36.1 〈∗code〉
36.2 \LdfInit{catalan}\captionscatalan

When this file is read as an option, i.e. by the \usepackage command, catalan
could be an ‘unknown’ language in which case we have to make it known. So we

32The file described in this section has version number v2.2p and was last revised on
2005/03/29.

33Please note that if the acute accent character is active, it is necessary to take special care of
coding apostrophes in a way which cannot be confounded with accents. Therefore, it is necessary
to type l’{}estri instead of l’estri.

206

’e acute accented a, allowing hyphenation in the rest of
the word. Valid for the following vowels: e, i, o, u
(both lowercase and uppercase).

‘a grave accented a, allowing hyphenation in the rest
of the word. Valid for the following vowels: a, e, o
(both lowercase and uppercase).

Table 11: Extra definitions made by file catalan.ldf (activated only when using
the options activeacute and activegrave)

check for the existence of \l@catalan to see whether we have to do something
here.

36.3 \ifx\l@catalan\@undefined
36.4 \@nopatterns{Catalan}
36.5 \adddialect\l@catalan0
36.6 \fi

The next step consists of defining commands to switch to (and from) the Cata-
lan language.

\catalanhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

36.7 \providehyphenmins{catalan}{\tw@\tw@}

\captionscatalan The macro \captionscatalan defines all strings used in the four standard docu-
mentclasses provided with LATEX.

36.8 \addto\captionscatalan{%
36.9 \def\prefacename{Pr\‘oleg}%

36.10 \def\refname{Refer\‘encies}%
36.11 \def\abstractname{Resum}%
36.12 \def\bibname{Bibliografia}%
36.13 \def\chaptername{Cap\’{\i}tol}%
36.14 \def\appendixname{Ap\‘endix}%
36.15 \def\contentsname{\’Index}%
36.16 \def\listfigurename{\’Index de figures}%
36.17 \def\listtablename{\’Index de taules}%
36.18 \def\indexname{\’Index alfab\‘etic}%
36.19 \def\figurename{Figura}%
36.20 \def\tablename{Taula}%
36.21 \def\partname{Part}%
36.22 \def\enclname{Adjunt}%
36.23 \def\ccname{C\‘opies a}%
36.24 \def\headtoname{A}%
36.25 \def\pagename{P\‘agina}%
36.26 \def\seename{Vegeu}%
36.27 \def\alsoname{Vegeu tamb\’e}%
36.28 \def\proofname{Demostraci\’o}%
36.29 \def\glossaryname{Glossari}%

207

36.30 }

\datecatalan The macro \datecatalan redefines the command \today to produce Catalan
dates. Months are written in lowercase34.

36.31 \def\datecatalan{%
36.32 \def\today{\number\day~\ifcase\month\or
36.33 de gener\or de febrer\or de mar\c{c}\or d’abril\or de maig\or
36.34 de juny\or de juliol\or d’agost\or de setembre\or d’octubre\or
36.35 de novembre\or de desembre\fi
36.36 \space de~\number\year}}

\extrascatalan
\noextrascatalan

The macro \extrascatalan will perform all the extra definitions needed for the
Catalan language. The macro \noextrascatalan is used to cancel the actions of
\extrascatalan.

To improve hyphenation we give the grave character (’) a non-zero lower case
code; when we do that TEX will find more breakpoints in words that contain this
character in its rôle as apostrophe.

36.37 \addto\extrascatalan{%
36.38 \lccode‘’=‘’}
36.39 \addto\noextrascatalan{%
36.40 \lccode‘’=0}

For Catalan, some characters are made active or are redefined. In particular,
the " character receives a new meaning; this can also happen for the ’ character
and the ‘ character when the options activegrave and/or activeacute are specified.

36.41 \addto\extrascatalan{\languageshorthands{catalan}}
36.42 \initiate@active@char{"}
36.43 \addto\extrascatalan{\bbl@activate{"}}

Because the grave character is being used in constructs such as \catcode‘‘=\active
it needs to have it’s original category code” when the auxiliary file is being read.
Note that this file is read twice, once at the beginning of the document; then there
is no problem; but the second time it is read at the end of the document to check
whether any labels changes. It’s this second time round that the actived grave
character leads to error messages.

36.44 \@ifpackagewith{babel}{activegrave}{%
36.45 \AtBeginDocument{%
36.46 \if@filesw\immediate\write\@auxout{\catcode096=12}\fi}
36.47 \initiate@active@char{‘}%
36.48 }{}
36.49 \@ifpackagewith{babel}{activegrave}{%
36.50 \addto\extrascatalan{\bbl@activate{‘}}%
36.51 }{}
36.52 \@ifpackagewith{babel}{activeacute}{%
36.53 \initiate@active@char{’}%
36.54 }{}

34This seems to be the common practice. See for example: E. Coromina, El 9 Nou: Manual
de redacció i estil, Ed. Eumo, Vic, 1993

208

36.55 \@ifpackagewith{babel}{activeacute}{%
36.56 \addto\extrascatalan{\bbl@activate{’}}%
36.57 }{}

Now make sure that the characters that have been turned into shorthanfd char-
acters expand to ‘normal’ characters outside the catalan environment.

36.58 \addto\noextrascatalan{\bbl@deactivate{"}}
36.59 \@ifpackagewith{babel}{activegrave}{%
36.60 \addto\noextrascatalan{\bbl@deactivate{‘}}}{}
36.61 \@ifpackagewith{babel}{activeacute}{%
36.62 \addto\noextrascatalan{\bbl@deactivate{’}}}{}

Apart from the active characters some other macros get a new definition.
Therefore we store the current ones to be able to restore them later. When their
current meanings are saved, we can safely redefine them.

We provide new definitions for the accent macros when one or both of the
options activegrave or activeacute were specified.

36.63 \addto\extrascatalan{%
36.64 \babel@save\"%
36.65 \def\"{\protect\@umlaut}}%
36.66 \@ifpackagewith{babel}{activegrave}{%
36.67 \babel@save\‘%
36.68 \addto\extrascatalan{\def\‘{\protect\@grave}}
36.69 }{}
36.70 \@ifpackagewith{babel}{activeacute}{%
36.71 \babel@save\’%
36.72 \addto\extrascatalan{\def\’{\protect\@acute}}
36.73 }{}

All the code above is necessary because we need a few extra active characters.
These characters are then used as indicated in tables 10 and 11.

\dieresis
\textacute
\textgrave

The original definition of \" is stored as \dieresis, because the definition of
\" might not be the default plain TEX one. If the user uses PostScript fonts
with the Adobe font encoding the " character is not in the same position as in
Knuth’s font encoding. In this case \" will not be defined as \accent"7F 1, but
as \accent’310 #1. Something similar happens when using fonts that follow the
Cork encoding. For this reason we save the definition of \" and use that in the
definition of other macros. We do likewise for \‘, and \’.

36.74 \let\dieresis\"
36.75 \@ifpackagewith{babel}{activegrave}{\let\textgrave\‘}{}
36.76 \@ifpackagewith{babel}{activeacute}{\let\textacute\’}{}

\@umlaut
\@acute
\@grave

We check the encoding and if not using T1, we make the accents expand but
enabling hyphenation beyond the accent. If this is the case, not all break positions
will be found in words that contain accents, but this is a limitation in TEX. An
unsolved problem here is that the encoding can change at any time. The definitions
below are made in such a way that a change between two 256-char encodings
are supported, but changes between a 128-char and a 256-char encoding are not

209

properly supported. We check if T1 is in use. If not, we will give a warning and
proceed redefining the accent macros so that TEX at least finds the breaks that
are not too close to the accent. The warning will only be printed to the log file.

36.77 \ifx\DeclareFontShape\@undefined
36.78 \wlog{Warning: You are using an old LaTeX}
36.79 \wlog{Some word breaks will not be found.}
36.80 \def\@umlaut#1{\allowhyphens\dieresis{#1}\allowhyphens}
36.81 \@ifpackagewith{babel}{activeacute}{%
36.82 \def\@acute#1{\allowhyphens\textacute{#1}\allowhyphens}}{}
36.83 \@ifpackagewith{babel}{activegrave}{%
36.84 \def\@grave#1{\allowhyphens\textgrave{#1}\allowhyphens}}{}
36.85 \else
36.86 \ifx\f@encoding\bbl@t@one
36.87 \let\@umlaut\dieresis
36.88 \@ifpackagewith{babel}{activeacute}{%
36.89 \let\@acute\textacute}{}
36.90 \@ifpackagewith{babel}{activegrave}{%
36.91 \let\@grave\textgrave}{}
36.92 \else
36.93 \wlog{Warning: You are using encoding \f@encoding\space
36.94 instead of T1.}
36.95 \wlog{Some word breaks will not be found.}
36.96 \def\@umlaut#1{\allowhyphens\dieresis{#1}\allowhyphens}
36.97 \@ifpackagewith{babel}{activeacute}{%
36.98 \def\@acute#1{\allowhyphens\textacute{#1}\allowhyphens}}{}
36.99 \@ifpackagewith{babel}{activegrave}{%

36.100 \def\@grave#1{\allowhyphens\textgrave{#1}\allowhyphens}}{}
36.101 \fi
36.102 \fi

If the user setup has extended fonts, the Ferguson macros are required to be
defined. We check for their existance and, if defined, expand to whatever they are
defined to. For instance, \’a would check for the existance of a \@ac@a macro. It
is assumed to expand to the code of the accented letter. If it is not defined, we
assume that no extended codes are available and expand to the original definition
but enabling hyphenation beyond the accent. This is as best as we can do. It is
better if you have extended fonts or ML-TEX because the hyphenation algorithm
can work on the whole word. The following macros are directly derived from
ML-TEX.35

Now we can define our shorthands: the diaeresis and “ela geminada” support,
36.103 \declare@shorthand{catalan}{"i}{\textormath{\@umlaut\i}{\ddot\imath}}

35A problem is perceived here with these macros when used in a multilingual environment
where extended hyphenation patterns are available for some but not all languages. Assume that
no extended patterns exist at some site for French and that french.sty would adopt this scheme
too. In that case, ’e in French would produce the combined accented letter, but hyphenation
around it would be suppressed. Both language options would need an independent method to
know whether they have extended patterns available. The precise impact of this problem and
the possible solutions are under study.

210

36.104 \declare@shorthand{catalan}{"l}{\lgem{}}
36.105 \declare@shorthand{catalan}{"u}{\textormath{\@umlaut u}{\ddot u}}
36.106 \declare@shorthand{catalan}{"I}{\textormath{\@umlaut I}{\ddot I}}
36.107 \declare@shorthand{catalan}{"L}{\Lgem{}}
36.108 \declare@shorthand{catalan}{"U}{\textormath{\@umlaut U}{\ddot U}}

cedille,
36.109 \declare@shorthand{catalan}{"c}{\textormath{\c c}{^{\prime} c}}
36.110 \declare@shorthand{catalan}{"C}{\textormath{\c C}{^{\prime} C}}

‘french’ quote characters,
36.111 \declare@shorthand{catalan}{"<}{%
36.112 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
36.113 \declare@shorthand{catalan}{">}{%
36.114 \textormath{\guillemotright}{\mbox{\guillemotright}}}

grave accents,
36.115 \@ifpackagewith{babel}{activegrave}{%
36.116 \declare@shorthand{catalan}{‘a}{\textormath{\@grave a}{\grave a}}
36.117 \declare@shorthand{catalan}{‘e}{\textormath{\@grave e}{\grave e}}
36.118 \declare@shorthand{catalan}{‘o}{\textormath{\@grave o}{\grave o}}
36.119 \declare@shorthand{catalan}{‘A}{\textormath{\@grave A}{\grave A}}
36.120 \declare@shorthand{catalan}{‘E}{\textormath{\@grave E}{\grave E}}
36.121 \declare@shorthand{catalan}{‘O}{\textormath{\@grave O}{\grave O}}
36.122 \declare@shorthand{catalan}{‘‘}{\textquotedblleft}%’’
36.123 }{}

acute accents,
36.124 \@ifpackagewith{babel}{activeacute}{%
36.125 \declare@shorthand{catalan}{’a}{\textormath{\@acute a}{^{\prime} a}}
36.126 \declare@shorthand{catalan}{’e}{\textormath{\@acute e}{^{\prime} e}}
36.127 \declare@shorthand{catalan}{’i}{\textormath{\@acute\i{}}{^{\prime} i}}
36.128 \declare@shorthand{catalan}{’o}{\textormath{\@acute o}{^{\prime} o}}
36.129 \declare@shorthand{catalan}{’u}{\textormath{\@acute u}{^{\prime} u}}
36.130 \declare@shorthand{catalan}{’A}{\textormath{\@acute A}{^{\prime} A}}
36.131 \declare@shorthand{catalan}{’E}{\textormath{\@acute E}{^{\prime} E}}
36.132 \declare@shorthand{catalan}{’I}{\textormath{\@acute I}{^{\prime} I}}
36.133 \declare@shorthand{catalan}{’O}{\textormath{\@acute O}{^{\prime} O}}
36.134 \declare@shorthand{catalan}{’U}{\textormath{\@acute U}{^{\prime} U}}
36.135 \declare@shorthand{catalan}{’|}{%
36.136 \textormath{\csname normal@char\string’\endcsname}{^{\prime}}}

the acute accent,
36.137 \declare@shorthand{catalan}{’’}{%
36.138 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}
36.139 }{}

and finally, some support definitions
36.140 \declare@shorthand{catalan}{"-}{\nobreak-\bbl@allowhyphens}
36.141 \declare@shorthand{catalan}{"|}{%
36.142 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
36.143 \allowhyphens}{}}

211

\- All that is left now is the redefinition of \-. The new version of \- should in-
dicate an extra hyphenation position, while allowing other hyphenation positions
to be generated automatically. The standard behaviour of TEX in this respect
is unfortunate for Catalan but not as much as for Dutch or German, where long
compound words are quite normal and all one needs is a means to indicate an
extra hyphenation position on top of the ones that TEX can generate from the
hyphenation patterns. However, the average length of words in Catalan makes
this desirable and so it is kept here.

36.144 \addto\extrascatalan{%
36.145 \babel@save{\-}%
36.146 \def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}}

\lgem
\Lgem

Here we define a macro for typing the catalan “ela geminada” (geminated l). The
macros \lgem and \Lgem have been chosen for its lowercase and uppercase repre-
sentation, respectively36.

The code used in the actual macro used is a combination of the one proposed by
Feruglio and Fuster37 and the proposal38 from Valiente presented at the TEX Users
Group Annual Meeting in 1995. This last proposal has not been fully implemented
due to its limitation to CM fonts.

36.147 \newdimen\leftllkern \newdimen\rightllkern \newdimen\raiselldim
36.148 \def\lgem{%
36.149 \ifmmode
36.150 \csname normal@char\string"\endcsname l%
36.151 \else
36.152 \leftllkern=0pt\rightllkern=0pt\raiselldim=0pt%
36.153 \setbox0\hbox{l}\setbox1\hbox{l\/}\setbox2\hbox{.}%
36.154 \advance\raiselldim by \the\fontdimen5\the\font
36.155 \advance\raiselldim by -\ht2%
36.156 \leftllkern=-.25\wd0%
36.157 \advance\leftllkern by \wd1%
36.158 \advance\leftllkern by -\wd0%
36.159 \rightllkern=-.25\wd0%
36.160 \advance\rightllkern by -\wd1%
36.161 \advance\rightllkern by \wd0%
36.162 \allowhyphens\discretionary{l-}{l}%
36.163 {\hbox{l}\kern\leftllkern\raise\raiselldim\hbox{.}%
36.164 \kern\rightllkern\hbox{l}}\allowhyphens
36.165 \fi
36.166 }
36.167 \def\Lgem{%
36.168 \ifmmode
36.169 \csname normal@char\string"\endcsname L%
36.170 \else
36.171 \leftllkern=0pt\rightllkern=0pt\raiselldim=0pt%

36The macro names \ll and \LL were not taken because of the fact that \ll is already used
in mathematical mode.

37G. Valiente and R. Fuster, Typesetting Catalan Texts with TEX, TUGboat 14(3), 1993.
38G. Valiente, Modern Catalan Typographical Conventions, TUGboat 16(3), 1995.

212

36.172 \setbox0\hbox{L}\setbox1\hbox{L\/}\setbox2\hbox{.}%
36.173 \advance\raiselldim by .5\ht0%
36.174 \advance\raiselldim by -.5\ht2%
36.175 \leftllkern=-.125\wd0%
36.176 \advance\leftllkern by \wd1%
36.177 \advance\leftllkern by -\wd0%
36.178 \rightllkern=-\wd0%
36.179 \divide\rightllkern by 6%
36.180 \advance\rightllkern by -\wd1%
36.181 \advance\rightllkern by \wd0%
36.182 \allowhyphens\discretionary{L-}{L}%
36.183 {\hbox{L}\kern\leftllkern\raise\raiselldim\hbox{.}%
36.184 \kern\rightllkern\hbox{L}}\allowhyphens
36.185 \fi
36.186 }

\l.l
\L.L

It seems to be the most natural way of entering the “ela geminda” to use the
sequences \l.l and \L.L. These are not really macro’s by themselves but the
macros \l and \L with delimited arguments. Therefor we define two macros
that check if the next character is a period. If not the “polish l” will be typeset,
otherwise a “ela geminada” will be typeset and the next two tokens will be ‘eaten’.

36.187 \AtBeginDocument{%
36.188 \let\lslash\l
36.189 \let\Lslash\L
36.190 \DeclareRobustCommand\l{\@ifnextchar.\bbl@l\lslash}
36.191 \DeclareRobustCommand\L{\@ifnextchar.\bbl@L\Lslash}}
36.192 \def\bbl@l#1#2{\lgem}
36.193 \def\bbl@L#1#2{\Lgem}

\up A macro for typesetting things like 1er as proposed by Raymon Seroul39.
36.194 \DeclareRobustCommand*{\up}[1]{#1}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

36.195 \ldf@finish{catalan}
36.196 〈/code〉

39This macro has been borrowed from francais.dtx

213

37 The Galician language
The file galician.dtx40 defines all the language definition macros for the Galician
language.

For this language the characters ’ ~ and " are made active. In table 12 an
overview is given of their purpose. These active accents character behave according

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
\- like the old \-, but allowing hyphenation in the rest

of the word.
’a an accent that allows hyphenation. Valid for all vow-

els uppercase and lowercase.
’n a n with a tilde. This is included to improve com-

patibility with FTC. Works for uppercase too.
"u a u with dieresis allowing hyphenation.
"a feminine ordinal as in 1a.
"o masculine ordinal as in 1o.
~n a n with tilde. Works for uppercase too.

Table 12: The extra definitions made by galician.ldf

to their original definitions if not followed by one of the characters indicated in
that table.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

37.1 〈∗code〉
37.2 \LdfInit{galician}\captionsgalician

When this file is read as an option, i.e. by the \usepackage command,
galician could be an ‘unknown’ language in which case we have to make it
known. So we check for the existence of \l@galician to see whether we have to
do something here.

37.3 \ifx\l@galician\@undefined
37.4 \@nopatterns{Galician}
37.5 \adddialect\l@galician0\fi

The next step consists of defining commands to switch to (and from) the Gali-
cian language.

\captionsgalician The macro \captionsgalician defines all strings used in the four standard doc-
umentclasses provided with LATEX.

37.6 \addto\captionsgalician{%
37.7 \def\prefacename{Prefacio}%
37.8 \def\refname{Referencias}%

40The file described in this section has version number v1.2l and was last revised on 2005/03/30.

214

37.9 \def\abstractname{Resumo}%
37.10 \def\bibname{Bibliograf\’{\i}a}%
37.11 \def\chaptername{Cap\’{\i}tulo}%
37.12 \def\appendixname{Ap\’endice}%
37.13 \def\contentsname{\’Indice Xeral}%
37.14 \def\listfigurename{\’Indice de Figuras}%
37.15 \def\listtablename{\’Indice de T\’aboas}%
37.16 \def\indexname{\’Indice de Materias}%
37.17 \def\figurename{Figura}%
37.18 \def\tablename{T\’aboa}%
37.19 \def\partname{Parte}%
37.20 \def\enclname{Adxunto}%
37.21 \def\ccname{Copia a}%
37.22 \def\headtoname{A}%
37.23 \def\pagename{P\’axina}%
37.24 \def\seename{v\’exase}%
37.25 \def\alsoname{v\’exase tam\’en}%
37.26 \def\proofname{Demostraci\’on}%
37.27 \def\glossaryname{Glosario}%
37.28 }

\dategalician The macro \dategalician redefines the command \today to produce Galician
dates.

37.29 \def\dategalician{%
37.30 \def\today{\number\day~de\space\ifcase\month\or
37.31 xaneiro\or febreiro\or marzo\or abril\or maio\or xu\~no\or
37.32 xullo\or agosto\or setembro\or outubro\or novembro\or decembro\fi
37.33 \space de~\number\year}}

\extrasgalician
\noextrasgalician

The macro \extrasgalician will perform all the extra definitions needed for the
Galician language. The macro \noextrasgalician is used to cancel the actions
of \extrasgalician.

For Galician, some characters are made active or are redefined. In particular,
the " character and the ~ character receive new meanings this can also happen for
the ’ character when the option activeacute is specified.

37.34 \addto\extrasgalician{\languageshorthands{galician}}
37.35 \initiate@active@char{"}
37.36 \initiate@active@char{~}
37.37 \addto\extrasgalician{%
37.38 \bbl@activate{"}\bbl@activate{~}}
37.39 \@ifpackagewith{babel}{activeacute}{%
37.40 \initiate@active@char{’}}{}
37.41 \@ifpackagewith{babel}{activeacute}{%
37.42 \addto\extrasgalician{\bbl@activate{’}}}{}

Now make sure that the characters that have been turned into shorthanfd char-
acters expand to ‘normal’ characters outside the catalan environment.

37.43 \addto\noextrasgalician{%
37.44 \bbl@deactivate{"}\bbl@deactivate{~}}

215

37.45 \@ifpackagewith{babel}{activeacute}{%
37.46 \addto\noextrascatalan{\bbl@deactivate{’}}}{}

Apart from the active characters some other macros get a new definition.
Therefore we store the current one to be able to restore them later.

37.47 \addto\extrasgalician{%
37.48 \babel@save\"\babel@save\~%
37.49 \def\"{\protect\@umlaut}%
37.50 \def\~{\protect\@tilde}}
37.51 \@ifpackagewith{babel}{activeacute}{%
37.52 \babel@save\’%
37.53 \addto\extrasgalician{\def\’{\protect\@acute}}
37.54 }{}

All the code above is necessary because we need a few extra active characters.
These characters are then used as indicated in table 12.

This option includes some support for working with extended, 8-bit fonts, if
available. This assumes that the user has some macros predefined. For instance, if
the user has a \@ac@a macro defined, the sequence \’a or ’a will both expand to
whatever \@ac@a is defined to expand, presumably á. The names of these macros
are the same as those in Ferguson’s ML-TEX compatibility package on purpose.
Using this method, and provided that adequate hyphenation patterns exist, it is
possible to get better hyphenation for Galician than before. If the user has a
terminal able to produce these codes directly, it is possible to do so. If the need
arises to send the document to someone who does not have such support, it is
possible to mechanically translate the document so that the receiver can make use
of it.

To be able to define the function of the new accents, we first define a couple
of ‘support’ macros.

\dieresis
\textacute
\texttilde

The original definition of \" is stored as \dieresis, because the definition of
\" might not be the default plain TEX one. If the user uses PostScript fonts
with the Adobe font encoding the " character is not in the same position as in
Knuth’s font encoding. In this case \" will not be defined as \accent"7F #1, but
as \accent’310 #1. Something similar happens when using fonts that follow the
Cork encoding. For this reason we save the definition of \" and use that in the
definition of other macros. We do likewise for \’ and \~.

37.55 \let\dieresis\"
37.56 \let\texttilde\~
37.57 \@ifpackagewith{babel}{activeacute}{\let\textacute\’}{}

\@umlaut
\@acute
\@tilde

If the user setup has extended fonts, the Ferguson macros are required to be
defined. We check for their existance and, if defined, expand to whatever they are
defined to. For instance, \’a would check for the existance of a \@ac@a macro. It
is assumed to expand to the code of the accented letter. If it is not defined, we
assume that no extended codes are available and expand to the original definition
but enabling hyphenation beyond the accent. This is as best as we can do. It is
better if you have extended fonts or ML-TEX because the hyphenation algorithm

216

can work on the whole word. The following macros are directly derived from
ML-TEX.41

37.58 \def\@umlaut#1{\allowhyphens\dieresis{#1}\allowhyphens}
37.59 \def\@tilde#1{\allowhyphens\texttilde{#1}\allowhyphens}
37.60 \@ifpackagewith{babel}{activeacute}{%
37.61 \def\@acute#1{\allowhyphens\textacute{#1}\allowhyphens}}{}

Now we can define our shorthands: the umlauts,
37.62 \declare@shorthand{galician}{"-}{\nobreak-\bbl@allowhyphens}
37.63 \declare@shorthand{galician}{"|}{\discretionary{-}{}{\kern.03em}}
37.64 \declare@shorthand{galician}{"u}{\@umlaut{u}}
37.65 \declare@shorthand{galician}{"U}{\@umlaut{U}}

ordinals42,
37.66 \declare@shorthand{galician}{"o}{%
37.67 \leavevmode\raise1ex\hbox{\underbar{\scriptsize o}}}
37.68 \declare@shorthand{galician}{"a}{%
37.69 \leavevmode\raise1ex\hbox{\underbar{\scriptsize a}}}

acute accents,
37.70 \@ifpackagewith{babel}{activeacute}{%
37.71 \declare@shorthand{galician}{’a}{\textormath{\@acute a}{^{\prime} a}}
37.72 \declare@shorthand{galician}{’e}{\textormath{\@acute e}{^{\prime} e}}
37.73 \declare@shorthand{galician}{’i}{\textormath{\@acute\i{}}{^{\prime}i}}
37.74 \declare@shorthand{galician}{’o}{\textormath{\@acute o}{^{\prime} o}}
37.75 \declare@shorthand{galician}{’u}{\textormath{\@acute u}{^{\prime} u}}
37.76 \declare@shorthand{galician}{’A}{\textormath{\@acute A}{^{\prime} A}}
37.77 \declare@shorthand{galician}{’E}{\textormath{\@acute E}{^{\prime} E}}
37.78 \declare@shorthand{galician}{’I}{\textormath{\@acute I}{^{\prime} I}}
37.79 \declare@shorthand{galician}{’O}{\textormath{\@acute O}{^{\prime} O}}
37.80 \declare@shorthand{galician}{’U}{\textormath{\@acute U}{^{\prime} U}}

tildes,
37.81 \declare@shorthand{galician}{’n}{\textormath{\~n}{^{\prime} n}}
37.82 \declare@shorthand{galician}{’N}{\textormath{\~N}{^{\prime} N}}

the acute accent,
37.83 \declare@shorthand{galician}{’’}{%
37.84 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}
37.85 }{}
37.86 \declare@shorthand{galician}{~n}{\textormath{\~n}{\@tilde n}}
37.87 \declare@shorthand{galician}{~N}{\textormath{\~N}{\@tilde N}}

41A problem is perceived here with these macros when used in a multilingual environment
where extended hyphenation patterns are available for some but not all languages. Assume that
no extended patterns exist at some site for French and that french.sty would adopt this scheme
too. In that case, ’e in French would produce the combined accented letter, but hyphenation
around it would be suppressed. Both language options would need an independent method to
know whether they have extended patterns available. The precise impact of this problem and
the possible solutions are under study.

42The code for the ordinals was taken from the answer provided by Raymond Chen
(raymond@math.berkeley.edu) to a question by Joseph Gil (yogi@cs.ubc.ca) in comp.text.tex.

217

\- All that is left now is the redefinition of \-. The new version of \- should in-
dicate an extra hyphenation position, while allowing other hyphenation positions
to be generated automatically. The standard behaviour of TEX in this respect is
unfortunate for Galician but not as much as for Dutch or German, where long
compound words are quite normal and all one needs is a means to indicate an
extra hyphenation position on top of the ones that TEX can generate from the
hyphenation patterns. However, the average length of words in Galician makes
this desirable and so it is kept here.

37.88 \addto\extrasgalician{%
37.89 \babel@save{\-}%
37.90 \def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

37.91 \ldf@finish{galician}
37.92 〈/code〉

218

38 The Basque language
The file basque.dtx43 defines all the language definition macro’s for the Basque
language.

For this language the characters ~ and " are made active. In table 13 an
overview is given of their purpose. These active accent characters behave according

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
\- like the old \-, but allowing hyphenation in the rest

of the word.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).
~n a n with tilde. Works for uppercase too.

Table 13: The extra definitions made by basque.ldf

to their original definitions if not followed by one of the characters indicated in
that table.

This option includes support for working with extended, 8-bit fonts, if available.
Support is based on providing an appropriate definition for the accent macros on
entry to the Basque language. This is automatically done by LATEX2ε or NFSS2.
If T1 encoding is chosen, and provided that adequate hyphenation patterns44 are
available. The easiest way to use the new encoding with LATEX2ε is to load the
package t1enc with \usepackage. This must be done before loading babel.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

38.1 〈∗code〉
38.2 \LdfInit{basque}\captionsbasque

When this file is read as an option, i.e. by the \usepackage command, basque
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@basque to see whether we have to do something here.

38.3 \ifx\l@basque\@undefined
38.4 \@nopatterns{Basque}
38.5 \adddialect\l@basque0
38.6 \fi

The next step consists of defining commands to switch to (and from) the Basque
language.

43The file described in this section has version number v1.0f and was last revised on 2005/03/29.
The original author is Juan M. Aguirregabiria, (wtpagagj@lg.ehu.es) and is based on the Spanish
file by Julio Sánchez, (jsanchez@gmv.es).

44One source for such patterns is the archive at tp.lc.ehu.es that can be accessed by anony-
mous FTP or in http://tp.lc.ehu.es/jma/basque.html

219

\captionsbasque The macro \captionsbasque defines all strings used in the four standard docu-
mentclasses provided with LATEX.

38.7 \addto\captionsbasque{%
38.8 \def\prefacename{Hitzaurrea}%
38.9 \def\refname{Erreferentziak}%

38.10 \def\abstractname{Laburpena}%
38.11 \def\bibname{Bibliografia}%
38.12 \def\chaptername{Kapitulua}%
38.13 \def\appendixname{Eranskina}%
38.14 \def\contentsname{Gaien Aurkibidea}%
38.15 \def\listfigurename{Irudien Zerrenda}%
38.16 \def\listtablename{Taulen Zerrenda}%
38.17 \def\indexname{Kontzeptuen Aurkibidea}%
38.18 \def\figurename{Irudia}%
38.19 \def\tablename{Taula}%
38.20 \def\partname{Atala}%
38.21 \def\enclname{Erantsia}%
38.22 \def\ccname{Kopia}%
38.23 \def\headtoname{Nori}%
38.24 \def\pagename{Orria}%
38.25 \def\seename{Ikusi}%
38.26 \def\alsoname{Ikusi, halaber}%
38.27 \def\proofname{Frogapena}%
38.28 \def\glossaryname{Glosarioa}%
38.29 }%

\datebasque The macro \datebasque redefines the command \today to produce Basque
38.30 \def\datebasque{%
38.31 \def\today{\number\year.eko\space\ifcase\month\or
38.32 urtarrilaren\or otsailaren\or martxoaren\or apirilaren\or
38.33 maiatzaren\or ekainaren\or uztailaren\or abuztuaren\or
38.34 irailaren\or urriaren\or azaroaren\or
38.35 abenduaren\fi~\number\day}}

\extrasbasque
\noextrasbasque

The macro \extrasbasque will perform all the extra definitions needed for the
Basque language. The macro \noextrasbasque is used to cancel the actions of
\extrasbasque. For Basque, some characters are made active or are redefined. In
particular, the " character and the ~ character receive new meanings. Therefore
these characters have to be treated as ‘special’ characters.

38.36 \addto\extrasbasque{\languageshorthands{basque}}
38.37 \initiate@active@char{"}
38.38 \initiate@active@char{~}
38.39 \addto\extrasbasque{%
38.40 \bbl@activate{"}%
38.41 \bbl@activate{~}}

Don’t forget to turn the shorthands off again.
38.42 \addto\noextrasbasque{
38.43 \bbl@deactivate{"}\bbl@deactivate{~}}

220

Apart from the active characters some other macros get a new definition.
Therefore we store the current one to be able to restore them later.

38.44 \addto\extrasbasque{%
38.45 \babel@save\"%
38.46 \babel@save\~%
38.47 \def\"{\protect\@umlaut}%
38.48 \def\~{\protect\@tilde}}

\basquehyphenmins Basque hyphenation uses \lefthyphenmin and \righthyphenmin both set to 2.
38.49 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\dieresia
\texttilde

The original definition of \" is stored as \dieresia, because the we do not know
what is its definition, since it depends on the encoding we are using or on special
macros that the user might have loaded. The expansion of the macro might use
the TEX \accent primitive using some particular accent that the font provides
or might check if a combined accent exists in the font. These two cases happen
with respectively OT1 and T1 encodings. For this reason we save the definition of
\" and use that in the definition of other macros. We do likewise for \’ and \~.
The present coding of this option file is incorrect in that it can break when the
encoding changes. We do not use \tilde as the macro name because it is already
defined as \mathaccent.

38.50 \let\dieresia\"
38.51 \let\texttilde\~

\@umlaut
\@tilde

We check the encoding and if not using T1, we make the accents expand but
enabling hyphenation beyond the accent. If this is the case, not all break positions
will be found in words that contain accents, but this is a limitation in TEX. An
unsolved problem here is that the encoding can change at any time. The definitions
below are made in such a way that a change between two 256-char encodings
are supported, but changes between a 128-char and a 256-char encoding are not
properly supported. We check if T1 is in use. If not, we will give a warning and
proceed redefining the accent macros so that TEX at least finds the breaks that
are not too close to the accent. The warning will only be printed to the log file.

38.52 \ifx\DeclareFontShape\@undefined
38.53 \wlog{Warning: You are using an old LaTeX}
38.54 \wlog{Some word breaks will not be found.}
38.55 \def\@umlaut#1{\allowhyphens\dieresia{#1}\allowhyphens}
38.56 \def\@tilde#1{\allowhyphens\texttilde{#1}\allowhyphens}
38.57 \else
38.58 \edef\bbl@next{T1}
38.59 \ifx\f@encoding\bbl@next
38.60 \let\@umlaut\dieresia
38.61 \let\@tilde\texttilde
38.62 \else
38.63 \wlog{Warning: You are using encoding \f@encoding\space
38.64 instead of T1.}
38.65 \wlog{Some word breaks will not be found.}
38.66 \def\@umlaut#1{\allowhyphens\dieresia{#1}\allowhyphens}

221

38.67 \def\@tilde#1{\allowhyphens\texttilde{#1}\allowhyphens}
38.68 \fi
38.69 \fi

Now we can define our shorthands: the french quotes,
38.70 \declare@shorthand{basque}{"<}{%
38.71 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
38.72 \declare@shorthand{basque}{">}{%
38.73 \textormath{\guillemotright}{\mbox{\guillemotright}}}

ordinals45,
38.74 \declare@shorthand{basque}{’’}{%
38.75 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}

tildes,
38.76 \declare@shorthand{basque}{~n}{\textormath{\~n}{\@tilde n}}
38.77 \declare@shorthand{basque}{~N}{\textormath{\~N}{\@tilde N}}

and some additional commands.
The shorthand "- should be used in places where a word contains an explictit

hyphenation character. According to the Academy of the Basque language, when
a word break occurs at an explicit hyphen it must appear both at the end of the
first line and at the beginning of the second line.

38.78 \declare@shorthand{basque}{"-}{%
38.79 \nobreak\discretionary{-}{-}{-}\bbl@allowhyphens}
38.80 \declare@shorthand{basque}{"|}{%
38.81 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
38.82 \allowhyphens}{}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

38.83 \ldf@finish{basque}
38.84 〈/code〉

45The code for the ordinals was taken from the answer provided by Raymond Chen
(raymond@math.berkeley.edu) to a question by Joseph Gil (yogi@cs.ubc.ca) in comp.text.tex.

222

39 The Romanian language
The file romanian.dtx46 defines all the language-specific macros for the Romanian
language.

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
39.1 〈∗code〉
39.2 \LdfInit{romanian}\captionsromanian

When this file is read as an option, i.e. by the \usepackage command,
romanian will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \l@romanian to see whether we have to do some-
thing here.

39.3 \ifx\l@romanian\@undefined
39.4 \@nopatterns{Romanian}
39.5 \adddialect\l@romanian0\fi

The next step consists of defining commands to switch to (and from) the Ro-
manian language.

\captionsromanian The macro \captionsromanian defines all strings used in the four standard doc-
umentclasses provided with LATEX.

39.6 ls
39.7 \addto\captionsromanian{%
39.8 \def\prefacename{Prefa\c{t}\u{a}}%
39.9 \def\refname{Bibliografie}%

39.10 \def\abstractname{Rezumat}%
39.11 \def\bibname{Bibliografie}%
39.12 \def\chaptername{Capitolul}%
39.13 \def\appendixname{Anexa}%
39.14 \def\contentsname{Cuprins}%
39.15 \def\listfigurename{List\u{a} de figuri}%
39.16 \def\listtablename{List\u{a} de tabele}%
39.17 \def\indexname{Glosar}%
39.18 \def\figurename{Figura}% % sau Plan\c{s}a
39.19 \def\tablename{Tabela}%
39.20 \def\partname{Partea}%
39.21 \def\enclname{Anex\u{a}}% % sau Anexe
39.22 \def\ccname{Copie}%
39.23 \def\headtoname{Pentru}%
39.24 \def\pagename{Pagina}%
39.25 \def\seename{Vezi}%
39.26 \def\alsoname{Vezi de asemenea}%
39.27 \def\proofname{Demonstra\c{t}ie} %
39.28 \def\glossaryname{Glosar}%
39.29 }%

46The file described in this section has version number v1.2l and was last revised on 2005/03/31.
A contribution was made by Umstatter Horst (hhu@cernvm.cern.ch).

223

\dateromanian The macro \dateromanian redefines the command \today to produce Romanian
dates.

39.30 \def\dateromanian{%
39.31 \def\today{\number\day~\ifcase\month\or
39.32 ianuarie\or februarie\or martie\or aprilie\or mai\or
39.33 iunie\or iulie\or august\or septembrie\or octombrie\or
39.34 noiembrie\or decembrie\fi
39.35 \space \number\year}}

\extrasromanian
\noextrasromanian

The macro \extrasromanian will perform all the extra definitions needed for the
Romanian language. The macro \noextrasromanian is used to cancel the actions
of \extrasromanian For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

39.36 \addto\extrasromanian{}
39.37 \addto\noextrasromanian{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

39.38 \ldf@finish{romanian}
39.39 〈/code〉

224

40 The Danish language
The file danish.dtx47 defines all the language definition macros for the Danish
language.

For this language the character " is made active. In table 14 an overview is
given of its purpose.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"" like "-, but producing no hyphen sign (for words that

should break at some sign such as “entrada/salida.”
"‘ lowered double left quotes (looks like „)
"’ normal double right quotes
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 14: The extra definitions made by danish.ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

40.1 〈∗code〉
40.2 \LdfInit{danish}\captionsdanish

When this file is read as an option, i.e. by the \usepackage command, danish
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@danish to see whether we have to do something here.

40.3 \ifx\l@danish\@undefined
40.4 \@nopatterns{Danish}
40.5 \adddialect\l@danish0\fi

\englishhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

40.6 \providehyphenmins{\CurrentOption}{\@ne\tw@}

The next step consists of defining commands to switch to (and from) the Danish
language.

\captionsdanish The macro \captionsdanish defines all strings used in the four standard docu-
mentclasses provided with LATEX.

40.7 \addto\captionsdanish{%
40.8 \def\prefacename{Forord}%
40.9 \def\refname{Litteratur}%

40.10 \def\abstractname{Resum\’e}%
40.11 \def\bibname{Litteratur}%

47The file described in this section has version number v1.3p and was last revised on
2005/03/30. A contribution was made by Henning Larsen (larsen@cernvm.cern.ch)

225

40.12 \def\chaptername{Kapitel}%
40.13 \def\appendixname{Bilag}%
40.14 \def\contentsname{Indhold}%
40.15 \def\listfigurename{Figurer}%
40.16 \def\listtablename{Tabeller}%
40.17 \def\indexname{Indeks}%
40.18 \def\figurename{Figur}%
40.19 \def\tablename{Tabel}%
40.20 \def\partname{Del}%
40.21 \def\enclname{Vedlagt}%
40.22 \def\ccname{Kopi til}% or Kopi sendt til
40.23 \def\headtoname{Til}% in letter
40.24 \def\pagename{Side}%
40.25 \def\seename{Se}%
40.26 \def\alsoname{Se ogs{\aa}}%
40.27 \def\proofname{Bevis}%
40.28 \def\glossaryname{Gloseliste}%
40.29 }%

\datedanish The macro \datedanish redefines the command \today to produce Danish dates.

40.30 \def\datedanish{%
40.31 \def\today{\number\day.~\ifcase\month\or
40.32 januar\or februar\or marts\or april\or maj\or juni\or
40.33 juli\or august\or september\or oktober\or november\or december\fi
40.34 \space\number\year}}

\extrasdanish
\noextrasdanish

The macro \extrasdanish will perform all the extra definitions needed for the
Danish language. The macro \noextrasdanish is used to cancel the actions of
\extrasdanish.

Danish typesetting requires \frenchspacing to be in effect.
40.35 \addto\extrasdanish{\bbl@frenchspacing}
40.36 \addto\noextrasdanish{\bbl@nonfrenchspacing}

For Danish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the danish group of shorthands should
be used.

40.37 \initiate@active@char{"}
40.38 \addto\extrasdanish{\languageshorthands{danish}}
40.39 \addto\extrasdanish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
40.40 \addto\noextrasdanish{\bbl@deactivate{"}}

First we define access to the low opening double quote and guillemets for
quotations,

40.41 \declare@shorthand{danish}{"‘}{%
40.42 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
40.43 \declare@shorthand{danish}{"’}{%

226

40.44 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
40.45 \declare@shorthand{danish}{"<}{%
40.46 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
40.47 \declare@shorthand{danish}{">}{%
40.48 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define to be able to specify hyphenation breakpoints that behave a little
different from \-.

40.49 \declare@shorthand{danish}{"-}{\nobreak-\bbl@allowhyphens}
40.50 \declare@shorthand{danish}{""}{\hskip\z@skip}
40.51 \declare@shorthand{danish}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
40.52 \declare@shorthand{danish}{"=}{\nobreak-\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.
40.53 \declare@shorthand{danish}{"|}{%
40.54 \textormath{\discretionary{-}{}{\kern.03em}}{}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

40.55 \ldf@finish{danish}
40.56 〈/code〉

227

41 The Icelandic language

41.1 Overview
The file iceland.dtx48 defines all the language definition macros for the Icelandic
language

Customization for the Icelandic language was made following several official
and semiofficial publications [2, 3, 1, 6, 5]. These publications do not always agree
and we indicate those instances.

For this language the character " is made active. In table 15 an overview is
given of its purpose. The shorthands in table 15 can also be typeset by using the

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y).
"~ for a compound word mark without a breakpoint.
"= for a compound word mark with a breakpoint, allow-

ing hyphenation in the composing words.
"‘ for Icelandic left double quotes (looks like „).
"’ for Icelandic right double quotes.
"> for Icelandic ‘french’ left double quotes (similar to

>>).
"< for Icelandic ‘french’ right double quotes (similar to

<<).
"o for old Icelandic ǫ
"O for old Icelandic Ǫ
"ó for old Icelandic ǫ́
"Ó for old Icelandic Ǫ́
"e for old Icelandic ę
"E for old Icelandic Ę
"é for old Icelandic ę́
"É for old Icelandic Ę́
\tala for typesetting numbers
\grada for the ‘degree’ symbol
\gradur for ‘degrees’, e.g. 5 C̊
\upp for textsuperscript

Table 15: The shorthands and extra definitions made by icelandic.ldf

commands in table 16.
48The file described in this section has version number ? and was last revised on ?.

228

\ilqq for Icelandic left double quotes (looks like „).
\irqq for Icelandic right double quotes (looks like “).
\ilq for Icelandic left single quotes (looks like ,).
\irq for Icelandic right single quotes (looks like ‘).
\iflqq for Icelandic ‘french’ left double quotes (similar to

>>).
\ifrqq for Icelandic ‘french’ right double quotes (similar to

<<).
\ifrq for Icelandic ‘french’ right single quotes (similar to

<).
\iflq for Icelandic ‘french’ left single quotes (similar to >).
\dq the original quotes character (").
\oob for old Icelandic ǫ
\Oob for old Icelandic Ǫ
\ooob for old Icelandic ǫ́
\OOob for old Icelandic Ǫ́
\eob for old Icelandic ę
\Eob for old Icelandic Ę
\eeob for old Icelandic ę́
\EEob for old Icelandic Ę́

Table 16: Commands which produce quotes and old Icelandic diacritics, defined
by icelandic.ldf

References
[1] Alþingi. Reglur um frágang þingskjala og prentun umræðna, 1988.

[2] Auglýsing um greinarmerkjasetningu. Stj.tíð B, nr. 133/1974, 1974.

[3] Auglýsing um breyting auglýsingu nr. 132/1974 um íslenska stafsetningu.
Stj.tíð B, nr. 261/1977, 1977.

[4] Einar Haugen, editor. First Grammatical Treatise. Longman, London, 2 edi-
tion, 1972.

[5] Staðlaráð Íslands og Fagráð í upplýsingatækni, Reykjavík. Forstaðall FS
130:1997, 1997.

[6] STRÍ Staðlaráð Íslands. SI - kerfið, 2 edition, 1994.

41.2 TEXnical details
When this file was read through the option icelandic we make it behave as if
icelandic was specified.

41.1 \def\bbl@tempa{icelandic}

229

41.2 \ifx\CurrentOption\bbl@tempa
41.3 \def\CurrentOption{icelandic}
41.4 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

41.5 〈∗code〉
41.6 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command,
icelandic will be an ‘unknown’ language, so we have to make it known. So we
check for the existence of \l@icelandic to see whether we have to do something
here.

41.7 \ifx\l@icelandic\@undefined
41.8 \@nopatterns{Icelandic}
41.9 \adddialect\l@icelandic0

41.10 \fi

\if@Two@E We will need a new ‘if’ : \if@Two@E is true if and only if LATEX2ε is running not in
compatibility mode. It is used in the definitions of the command \tala and \upp.
The definition is somewhat complicated, due to the fact that \if@compatibility
is not recognized as a \if in LATEX-2.09 based formats.

41.11 \newif\if@Two@E \@Two@Etrue
41.12 \def\@FI@{\fi}
41.13 \ifx\@compatibilitytrue\@undefined
41.14 \@Two@Efalse \def\@FI@{\relax}
41.15 \else
41.16 \if@compatibility \@Two@Efalse \fi
41.17 \@FI@

\extrasicelandic
\noextrasicelandic

The macro \extrasicelandic will perform all the extra definitions needed for the
Icelandic language. The macro \noextrasicelandic is used to cancel the actions
of \extrasicelandic.

For Icelandic the " character is made active. This is done once, later on its
definition may vary.

41.18 \initiate@active@char{"}
41.19 \@namedef{extras\CurrentOption}{%
41.20 \languageshorthands{icelandic}}
41.21 \expandafter\addto\csname extras\CurrentOption\endcsname{%
41.22 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
41.23 \addto\noextrasicelandic{\bbl@deactivate{"}}

The icelandic hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

41.24 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 16.

230

To be able to define the function of ", we first define a couple of ‘support’
macros.

41.3 Captionnames and date
The next step consists of defining the Icelandic equivalents for the LATEX caption-
names.

\captionsicelandic The macro \captionsicelandic will define all strings used used in the four stan-
dard document classes provided with LATEX.

41.25 \@namedef{captions\CurrentOption}{%
41.26 \def\prefacename{Form\’{a}li}%
41.27 \def\refname{Heimildir}%
41.28 \def\abstractname{\’{U}tdr\’{a}ttur}%
41.29 \def\bibname{Heimildir}%
41.30 \def\chaptername{Kafli}%
41.31 \def\appendixname{Vi{\dh}auki}%
41.32 \def\contentsname{Efnisyfirlit}%
41.33 \def\listfigurename{Myndaskr\’{a}}%
41.34 \def\listtablename{T\"{o}fluskr\’{a}}%
41.35 \def\indexname{Atri{\dh}isor{\dh}askr\’{a}}%
41.36 \def\figurename{Mynd}%
41.37 \def\tablename{Tafla}%
41.38 \def\partname{Hluti}%
41.39 \def\enclname{Hj\’{a}lagt}%
41.40 \def\ccname{Samrit}%
41.41 \def\headtoname{Til:}% in letter
41.42 \def\pagename{Bla{\dh}s\’{\i}{\dh}a}%
41.43 \def\seename{Sj\’{a}}%
41.44 \def\alsoname{Sj\’{a} einnig}%
41.45 \def\proofname{S\"{o}nnun}%
41.46 \def\glossaryname{Or{\dh}alisti}%
41.47 }

\dateicelandic The macro \dateicelandic redefines the command \today to produce Icelandic
dates.

41.48 \def\dateicelandic{%
41.49 \def\today{\number\day.~\ifcase\month\or
41.50 jan\’{u}ar\or febr\’{u}ar\or mars\or apr\’{\i}l\or ma\’{\i}\or
41.51 j\’{u}n\’{\i}\or j\’{u}l\’{\i}\or \’{a}g\’{u}st\or september\or
41.52 okt\’{o}ber\or n\’{o}vember\or desember\fi
41.53 \space\number\year}}

41.4 Icelandic quotation marks
\dq We save the original double quote character in \dq to keep it available, the math

accent \" can now be typed as ".
41.54 \begingroup \catcode‘\"12

231

41.55 \def\x{\endgroup
41.56 \def\@SS{\mathchar"7019 }
41.57 \def\dq{"}}
41.58 \x

Now we can define the icelandic and icelandic ‘french’ quotes. The icelandic
‘french’ guillemets are the reverse of french guillemets. We define single icelandic
‘french’ quotes for compatibility. Shorthands are provided for a number of different
quotation marks, which make them useable both outside and inside mathmode.

41.59 \let\ilq\grq
41.60 \let\irq\grq
41.61 \let\iflq\frq
41.62 \let\ifrq\flq
41.63 \let\ilqq\glqq
41.64 \let\irqq\grqq
41.65 \let\iflqq\frqq
41.66 \let\ifrqq\flqq

41.67 \declare@shorthand{icelandic}{"‘}{\glqq}
41.68 \declare@shorthand{icelandic}{"’}{\grqq}
41.69 \declare@shorthand{icelandic}{">}{\frqq}
41.70 \declare@shorthand{icelandic}{"<}{\flqq}

and some additional commands:
41.71 \declare@shorthand{icelandic}{"-}{\nobreak\-\bbl@allowhyphens}
41.72 \declare@shorthand{icelandic}{"|}{%
41.73 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
41.74 \bbl@allowhyphens}{}}
41.75 \declare@shorthand{icelandic}{""}{\hskip\z@skip}
41.76 \declare@shorthand{icelandic}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
41.77 \declare@shorthand{icelandic}{"=}{\nobreak-\hskip\z@skip}

41.5 Old Icelandic
In old Icelandic some letters have special diacritical marks, described for example
in First Grammatical Treatise [4, 5]. We provide these in the T1 encoding with
the ‘ogonek’. The ogonek is placed with the letters ‘o’, and ‘O’, ‘ó’ and ‘Ó’, ‘e’
and ‘E’, and ‘é’ and ‘É’. Shorthands are provided for these as well.

The following code by Leszek Holenderski lifted from polish.dtx is designed
to position the diacritics correctly for every font in every size. These macros need
a few extra dimension variables.

41.78 \newdimen\pl@left
41.79 \newdimen\pl@down
41.80 \newdimen\pl@right
41.81 \newdimen\pl@temp

\sob The macro \sob is used to put the ‘ogonek’ in the right place.
41.82 \def\sob#1#2#3#4#5{%parameters: letter and fractions hl,ho,vl,vo
41.83 \setbox0\hbox{#1}\setbox1\hbox{\k{}}\setbox2\hbox{p}%

232

41.84 \pl@right=#2\wd0 \advance\pl@right by-#3\wd1
41.85 \pl@down=#5\ht1 \advance\pl@down by-#4\ht0
41.86 \pl@left=\pl@right \advance\pl@left by\wd1
41.87 \pl@temp=-\pl@down \advance\pl@temp by\dp2 \dp1=\pl@temp
41.88 \leavevmode
41.89 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

\oob
\Oob

\ooob
\OOob
\eob
\Eob

\eeob
\EEob

41.90 \DeclareTextCommand{\oob}{T1}{\sob {o}{.85}{0}{.04}{0}}
41.91 \DeclareTextCommand{\Oob}{T1}{\sob {O}{.7}{0}{0}{0}}
41.92 \DeclareTextCommand{\ooob}{T1}{\sob {ó}{.85}{0}{.04}{0}}
41.93 \DeclareTextCommand{\OOob}{T1}{\sob {Ó}{.7}{0}{0}{0}}
41.94 \DeclareTextCommand{\eob}{T1}{\sob {e}{1}{0}{.04}{0}}
41.95 \DeclareTextCommand{\Eob}{T1}{\sob {E}{1}{0}{.04}{0}}
41.96 \DeclareTextCommand{\eeob}{T1}{\sob {é}{1}{0}{.04}{0}}
41.97 \DeclareTextCommand{\EEob}{T1}{\sob {É}{1}{0}{.04}{0}}

41.98 \declare@shorthand{icelandic}{"o}{\oob}
41.99 \declare@shorthand{icelandic}{"O}{\Oob}

41.100 \declare@shorthand{icelandic}{"ó}{\ooob}
41.101 \declare@shorthand{icelandic}{"Ó}{\OOob}
41.102 \declare@shorthand{icelandic}{"e}{\eob}
41.103 \declare@shorthand{icelandic}{"E}{\Eob}
41.104 \declare@shorthand{icelandic}{"é}{\eeob}
41.105 \declare@shorthand{icelandic}{"É}{\EEob}

41.6 Formatting numbers
This section is lifted from frenchb.dtx by D. Flipo. In English the decimal
part starts with a point and thousands should be separated by a comma: an
approximation of 1000π should be inputed as $3{,}141.592{,}653$ in math-
mode and as 3,141.592,653 in text.

In Icelandic the decimal part starts with a comma and thousands should be
separated by a space [1] or by a period [5]; we have the space. The above ap-
proximation of 1000π should be inputed as $3\;141{,}592\;653$ in math-mode
and as something like 3~141,592~653 in text. Braces are mandatory around the
comma in math-mode, the reason is mentioned in the TEXbook p. 134: the comma
is of type \mathpunct (thus normally followed by a space) while the point is of
type \mathord (no space added).

Thierry Bouche suggested that a second type of comma, of type \mathord
would be useful in math-mode, and proposed to introduce a command (named
\decimalsep in this package), the expansion of which would depend on the current
language.

Vincent Jalby suggested a command \nombre to conveniently typeset numbers:
inputting \nombre{3141,592653} either in text or in math-mode will format this
number properly according to the current language (Icelandic or non-Icelandic).
We use \nombre to define command \tala in Icelandic.

233

\tala accepts an optional argument which happens to be useful with the
extension ‘dcolumn’, it specifies the decimal separator used in the source code:
\newcolumntype{d}{D{,}{\decimalsep}{-1}}

\begin{tabular}{d}\hline
3,14 \\
\tala[,]{123,4567} \\
\tala[,]{9876,543}\\\hline

\end{tabular}
will print a column of numbers aligned on the decimal point (comma or point

depending on the current language), each slice of 3 digits being separated by a
space or a comma according to the current language.

\decimalsep
\thousandsep

We need a internal definition, valid in both text and math-mode, for the comma
(\@comma@) and another one for the unbreakable fixed length space (no glue) used
in Icelandic (\f@thousandsep).

The commands \decimalsep and \thousandsep get default definitions (for
the English language) when icelandic is loaded; these definitions will be updated
when the current language is switched to or from Icelandic.

41.106 \mathchardef\m@comma="013B \def\@comma@{\ifmmode\m@comma\else,\fi}
41.107 \def\f@thousandsep{\ifmmode\mskip5.5mu\else\penalty\@M\kern.3em\fi}
41.108 \newcommand{\decimalsep}{.} \newcommand{\thousandsep}{\@comma@}
41.109 \expandafter\addto\csname extras\CurrentOption\endcsname{%
41.110 \def\decimalsep{\@comma@}%
41.111 \def\thousandsep{\f@thousandsep}}
41.112 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
41.113 \def\decimalsep{.}%
41.114 \def\thousandsep{\@comma@}}

\tala The decimal separator used when inputing a number with \tala has to be a
comma. \tala splits the inputed number into two parts: what comes before the
first comma will be formatted by \@integerpart while the rest (if not empty) will
be formatted by \@decimalpart. Both parts, once formatted separately will be
merged together with between them, either the decimal separator \decimalsep
or (in LATEX2ε only) the optional argument of \tala.

41.115 \if@Two@E
41.116 \newcommand{\tala}[2][\decimalsep]{%
41.117 \def\@decimalsep{#1}\@tala#2\@empty,\@empty,\@nil}
41.118 \else
41.119 \newcommand{\tala}[1]{%
41.120 \def\@decimalsep{\decimalsep}\@tala#1\@empty,\@empty,\@nil}
41.121 \fi
41.122 \def\@tala#1,#2,#3\@nil{%
41.123 \ifx\@empty#2%
41.124 \@integerpart{#1}%
41.125 \else
41.126 \@integerpart{#1}\@decimalsep\@decimalpart{#2}%
41.127 \fi}

234

The easiest bit is the decimal part: We attempt to read the first four digits of the
decimal part, if it has less than 4 digits, we just have to print them, otherwise
\thousandsep has to be appended after the third digit, and the algorithm is
applied recursively to the rest of the decimal part.

41.128 \def\@decimalpart#1{\@@decimalpart#1\@empty\@empty\@empty}
41.129 \def\@@decimalpart#1#2#3#4{#1#2#3%
41.130 \ifx\@empty#4%
41.131 \else
41.132 \thousandsep\expandafter\@@decimalpart\expandafter#4%
41.133 \fi}

Formatting the integer part is more difficult because the slices of 3 digits start
from the bottom while the number is read from the top! This (tricky) code is
borrowed from David Carlisle’s comma.sty.

41.134 \def\@integerpart#1{\@@integerpart{}#1\@empty\@empty\@empty}
41.135 \def\@@integerpart#1#2#3#4{%
41.136 \ifx\@empty#2%
41.137 \@addthousandsep#1\relax
41.138 \else
41.139 \ifx\@empty#3%
41.140 \@addthousandsep\@empty\@empty#1#2\relax
41.141 \else
41.142 \ifx\@empty#4%
41.143 \@addthousandsep\@empty#1#2#3\relax
41.144 \else
41.145 \@@integerpartafterfi{#1#2#3#4}%
41.146 \fi
41.147 \fi
41.148 \fi}
41.149 \def\@@integerpartafterfi#1\fi\fi\fi{\fi\fi\fi\@@integerpart{#1}}
41.150 \def\@addthousandsep#1#2#3#4{#1#2#3%
41.151 \if#4\relax
41.152 \else
41.153 \thousandsep\expandafter\@addthousandsep\expandafter#4%
41.154 \fi}

41.7 Extra utilities
We now provide the Icelandic user with some extra utilities.

\upp \upp is for typesetting superscripts. \upp relies on

\upp@size The internal macro \upp@size holds the size at which the superscript will be
typeset. The reason for this is that we have to specify it differently for different
formats.

41.155 \ifx\sevenrm\@undefined
41.156 \ifx\@ptsize\@undefined
41.157 \let\upp@size\small
41.158 \else
41.159 \ifx\selectfont\@undefined

235

In this case the format is the original LATEX-2.09:
41.160 \ifcase\@ptsize
41.161 \let\upp@size\ixpt\or
41.162 \let\upp@size\xpt\or
41.163 \let\upp@size\xipt
41.164 \fi

When \selectfont is defined we probably have NFSS available:
41.165 \else
41.166 \ifcase\@ptsize
41.167 \def\upp@size{\fontsize\@ixpt{10pt}\selectfont}\or
41.168 \def\upp@size{\fontsize\@xpt{11pt}\selectfont}\or
41.169 \def\upp@size{\fontsize\@xipt{12pt}\selectfont}
41.170 \fi
41.171 \fi
41.172 \fi
41.173 \else

If we end up here it must be a plain based TEX format, so:
41.174 \let\upp@size\sevenrm
41.175 \fi

Now we can define \upp. When LATEX2ε runs in compatibility mode (LATEX-2.09
emulation), \textsuperscript is also defined, but does no good job, so we give
two different definitions for \upp using \if@Two@E.

41.176 \if@Two@E
41.177 \DeclareRobustCommand*{\upp}[1]{#1}
41.178 \else
41.179 \DeclareRobustCommand*{\upp}[1]{%
41.180 \leavevmode\raise1ex\hbox{\upp@size#1}}
41.181 \fi

Some definitions for special characters. \grada needs a special treatment: it
is \char6 in T1-encoding and \char23 in OT1-encoding.

41.182 \ifx\fmtname\LaTeXeFmtName
41.183 \DeclareTextSymbol{\grada}{T1}{6}
41.184 \DeclareTextSymbol{\grada}{OT1}{23}
41.185 \else
41.186 \def\T@one{T1}
41.187 \ifx\f@encoding\T@one
41.188 \newcommand{\grada}{\char6}
41.189 \else
41.190 \newcommand{\grada}{\char23}
41.191 \fi
41.192 \fi

\gradur Macro for typesetting the abbreviation for ‘degrees’ (as in ‘degrees Celsius’). As
the bounding box of the character ‘degree’ has very different widths in CMR/DC
and PostScript fonts, we fix the width of the bounding box of \gradur to 0.3 em,

236

this lets the symbol ‘degree’ stick to the preceding (e.g., 45\gradur) or following
character (e.g., 20~\gradur C).

41.193 \DeclareRobustCommand*{\gradur}{%
41.194 \leavevmode\hbox to 0.3em{\hss\grada\hss}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

41.195 \ldf@finish\CurrentOption
41.196 〈/code〉

237

42 The Norwegian language
The file norsk.dtx49 defines all the language definition macros for the Norwegian
language as well as for an alternative variant ‘nynorsk’ of this language.

For this language the character " is made active. In table 17 an overview is
given of its purpose.

"ff for ff to be hyphenated as ff-f, this is also implemented
for b, d, f, g, l, m, n, p, r, s, and t. (o"ppussing)

"ee Hyphenate "ee as \’e-e. (komit"een)
"- an explicit hyphen sign, allowing hyphenation in the

composing words. Use this for compound words when
the hyphenation patterns fail to hyphenate properly.
(alpin"-anlegg)

"| Like "-, but inserts 0.03em space. Use it if the compound
point is spanned by a ligature. (hoff"|intriger)

"" Like "-, but producing no hyphen sign. (i""g\aa{}r)
"~ Like -, but allows no hyphenation at all. (E"~cup)
"= Like -, but allowing hyphenation in the composing words.

(marksistisk"=leninistisk)
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 17: The extra definitions made by norsk.sty

Rune Kleveland distributes a Norwegian dictionary for ispell (570000 words).
It can be found at http://www.uio.no/~runekl/dictionary.html.

This dictionary supports the spellings spi"sslede for ‘spisslede’ (hyphenated
spiss-slede) and other such words, and also suggest the spelling spi"sslede for
‘spisslede’ and ‘spissslede’.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

42.1 〈∗code〉
42.2 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, norsk
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@norsk to see whether we have to do something here.

42.3 \ifx\l@norsk\@undefined
42.4 \@nopatterns{Norsk}
42.5 \adddialect\l@norsk0\fi

49The file described in this section has version number v2.0h and was last revised on
2005/03/30. Contributions were made by Haavard Helstrup (HAAVARD@CERNVM) and Alv Kjetil
Holme (HOLMEA@CERNVM); the ‘nynorsk’ variant has been supplied by Per Steinar Iversen
iversen@vxcern.cern.ch) and Terje Engeset Petterst (TERJEEP@VSFYS1.FI.UIB.NO); the short-
hand definitions were provided by Rune Kleveland (runekl@math.uio.no).

238

\norskhyphenmins Some sets of Norwegian hyphenation patterns can be used with \lefthyphenmin
set to 1 and \righthyphenmin set to 2, but the most common set nohyph.tex
can’t. So we use \lefthyphenmin=2 by default.

42.6 \providehyphenmins{\CurrentOption}{\tw@\tw@}

Now we have to decide which version of the captions should be made available.
This can be done by checking the contents of \CurrentOption.

42.7 \def\bbl@tempa{norsk}
42.8 \ifx\CurrentOption\bbl@tempa

The next step consists of defining commands to switch to (and from) the Nor-
wegian language.

\captionsnorsk The macro \captionsnorsk defines all strings used in the four standard docu-
mentclasses provided with LATEX.

42.9 \def\captionsnorsk{%
42.10 \def\prefacename{Forord}%
42.11 \def\refname{Referanser}%
42.12 \def\abstractname{Sammendrag}%
42.13 \def\bibname{Bibliografi}% or Litteraturoversikt
42.14 % or Litteratur or Referanser
42.15 \def\chaptername{Kapittel}%
42.16 \def\appendixname{Tillegg}% or Appendiks
42.17 \def\contentsname{Innhold}%
42.18 \def\listfigurename{Figurer}% or Figurliste
42.19 \def\listtablename{Tabeller}% or Tabelliste
42.20 \def\indexname{Register}%
42.21 \def\figurename{Figur}%
42.22 \def\tablename{Tabell}%
42.23 \def\partname{Del}%
42.24 \def\enclname{Vedlegg}%
42.25 \def\ccname{Kopi sendt}%
42.26 \def\headtoname{Til}% in letter
42.27 \def\pagename{Side}%
42.28 \def\seename{Se}%
42.29 \def\alsoname{Se ogs\aa{}}%
42.30 \def\proofname{Bevis}%
42.31 \def\glossaryname{Ordliste}%
42.32 }
42.33 \else

For the ‘nynorsk’ version of these definitions we just add a “dialect”.
42.34 \adddialect\l@nynorsk\l@norsk

\captionsnynorsk The macro \captionsnynorsk defines all strings used in the four standard docu-
mentclasses provided with LATEX, but using a different spelling than in the com-
mand \captionsnorsk.

42.35 \def\captionsnynorsk{%
42.36 \def\prefacename{Forord}%

239

42.37 \def\refname{Referansar}%
42.38 \def\abstractname{Samandrag}%
42.39 \def\bibname{Litteratur}% or Litteraturoversyn
42.40 % or Referansar
42.41 \def\chaptername{Kapittel}%
42.42 \def\appendixname{Tillegg}% or Appendiks
42.43 \def\contentsname{Innhald}%
42.44 \def\listfigurename{Figurar}% or Figurliste
42.45 \def\listtablename{Tabellar}% or Tabelliste
42.46 \def\indexname{Register}%
42.47 \def\figurename{Figur}%
42.48 \def\tablename{Tabell}%
42.49 \def\partname{Del}%
42.50 \def\enclname{Vedlegg}%
42.51 \def\ccname{Kopi til}%
42.52 \def\headtoname{Til}% in letter
42.53 \def\pagename{Side}%
42.54 \def\seename{Sj\aa{}}%
42.55 \def\alsoname{Sj\aa{} \‘{o}g}%
42.56 \def\proofname{Bevis}%
42.57 \def\glossaryname{Ordliste}%
42.58 }
42.59 \fi

\datenorsk The macro \datenorsk redefines the command \today to produce Norwegian
dates.

42.60 \@namedef{date\CurrentOption}{%
42.61 \def\today{\number\day.~\ifcase\month\or
42.62 januar\or februar\or mars\or april\or mai\or juni\or
42.63 juli\or august\or september\or oktober\or november\or desember
42.64 \fi
42.65 \space\number\year}}

\extrasnorsk
\extrasnynorsk

The macro \extrasnorsk will perform all the extra definitions needed for the
Norwegian language. The macro \noextrasnorsk is used to cancel the actions of
\extrasnorsk.

Norwegian typesetting requires \frencspacing to be in effect.
42.66 \@namedef{extras\CurrentOption}{\bbl@frenchspacing}
42.67 \@namedef{noextras\CurrentOption}{\bbl@nonfrenchspacing}

For Norsk the " character is made active. This is done once, later on its
definition may vary.

42.68 \initiate@active@char{"}
42.69 \expandafter\addto\csname extras\CurrentOption\endcsname{%
42.70 \languageshorthands{norsk}}
42.71 \expandafter\addto\csname extras\CurrentOption\endcsname{%
42.72 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.

240

42.73 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
42.74 \bbl@deactivate{"}}

The code above is necessary because we need to define a number of shorthand
commands. These sharthand commands are then used as indicated in table 17.

To be able to define the function of ", we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

42.75 \begingroup \catcode‘\"12
42.76 \def\x{\endgroup
42.77 \def\@SS{\mathchar"7019 }
42.78 \def\dq{"}}
42.79 \x

Now we can define the discretionary shorthand commands. The number of
words where such hyphenation is required is for each character

b d f g k l n p r s t
4 4 15 3 43 30 8 12 1 33 35

taken from a list of 83000 ispell-roots.

42.80 \declare@shorthand{norsk}{"b}{\textormath{\bbl@disc b{bb}}{b}}
42.81 \declare@shorthand{norsk}{"B}{\textormath{\bbl@disc B{BB}}{B}}
42.82 \declare@shorthand{norsk}{"d}{\textormath{\bbl@disc d{dd}}{d}}
42.83 \declare@shorthand{norsk}{"D}{\textormath{\bbl@disc D{DD}}{D}}
42.84 \declare@shorthand{norsk}{"e}{\textormath{\bbl@disc e{\’e}}{}}
42.85 \declare@shorthand{norsk}{"E}{\textormath{\bbl@disc E{\’E}}{}}
42.86 \declare@shorthand{norsk}{"F}{\textormath{\bbl@disc F{FF}}{F}}
42.87 \declare@shorthand{norsk}{"g}{\textormath{\bbl@disc g{gg}}{g}}
42.88 \declare@shorthand{norsk}{"G}{\textormath{\bbl@disc G{GG}}{G}}
42.89 \declare@shorthand{norsk}{"k}{\textormath{\bbl@disc k{kk}}{k}}
42.90 \declare@shorthand{norsk}{"K}{\textormath{\bbl@disc K{KK}}{K}}
42.91 \declare@shorthand{norsk}{"l}{\textormath{\bbl@disc l{ll}}{l}}
42.92 \declare@shorthand{norsk}{"L}{\textormath{\bbl@disc L{LL}}{L}}
42.93 \declare@shorthand{norsk}{"n}{\textormath{\bbl@disc n{nn}}{n}}
42.94 \declare@shorthand{norsk}{"N}{\textormath{\bbl@disc N{NN}}{N}}
42.95 \declare@shorthand{norsk}{"p}{\textormath{\bbl@disc p{pp}}{p}}
42.96 \declare@shorthand{norsk}{"P}{\textormath{\bbl@disc P{PP}}{P}}
42.97 \declare@shorthand{norsk}{"r}{\textormath{\bbl@disc r{rr}}{r}}
42.98 \declare@shorthand{norsk}{"R}{\textormath{\bbl@disc R{RR}}{R}}
42.99 \declare@shorthand{norsk}{"s}{\textormath{\bbl@disc s{ss}}{s}}

42.100 \declare@shorthand{norsk}{"S}{\textormath{\bbl@disc S{SS}}{S}}
42.101 \declare@shorthand{norsk}{"t}{\textormath{\bbl@disc t{tt}}{t}}
42.102 \declare@shorthand{norsk}{"T}{\textormath{\bbl@disc T{TT}}{T}}

We need to treat "f a bit differently in order to preserve the ff-ligature.
42.103 \declare@shorthand{norsk}{"f}{\textormath{\bbl@discff}{f}}
42.104 \def\bbl@discff{\penalty\@M

241

42.105 \afterassignment\bbl@insertff \let\bbl@nextff= }
42.106 \def\bbl@insertff{%
42.107 \if f\bbl@nextff
42.108 \expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi
42.109 {\relax\discretionary{ff-}{f}{ff}\allowhyphens}{f\bbl@nextff}}
42.110 \let\bbl@nextff=f

We now define the French double quotes and some commands concerning hyphen-
ation:

42.111 \declare@shorthand{norsk}{"<}{\flqq}
42.112 \declare@shorthand{norsk}{">}{\frqq}
42.113 \declare@shorthand{norsk}{"-}{\penalty\@M\-\bbl@allowhyphens}
42.114 \declare@shorthand{norsk}{"|}{%
42.115 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%
42.116 \allowhyphens}{}}
42.117 \declare@shorthand{norsk}{""}{\hskip\z@skip}
42.118 \declare@shorthand{norsk}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
42.119 \declare@shorthand{norsk}{"=}{\penalty\@M-\hskip\z@skip}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

42.120 \ldf@finish\CurrentOption
42.121 〈/code〉

242

43 The Swedish language
The file swedish.dtx50 defines all the language-specific macros for the Swedish
language. This file has borrowed heavily from finnish.dtx and germanb.dtx.

For this language the character " is made active. In table 18 an overview is
given of its purpose. The vertical placement of the "umlaut" in some letters can
be controlled this way.

"a Gives ä, also implemented for "A, "o and "O.
"w, "W gives å and Å.
"ff for ff to be hyphenated as ff-f. Used for com-

pound words, such as stra"ffånge, which should
be hyphenated as straff-fånge. This is also imple-
mented for b, d, f, g, l, m, n, p, r, s, and t.

"| disable ligature at this position. This should be used
for compound words, such as “stra"ffinrättning”,
which should not have the ligature “ffi”.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word, such as e. g. in “x"-axeln”.

"" like "-, but producing no hyphen sign (for words that
should break at some sign such as och/""eller).

"~ for an explicit hyphen without a breakpoint; useful
for expressions such as “2"~3 veckor” where no line-
break is desirable.

"= an explicit hyphen sign allowing subsequent hyphen-
ation, for expressions such as “studiebidrag och
-lån”.

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 18: The extra definitions made by swedish.sty

Two variations for formatting of dates are added. \datesymd makes \today
output dates formatted as YYYY-MM-DD, which is commonly used in Sweden
today. \datesdmy formats the date as D/M YYYY, which is also very common
in Sweden. These commands should be issued after \begindocument.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

43.1 〈∗code〉
43.2 \LdfInit{swedish}\captionsswedish

When this file is read as an option, i.e. by the \usepackage command, swedish
will be an ‘unknown’ language in which case we have to make it known. So we

50The file described in this section has version number v2.3d and was last revised on
2005/03/31. Contributions were made by Sten Hellman (HELLMAN@CERNVM.CERN.CH) and Erik
Östhols (erik_osthols@yahoo.com).

243

check for the existence of \l@swedish to see whether we have to do something
here.

43.3 \ifx\l@swedish\@undefined
43.4 \@nopatterns{Swedish}
43.5 \adddialect\l@swedish0\fi

The next step consists of defining commands to switch to the Swedish language.
The reason for this is that a user might want to switch back and forth between
languages.

\captionsswedish The macro \captionsswedish defines all strings used in the four standard docu-
mentclasses provided with LATEX.

43.6 \addto\captionsswedish{%
43.7 \def\prefacename{F\"orord}%
43.8 \def\refname{Referenser}%
43.9 \def\abstractname{Sammanfattning}%

43.10 \def\bibname{Litteraturf\"orteckning}%
43.11 \def\chaptername{Kapitel}%
43.12 \def\appendixname{Bilaga}%
43.13 \def\contentsname{Inneh\csname aa\endcsname ll}%
43.14 \def\listfigurename{Figurer}%
43.15 \def\listtablename{Tabeller}%
43.16 \def\indexname{Sakregister}%
43.17 \def\figurename{Figur}%
43.18 \def\tablename{Tabell}%
43.19 \def\partname{Del}%

43.20 \def\enclname{Bil.}%
43.21 \def\ccname{Kopia f\"or k\"annedom}%
43.22 \def\headtoname{Till}% in letter
43.23 \def\pagename{Sida}%
43.24 \def\seename{se}%

43.25 \def\alsoname{se \"aven}%

43.26 \def\proofname{Bevis}%
43.27 \def\glossaryname{Ordlista}%
43.28 }%

\dateswedish The macro \dateswedish redefines the command \today to produce Swedish
dates.

43.29 \def\dateswedish{%
43.30 \def\today{%
43.31 \number\day~\ifcase\month\or
43.32 januari\or februari\or mars\or april\or maj\or juni\or
43.33 juli\or augusti\or september\or oktober\or november\or
43.34 december\fi
43.35 \space\number\year}}

244

\datesymd The macro \datesymd redefines the command \today to produce dates in the
format YYYY-MM-DD, common in Sweden.

43.36 \def\datesymd{%
43.37 \def\today{\number\year-\two@digits\month-\two@digits\day}%
43.38 }

\datesdmy The macro \datesdmy redefines the command \today to produce Swedish dates
in the format DD/MM YYYY, also common in Sweden.

43.39 \def\datesdmy{%
43.40 \def\today{\number\day/\number\month\space\number\year}%
43.41 }

\swedishhyphenmins The swedish hyphenation patterns can be used with \lefthyphenmin set to 2 and
\righthyphenmin set to 2.

43.42 \providehyphenmins{swedish}{\tw@\tw@}

\extrasswedish
\noextrasswedish

The macro \extrasswedish performs all the extra definitions needed for the
Swedish language. The macro \noextrasswedish is used to cancel the actions
of \extrasswedish.

For Swedish texts \frenchspacing should be in effect. We make sure this is
the case and reset it if necessary.

43.43 \addto\extrasswedish{\bbl@frenchspacing}
43.44 \addto\noextrasswedish{\bbl@nonfrenchspacing}

For Swedish the " character is made active. This is done once, later on its
definition may vary.

43.45 \initiate@active@char{"}
43.46 \addto\extrasswedish{\languageshorthands{swedish}}
43.47 \addto\extrasswedish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
43.48 \addto\noextrasswedish{\bbl@deactivate{"}}

The “umlaut” accent macro \" is changed to lower the “umlaut” dots. The redefi-
nition is done with the help of \umlautlow.

43.49 \addto\extrasswedish{\babel@save\"\umlautlow}
43.50 \addto\noextrasswedish{\umlauthigh}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 18.

To be able to define the function of ", we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

43.51 \begingroup \catcode‘\"12
43.52 \def\x{\endgroup
43.53 \def\@SS{\mathchar"7019 }
43.54 \def\dq{"}}
43.55 \x

245

Now we can define the doublequote macros: the umlauts and å.
43.56 \declare@shorthand{swedish}{"w}{\textormath{{\aa}\allowhyphens}{\ddot w}}
43.57 \declare@shorthand{swedish}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
43.58 \declare@shorthand{swedish}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
43.59 \declare@shorthand{swedish}{"W}{\textormath{{\AA}\allowhyphens}{\ddot W}}
43.60 \declare@shorthand{swedish}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
43.61 \declare@shorthand{swedish}{"O}{\textormath{\"{O}\allowhyphens}{\ddot O}}

discretionary commands
43.62 \declare@shorthand{swedish}{"b}{\textormath{\bbl@disc b{bb}}{b}}
43.63 \declare@shorthand{swedish}{"B}{\textormath{\bbl@disc B{BB}}{B}}
43.64 \declare@shorthand{swedish}{"d}{\textormath{\bbl@disc d{dd}}{d}}
43.65 \declare@shorthand{swedish}{"D}{\textormath{\bbl@disc D{DD}}{D}}
43.66 \declare@shorthand{swedish}{"f}{\textormath{\bbl@disc f{ff}}{f}}
43.67 \declare@shorthand{swedish}{"F}{\textormath{\bbl@disc F{FF}}{F}}
43.68 \declare@shorthand{swedish}{"g}{\textormath{\bbl@disc g{gg}}{g}}
43.69 \declare@shorthand{swedish}{"G}{\textormath{\bbl@disc G{GG}}{G}}
43.70 \declare@shorthand{swedish}{"l}{\textormath{\bbl@disc l{ll}}{l}}
43.71 \declare@shorthand{swedish}{"L}{\textormath{\bbl@disc L{LL}}{L}}
43.72 \declare@shorthand{swedish}{"m}{\textormath{\bbl@disc m{mm}}{m}}
43.73 \declare@shorthand{swedish}{"M}{\textormath{\bbl@disc M{MM}}{M}}
43.74 \declare@shorthand{swedish}{"n}{\textormath{\bbl@disc n{nn}}{n}}
43.75 \declare@shorthand{swedish}{"N}{\textormath{\bbl@disc N{NN}}{N}}
43.76 \declare@shorthand{swedish}{"p}{\textormath{\bbl@disc p{pp}}{p}}
43.77 \declare@shorthand{swedish}{"P}{\textormath{\bbl@disc P{PP}}{P}}
43.78 \declare@shorthand{swedish}{"r}{\textormath{\bbl@disc r{rr}}{r}}
43.79 \declare@shorthand{swedish}{"R}{\textormath{\bbl@disc R{RR}}{R}}
43.80 \declare@shorthand{swedish}{"s}{\textormath{\bbl@disc s{ss}}{s}}
43.81 \declare@shorthand{swedish}{"S}{\textormath{\bbl@disc S{SS}}{S}}
43.82 \declare@shorthand{swedish}{"t}{\textormath{\bbl@disc t{tt}}{t}}
43.83 \declare@shorthand{swedish}{"T}{\textormath{\bbl@disc T{TT}}{T}}

and some additional commands:
43.84 \declare@shorthand{swedish}{"-}{\nobreak-\bbl@allowhyphens}
43.85 \declare@shorthand{swedish}{"|}{%
43.86 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
43.87 \bbl@allowhyphens}{}}
43.88 \declare@shorthand{swedish}{""}{\hskip\z@skip}
43.89 \declare@shorthand{swedish}{"~}{%
43.90 \textormath{\leavevmode\hbox{-}\bbl@allowhyphens}{-}}
43.91 \declare@shorthand{swedish}{"=}{\hbox{-}\allowhyphens}

\- Redefinition of \-. The new version of \- should indicate an extra hyphenation
position, while allowing other hyphenation positions to be generated automatically.
The standard behaviour of TEX in this respect is very unfortunate for languages
such as Dutch, Finnish, German and Swedish, where long compound words are
quite normal and all one needs is a means to indicate an extra hyphenation position
on top of the ones that TEX can generate from the hyphenation patterns.

43.92 \addto\extrasswedish{\babel@save\-}
43.93 \addto\extrasswedish{\def\-{\allowhyphens

246

43.94 \discretionary{-}{}{}\allowhyphens}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

43.95 \ldf@finish{swedish}
43.96 〈/code〉

247

44 The North Sami language
The file samin.dtx51 defines all the language definition macros for the North Sami
language.

Several Sami dialects/languages are spoken in Finland, Norway, Sweden and
on the Kola Peninsula (Russia). The alphabets differ, so there will eventually be a
need for more .dtx files for e.g. Lule and South Sami. Hence the name samin.dtx
(and not sami.dtx or the like) in the North Sami case.

There are currently no hyphenation patterns available for the North Sami
language, but you might consider using the patterns for Finnish (fi8hyph.tex),
Norwegian (nohyph.tex) or Swedish (sehyph.tex). Add a line for the samin
language to the language.dat file, and rebuild the LATEX format file. See the
documentation for your LATEX distribution.

A note on writing North Sami in LATEX: The TI encoding and EC fonts do not
include the T WITH STROKE letter, which you will need a workaround for. My
suggestion is to place the lines

\newcommand{\tx}{\mbox{t\hspace{-.35em}-}}
\newcommand{\txx}{\mbox{T\hspace{-.5em}-}}
in the preamble of your documents. They define the commands
\txx{} for LATIN CAPITAL LETTER T WITH STROKE and
\tx{} for LATIN SMALL LETTER T WITH STROKE.

44.1 The code of samin.dtx

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

44.1 〈∗code〉
44.2 \LdfInit{samin}{captionssamin}

When this file is read as an option, i.e. by the \usepackage command, samin
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@samin to see whether we have to do something here.

44.3 \ifx\undefined\l@samin
44.4 \@nopatterns{Samin}
44.5 \adddialect\l@samin0\fi

The next step consists of defining commands to switch to (and from) the North
Sami language.

\saminhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

44.6 \providehyphenmins{samin}{\tw@\tw@}

51The file described in this section has version number v1.0c and was last revised on
2004/02/20. It was written by Regnor Jernsletten, (Regnor.Jernsletten@sami.uit.no) or
(Regnor.Jernsletten@eunet.no).

248

\captionssamin The macro \captionssamin defines all strings used in the four standard docu-
mentclasses provided with LATEX.

44.7 \def\captionssamin{%
44.8 \def\prefacename{Ovdas\’atni}%
44.9 \def\refname{\v Cujuhusat}%

44.10 \def\abstractname{\v Coahkk\’aigeassu}%
44.11 \def\bibname{Girjj\’ala\v svuohta}%
44.12 \def\chaptername{Kapihttal}%
44.13 \def\appendixname{\v Cuovus}%
44.14 \def\contentsname{Sisdoallu}%
44.15 \def\listfigurename{Govvosat}%
44.16 \def\listtablename{Tabeallat}%
44.17 \def\indexname{Registtar}%
44.18 \def\figurename{Govus}%
44.19 \def\tablename{Tabealla}%
44.20 \def\partname{Oassi}%
44.21 \def\enclname{Mielddus}%
44.22 \def\ccname{Kopia s\’addejuvvon}%
44.23 \def\headtoname{Vuost\’aiv\’aldi}%
44.24 \def\pagename{Siidu}%
44.25 \def\seename{geah\v ca}%
44.26 \def\alsoname{geah\v ca maidd\’ai}%
44.27 \def\proofname{Duo\dj{}a\v stus}%
44.28 \def\glossaryname{S\’atnelistu}%
44.29 }%

\datesamin The macro \datesamin redefines the command \today to produce North Sami
dates.

44.30 \def\datesamin{%
44.31 \def\today{\ifcase\month\or
44.32 o\dj{}\dj{}ajagem\’anu\or
44.33 guovvam\’anu\or
44.34 njuk\v cam\’anu\or
44.35 cuo\ng{}om\’anu\or
44.36 miessem\’anu\or
44.37 geassem\’anu\or
44.38 suoidnem\’anu\or
44.39 borgem\’anu\or
44.40 \v cak\v cam\’anu\or
44.41 golggotm\’anu\or
44.42 sk\’abmam\’anu\or
44.43 juovlam\’anu\fi
44.44 \space\number\day.~b.\space\number\year}%
44.45 }%

\extrassamin
\noextrassamin

The macro \extrassamin will perform all the extra definitions needed for the
North Sami language. The macro \noextrassamin is used to cancel the actions
of \extrassamin. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

249

44.46 \addto\extrassamin{}
44.47 \addto\noextrassamin{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

44.48 \ldf@finish{samin}
44.49 〈/code〉

250

45 The Finnish language
The file finnish.dtx52 defines all the language definition macros for the Finnish
language.

For this language the character " is made active. In table 19 an overview is
given of its purpose.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"= an explicit hyphen sign for expressions such as

“pakastekaapit ja -arkut”.
"" like "-, but producing no hyphen sign (for words that

should break at some sign such as “entrada/salida.”
"‘ lowered double left quotes (looks like „)
"’ normal double right quotes
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).
\- like the old \-, but allowing hyphenation in the rest

of the word.

Table 19: The extra definitions made by finnish.ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

45.1 〈∗code〉
45.2 \LdfInit{finnish}\captionsfinnish

When this file is read as an option, i.e. by the \usepackage command, finnish
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@finnish to see whether we have to do something
here.

45.3 \ifx\l@finnish\@undefined
45.4 \@nopatterns{Finnish}
45.5 \adddialect\l@finnish0\fi

The next step consists of defining commands to switch to the Finnish language.
The reason for this is that a user might want to switch back and forth between
languages.

\captionsfinnish The macro \captionsfinnish defines all strings used in the four standard docu-
mentclasses provided with LATEX.

45.6 \addto\captionsfinnish{%
45.7 \def\prefacename{Esipuhe}%
45.8 \def\refname{Viitteet}%

52The file described in this section has version number v1.3p and was last revised on
2005/03/30. A contribution was made by Mikko KANERVA (KANERVA@CERNVM) and Keranen
Reino (KERANEN@CERNVM).

251

45.9 \def\abstractname{Tiivistelm\"a}
45.10 \def\bibname{Kirjallisuutta}%
45.11 \def\chaptername{Luku}%
45.12 \def\appendixname{Liite}%
45.13 \def\contentsname{Sis\"alt\"o}% /* Could be "Sis\"allys" as well */
45.14 \def\listfigurename{Kuvat}%
45.15 \def\listtablename{Taulukot}%
45.16 \def\indexname{Hakemisto}%
45.17 \def\figurename{Kuva}%
45.18 \def\tablename{Taulukko}%
45.19 \def\partname{Osa}%
45.20 \def\enclname{Liitteet}%
45.21 \def\ccname{Jakelu}%
45.22 \def\headtoname{Vastaanottaja}%
45.23 \def\pagename{Sivu}%
45.24 \def\seename{katso}%
45.25 \def\alsoname{katso my\"os}%
45.26 \def\proofname{Todistus}%
45.27 \def\glossaryname{Sanasto}%
45.28 }%

\datefinnish The macro \datefinnish redefines the command \today to produce Finnish
dates.

45.29 \def\datefinnish{%
45.30 \def\today{\number\day.~\ifcase\month\or
45.31 tammikuuta\or helmikuuta\or maaliskuuta\or huhtikuuta\or
45.32 toukokuuta\or kes\"akuuta\or hein\"akuuta\or elokuuta\or
45.33 syyskuuta\or lokakuuta\or marraskuuta\or joulukuuta\fi
45.34 \space\number\year}}

\extrasfinnish
\noextrasfinnish

Finnish has many long words (some of them compound, some not). For this
reason hyphenation is very often the only solution in line breaking. For this reason
the values of \hyphenpenalty, \exhyphenpenalty and \doublehyphendemerits
should be decreased. (In one of the manuals of style Matti Rintala noticed a
paragraph with ten lines, eight of which ended in a hyphen!)

Matti Rintala noticed that with these changes TEX handles Finnish very well,
although sometimes the values of \tolerance and \emergencystretch must be
increased. However, I don’t think changing these values in finnish.ldf is appro-
priate, as the looseness of the font (and the line width) affect the correct choice
of these parameters.

45.35 \addto\extrasfinnish{%
45.36 \babel@savevariable\hyphenpenalty\hyphenpenalty=30%
45.37 \babel@savevariable\exhyphenpenalty\exhyphenpenalty=30%
45.38 \babel@savevariable\doublehyphendemerits\doublehyphendemerits=5000%
45.39 \babel@savevariable\finalhyphendemerits\finalhyphendemerits=5000%
45.40 }
45.41 \addto\noextrasfinnish{}

Another thing \extrasfinnish needs to do is to ensure that \frenchspacing

252

is in effect. If this is not the case the execution of \noextrasfinnish will switch
it of again.

45.42 \addto\extrasfinnish{\bbl@frenchspacing}
45.43 \addto\noextrasfinnish{\bbl@nonfrenchspacing}

For Finnish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the finnish group of shorthands should
be used.

45.44 \initiate@active@char{"}
45.45 \addto\extrasfinnish{\languageshorthands{finnish}}

Don’t forget to turn the shorthands off again.
45.46 \addto\extrasfinnish{\bbl@activate{"}}
45.47 \addto\noextrasfinnish{\bbl@deactivate{"}}

The ‘umlaut’ character should be positioned lower on all vowels in Finnish
texts.

45.48 \addto\extrasfinnish{\umlautlow\umlautelow}
45.49 \addto\noextrasfinnish{\umlauthigh}

First we define access to the low opening double quote and guillemets for
quotations,

45.50 \declare@shorthand{finnish}{"‘}{%
45.51 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
45.52 \declare@shorthand{finnish}{"’}{%
45.53 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
45.54 \declare@shorthand{finnish}{"<}{%
45.55 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
45.56 \declare@shorthand{finnish}{">}{%
45.57 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

45.58 \declare@shorthand{finnish}{"-}{\nobreak-\bbl@allowhyphens}
45.59 \declare@shorthand{finnish}{""}{\hskip\z@skip}
45.60 \declare@shorthand{finnish}{"=}{\hbox{-}\bbl@allowhyphens}

And we want to have a shorthand for disabling a ligature.
45.61 \declare@shorthand{finnish}{"|}{%
45.62 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\- All that is left now is the redefinition of \-. The new version of \- should in-
dicate an extra hyphenation position, while allowing other hyphenation positions
to be generated automatically. The standard behaviour of TEX in this respect is
very unfortunate for languages such as Dutch, Finnish and German, where long
compound words are quite normal and all one needs is a means to indicate an
extra hyphenation position on top of the ones that TEX can generate from the
hyphenation patterns.

45.63 \addto\extrasfinnish{\babel@save\-}
45.64 \addto\extrasfinnish{\def\-{\bbl@allowhyphens

253

45.65 \discretionary{-}{}{}\bbl@allowhyphens}}

\finishhyphenmins The finnish hyphenation patterns can be used with \lefthyphenmin set to 2 and
\righthyphenmin set to 2.

45.66 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

45.67 \ldf@finish{finnish}
45.68 〈/code〉

254

46 The Hungarian language
The file option magyar.dtx defines all the language definition macros for the
Hungarian language.

The babel support for the Hungarian language until file version 1.3i was essen-
tially changing the English document elements to Hungarian ones, but because of
the differences between these too languages this was actually unusable (‘Part I’
was transferred to ‘Rész I’ which is not usable instead of ‘I. rész’). To enhance the
typesetting facilities for Hungarian the following should be considered:

• In Hungarian documents there is a period after the part, section, subsection
etc. numbers.

• In the part, chapter, appendix name the number (or letter) goes before the
name, so ‘Part I’ translates to ‘I. rész’.

• The same is true with captions (‘Table 2.1’ goes to ‘2.1. táblázat’).

• There is a period after the caption name instead of a colon. (‘Table 2.1:’
goes to ‘2.1. táblázat.’)

• There is a period at the end of the title in a run-in head (when afterskip<0
in \@startsection).

• Special hyphenation rules must be applied for the so-called long double con-
sonants (ccs, ssz,. . .).

• The opening quotation mark is like the German one (the closing is the same
as in English).

• In Hungarian figure, table, etc. referencing a definite article is also incor-
porated. The Hungarian definite articles behave like the English indefinite
ones (‘a/an’). ‘a’ is used for words beginning with a consonant and ‘az’ goes
for a vowel. Since some numbers begin with a vowel some others with a
consonant some commands should be provided for automatic definite article
generation.

Until file version 1.3i53 the special typesetting rules of the Hungarian language
mentioned above were not taken into consideration. This version (v1.4j)54 enables
babel to typeset ‘good-looking’ Hungarian texts.

The \ontoday command works like \today but produces a slightly different\ontoday
date format used in expressions such as ‘on February 10th’.

The commands \Az#1 and \az#1 write the correct definite article for the ar-\Az
gument and the argument itself (separated with a ~). The star-forms (\Az* and
\az*) produce the article only.

\Azr#1 and \azr#1 treat the argument as a label so expand it then write the\Azr
53That file was last revised on 1996/12/23 with a contribution by the next authors: Attila

Koppányi (attila@cernvm.cern.ch), Árpád Bíró (JZP1104@HUSZEG11.bitnet), István Hamecz
(hami@ursus.bke.hu) and Dezső Horváth (horvath@pisa.infn.it).

54It was written by József Bérces (jozsi@docs4.mht.bme.hu) with some help from Ferenc Wettl
(wettl@math.bme.hu) and an idea from David Carlisle (david@dcarlisle.demon.co.uk).

255

shortcut explanation example
‘‘ same as \glqq in babel, or

\quotedblbase in T1 (open-
ing quotation mark, like „)

‘‘id\’ezet’’−→„idézet’’

‘c, ‘C ccs is hyphenated as cs-cs lo‘ccsan−→locs-csan
‘d, ‘D ddz is hyphenated as dz-dz e‘ddz\"unk−→edz-dzünk
‘g, ‘G ggy is hyphenated as gy-gy po‘ggy\’asz−→pogy-gyász
‘l, ‘L lly is hyphenated as ly-ly Kod\’a‘llyal−→Kodály-lyal
‘n, ‘N nny is hyphenated as ny-ny me‘nnyei−→meny-nyei
‘s, ‘S ssz is hyphenated as sz-sz vi‘ssza−→visz-sza
‘t, ‘T tty is hyphenated as ty-ty po‘ttyan−→poty-tyan
‘z, ‘Z zzs is hyphenated as zs-zs ri‘zzsel−→rizs-zsel

Table 20: The shortcuts defined in magyar.ldf

definite article for \r@#1, a non-breakable space then the label expansion. The
star-forms do not print the label expansion. \Azr(#1 and \azr(#1 are used for
equation referencing with the syntax \azr(label).

There are two aliases \Aref and \aref for \Azr and \azr, respectively.\Aref
During the preparation of a document it is not known in general, if the code
‘a~\ref{label}’ or the code ‘az~\ref{label}’ is the grammatically correct one.
Writing ‘\aref{label}’ instead of the previous ones solves the problem.

\Azp#1 and \azp#1 also treat the argument as a label but use the label’s page\Azp
for definite article determination. There are star-forms giving only the definite
article without the page number.

There are aliases \Apageref and \apageref for \Azp and \azp, respec-\Apageref
tively. The code \apageref{label} is equivalent either to a~\pageref{label} or
to az~\pageref{label}.

\Azc and \azc work like the \cite command but (of course) they insert the\Azc
definite article. There can be several comma separated cite labels and in that
case the definite article is given for the first one. They accept \cite’s optional
argument. There are star-forms giving the definite article only.

There are aliases \Acite and \acite for \Azc and \azc, respectively.\Acite
For this language the character ‘ is made active. Table 20 shows the shortcuts.

The main reason for the activation of the ‘ character is to handle the special
hyphenation of the long double consonants.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

46.1 〈∗code〉
46.2 \LdfInit{magyar}{caption\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, magyar
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@magyar or \l@hungarian to see whether we have to
do something here.

256

46.3 \ifx\l@magyar\@undefined
46.4 \ifx\l@hungarian\@undefined
46.5 \@nopatterns{Magyar}
46.6 \adddialect\l@magyar0
46.7 \else
46.8 \let\l@magyar\l@hungarian
46.9 \fi

46.10 \fi

The statement above makes sure that \l@magyar is always defined; if \l@hungarian
is still undefined we make it equal to \l@magyar.

46.11 \ifx\l@hungarian\@undefined
46.12 \let\l@hungarian\l@magyar
46.13 \fi

The next step consists of defining commands to switch to (and from) the Hun-
garian language.

\captionsmagyar The macro \captionsmagyar defines all strings used in the four standard docu-
ment classes provided with LATEX.

46.14 \@namedef{captions\CurrentOption}{%
46.15 \def\prefacename{El\H osz\’o}%

For the list of references at the end of an article we have a choice between two
words, ‘Referenciák’ (a Hungarian version of the English word) and ‘Hivatkozások’.
The latter seems to be in more widespread use.

46.16 \def\refname{Hivatkoz\’asok}%

If you have a document with a summary instead of an abstract you might want
to replace the word ‘Kivonat’ with ‘Összefoglaló’.

46.17 \def\abstractname{Kivonat}%

The Hungarian version of ‘Bibliography’ is ‘Bibliográfia’, but a more natural word
to use is ‘Irodalomjegyzék’.

46.18 \def\bibname{Irodalomjegyz\’ek}%
46.19 \def\chaptername{fejezet}%
46.20 \def\appendixname{F\"uggel\’ek}%
46.21 \def\contentsname{Tartalomjegyz\’ek}%
46.22 \def\listfigurename{\’Abr\’ak jegyz\’eke}%
46.23 \def\listtablename{T\’abl\’azatok jegyz\’eke}%
46.24 \def\indexname{T\’argymutat\’o}%
46.25 \def\figurename{\’abra}%
46.26 \def\tablename{t\’abl\’azat}%
46.27 \def\partname{r\’esz}%
46.28 \def\enclname{Mell\’eklet}%
46.29 \def\ccname{K\"orlev\’el--c\’\i mzettek}%
46.30 \def\headtoname{C\’\i mzett}%
46.31 \def\pagename{oldal}%
46.32 \def\seename{l\’asd}%
46.33 \def\alsoname{l\’asd m\’eg}%

257

Besides the Hungarian word for Proof, ‘Bizonyítás’ we can also name Corollary
(Következmény), Theorem (Tétel) and Lemma (Lemma).

46.34 \def\proofname{Bizony\’\i t\’as}%
46.35 \def\glossaryname{Sz\’ojegyz\’ek}%
46.36 }%

\datemagyar The macro \datemagyar redefines the command \today to produce Hungarian
dates.

46.37 \@namedef{date\CurrentOption}{%
46.38 \def\today{%
46.39 \number\year.\nobreakspace\ifcase\month\or
46.40 janu\’ar\or febru\’ar\or m\’arcius\or
46.41 \’aprilis\or m\’ajus\or j\’unius\or
46.42 j\’ulius\or augusztus\or szeptember\or
46.43 okt\’ober\or november\or december\fi
46.44 \space\number\day.}}

\ondatemagyar The macro \ondatemagyar produces Hungarian dates which have the meaning ‘on
this day ’. It does not redefine the command \today.

46.45 \@namedef{ondate\CurrentOption}{%
46.46 \number\year.\nobreakspace\ifcase\month\or
46.47 janu\’ar\or febru\’ar\or m\’arcius\or
46.48 \’aprilis\or m\’ajus\or j\’unius\or
46.49 j\’ulius\or augusztus\or szeptember\or
46.50 okt\’ober\or november\or december\fi
46.51 \space\ifcase\day\or
46.52 1-j\’en\or 2-\’an\or 3-\’an\or 4-\’en\or 5-\’en\or
46.53 6-\’an\or 7-\’en\or 8-\’an\or 9-\’en\or 10-\’en\or
46.54 11-\’en\or 12-\’en\or 13-\’an\or 14-\’en\or 15-\’en\or
46.55 16-\’an\or 17-\’en\or 18-\’an\or 19-\’en\or 20-\’an\or
46.56 21-\’en\or 22-\’en\or 23-\’an\or 24-\’en\or 25-\’en\or
46.57 26-\’an\or 27-\’en\or 28-\’an\or 29-\’en\or 30-\’an\or
46.58 31-\’en\fi}

\extrasmagyar
\noextrasmagyar

The macro \extrasmagyar will perform all the extra definitions needed for the
Hungarian language. The macro \noextrasmagyar is used to cancel the actions
of \extrasmagyar.

46.59 \@namedef{extras\CurrentOption}{%
46.60 \expandafter\let\expandafter\ontoday
46.61 \csname ondate\CurrentOption\endcsname}
46.62 \@namedef{noextras\CurrentOption}{\let\ontoday\@undefined}

Now we redefine some commands included into latex.ltx. The original form
of a command is always saved with \babel@save and the changes are added to
\extrasmagyar. This ensures that the Hungarian version of a macro is alive only
if the Hungarian language is active.

258

\fnum@figure
\fnum@table

In figure and table captions the order of the figure/table number and \figurename
/\tablename must be changed. To achieve this \fnum@figure and \fnum@table
are redefined and added to \extrasmagyar.

46.63 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.64 \babel@save\fnum@figure
46.65 \def\fnum@figure{\thefigure.\nobreakspace\figurename}}
46.66 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.67 \babel@save\fnum@table
46.68 \def\fnum@table{\thetable.\nobreakspace\tablename}}

\@makecaption The colon in a figure/table caption must be replaced by a dot by redefining
\@makecaption.

46.69 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.70 \babel@save\@makecaption
46.71 \def\@makecaption#1#2{%
46.72 \vskip\abovecaptionskip
46.73 \sbox\@tempboxa{#1. #2}%
46.74 \ifdim \wd\@tempboxa >\hsize
46.75 {#1. #2\csname par\endcsname}
46.76 \else
46.77 \global \@minipagefalse
46.78 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
46.79 \fi
46.80 \vskip\belowcaptionskip}}

\@caption There should be a dot after the figure/table number in lof/lot, so \@caption is
redefined.

46.81 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.82 \babel@save\@caption
46.83 \long\def\@caption#1[#2]#3{%
46.84 \csname par\endcsname
46.85 \addcontentsline{\csname ext@#1\endcsname}{#1}%
46.86 {\protect\numberline{\csname the#1\endcsname.}{\ignorespaces #2}}%
46.87 \begingroup
46.88 \@parboxrestore
46.89 \if@minipage
46.90 \@setminipage
46.91 \fi
46.92 \normalsize
46.93 \@makecaption{\csname fnum@#1\endcsname}%
46.94 {\ignorespaces #3}\csname par\endcsname
46.95 \endgroup}}

\@seccntformat In order to have a dot after the section number \@seccntformat is redefined.
46.96 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.97 \babel@save\@seccntformat
46.98 \def\@seccntformat#1{\csname the#1\endcsname.\quad}}

259

\@sect Alas, \@sect must also be redefined to have that dot in toc too. On the other
hand, we include a dot after a run-in head.

46.99 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.100 \babel@save\@sect
46.101 \def\@sect#1#2#3#4#5#6[#7]#8{%
46.102 \ifnum #2>\c@secnumdepth
46.103 \let\@svsec\@empty
46.104 \else
46.105 \refstepcounter{#1}%
46.106 \protected@edef\@svsec{\@seccntformat{#1}\relax}%
46.107 \fi
46.108 \@tempskipa #5\relax
46.109 \ifdim \@tempskipa>\z@
46.110 \begingroup
46.111 #6{%
46.112 \@hangfrom{\hskip #3\relax\@svsec}%
46.113 \interlinepenalty \@M #8\@@par}%
46.114 \endgroup
46.115 \csname #1mark\endcsname{#7}%
46.116 \addcontentsline{toc}{#1}{%
46.117 \ifnum #2>\c@secnumdepth \else
46.118 \protect\numberline{\csname the#1\endcsname.}%
46.119 \fi
46.120 #7}%
46.121 \else
46.122 \def\@svsechd{%
46.123 #6{\hskip #3\relax
46.124 \@svsec #8.}%
46.125 \csname #1mark\endcsname{#7}%
46.126 \addcontentsline{toc}{#1}{%
46.127 \ifnum #2>\c@secnumdepth \else
46.128 \protect\numberline{\csname the#1\endcsname.}%
46.129 \fi
46.130 #7}}%
46.131 \fi
46.132 \@xsect{#5}}}

\@ssect In order to have that dot after a run-in head when the star form of the sectioning
commands is used, we have to redefine \@ssect.

46.133 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.134 \babel@save\@ssect
46.135 \def\@ssect#1#2#3#4#5{%
46.136 \@tempskipa #3\relax
46.137 \ifdim \@tempskipa>\z@
46.138 \begingroup
46.139 #4{%
46.140 \@hangfrom{\hskip #1}%
46.141 \interlinepenalty \@M #5\@@par}%
46.142 \endgroup

260

46.143 \else
46.144 \def\@svsechd{#4{\hskip #1\relax #5.}}%
46.145 \fi
46.146 \@xsect{#3}}}

\@begintheorem
\@opargbegintheorem

Order changing and dot insertion in theorem by redefining \@begintheorem and
\@opargbegintheorem.

46.147 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.148 \babel@save\@begintheorem
46.149 \def\@begintheorem#1#2{\trivlist
46.150 \item[\hskip \labelsep{\bfseries #2.\ #1.}]\itshape}%
46.151 \babel@save\@opargbegintheorem
46.152 \def\@opargbegintheorem#1#2#3{\trivlist
46.153 \item[\hskip \labelsep{\bfseries #2.\ #1\ (#3).}]\itshape}}

The next step is to redefine some macros included into the class files. It is
determined which class file is loaded then the original form of the macro is saved
and the changes are added to \extrasmagyar.

First we check if the book.cls is loaded.
46.154 \@ifclassloaded{book}{%

\ps@headings The look of the headings is changed: we have to insert some dots and change the
order of chapter number and \chaptername.

46.155 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.156 \babel@save\ps@headings}
46.157 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.158 \if@twoside
46.159 \def\ps@headings{%
46.160 \let\@oddfoot\@empty\let\@evenfoot\@empty
46.161 \def\@evenhead{\thepage\hfil\slshape\leftmark}%
46.162 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%
46.163 \let\@mkboth\markboth
46.164 \def\chaptermark##1{%
46.165 \markboth {\MakeUppercase{%
46.166 \ifnum \c@secnumdepth >\m@ne
46.167 \if@mainmatter
46.168 \thechapter. \@chapapp. \ %
46.169 \fi
46.170 \fi
46.171 ##1}}{}}%
46.172 \def\sectionmark##1{%
46.173 \markright {\MakeUppercase{%
46.174 \ifnum \c@secnumdepth >\z@
46.175 \thesection. \ %
46.176 \fi
46.177 ##1}}}}%
46.178 \else
46.179 \def\ps@headings{%
46.180 \let\@oddfoot\@empty

261

46.181 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%
46.182 \let\@mkboth\markboth
46.183 \def\chaptermark##1{%
46.184 \markright {\MakeUppercase{%
46.185 \ifnum \c@secnumdepth >\m@ne
46.186 \if@mainmatter
46.187 \thechapter. \@chapapp. \ %
46.188 \fi
46.189 \fi
46.190 ##1}}}}%
46.191 \fi}

\@part At the beginning of a part we need eg. ‘I. rész’ instead of ‘Part I’ (in toc too). To
achieve this \@part is redefined.

46.192 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.193 \babel@save\@part
46.194 \def\@part[#1]#2{%
46.195 \ifnum \c@secnumdepth >-2\relax
46.196 \refstepcounter{part}%
46.197 \addcontentsline{toc}{part}{\thepart.\hspace{1em}#1}%
46.198 \else
46.199 \addcontentsline{toc}{part}{#1}%
46.200 \fi
46.201 \markboth{}{}%
46.202 {\centering
46.203 \interlinepenalty \@M
46.204 \normalfont
46.205 \ifnum \c@secnumdepth >-2\relax
46.206 \huge\bfseries \thepart.\nobreakspace\partname
46.207 \csname par\endcsname
46.208 \vskip 20\p@
46.209 \fi
46.210 \Huge \bfseries #2\csname par\endcsname}%
46.211 \@endpart}}

\@chapter The same changes are made to chapter. First the screen typeout and the toc are
changed by redefining \@chapter.

46.212 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.213 \babel@save\@chapter
46.214 \def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
46.215 \if@mainmatter
46.216 \refstepcounter{chapter}%
46.217 \typeout{\thechapter.\space\@chapapp.}%
46.218 \addcontentsline{toc}{chapter}%
46.219 {\protect\numberline{\thechapter.}#1}%
46.220 \else
46.221 \addcontentsline{toc}{chapter}{#1}%
46.222 \fi
46.223 \else

262

46.224 \addcontentsline{toc}{chapter}{#1}%
46.225 \fi
46.226 \chaptermark{#1}%
46.227 \addtocontents{lof}{\protect\addvspace{10\p@}}%
46.228 \addtocontents{lot}{\protect\addvspace{10\p@}}%
46.229 \if@twocolumn
46.230 \@topnewpage[\@makechapterhead{#2}]%
46.231 \else
46.232 \@makechapterhead{#2}%
46.233 \@afterheading
46.234 \fi}}

\@makechapterhead Then the look of the chapter-start is modified by redefining \@makechapterhead.
46.235 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.236 \babel@save\@makechapterhead
46.237 \def\@makechapterhead#1{%
46.238 \vspace*{50\p@}%
46.239 {\parindent \z@ \raggedright \normalfont
46.240 \ifnum \c@secnumdepth >\m@ne
46.241 \if@mainmatter
46.242 \huge\bfseries \thechapter.\nobreakspace\@chapapp{}
46.243 \csname par\endcsname\nobreak
46.244 \vskip 20\p@
46.245 \fi
46.246 \fi
46.247 \interlinepenalty\@M
46.248 \Huge \bfseries #1\csname par\endcsname\nobreak
46.249 \vskip 40\p@
46.250 }}}%

This the end of the book class modification.
46.251 }{}

Now we check if report.cls is loaded.
46.252 \@ifclassloaded{report}{%

\ps@headings First the headings are modified just in case of the book class.
46.253 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.254 \babel@save\ps@headings}
46.255 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.256 \if@twoside
46.257 \def\ps@headings{%
46.258 \let\@oddfoot\@empty\let\@evenfoot\@empty
46.259 \def\@evenhead{\thepage\hfil\slshape\leftmark}%
46.260 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%
46.261 \let\@mkboth\markboth
46.262 \def\chaptermark##1{%
46.263 \markboth {\MakeUppercase{%
46.264 \ifnum \c@secnumdepth >\m@ne
46.265 \thechapter. \@chapapp. \ %

263

46.266 \fi
46.267 ##1}}{}}%
46.268 \def\sectionmark##1{%
46.269 \markright {\MakeUppercase{%
46.270 \ifnum \c@secnumdepth >\z@
46.271 \thesection. \ %
46.272 \fi
46.273 ##1}}}}%
46.274 \else
46.275 \def\ps@headings{%
46.276 \let\@oddfoot\@empty
46.277 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%
46.278 \let\@mkboth\markboth
46.279 \def\chaptermark##1{%
46.280 \markright {\MakeUppercase{%
46.281 \ifnum \c@secnumdepth >\m@ne
46.282 \thechapter. \@chapapp. \ %
46.283 \fi
46.284 ##1}}}}%
46.285 \fi}

\@chapter Chapter-start modification with \@chapter
46.286 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.287 \babel@save\@chapter
46.288 \def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
46.289 \refstepcounter{chapter}%
46.290 \typeout{\thechapter.\space\@chapapp.}%
46.291 \addcontentsline{toc}{chapter}%
46.292 {\protect\numberline{\thechapter.}#1}%
46.293 \else
46.294 \addcontentsline{toc}{chapter}{#1}%
46.295 \fi
46.296 \chaptermark{#1}%
46.297 \addtocontents{lof}{\protect\addvspace{10\p@}}%
46.298 \addtocontents{lot}{\protect\addvspace{10\p@}}%
46.299 \if@twocolumn
46.300 \@topnewpage[\@makechapterhead{#2}]%
46.301 \else
46.302 \@makechapterhead{#2}%
46.303 \@afterheading
46.304 \fi}}

\@makechapterhead and \@makechapterhead.
46.305 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.306 \babel@save\@makechapterhead
46.307 \def\@makechapterhead#1{%
46.308 \vspace*{50\p@}%
46.309 {\parindent \z@ \raggedright \normalfont
46.310 \ifnum \c@secnumdepth >\m@ne
46.311 \huge\bfseries \thechapter.\nobreakspace\@chapapp{}

264

46.312 \csname par\endcsname\nobreak
46.313 \vskip 20\p@
46.314 \fi
46.315 \interlinepenalty\@M
46.316 \Huge \bfseries #1\csname par\endcsname\nobreak
46.317 \vskip 40\p@
46.318 }}}%

End of report class modification.
46.319 }{}

Checking if article.cls is loaded.
46.320 \@ifclassloaded{article}{%

\ps@headings Changing headings by redefining \ps@headings.
46.321 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.322 \babel@save\ps@headings}
46.323 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.324 \if@twoside
46.325 \def\ps@headings{%
46.326 \let\@oddfoot\@empty\let\@evenfoot\@empty
46.327 \def\@evenhead{\thepage\hfil\slshape\leftmark}%
46.328 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%
46.329 \let\@mkboth\markboth
46.330 \def\sectionmark##1{%
46.331 \markboth {\MakeUppercase{%
46.332 \ifnum \c@secnumdepth >\z@
46.333 \thesection.\quad
46.334 \fi
46.335 ##1}}{}}%
46.336 \def\subsectionmark##1{%
46.337 \markright {%
46.338 \ifnum \c@secnumdepth >\@ne
46.339 \thesubsection.\quad
46.340 \fi
46.341 ##1}}}%
46.342 \else
46.343 \def\ps@headings{%
46.344 \let\@oddfoot\@empty
46.345 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}%
46.346 \let\@mkboth\markboth
46.347 \def\sectionmark##1{%
46.348 \markright {\MakeUppercase{%
46.349 \ifnum \c@secnumdepth >\m@ne
46.350 \thesection.\quad
46.351 \fi
46.352 ##1}}}}%
46.353 \fi}%

No more necessary changes specific to the article class.

265

46.354 }{}

And now this is the turn of letter.cls.
46.355 \@ifclassloaded{letter}{%

\ps@headings In the headings the page number must be followed by a dot and then \pagename.
46.356 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.357 \babel@save\ps@headings}
46.358 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.359 \if@twoside
46.360 \def\ps@headings{%
46.361 \let\@oddfoot\@empty\let\@evenfoot\@empty
46.362 \def\@oddhead{\slshape\headtoname{:} \ignorespaces\toname
46.363 \hfil \@date
46.364 \hfil \thepage.\nobreakspace\pagename}%
46.365 \let\@evenhead\@oddhead}
46.366 \else
46.367 \def\ps@headings{%
46.368 \let\@oddfoot\@empty
46.369 \def\@oddhead{\slshape\headtoname{:} \ignorespaces\toname
46.370 \hfil \@date
46.371 \hfil \thepage.\nobreakspace\pagename}}
46.372 \fi}%

End of letter class.
46.373 }{}

After making the changes to the LATEX macros we define some new ones to
handle the problem with definite articles.

\az \az is a user-level command which decides if the next character is a star. \@az is
called for \az* and \az@ for \az.

46.374 \def\az{a\@ifstar{\@az}{\az@}}

\Az \Az is used at the beginning of a sentence. Otherwise it behaves the same as \az.
46.375 \def\Az{A\@ifstar{\@az}{\az@}}

\az@ \az@ is called if there is no star after \az or \Az. It calls \@az and writes #1
separating with a non-breakable space.

46.376 \def\az@#1{\@az{#1}\nobreakspace#1}

\@az This macro calls \hun@tempadef to remove the accents from the argument then
calls \@@az that determines if a ‘z’ should be written after a/A (written by
\az/\Az).

46.377 \def\@az#1{%
46.378 \hun@tempadef{relax}{relax}{#1}%
46.379 \edef\@tempb{\noexpand\@@az\@tempa\hbox!}%
46.380 \@tempb}

\hun@tempadef The macro \hun@tempadef has three tasks:

266

• Accent removal. Accented letters confuse \@@az, the main definite article
determinator macro, so they must be changed to their non-accented coun-
terparts. Special letters must also be changed, eg. œ→ o.

• Labels must be expanded.

• To handle Roman numerals correctly, commands starting with \hun@ are
defined for labels containing Roman numbers with the Roman numerals
replaced by their Arabic representation. This macro can check if there is a
\hun@ command.

There are three arguments:

1. The primary command that should be expanded if it exists. This is usually
the \hun@ command for a label.

2. The secondary command which is used if the first one is \relax. This is
usually the original LATEX command for a label.

3. This is used if the first two is \relax. For this one no expansion is carried
out but the accents are still removed and special letters are changed.

46.381 \def\hun@tempadef#1#2#3{%
46.382 \begingroup
46.383 \def\@safe@activesfalse{}%
46.384 \def\setbox ##1{}% to get rid of accents and special letters
46.385 \def\hbox ##1{}%
46.386 \def\accent ##1 ##2{##2}%
46.387 \def\add@accent ##1##2{##2}%
46.388 \def\@text@composite@x ##1##2{##2}%
46.389 \def\i{i}\def\j{j}%
46.390 \def\ae{a}\def\AE{A}\def\oe{o}\def\OE{O}%
46.391 \def\ss{s}\def\L{L}%
46.392 \def\d{}\def\b{}\def\c{}\def\t{}%
46.393 \expandafter\ifx\csname #1\endcsname\relax
46.394 \expandafter\ifx\csname #2\endcsname\relax
46.395 \xdef\@tempa{#3}%
46.396 \else
46.397 \xdef\@tempa{\csname #2\endcsname}%
46.398 \fi
46.399 \else
46.400 \xdef\@tempa{\csname #1\endcsname}%
46.401 \fi
46.402 \endgroup}

The following macros are used to determine the definite article for a label’s
expansion.

\aref \aref is an alias for \azr.
46.403 \def\aref{\azr}

267

\Aref \Aref is an alias for \Azr.
46.404 \def\Aref{\Azr}

\azr \azr calls \@azr if the next character is a star, otherwise it calls \azr@.
46.405 \def\azr{a\@ifstar{\@azr}{\azr@}}

\Azr \Azr is the same as \azr except that it writes ‘A’ instead of ‘a’.
46.406 \def\Azr{A\@ifstar{\@azr}{\azr@}}

\azr@ \azr@ decides if the next character is (and in that case it calls \azr@@@ which
writes an extra (for equation referencing. Otherwise \azr@@ is called.

46.407 \def\azr@{\@ifnextchar ({\azr@@@}{\azr@@}}

\azr@@ Calls \@azr then writes the label’s expansion preceded by a non-breakable space.
46.408 \def\azr@@#1{\@azr{#1}\nobreakspace\ref{#1}}

\azr@@@ Same as \azr@@ but inserts a (between the non-breakable space and the label
expansion.

46.409 \def\azr@@@(#1{\@azr{#1}\nobreakspace(\ref{#1}}

\@azr Calls \hun@tempadef to choose between the label’s \hun@ or original LATEX com-
mand and to expand it with accent removal and special letter substitution. Then
calls \@@az, the core macro of definite article handling.

46.410 \def\@azr#1{%
46.411 \hun@tempadef{hun@r@#1}{r@#1}{}%
46.412 \ifx\@tempa\empty
46.413 \else
46.414 \edef\@tempb{\noexpand\@@az\expandafter\@firstoftwo\@tempa\hbox!}%
46.415 \@tempb
46.416 \fi
46.417 }

The following commands are used to generate the definite article for the page
number of a label.

\apageref \apageref is an alias for \azp.
46.418 \def\apageref{\azp}

\Apageref \Apageref is an alias for \Azp.
46.419 \def\Apageref{\Azp}

\azp Checks if the next character is * and calls \@azp or \azp@.
46.420 \def\azp{a\@ifstar{\@azp}{\azp@}}

\Azp Same as \azp except that it writes ‘A’ instead of ‘a’.
46.421 \def\Azp{A\@ifstar{\@azp}{\azp@}}

268

\azp@ Calls \@azp then writes the label’s page preceded by a non-breakable space.
46.422 \def\azp@#1{\@azp{#1}\nobreakspace\pageref{#1}}

\@azp Calls \hun@tempadef then takes the label’s page and passes it to \@@az.
46.423 \def\@azp#1{%
46.424 \hun@tempadef{hun@r@#1}{r@#1}{}%
46.425 \ifx\@tempa\empty
46.426 \else
46.427 \edef\@tempb{\noexpand\@@az\expandafter\@secondoftwo\@tempa\hbox!}%
46.428 \@tempb
46.429 \fi
46.430 }

The following macros are used to give the definite article to citations.

\acite This is an alias for \azc.
46.431 \def\acite{\azc}

\Acite This is an alias for \Azc.
46.432 \def\Acite{\Azc}

\azc Checks if the next character is a star and calls \@azc or \azc@.
46.433 \def\azc{a\@ifstar{\@azc}{\azc@}}

\Azc Same as \azc but used at the beginning of sentences.
46.434 \def\Azc{A\@ifstar{\@azc}{\azc@}}

\azc@ If there is no star we accept an optional argument, just like the \cite command.
46.435 \def\azc@{\@ifnextchar [{\azc@@}{\azc@@[]}}

\azc@@ First calls \@azc then \cite.
46.436 \def\azc@@[#1]#2{%
46.437 \@azc{#2}\nobreakspace\def\@tempa{#1}%
46.438 \ifx\@tempa\@empty\cite{#2}\else\cite[#1]{#2}\fi}

\@azc This is an auxiliary macro to get the first cite label from a comma-separated list.
46.439 \def\@azc#1{\@@azc#1,\hbox!}

\@@azc This one uses only the first argument, that is the first element of the comma-
separated list of cite labels. Calls \hun@tempadef to expand the cite label with
accent removal and special letter replacement. Then \@@az, the core macro, is
called.

46.440 \def\@@azc#1,#2\hbox#3!{%
46.441 \hun@tempadef{hun@b@#1}{b@#1}{}%
46.442 \ifx\@tempa\empty
46.443 \else
46.444 \edef\@tempb{\noexpand\@@az\@tempa\hbox!}%
46.445 \@tempb
46.446 \fi}

269

\hun@number@lehgth This macro is used to count the number of digits in its argument until a non-digit
character is found or the end of the argument is reached. It must be called as
\hun@number@lehgtharg\hbox\hbox! and \count@ must be zeroed. It is called
by \@@az.

46.447 \def\hun@number@lehgth#1#2\hbox#3!{%
46.448 \ifcat\noexpand#11%
46.449 \ifnum\expandafter‘\csname#1\endcsname>47
46.450 \ifnum\expandafter‘\csname#1\endcsname<58
46.451 \advance\count@ by \@ne
46.452 \hun@number@lehgth#2\hbox\hbox!\fi\fi\fi}

\hun@alph@lehgth This is used to count the number of letters until a non-letter is found or the end of
the argument is reached. It must be called as \hun@alph@lehgtharg\hbox\hbox!
and \count@ must be set to zero. It is called by \@@az@string.

46.453 \def\hun@alph@lehgth#1#2\hbox#3!{%
46.454 \ifcat\noexpand#1A%
46.455 \advance\count@ by \@ne
46.456 \hun@alph@lehgth#2\hbox\hbox!\fi}

\@@az@string This macro is called by \@@az if the argument begins with a letter. The task of
\@@az@string is to determine if the argument starts with a vowel and in that
case \let\@tempa\@tempb. After checking if the first letter is A, E, I, O, or U,
\hun@alph@lehgth is called to determine the length of the argument. If it gives
1 (that is the argument is a single-letter one or the second character is not letter)
then the letters L, M, N, R, S, X, and Y are also considered as a vowel since their
Hungarian pronounced name starts with a vowel.

46.457 \def\@@az@string#1#2{%
46.458 \ifx#1A%
46.459 \let\@tempa\@tempb
46.460 \else\ifx#1E%
46.461 \let\@tempa\@tempb
46.462 \else\ifx#1I%
46.463 \let\@tempa\@tempb
46.464 \else\ifx#1O%
46.465 \let\@tempa\@tempb
46.466 \else\ifx#1U%
46.467 \let\@tempa\@tempb
46.468 \fi\fi\fi\fi\fi
46.469 \ifx\@tempa\@tempb
46.470 \else
46.471 \count@\z@
46.472 \hun@alph@lehgth#1#2\hbox\hbox!%
46.473 \ifnum\count@=\@ne
46.474 \ifx#1F%
46.475 \let\@tempa\@tempb
46.476 \else\ifx#1L%
46.477 \let\@tempa\@tempb
46.478 \else\ifx#1M%

270

46.479 \let\@tempa\@tempb
46.480 \else\ifx#1N%
46.481 \let\@tempa\@tempb
46.482 \else\ifx#1R%
46.483 \let\@tempa\@tempb
46.484 \else\ifx#1S%
46.485 \let\@tempa\@tempb
46.486 \else\ifx#1X%
46.487 \let\@tempa\@tempb
46.488 \else\ifx#1Y%
46.489 \let\@tempa\@tempb
46.490 \fi\fi\fi\fi\fi\fi\fi\fi
46.491 \fi
46.492 \fi}

\@@az This macro is the core of definite article handling. It determines if the argument
needs ‘az’ or ‘a’ definite article by setting \@tempa to ‘z’ or \@empty. It sets
\@tempa to ‘z’ if

• the first character of the argument is 5; or

• the first character of the argument is 1 and the length of the number
(mod 3) = 1 (one–egy, thousand–ezer, million–egymillió,. . .); or

• the first character of the argument is a, A, e, E, i, I, o, O, u, or U; or

• the first character of the argument is l, L, m, M, n, N, r, R, s, S, x, X, y, or Y
and the length of the argument is 1 or the second character is a non-letter.

At the end it calls \@tempa, that is, it either typesets a ‘z’ or nothing.
46.493 \def\@@az#1#2\hbox#3!{%
46.494 \let\@tempa\@empty
46.495 \def\@tempb{z}%
46.496 \uppercase{%
46.497 \ifx5#1%
46.498 \let\@tempa\@tempb
46.499 \else\ifx1#1%
46.500 \count@\@ne
46.501 \hun@number@lehgth#2\hbox\hbox!%
46.502 \loop
46.503 \ifnum\count@>\thr@@
46.504 \advance\count@-\thr@@
46.505 \repeat
46.506 \ifnum\count@=\@ne
46.507 \let\@tempa\@tempb
46.508 \fi
46.509 \else
46.510 \@@az@string{#1}{#2}%
46.511 \fi\fi
46.512 }%
46.513 \@tempa}

271

\refstepcounter \refstepcounter must be redefined in order to keep \@currentlabel unex-
panded. This is necessary to enable the \label command to write a \hunnewlabel
command to the aux file with the Roman numerals substituted by their Arabic
representations. Of course, the original definition of \refstepcounter is saved
and restored if the Hungarian language is switched off.

46.514 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.515 \babel@save\refstepcounter
46.516 \def\refstepcounter#1{\stepcounter{#1}%
46.517 \def\@currentlabel{\csname p@#1\endcsname\csname the#1\endcsname}}%
46.518 }

\label \label is redefined to write another line into the aux file: \hunnewlabel{ }{ }
where the Roman numerals are replaced their Arabic representations. The original
definition of \label is saved into \old@label and it is also called by \label. On
leaving the Hungarian typesetting mode \label’s original is restored since it is
added to \noextrasmagyar.

46.519 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.520 \let\old@label\label
46.521 \def\label#1{\@bsphack
46.522 \old@label{#1}%
46.523 \begingroup
46.524 \let\romannumeral\number
46.525 \def\@roman##1{\number ##1}%
46.526 \def\@Roman##1{\number ##1}%
46.527 {\toks0={\noexpand\noexpand\noexpand\number}%
46.528 \def\number##1{\the\toks0 ##1}\xdef\tempb@{\thepage}}%
46.529 \edef\@tempa##1{\noexpand\protected@write\@auxout{}%
46.530 {\noexpand\string\noexpand\hunnewlabel
46.531 {##1}{{\@currentlabel}{\tempb@}}}}%
46.532 \@tempa{#1}%
46.533 \endgroup
46.534 \@esphack}%
46.535 }
46.536 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
46.537 \let\label\old@label
46.538 }

\hunnewlabel Finally, \hunnewlabel is defined. It checks if the label’s expansion (#2) differs
from that one given in the \newlabel command. If yes (that is, the label con-
tains some Roman numerals), it defines the macro \hun@r@label, otherwise it does
nothing.

46.539 \def\hunnewlabel#1#2{%
46.540 \def\@tempa{#2}%
46.541 \expandafter\ifx\csname r@#1\endcsname\@tempa
46.542 \relax% \message{No need for def: #1}%
46.543 \else
46.544 \global\expandafter\let\csname hun@r@#1\endcsname\@tempa%
46.545 \fi
46.546 }

272

For Hungarian the ‘ character is made active.
46.547 \AtBeginDocument{%
46.548 \if@filesw\immediate\write\@auxout{\catcode096=12}\fi}
46.549 \initiate@active@char{‘}
46.550 \expandafter\addto\csname extras\CurrentOption\endcsname{%
46.551 \languageshorthands{magyar}%
46.552 \bbl@activate{‘}}
46.553 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
46.554 \bbl@deactivate{‘}}

The character sequence ‘‘ is declared as a shorthand in order to produce the
opening quotation sign appropriate for Hungarian.

46.555 \declare@shorthand{magyar}{‘‘}{\glqq}

In Hungarian there are some long double consonants which must be hyphenated
specially. For all these long double consonants (except dzzs, that is extremely
very-very rare) a shortcut is defined.

46.556 \declare@shorthand{magyar}{‘c}{\textormath{\bbl@disc{c}{cs}}{c}}
46.557 \declare@shorthand{magyar}{‘C}{\textormath{\bbl@disc{C}{CS}}{C}}
46.558 \declare@shorthand{magyar}{‘d}{\textormath{\bbl@disc{d}{dz}}{d}}
46.559 \declare@shorthand{magyar}{‘D}{\textormath{\bbl@disc{D}{DZ}}{D}}
46.560 \declare@shorthand{magyar}{‘g}{\textormath{\bbl@disc{g}{gy}}{g}}
46.561 \declare@shorthand{magyar}{‘G}{\textormath{\bbl@disc{G}{GY}}{G}}
46.562 \declare@shorthand{magyar}{‘l}{\textormath{\bbl@disc{l}{ly}}{l}}
46.563 \declare@shorthand{magyar}{‘L}{\textormath{\bbl@disc{L}{LY}}{L}}
46.564 \declare@shorthand{magyar}{‘n}{\textormath{\bbl@disc{n}{ny}}{n}}
46.565 \declare@shorthand{magyar}{‘N}{\textormath{\bbl@disc{N}{NY}}{N}}
46.566 \declare@shorthand{magyar}{‘s}{\textormath{\bbl@disc{s}{sz}}{s}}
46.567 \declare@shorthand{magyar}{‘S}{\textormath{\bbl@disc{S}{SZ}}{S}}
46.568 \declare@shorthand{magyar}{‘t}{\textormath{\bbl@disc{t}{ty}}{t}}
46.569 \declare@shorthand{magyar}{‘T}{\textormath{\bbl@disc{T}{TY}}{T}}
46.570 \declare@shorthand{magyar}{‘z}{\textormath{\bbl@disc{z}{zs}}{z}}
46.571 \declare@shorthand{magyar}{‘Z}{\textormath{\bbl@disc{Z}{ZS}}{Z}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

46.572 \ldf@finish\CurrentOption
46.573 〈/code〉

273

47 The Estonian language
The file estonian.dtx55 defines the language definition macro’s for the Estonian
language.

This file was written as part of the TWGML project, and borrows heavily from
the babel German and Spanish language files germanb.ldf and spanish.ldf.

Estonian has the same umlauts as German (ä, ö, ü), but in addition to this,
we have also õ, and two recent characters š and ž, so we need at least two active
characters. We shall use " and ~ to type Estonian accents on ASCII keyboards
(in the 7-bit character world). Their use is given in table 21. These active accent

~o \~o, (and uppercase);
"a \"a, (and uppercase);
"o \"o, (and uppercase);
"u \"u, (and uppercase);
~s \v s, (and uppercase);
~z \v z, (and uppercase);
"| disable ligature at this position;
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word;
\- like the old \-, but allowing hyphenation in the rest

of the word;
"‘ for Estonian low left double quotes (same as Ger-

man);
"’ for Estonian right double quotes;
"< for French left double quotes (also rather popular)
"> for French right double quotes.

Table 21: The extra definitions made by estonian.ldf

characters behave according to their original definitions if not followed by one of
the characters indicated in that table; the original quote character can be typed
using the macro \dq.

We support also the T1 output encoding (and Cork-encoded text input). You
can choose the T1 encoding by the command \usepackage[T1]{fontenc}. This
package must be loaded before babel. As the standard Estonian hyphenation file
eehyph.tex is in the Cork encoding, choosing this encoding will give you better
hyphenation.

As mentioned in the Spanish style file, it may happen that some packages
fail (usually in a \message). In this case you should change the order of the
\usepackage declarations or the order of the style options in \documentclass.

55The file described in this section has version number v1.0h and was last revised on
2005/03/30. The original author is Enn Saar, (saar@aai.ee).

274

47.1 Implementation
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

47.1 〈∗code〉
47.2 \LdfInit{estonian}\captionsestonian

If Estonian is not included in the format file (does not have hyphenation pat-
terns), we shall use English hyphenation.

47.3 \ifx\l@estonian\@undefined
47.4 \@nopatterns{Estonian}
47.5 \adddialect\l@estonian0
47.6 \fi

Now come the commands to switch to (and from) Estonian.

\captionsestonian The macro \captionsestonian defines all strings used in the four standard doc-
umentclasses provided with LATEX.

47.7 \addto\captionsestonian{%
47.8 \def\prefacename{Sissejuhatus}%
47.9 \def\refname{Viited}%

47.10 \def\bibname{Kirjandus}%
47.11 \def\appendixname{Lisa}%
47.12 \def\contentsname{Sisukord}%
47.13 \def\listfigurename{Joonised}%
47.14 \def\listtablename{Tabelid}%
47.15 \def\indexname{Indeks}%
47.16 \def\figurename{Joonis}%
47.17 \def\tablename{Tabel}%
47.18 \def\partname{Osa}%
47.19 \def\enclname{Lisa(d)}%
47.20 \def\ccname{Koopia(d)}%
47.21 \def\headtoname{}%
47.22 \def\pagename{Lk.}%
47.23 \def\seename{vt.}%
47.24 \def\alsoname{vt. ka}%
47.25 \def\proofname{Korrektuur}%
47.26 \def\glossaryname{Glossary}% <-- Needs translation
47.27 }

These captions contain accented characters.

47.28 \begingroup \catcode‘\"\active
47.29 \def\x{\endgroup
47.30 \addto\captionsestonian{%
47.31 \def\abstractname{Kokkuv~ote}%
47.32 \def\chaptername{Peat"ukk}}}
47.33 \x

\dateestonian The macro \dateestonian redefines the command \today to produce Estonian
dates.

275

47.34 \begingroup \catcode‘\"\active
47.35 \def\x{\endgroup
47.36 \def\month@estonian{\ifcase\month\or
47.37 jaanuar\or veebruar\or m"arts\or aprill\or mai\or juuni\or
47.38 juuli\or august\or september\or oktoober\or november\or
47.39 detsember\fi}}
47.40 \x
47.41 \def\dateestonian{%
47.42 \def\today{\number\day.\space\month@estonian
47.43 \space\number\year.\space a.}}

\extrasestonian
\noextrasestonian

The macro \extrasestonian will perform all the extra definitions needed for
Estonian. The macro \noextrasestonian is used to cancel the actions of
\extrasestonian. For Estonian, " is made active and has to be treated as ‘special’
(~ is active already).

47.44 \initiate@active@char{"}
47.45 \initiate@active@char{~}
47.46 \addto\extrasestonian{\languageshorthands{estonian}}
47.47 \addto\extrasestonian{\bbl@activate{"}\bbl@activate{~}}

Store the original macros, and redefine accents.

47.48 \addto\extrasestonian{\babel@save\"\umlautlow\babel@save\~\tildelow}

Estonian does not use extra spaces after sentences.

47.49 \addto\extrasestonian{\bbl@frenchspacing}
47.50 \addto\noextrasestonian{\bbl@nonfrenchspacing}

\estonianhyphenmins For Estonian, \lefthyphenmin and \righthyphenmin are both 2.
47.51 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\tildelow
\gentilde
\newtilde
\newcheck

The standard TEX accents are too high for Estonian typography, we have to lower
them (following the babel German style). For a detailed explanation see the file
glyphs.dtx.

47.52 \def\tildelow{\def\~{\protect\gentilde}}
47.53 \def\gentilde#1{\if#1o\newtilde{#1}\else\if#1O\newtilde{#1}%
47.54 \else\newcheck{#1}%
47.55 \fi\fi}
47.56 \def\newtilde#1{\leavevmode\allowhyphens
47.57 {\U@D 1ex%
47.58 {\setbox\z@\hbox{\char126}\dimen@ -.45ex\advance\dimen@\ht\z@
47.59 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%
47.60 \accent126\fontdimen5\font\U@D #1}\allowhyphens}
47.61 \def\newcheck#1{\leavevmode\allowhyphens
47.62 {\U@D 1ex%
47.63 {\setbox\z@\hbox{\char20}\dimen@ -.45ex\advance\dimen@\ht\z@
47.64 \ifdim 1ex<\dimen@ \fontdimen5\font\dimen@ \fi}%
47.65 \accent20\fontdimen5\font\U@D #1}\allowhyphens}

276

We save the double quote character in \dq, and tilde in \til, and store the
original definitions of \" and \~ as \dieresis and \texttilde.

47.66 \begingroup \catcode‘\"12
47.67 \edef\x{\endgroup
47.68 \def\noexpand\dq{"}
47.69 \def\noexpand\til{~}}
47.70 \x
47.71 \let\dieresis\"
47.72 \let\texttilde\~

This part follows closely spanish.ldf. We check the encoding and if it is T1,
we have to tell TEX about our redefined accents.

47.73 \ifx\f@encoding\bbl@t@one
47.74 \let\@umlaut\dieresis
47.75 \let\@tilde\texttilde
47.76 \DeclareTextComposite{\~}{T1}{s}{178}
47.77 \DeclareTextComposite{\~}{T1}{S}{146}
47.78 \DeclareTextComposite{\~}{T1}{z}{186}
47.79 \DeclareTextComposite{\~}{T1}{Z}{154}
47.80 \DeclareTextComposite{\"}{T1}{’}{17}
47.81 \DeclareTextComposite{\"}{T1}{‘}{18}
47.82 \DeclareTextComposite{\"}{T1}{<}{19}
47.83 \DeclareTextComposite{\"}{T1}{>}{20}

If the encoding differs from T1, we expand the accents, enabling hyphenation
beyond the accent. In this case TEX will not find all possible breaks, and we have
to warn people.

47.84 \else
47.85 \wlog{Warning: Hyphenation would work better for the T1 encoding.}
47.86 \let\@umlaut\newumlaut
47.87 \let\@tilde\gentilde
47.88 \fi

Now we define the shorthands.
47.89 \declare@shorthand{estonian}{"a}{\textormath{\"{a}}{\ddot a}}
47.90 \declare@shorthand{estonian}{"A}{\textormath{\"{A}}{\ddot A}}
47.91 \declare@shorthand{estonian}{"o}{\textormath{\"{o}}{\ddot o}}
47.92 \declare@shorthand{estonian}{"O}{\textormath{\"{O}}{\ddot O}}
47.93 \declare@shorthand{estonian}{"u}{\textormath{\"{u}}{\ddot u}}
47.94 \declare@shorthand{estonian}{"U}{\textormath{\"{U}}{\ddot U}}

german and french quotes,
47.95 \declare@shorthand{estonian}{"‘}{%
47.96 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
47.97 \declare@shorthand{estonian}{"’}{%
47.98 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
47.99 \declare@shorthand{estonian}{"<}{%

47.100 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
47.101 \declare@shorthand{estonian}{">}{%
47.102 \textormath{\guillemotright}{\mbox{\guillemotright}}}

277

47.103 \declare@shorthand{estonian}{~o}{\textormath{\@tilde o}{\tilde o}}
47.104 \declare@shorthand{estonian}{~O}{\textormath{\@tilde O}{\tilde O}}
47.105 \declare@shorthand{estonian}{~s}{\textormath{\@tilde s}{\check s}}
47.106 \declare@shorthand{estonian}{~S}{\textormath{\@tilde S}{\check S}}
47.107 \declare@shorthand{estonian}{~z}{\textormath{\@tilde z}{\check z}}
47.108 \declare@shorthand{estonian}{~Z}{\textormath{\@tilde Z}{\check Z}}

and some additional commands:
47.109 \declare@shorthand{estonian}{"-}{\nobreak\-\bbl@allowhyphens}
47.110 \declare@shorthand{estonian}{"|}{%
47.111 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
47.112 \allowhyphens}{}}
47.113 \declare@shorthand{estonian}{""}{\dq}
47.114 \declare@shorthand{estonian}{~~}{\til}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

47.115 \ldf@finish{estonian}
47.116 〈/code〉

278

48 The Croatian language
The file croatian.dtx56 defines all the language definition macros for the Croatian
language.

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
48.1 〈∗code〉
48.2 \LdfInit{croatian}\captionscroatian

When this file is read as an option, i.e. by the \usepackage command,
croatian will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \l@croatian to see whether we have to do some-
thing here.

48.3 \ifx\l@croatian\@undefined
48.4 \@nopatterns{Croatian}
48.5 \adddialect\l@croatian0\fi

The next step consists of defining commands to switch to (and from) the Croa-
tian language.

\captionscroatian The macro \captionscroatian defines all strings used in the four standard doc-
umentclasses provided with LATEX.

48.6 \addto\captionscroatian{%
48.7 \def\prefacename{Predgovor}%
48.8 \def\refname{Literatura}%
48.9 \def\abstractname{Sa\v{z}etak}%

48.10 \def\bibname{Bibliografija}%
48.11 \def\chaptername{Poglavlje}%
48.12 \def\appendixname{Dodatak}%
48.13 \def\contentsname{Sadr\v{z}aj}%
48.14 \def\listfigurename{Popis slika}%
48.15 \def\listtablename{Popis tablica}%
48.16 \def\indexname{Indeks}%
48.17 \def\figurename{Slika}%
48.18 \def\tablename{Tablica}%
48.19 \def\partname{Dio}%
48.20 \def\enclname{Prilozi}%
48.21 \def\ccname{Kopije}%
48.22 \def\headtoname{Prima}%
48.23 \def\pagename{Stranica}%
48.24 \def\seename{Vidjeti}%
48.25 \def\alsoname{Vidjeti i}%
48.26 \def\proofname{Dokaz}%
48.27 \def\glossaryname{Kazalo}%
48.28 }%

56The file described in this section has version number v1.3l and was last revised on 2005/03/29.
A contribution was made by Alan Paić (paica@cernvm.cern.ch).

279

\datecroatian The macro \datecroatian redefines the command \today to produce Croatian
dates.

48.29 \def\datecroatian{%
48.30 \def\today{\number\day.~\ifcase\month\or
48.31 sije\v{c}nja\or velja\v{c}e\or o\v{z}ujka\or travnja\or svibnja\or
48.32 lipnja\or srpnja\or kolovoza\or rujna\or listopada\or studenog\or
48.33 prosinca\fi \space \number\year.}}

\extrascroatian
\noextrascroatian

The macro \extrascroatian will perform all the extra definitions needed for the
Croatian language. The macro \noextrascroatian is used to cancel the actions of
\extrascroatian. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

48.34 \addto\extrascroatian{}
48.35 \addto\noextrascroatian{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

48.36 \ldf@finish{croatian}
48.37 〈/code〉

280

49 The Czech language
The file czech.dtx57 defines all the language definition macros for the Czech
language.

For this language \frenchspacing is set and two macros \q and \w for easy
access to two accents are defined.

The command \q is used with the letters (t, d, l, and L) and adds a ’ to them
to simulate a ‘hook’ that should be there. The result looks like t’. The command
\w is used to put the ring-accent which appears in ångstrøm over the letters u and
U.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

49.1 〈∗code〉
49.2 \LdfInit{czech}\captionsczech

When this file is read as an option, i.e. by the \usepackage command, czech
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@czech to see whether we have to do something here.

49.3 \ifx\l@czech\@undefined
49.4 \@nopatterns{Czech}
49.5 \adddialect\l@czech0\fi

The next step consists of defining commands to switch to (and from) the Czech
language.

\captionsczech The macro \captionsczech defines all strings used in the four standard docu-
mentclasses provided with LATEX.

49.6 \addto\captionsczech{%
49.7 \def\prefacename{P\v redmluva}%
49.8 \def\refname{Reference}%
49.9 \def\abstractname{Abstrakt}%

49.10 \def\bibname{Literatura}%
49.11 \def\chaptername{Kapitola}%
49.12 \def\appendixname{Dodatek}%
49.13 \def\contentsname{Obsah}%
49.14 \def\listfigurename{Seznam obr\’azk\r{u}}%
49.15 \def\listtablename{Seznam tabulek}%
49.16 \def\indexname{Index}%
49.17 \def\figurename{Obr\’azek}%
49.18 \def\tablename{Tabulka}%
49.19 \def\partname{\v{C}\’ast}%
49.20 \def\enclname{P\v{r}\’{\i}loha}%
49.21 \def\ccname{Na v\v{e}dom\’{\i}:}%
49.22 \def\headtoname{Komu}%
49.23 \def\pagename{Strana}%
49.24 \def\seename{viz}%

57The file described in this section has version number v1.3k and was last revised on
2005/03/29. Contributions were made by Milos Lokajicek (LOKAJICK@CERNVM).

281

49.25 \def\alsoname{viz tak\’e}%
49.26 \def\proofname{D\r{u}kaz}%
49.27 \def\glossaryname{Glos\’a\v r}%
49.28 }%

\dateczech The macro \dateczech redefines the command \today to produce Czech dates.
49.29 \def\dateczech{%
49.30 \def\today{\number\day.~\ifcase\month\or
49.31 ledna\or \’unora\or b\v{r}ezna\or dubna\or kv\v{e}tna\or
49.32 \v{c}ervna\or \v{c}ervence\or srpna\or z\’a\v{r}\’{\i}\or
49.33 \v{r}\’{\i}jna\or listopadu\or prosince\fi
49.34 \space \number\year}}

\extrasczech
\noextrasczech

The macro \extrasczech will perform all the extra definitions needed for the
Czech language. The macro \noextrasczech is used to cancel the actions of
\extrasczech. This means saving the meaning of two one-letter control sequences
before defining them.

49.35 \addto\extrasczech{\babel@save\q\let\q\v}
49.36 \addto\extrasczech{\babel@save\w\let\w\r}

For Czech texts \frenchspacing should be in effect. We make sure this is the
case and reset it if necessary.

49.37 \addto\extrasczech{\bbl@frenchspacing}
49.38 \addto\noextrasczech{\bbl@nonfrenchspacing}

\v LATEX’s normal \v accent places a caron over the letter that follows it (ǒ). This is
not what we want for the letters d, t, l and L; for those the accent should change
shape. This is acheived by the following.

49.39 \AtBeginDocument{%
49.40 \DeclareTextCompositeCommand{\v}{OT1}{t}{%
49.41 t\kern-.23em\raise.24ex\hbox{’}}
49.42 \DeclareTextCompositeCommand{\v}{OT1}{d}{%
49.43 d\kern-.13em\raise.24ex\hbox{’}}
49.44 \DeclareTextCompositeCommand{\v}{OT1}{l}{\lcaron{}}
49.45 \DeclareTextCompositeCommand{\v}{OT1}{L}{\Lcaron{}}}

\lcaron
\Lcaron

Fot the letters l and L we want to disinguish between normal fonts and monospaced
fonts.

49.46 \def\lcaron{%
49.47 \setbox0\hbox{M}\setbox\tw@\hbox{i}%
49.48 \ifdim\wd0>\wd\tw@\relax
49.49 l\kern-.13em\raise.24ex\hbox{’}\kern-.11em%
49.50 \else
49.51 l\raise.45ex\hbox to\z@{\kern-.35em ’\hss}%
49.52 \fi}
49.53 \def\Lcaron{%
49.54 \setbox0\hbox{M}\setbox\tw@\hbox{i}%
49.55 \ifdim\wd0>\wd\tw@\relax
49.56 L\raise.24ex\hbox to\z@{\kern-.28em’\hss}%

282

49.57 \else
49.58 L\raise.45ex\hbox to\z@{\kern-.40em ’\hss}%
49.59 \fi}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

49.60 \ldf@finish{czech}
49.61 〈/code〉

283

50 The Polish language
The file polish.dtx58 defines all the language-specific macros for the Polish lan-
guage.

For this language the character " is made active. In table 22 an overview is
given of its purpose.

"a or \aob, for tailed-a (like a̧)
"A or \Aob, for tailed-A (like A̧)
"e or \eob, for tailed-e (like ȩ)
"E or \Eob, for tailed-E (like Ȩ)
"c or \’c, for accented c (like ć), same with uppercase

letters and n,o,s
"l or \lpb{}, for l with stroke (like ł)
"L or \Lpb{}, for L with stroke (like Ł)
"r or \zkb{}, for pointed z (like ż), cf. pronounciation
"R or \Zkb{}, for pointed Z (like Ż)
"z or \’z, for accented z
"Z or \’Z, for accented Z
"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y).
"‘ for German left double quotes (looks like „).
"’ for German right double quotes.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 22: The extra definitions made by polish.sty

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

50.1 〈∗code〉
50.2 \LdfInit{polish}\captionspolish

When this file is read as an option, i.e. by the \usepackage command, polish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@polish to see whether we have to do something here.

50.3 \ifx\l@polish\@undefined
50.4 \@nopatterns{Polish}
50.5 \adddialect\l@polish0\fi

The next step consists of defining commands to switch to (and from) the Polish
language.

58The file described in this section has version number v1.2l and was last revised on 2005/03/31.

284

\captionspolish The macro \captionspolish defines all strings used in the four standard docu-
mentclasses provided with LATEX.

50.6 \addto\captionspolish{%
50.7 \def\prefacename{Przedmowa}%
50.8 \def\refname{Literatura}%
50.9 \def\abstractname{Streszczenie}%

50.10 \def\bibname{Bibliografia}%
50.11 \def\chaptername{Rozdzia\l}%
50.12 \def\appendixname{Dodatek}%
50.13 \def\contentsname{Spis tre\’sci}%
50.14 \def\listfigurename{Spis rysunk\’ow}%
50.15 \def\listtablename{Spis tablic}%
50.16 \def\indexname{Indeks}%
50.17 \def\figurename{Rysunek}%
50.18 \def\tablename{Tablica}%
50.19 \def\partname{Cz\eob{}\’s\’c}%
50.20 \def\enclname{Za\l\aob{}cznik}%
50.21 \def\ccname{Kopie:}%
50.22 \def\headtoname{Do}%
50.23 \def\pagename{Strona}%
50.24 \def\seename{Por\’ownaj}%
50.25 \def\alsoname{Por\’ownaj tak\.ze}%
50.26 \def\proofname{Dow\’od}%
50.27 \def\glossaryname{Glossary}% <-- Needs translation
50.28 }

\datepolish The macro \datepolish redefines the command \today to produce Polish dates.

50.29 \def\datepolish{%
50.30 \def\today{\number\day~\ifcase\month\or
50.31 stycznia\or lutego\or marca\or kwietnia\or maja\or czerwca\or lipca\or
50.32 sierpnia\or wrze\’snia\or pa\’zdziernika\or listopada\or grudnia\fi
50.33 \space\number\year}%
50.34 }

\extraspolish
\noextraspolish

The macro \extraspolish will perform all the extra definitions needed for the
Polish language. The macro \noextraspolish is used to cancel the actions of
\extraspolish.

For Polish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the polish group of shorthands should
be used.

50.35 \initiate@active@char{"}
50.36 \addto\extraspolish{\languageshorthands{polish}}
50.37 \addto\extraspolish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
50.38 \addto\noextraspolish{\bbl@deactivate{"}}

285

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 22.

If you have problems at the end of a word with a linebreak, use the other version
without hyphenation tricks. Some TeX wizard may produce a better solution with
forcasting another token to decide whether the character after the double quote is
the last in a word. Do it and let us know.

In Polish texts some letters get special diacritical marks. Leszek Holenderski
designed the following code to position the diacritics correctly for every font in
every size. These macros need a few extra dimension variables.

50.39 \newdimen\pl@left
50.40 \newdimen\pl@down
50.41 \newdimen\pl@right
50.42 \newdimen\pl@temp

\sob The macro \sob is used to put the ‘ogonek’ in the right place.
50.43 \def\sob#1#2#3#4#5{%parameters: letter and fractions hl,ho,vl,vo
50.44 \setbox0\hbox{#1}\setbox1\hbox{$_\mathchar’454$}\setbox2\hbox{p}%
50.45 \pl@right=#2\wd0 \advance\pl@right by-#3\wd1
50.46 \pl@down=#5\ht1 \advance\pl@down by-#4\ht0
50.47 \pl@left=\pl@right \advance\pl@left by\wd1
50.48 \pl@temp=-\pl@down \advance\pl@temp by\dp2 \dp1=\pl@temp
50.49 \leavevmode
50.50 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

\aob
\Aob
\eob
\Eob

The ogonek is placed with the letters ‘a’, ‘A’, ‘e’, and ‘E’.
50.51 \DeclareTextCommand{\aob}{OT1}{\sob a{.66}{.20}{0}{.90}}
50.52 \DeclareTextCommand{\Aob}{OT1}{\sob A{.80}{.50}{0}{.90}}
50.53 \DeclareTextCommand{\eob}{OT1}{\sob e{.50}{.35}{0}{.93}}
50.54 \DeclareTextCommand{\Eob}{OT1}{\sob E{.60}{.35}{0}{.90}}

For the ’new’ T1 encoding we can provide simpler definitions.
50.55 \DeclareTextCommand{\aob}{T1}{\k a}
50.56 \DeclareTextCommand{\Aob}{T1}{\k A}
50.57 \DeclareTextCommand{\eob}{T1}{\k e}
50.58 \DeclareTextCommand{\Eob}{T1}{\k E}

Construct the characters by default from the OT1 encoding.
50.59 \ProvideTextCommandDefault{\aob}{\UseTextSymbol{OT1}{\aob}}
50.60 \ProvideTextCommandDefault{\Aob}{\UseTextSymbol{OT1}{\Aob}}
50.61 \ProvideTextCommandDefault{\eob}{\UseTextSymbol{OT1}{\eob}}
50.62 \ProvideTextCommandDefault{\Eob}{\UseTextSymbol{OT1}{\Eob}}

\spb The macro \spb is used to put the ‘poprzeczka’ in the right place.
50.63 \def\spb#1#2#3#4#5{%
50.64 \setbox0\hbox{#1}\setbox1\hbox{\char’023}%
50.65 \pl@right=#2\wd0 \advance\pl@right by-#3\wd1
50.66 \pl@down=#5\ht1 \advance\pl@down by-#4\ht0
50.67 \pl@left=\pl@right \advance\pl@left by\wd1
50.68 \ht1=\pl@down \dp1=-\pl@down

286

50.69 \leavevmode
50.70 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

\skb The macro \skb is used to put the ‘kropka’ in the right place.

50.71 \def\skb#1#2#3#4#5{%
50.72 \setbox0\hbox{#1}\setbox1\hbox{\char’056}%
50.73 \pl@right=#2\wd0 \advance\pl@right by-#3\wd1
50.74 \pl@down=#5\ht1 \advance\pl@down by-#4\ht0
50.75 \pl@left=\pl@right \advance\pl@left by\wd1
50.76 \leavevmode
50.77 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

\textpl For the ‘poprzeczka’ and the ‘kropka’ in text fonts we don’t need any special
coding, but we can (almost) use what is already available.

50.78 \def\textpl{%
50.79 \def\lpb{\plll}%
50.80 \def\Lpb{\pLLL}%
50.81 \def\zkb{\.z}%
50.82 \def\Zkb{\.Z}}

Initially we assume that typesetting is done with text fonts.
50.83 \textpl

50.84 \let\lll=\l \let\LLL=\L
50.85 \def\plll{\lll}
50.86 \def\pLLL{\LLL}

\telepl But for the ‘teletype’ font in ‘OT1’ encoding we have to take some special actions,
involving the macros defined above.

50.87 \def\telepl{%
50.88 \def\lpb{\spb l{.45}{.5}{.4}{.8}}%
50.89 \def\Lpb{\spb L{.23}{.5}{.4}{.8}}%
50.90 \def\zkb{\skb z{.5}{.5}{1.2}{0}}%
50.91 \def\Zkb{\skb Z{.5}{.5}{1.1}{0}}}

To activate these codes the font changing commands as they are defined in
LATEX are modified. The same is done for plain TEX’s font changing commands.

When \selectfont is undefined the current format is spposed to be either
plain (based) or LATEX 2.09.

50.92 \ifx\selectfont\@undefined
50.93 \ifx\prm\@undefined \addto\rm{\textpl}\else \addto\prm{\textpl}\fi
50.94 \ifx\pit\@undefined \addto\it{\textpl}\else \addto\pit{\textpl}\fi
50.95 \ifx\pbf\@undefined \addto\bf{\textpl}\else \addto\pbf{\textpl}\fi
50.96 \ifx\psl\@undefined \addto\sl{\textpl}\else \addto\psl{\textpl}\fi
50.97 \ifx\psf\@undefined \else \addto\psf{\textpl}\fi
50.98 \ifx\psc\@undefined \else \addto\psc{\textpl}\fi
50.99 \ifx\ptt\@undefined \addto\tt{\telepl}\else \addto\ptt{\telepl}\fi

50.100 \else

287

When \selectfont exists we assume LATEX2ε.
50.101 \expandafter\addto\csname selectfont \endcsname{%
50.102 \csname\f@encoding @pl\endcsname}
50.103 \fi

Currently we support the OT1 and T1 encodings. For T1 we don’t have to make a
difference between typewriter fonts and other fonts, they all have the same glyphs.

50.104 \expandafter\let\csname T1@pl\endcsname\textpl

For OT1 we need to check the current font family, stored in \f@family. Un-
fortunately we need a hack as \ttdefault is defined as a \long macro, while
\f@family is not.

50.105 \expandafter\def\csname OT1@pl\endcsname{%
50.106 \long\edef\curr@family{\f@family}%
50.107 \ifx\curr@family\ttdefault
50.108 \telepl
50.109 \else
50.110 \textpl
50.111 \fi}

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

50.112 \begingroup \catcode‘\"12
50.113 \def\x{\endgroup
50.114 \def\dq{"}}
50.115 \x

Now we can define the doublequote macros for diacritics,
50.116 \declare@shorthand{polish}{"a}{\textormath{\aob}{\ddot a}}
50.117 \declare@shorthand{polish}{"A}{\textormath{\Aob}{\ddot A}}
50.118 \declare@shorthand{polish}{"c}{\textormath{\’c}{\acute c}}
50.119 \declare@shorthand{polish}{"C}{\textormath{\’C}{\acute C}}
50.120 \declare@shorthand{polish}{"e}{\textormath{\eob}{\ddot e}}
50.121 \declare@shorthand{polish}{"E}{\textormath{\Eob}{\ddot E}}
50.122 \declare@shorthand{polish}{"l}{\textormath{\lpb}{\ddot l}}
50.123 \declare@shorthand{polish}{"L}{\textormath{\Lpb}{\ddot L}}
50.124 \declare@shorthand{polish}{"n}{\textormath{\’n}{\acute n}}
50.125 \declare@shorthand{polish}{"N}{\textormath{\’N}{\acute N}}
50.126 \declare@shorthand{polish}{"o}{\textormath{\’o}{\acute o}}
50.127 \declare@shorthand{polish}{"O}{\textormath{\’O}{\acute O}}
50.128 \declare@shorthand{polish}{"s}{\textormath{\’s}{\acute s}}
50.129 \declare@shorthand{polish}{"S}{\textormath{\’S}{\acute S}}

\polishrz
\polishzx

The command \polishrz defines the shorthands "r, "z and "x to produce pointed
z, accented z and "x. This is the default as these shorthands were defined by this
language definition file for quite some time.

50.130 \newcommand*{\polishrz}{%
50.131 \declare@shorthand{polish}{"r}{\textormath{\zkb}{\ddot r}}%
50.132 \declare@shorthand{polish}{"R}{\textormath{\Zkb}{\ddot R}}%

288

50.133 \declare@shorthand{polish}{"z}{\textormath{\’z}{\acute z}}%
50.134 \declare@shorthand{polish}{"Z}{\textormath{\’Z}{\acute Z}}%
50.135 \declare@shorthand{polish}{"x}{\dq x}%
50.136 \declare@shorthand{polish}{"X}{\dq X}%
50.137 }
50.138 \polishrz

The command \polishzx switches to a different set of shorthands, "z, "x and "r
to produce pointed z, accented z and "r; a different shorthand notation also in
use.

50.139 \newcommand*{\polishzx}{%
50.140 \declare@shorthand{polish}{"z}{\textormath{\zkb}{\ddot z}}%
50.141 \declare@shorthand{polish}{"Z}{\textormath{\Zkb}{\ddot Z}}%
50.142 \declare@shorthand{polish}{"x}{\textormath{\’z}{\acute x}}%
50.143 \declare@shorthand{polish}{"X}{\textormath{\’Z}{\acute X}}%
50.144 \declare@shorthand{polish}{"r}{\dq r}%
50.145 \declare@shorthand{polish}{"R}{\dq R}%
50.146 }

Then we define access to two forms of quotation marks, similar to the german
and french quotation marks.

50.147 \declare@shorthand{polish}{"‘}{%
50.148 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
50.149 \declare@shorthand{polish}{"’}{%
50.150 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
50.151 \declare@shorthand{polish}{"<}{%
50.152 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
50.153 \declare@shorthand{polish}{">}{%
50.154 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behavew a little different from \-.

50.155 \declare@shorthand{polish}{"-}{\nobreak-\bbl@allowhyphens}
50.156 \declare@shorthand{polish}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.
50.157 \declare@shorthand{polish}{"|}{%
50.158 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\mdqon
\mdqoff

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with polish.tex.

50.159 \def\mdqon{\shorthandon{"}}
50.160 \def\mdqoff{\shorthandoff{"}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

50.161 \ldf@finish{polish}
50.162 〈/code〉

289

51 The Serbocroatian language
The file serbian.dtx59 defines all the language definition macros for the Serbian
language, typeset in a latin script. In a future version support for typesetting in
a cyrillic script may be added.

For this language the character " is made active. In table 23 an overview is
given of its purpose. One of the reasons for this is that in the Serbian language
some special characters are used.

"c \"c, also implemented for the lowercase and upper-
case s and z.

"d \dj, also implemented for "D
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"| disable ligature at this position
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y).
"‘ for Serbian left double quotes (looks like „).
"’ for Serbian right double quotes.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 23: The extra definitions made by serbian.ldf

Apart from defining shorthands we need to make sure taht the first paragraph
of each section is intended. Furthermore the following new math operators are
defined (\tg, \ctg, \arctg, \arcctg, \sh, \ch, \th, \cth, \arsh, \arch, \arth,
\arcth, \Prob, \Expect, \Variance).

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

51.1 〈∗code〉
51.2 \LdfInit{serbian}\captionsserbian

When this file is read as an option, i.e. by the \usepackage command, serbian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@serbian to see whether we have to do something
here.

51.3 \ifx\l@serbian\@undefined
51.4 \@nopatterns{Serbian}
51.5 \adddialect\l@serbian0\fi

The next step consists of defining commands to switch to (and from) the Ser-
bocroatian language.

59The file described in this section has version number v1.0d and was last revised on
2005/03/31. A contribution was made by Dejan Muhamedagić (dejan@yunix.com).

290

\captionsserbian The macro \captionsserbian defines all strings used in the four standard docu-
mentclasses provided with LATEX.

51.6 \addto\captionsserbian{%
51.7 \def\prefacename{Predgovor}%
51.8 \def\refname{Literatura}%
51.9 \def\abstractname{Sa\v{z}etak}%

51.10 \def\bibname{Bibliografija}%
51.11 \def\chaptername{Glava}%
51.12 \def\appendixname{Dodatak}%
51.13 \def\contentsname{Sadr\v{z}aj}%
51.14 \def\listfigurename{Slike}%
51.15 \def\listtablename{Tabele}%
51.16 \def\indexname{Indeks}%
51.17 \def\figurename{Slika}%
51.18 \def\tablename{Tabela}%
51.19 \def\partname{Deo}%
51.20 \def\enclname{Prilozi}%
51.21 \def\ccname{Kopije}%
51.22 \def\headtoname{Prima}%
51.23 \def\pagename{Strana}%
51.24 \def\seename{Vidi}%
51.25 \def\alsoname{Vidi tako\dj e}%
51.26 \def\proofname{Dokaz}%
51.27 \def\glossaryname{Glossary}% <-- Needs translation
51.28 }%

\dateserbian The macro \dateserbian redefines the command \today to produce Serbocroat-
ian dates.

51.29 \def\dateserbian{%
51.30 \def\today{\number\day .~\ifcase\month\or
51.31 januar\or februar\or mart\or april\or maj\or
51.32 juni\or juli\or avgust\or septembar\or oktobar\or novembar\or
51.33 decembar\fi \space \number\year}}

\extrasserbian
\noextrasserbian

The macro \extrasserbian will perform all the extra definitions needed for the
Serbocroatian language. The macro \noextrasserbian is used to cancel the ac-
tions of \extrasserbian.

For Serbian the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the serbian group of shorthands should
be used.

51.34 \initiate@active@char{"}
51.35 \addto\extrasserbian{\languageshorthands{serbian}}
51.36 \addto\extrasserbian{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
51.37 \addto\noextrasserbian{\bbl@deactivate{"}}

First we define shorthands to facilitate the occurence of letters such as č.

291

51.38 \declare@shorthand{serbian}{"c}{\textormath{\v c}{\check c}}
51.39 \declare@shorthand{serbian}{"d}{\textormath{\dj}{\dj}}%%
51.40 \declare@shorthand{serbian}{"s}{\textormath{\v s}{\check s}}
51.41 \declare@shorthand{serbian}{"z}{\textormath{\v z}{\check z}}
51.42 \declare@shorthand{serbian}{"C}{\textormath{\v C}{\check C}}
51.43 \declare@shorthand{serbian}{"D}{\textormath{\DJ}{\DJ}}%%
51.44 \declare@shorthand{serbian}{"S}{\textormath{\v S}{\check S}}
51.45 \declare@shorthand{serbian}{"Z}{\textormath{\v Z}{\check Z}}

Then we define access to two forms of quotation marks, similar to the german
and french quotation marks.

51.46 \declare@shorthand{serbian}{"‘}{%
51.47 \textormath{\quotedblbase{}}{\mbox{\quotedblbase}}}
51.48 \declare@shorthand{serbian}{"’}{%
51.49 \textormath{\textquotedblleft{}}{\mbox{\textquotedblleft}}}
51.50 \declare@shorthand{serbian}{"<}{%
51.51 \textormath{\guillemotleft{}}{\mbox{\guillemotleft}}}
51.52 \declare@shorthand{serbian}{">}{%
51.53 \textormath{\guillemotright{}}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

51.54 \declare@shorthand{serbian}{"-}{\nobreak-\bbl@allowhyphens}
51.55 \declare@shorthand{serbian}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.
51.56 \declare@shorthand{serbian}{"|}{%
51.57 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\bbl@frenchindent
\bbl@nonfrenchindent

In Serbian the first paragraph of each section should be indented. Add this code
only in LATEX.

51.58 \ifx\fmtname plain \else
51.59 \let\@aifORI\@afterindentfalse
51.60 \def\bbl@frenchindent{\let\@afterindentfalse\@afterindenttrue
51.61 \@afterindenttrue}
51.62 \def\bbl@nonfrenchindent{\let\@afterindentfalse\@aifORI
51.63 \@afterindentfalse}
51.64 \addto\extrasserbian{\bbl@frenchindent}
51.65 \addto\noextrasserbian{\bbl@nonfrenchindent}
51.66 \fi

\mathserbian Some math functions in Serbian math books have other names: e.g. sinh in
Serbian is written as sh etc. So we define a number of new math operators.

51.67 \def\sh{\mathop{\operator@font sh}\nolimits} % same as \sinh
51.68 \def\ch{\mathop{\operator@font ch}\nolimits} % same as \cosh
51.69 \def\th{\mathop{\operator@font th}\nolimits} % same as \tanh
51.70 \def\cth{\mathop{\operator@font cth}\nolimits} % same as \coth
51.71 \def\arsh{\mathop{\operator@font arsh}\nolimits}
51.72 \def\arch{\mathop{\operator@font arch}\nolimits}
51.73 \def\arth{\mathop{\operator@font arth}\nolimits}

292

51.74 \def\arcth{\mathop{\operator@font arcth}\nolimits}
51.75 \def\tg{\mathop{\operator@font tg}\nolimits} % same as \tan
51.76 \def\ctg{\mathop{\operator@font ctg}\nolimits} % same as \cot
51.77 \def\arctg{\mathop{\operator@font arctg}\nolimits} % same as \arctan
51.78 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}
51.79 \def\Prob{\mathop{\mathsf P\hskip0pt}\nolimits}
51.80 \def\Expect{\mathop{\mathsf E\hskip0pt}\nolimits}
51.81 \def\Variance{\mathop{\mathsf D\hskip0pt}\nolimits}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

51.82 \ldf@finish{serbian}
51.83 〈/code〉

293

52 The Slovak language
The file slovak.dtx60 defines all the language-specific macros for the Slovak lan-
guage.

For this language the macro \q is defined. It was used with the letters (t, d, l,
and L) and adds a ’ to them to simulate a ‘hook’ that should be there. The result
looks like t’. Since the the T1 font encoding has the corresponding characters it
is mapped to \v. Therefore we recommend using T1 font encoding. If you don’t
want to use this encoding, please, feel free to redefine \q in your file. I think babel
will honour this ;-).

For this language the characters ", ’ and ^ are ade active. In table 24 an
overview is given of its purpose. Also the vertical placement of the umlaut can be
controlled this way.

"a \"a, also implemented for the other lowercase and
uppercase vowels.

^d \q d, also implemented for l, t and L.
^c \v c, also implemented for C, D, N, n, T, Z and z.
^o \^o, also implemented for O.
’a \’a, also implemented for the other lowercase and

uppercase l, r, y and vowels.
"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y).
"~ for a compound word mark without a breakpoint.
"= for a compound word mark with a breakpoint, allow-

ing hyphenation in the composing words.
"‘ for German left double quotes (looks like „).
"’ for German right double quotes.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 24: The extra definitions made by slovak.ldf

The quotes in table 24 can also be typeset by using the commands in table 25.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

52.1 〈∗code〉
52.2 \LdfInit{slovak}\captionsslovak

60The file described in this section has version number v1.3a and was last revised on
2005/03/31. It was written by Jana Chlebikova (chlebik@euromath.dk) and modified by To-
bias Schlemmer (Tobias.Schlemmer@web.de).

294

\glqq for German left double quotes (looks like „).
\grqq for German right double quotes (looks like “).
\glq for German left single quotes (looks like ,).
\grq for German right single quotes (looks like ‘).
\flqq for French left double quotes (similar to <<).
\frqq for French right double quotes (similar to >>).
\flq for (French) left single quotes (similar to <).
\frq for (French) right single quotes (similar to >).
\dq the original quotes character (").
\sq the original single quote (’).

Table 25: More commands which produce quotes, defined by slovak.ldf

When this file is read as an option, i.e. by the \usepackage command, slovak
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@slovak to see whether we have to do something here.

52.3 \ifx\l@slovak\@undefined
52.4 \@nopatterns{Slovak}
52.5 \adddialect\l@slovak0\fi

The next step consists of defining commands to switch to (and from) the Slovak
language.

\captionsslovak The macro \captionsslovak defines all strings used in the four standard docu-
mentclasses provided with LATEX.

52.6 \addto\captionsslovak{%
52.7 \def\prefacename{\’Uvod}%
52.8 \def\refname{Referencie}%
52.9 \def\abstractname{Abstrakt}%

52.10 \def\bibname{Literat\’ura}%
52.11 \def\chaptername{Kapitola}%
52.12 \def\appendixname{Dodatok}%
52.13 \def\contentsname{Obsah}%
52.14 \def\listfigurename{Zoznam obr\’azkov}%
52.15 \def\listtablename{Zoznam tabuliek}%
52.16 \def\indexname{Index}%
52.17 \def\figurename{Obr\’azok}%
52.18 \def\tablename{Tabu\q lka}%%% special letter l with hook
52.19 \def\partname{\v{C}as\q t}%%% special letter t with hook
52.20 \def\enclname{Pr\’{\i}lohy}%
52.21 \def\ccname{CC}%
52.22 \def\headtoname{Komu}%
52.23 \def\pagename{Strana}%
52.24 \def\seename{vi\q d}%%% Special letter d with hook
52.25 \def\alsoname{vi\q d tie\v z}%%% Special letter d with hook
52.26 \def\proofname{D\^okaz}%
52.27 \def\glossaryname{Glossary}% <-- Needs translation

295

52.28 }

\dateslovak The macro \dateslovak redefines the command \today to produce Slovak dates.

52.29 \def\dateslovak{%
52.30 \def\today{\number\day.~\ifcase\month\or
52.31 janu\’ara\or febru\’ara\or marca\or apr\’{\i}la\or m\’aja\or
52.32 j\’una\or j\’ula\or augusta\or septembra\or okt\’obra\or
52.33 novembra\or decembra\fi
52.34 \space \number\year}}

\extrasslovak
\noextrasslovak

The macro \extrasslovak will perform all the extra definitions needed for the
Slovak language. The macro \noextrasslovak is used to cancel the actions of
\extrasslovak. For Slovak three characters are used to define shorthands, they
need to be made active.

52.35 \addto\extrasslovak{\languageshorthands{slovak}}
52.36 \initiate@active@char{^}
52.37 \addto\extrasslovak{\bbl@activate{^}}
52.38 \addto\noextrasslovak{\bbl@deactivate{^}}
52.39 \initiate@active@char{"}
52.40 \addto\extrasslovak{\bbl@activate{"}\umlautlow}
52.41 \addto\noextrasslovak{\bbl@deactivate{"}\umlauthigh}
52.42 \initiate@active@char{’}
52.43 \@ifpackagewith{babel}{activeacute}{%
52.44 \addto\extrasslovak{\bbl@activate{’}}
52.45 \addto\noextrasslovak{\bbl@deactivate{’}}%
52.46 }{}

52.47 \addto\extrasslovak{\babel@save\q\let\q\v}

The slovak hyphenation patterns should be used with \lefthyphenmin set to 2
and \righthyphenmin set to 2.

52.48 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

52.49 \begingroup \catcode‘\"12
52.50 \def\x{\endgroup
52.51 \def\sq{’}
52.52 \def\dq{"}}
52.53 \x

In order to prevent problems with the active ^ we add a shorthand on system
level which expands to a ‘normal ^.

52.54 \declare@shorthand{system}{^}{\csname normal@char\string^\endcsname}

Now we can define the doublequote macros: the umlauts,
52.55 \declare@shorthand{slovak}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
52.56 \declare@shorthand{slovak}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}

296

52.57 \declare@shorthand{slovak}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
52.58 \declare@shorthand{slovak}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
52.59 \declare@shorthand{slovak}{"O}{\textormath{\"{O}\allowhyphens}{\ddot O}}
52.60 \declare@shorthand{slovak}{"U}{\textormath{\"{U}\allowhyphens}{\ddot U}}

tremas,
52.61 \declare@shorthand{slovak}{"e}{\textormath{\"{e}\allowhyphens}{\ddot e}}
52.62 \declare@shorthand{slovak}{"E}{\textormath{\"{E}\allowhyphens}{\ddot E}}
52.63 \declare@shorthand{slovak}{"i}{\textormath{\"{\i}\allowhyphens}%
52.64 {\ddot\imath}}
52.65 \declare@shorthand{slovak}{"I}{\textormath{\"{I}\allowhyphens}{\ddot I}}

other slovak characters
52.66 \declare@shorthand{slovak}{^c}{\textormath{\v{c}\allowhyphens}{\check{c}}}
52.67 \declare@shorthand{slovak}{^d}{\textormath{\q{d}\allowhyphens}{\check{d}}}
52.68 \declare@shorthand{slovak}{^l}{\textormath{\q{l}\allowhyphens}{\check{l}}}
52.69 \declare@shorthand{slovak}{^n}{\textormath{\v{n}\allowhyphens}{\check{n}}}
52.70 \declare@shorthand{slovak}{^o}{\textormath{\^{o}\allowhyphens}{\hat{o}}}
52.71 \declare@shorthand{slovak}{^s}{\textormath{\v{s}\allowhyphens}{\check{s}}}
52.72 \declare@shorthand{slovak}{^t}{\textormath{\q{t}\allowhyphens}{\check{t}}}
52.73 \declare@shorthand{slovak}{^z}{\textormath{\v{z}\allowhyphens}{\check{z}}}
52.74 \declare@shorthand{slovak}{^C}{\textormath{\v{C}\allowhyphens}{\check{C}}}
52.75 \declare@shorthand{slovak}{^D}{\textormath{\v{D}\allowhyphens}{\check{D}}}
52.76 \declare@shorthand{slovak}{^L}{\textormath{\q{L}\allowhyphens}{\check{L}}}
52.77 \declare@shorthand{slovak}{^N}{\textormath{\v{N}\allowhyphens}{\check{N}}}
52.78 \declare@shorthand{slovak}{^O}{\textormath{\^{O}\allowhyphens}{\hat{O}}}
52.79 \declare@shorthand{slovak}{^S}{\textormath{\v{S}\allowhyphens}{\check{S}}}
52.80 \declare@shorthand{slovak}{^T}{\textormath{\v{T}\allowhyphens}{\check{T}}}
52.81 \declare@shorthand{slovak}{^Z}{\textormath{\v{Z}\allowhyphens}{\check{Z}}}

acute accents,
52.82 \@ifpackagewith{babel}{activeacute}{%
52.83 \declare@shorthand{slovak}{’a}{\textormath{\’a\allowhyphens}{^{\prime}a}}
52.84 \declare@shorthand{slovak}{’e}{\textormath{\’e\allowhyphens}{^{\prime}e}}
52.85 \declare@shorthand{slovak}{’i}{\textormath{\’\i{}\allowhyphens}{^{\prime}i}}
52.86 \declare@shorthand{slovak}{’l}{\textormath{\’l\allowhyphens}{^{\prime}l}}
52.87 \declare@shorthand{slovak}{’o}{\textormath{\’o\allowhyphens}{^{\prime}o}}
52.88 \declare@shorthand{slovak}{’r}{\textormath{\’r\allowhyphens}{^{\prime}r}}
52.89 \declare@shorthand{slovak}{’u}{\textormath{\’u\allowhyphens}{^{\prime}u}}
52.90 \declare@shorthand{slovak}{’y}{\textormath{\’y\allowhyphens}{^{\prime}y}}
52.91 \declare@shorthand{slovak}{’A}{\textormath{\’A\allowhyphens}{^{\prime}A}}
52.92 \declare@shorthand{slovak}{’E}{\textormath{\’E\allowhyphens}{^{\prime}E}}
52.93 \declare@shorthand{slovak}{’I}{\textormath{\’I\allowhyphens}{^{\prime}I}}
52.94 \declare@shorthand{slovak}{’L}{\textormath{\’L\allowhyphens}{^{\prime}l}}
52.95 \declare@shorthand{slovak}{’O}{\textormath{\’O\allowhyphens}{^{\prime}O}}
52.96 \declare@shorthand{slovak}{’R}{\textormath{\’R\allowhyphens}{^{\prime}R}}
52.97 \declare@shorthand{slovak}{’U}{\textormath{\’U\allowhyphens}{^{\prime}U}}
52.98 \declare@shorthand{slovak}{’Y}{\textormath{\’Y\allowhyphens}{^{\prime}Y}}
52.99 \declare@shorthand{slovak}{’’}{%

52.100 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}
52.101 }{}

297

german and french quotes,
52.102 \declare@shorthand{slovak}{"‘}{\glqq}
52.103 \declare@shorthand{slovak}{"’}{\grqq}
52.104 \declare@shorthand{slovak}{"<}{\flqq}
52.105 \declare@shorthand{slovak}{">}{\frqq}

and some additional commands:
52.106 \declare@shorthand{slovak}{"-}{\nobreak\-\bbl@allowhyphens}
52.107 \declare@shorthand{slovak}{"|}{%
52.108 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%
52.109 \bbl@allowhyphens}{}}
52.110 \declare@shorthand{slovak}{""}{\hskip\z@skip}
52.111 \declare@shorthand{slovak}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
52.112 \declare@shorthand{slovak}{"=}{\nobreak-\hskip\z@skip}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

52.113 \ldf@finish{slovak}
52.114 〈/code〉

298

53 The Slovenian language
The file slovene.dtx61 defines all the language-specific macros for the Slovenian
language.

For this language the character " is made active. In table 26 an overview is
given of its purpose. One of the reasons for this is that in the Slovene language
some special characters are used.

"c \"c, also implemented for the lowercase and upper-
case s and z.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"‘ for Slovene left double quotes (looks like „).
"’ for Slovene right double quotes.
"< for French left double quotes (similar to <<).
"> for French right double quotes (similar to >>).

Table 26: The extra definitions made by slovene.ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

53.1 〈∗code〉
53.2 \LdfInit{slovene}\captionsslovene

When this file is read as an option, i.e. by the \usepackage command, slovene
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@slovene to see whether we have to do something
here.

53.3 \ifx\l@slovene\@undefined
53.4 \@nopatterns{Slovene}
53.5 \adddialect\l@slovene0\fi

The next step consists of defining commands to switch to the Slovenian lan-
guage. The reason for this is that a user might want to switch back and forth
between languages.

\captionsslovene The macro \captionsslovene defines all strings used in the four standard docu-
mentclasses provided with LATEX.

53.6 \addto\captionsslovene{%
53.7 \def\prefacename{Predgovor}%
53.8 \def\refname{Literatura}%
53.9 \def\abstractname{Povzetek}%

61The file described in this section has version number v1.2m and was last revised on
2005/03/31. Contributions were made by Danilo Zavrtanik, University of Ljubljana (YU) and
Leon Žlajpah (leon.zlajpah@ijs.si).

299

53.10 \def\bibname{Literatura}%
53.11 \def\chaptername{Poglavje}%
53.12 \def\appendixname{Dodatek}%
53.13 \def\contentsname{Kazalo}%
53.14 \def\listfigurename{Slike}%
53.15 \def\listtablename{Tabele}%
53.16 \def\indexname{Stvarno kazalo}% used to be Indeks
53.17 \def\figurename{Slika}%
53.18 \def\tablename{Tabela}%
53.19 \def\partname{Del}%
53.20 \def\enclname{Priloge}%
53.21 \def\ccname{Kopije}%
53.22 \def\headtoname{Prejme}%
53.23 \def\pagename{Stran}%
53.24 \def\seename{glej}%
53.25 \def\alsoname{glej tudi}%
53.26 \def\proofname{Dokaz}%
53.27 \def\glossaryname{Glossary}% <-- Needs translation
53.28 }%

\dateslovene The macro \dateslovene redefines the command \today to produce Slovenian
dates.

53.29 \def\dateslovene{%
53.30 \def\today{\number\day.~\ifcase\month\or
53.31 januar\or februar\or marec\or april\or maj\or junij\or
53.32 julij\or avgust\or september\or oktober\or november\or december\fi
53.33 \space \number\year}}

\extrasslovene
\noextrasslovene

The macro \extrasslovene performs all the extra definitions needed for the Slove-
nian language. The macro \noextrasslovene is used to cancel the actions of
\extrasslovene.

For Slovene the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the slovenian group of shorthands should
be used.

53.34 \initiate@active@char{"}
53.35 \addto\extrasslovene{\languageshorthands{slovene}}
53.36 \addto\extrasslovene{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
53.37 \addto\noextrasslovene{\bbl@deactivate{"}}

First we define shorthands to facilitate the occurence of letters such as č.
53.38 \declare@shorthand{slovene}{"c}{\textormath{\v c}{\check c}}
53.39 \declare@shorthand{slovene}{"s}{\textormath{\v s}{\check s}}
53.40 \declare@shorthand{slovene}{"z}{\textormath{\v z}{\check z}}
53.41 \declare@shorthand{slovene}{"C}{\textormath{\v C}{\check C}}
53.42 \declare@shorthand{slovene}{"S}{\textormath{\v S}{\check S}}
53.43 \declare@shorthand{slovene}{"Z}{\textormath{\v Z}{\check Z}}

300

Then we define access to two forms of quotation marks, similar to the german
and french quotation marks.

53.44 \declare@shorthand{slovene}{"‘}{%
53.45 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
53.46 \declare@shorthand{slovene}{"’}{%
53.47 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
53.48 \declare@shorthand{slovene}{"<}{%
53.49 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
53.50 \declare@shorthand{slovene}{">}{%
53.51 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behavew a little different from \-.

53.52 \declare@shorthand{slovene}{"-}{\nobreak-\bbl@allowhyphens}
53.53 \declare@shorthand{slovene}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.
53.54 \declare@shorthand{slovene}{"|}{%
53.55 \textormath{\discretionary{-}{}{\kern.03em}}{}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

53.56 \ldf@finish{slovene}
53.57 〈/code〉

301

54 The Russian language
The file russianb.dtx62 defines all the language-specific macros for the Russian
language. It needs the file cyrcod for success documentation with Russian encod-
ings (see below).

For this language the character " is made active. In table 27 an overview is
given of its purpose.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"--- Cyrillic emdash in plain text.
"--~ Cyrillic emdash in compound names (surnames).
"--* Cyrillic emdash for denoting direct speech.
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y or some other signs
as “disable/enable”).

"~ for a compound word mark without a breakpoint.
"= for a compound word mark with a breakpoint, allow-

ing hyphenation in the composing words.
", thinspace for initials with a breakpoint in following

surname.
"‘ for German left double quotes (looks like ,,).
"’ for German right double quotes (looks like “).
” "< for French left double quotes (looks like <<).
"> for French right double quotes (looks like >>).

Table 27: The extra definitions made by russianb

The quotes in table 27 can also be typeset by using the commands in table 28.

\cdash--- Cyrillic emdash in plain text.
\cdash--~ Cyrillic emdash in compound names (surnames).
\cdash--* Cyrillic emdash for denoting direct speech.
\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like “).
” \flqq for French left double quotes (looks like <<).
\frqq for French right double quotes (looks like >>).
\dq the original quotes character (").

Table 28: More commands which produce quotes, defined by babel

62The file described in this section has version number ? and was last revised on ?. This file was
initially derived from the original version of german.sty, which has some definitions for Russian.
Later the definitions from russian.sty version 1.0b (for LATEX 2.09), russian.sty version v2.5c
(for LATEX2ε) and francais.sty version 4.5c and germanb.sty version 2.5c were added.

302

The French quotes are also available as ligatures ‘<<’ and ‘>>’ in 8-bit Cyrillic
font encodings (LCY, X2, T2*) and as ‘<’ and ‘>’ characters in 7-bit Cyrillic font
encodings (OT2 and LWN).

The quotation marks traditionally used in Russian were borrowed from other
languages (e.g., French and German) so they keep their original names.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

54.1 〈∗code〉
54.2 \LdfInit{russian}{captionsrussian}

When this file is read as an option, i.e., by the \usepackage command,
russianb will be an ‘unknown’ language, in which case we have to make it known.
So we check for the existence of \l@russian to see whether we have to do some-
thing here.

54.3 \ifx\l@russian\@undefined
54.4 \@nopatterns{Russian}
54.5 \adddialect\l@russian0
54.6 \fi

\latinencoding We need to know the encoding for text that is supposed to be which is active at
the end of the babel package. If the fontenc package is loaded later, then. . . too
bad!

54.7 \let\latinencoding\cf@encoding

The user may choose between different available Cyrillic encodings—e.g., X2,
LCY, or LWN. Hopefully, X2 will eventually replace the two latter encodings (LCY
and LWN). If the user wants to use another font encoding than the default (T2A),
he has to load the corresponding file before russianb.sty. This may be done in
the following way:

% override the default X2 encoding used in Babel
\usepackage[LCY,OT1]{fontenc}
\usepackage[english,russian]{babel}

Note: for the Russian language, the T2A encoding is better than X2, because
X2 does not contain Latin letters, and users should be very careful to switch the
language every time they want to typeset a Latin word inside a Russian phrase or
vice versa.

We parse the \cdp@list containing the encodings known to LATEX in the order
they were loaded. We set the \cyrillicencoding to the last loaded encoding in
the list of supported Cyrillic encodings: OT2, LWN, LCY, X2, T2C, T2B, T2A, if any.

54.8 \def\reserved@a#1#2{%
54.9 \edef\reserved@b{#1}%

54.10 \edef\reserved@c{#2}%
54.11 \ifx\reserved@b\reserved@c
54.12 \let\cyrillicencoding\reserved@c
54.13 \fi}

303

54.14 \def\cdp@elt#1#2#3#4{%
54.15 \reserved@a{#1}{OT2}%
54.16 \reserved@a{#1}{LWN}%
54.17 \reserved@a{#1}{LCY}%
54.18 \reserved@a{#1}{X2}%
54.19 \reserved@a{#1}{T2C}%
54.20 \reserved@a{#1}{T2B}%
54.21 \reserved@a{#1}{T2A}}
54.22 \cdp@list

Now, if \cyrillicencoding is undefined, then the user did not load any of
supported encodings. So, we have to set \cyrillicencoding to some default
value. We test the presence of the encoding definition files in the order from
less preferable to more preferable encodings. We use the lowercase names (i.e.,
lcyenc.def instead of LCYenc.def).

54.23 \ifx\cyrillicencoding\undefined
54.24 \IfFileExists{ot2enc.def}{\def\cyrillicencoding{OT2}}\relax
54.25 \IfFileExists{lwnenc.def}{\def\cyrillicencoding{LWN}}\relax
54.26 \IfFileExists{lcyenc.def}{\def\cyrillicencoding{LCY}}\relax
54.27 \IfFileExists{x2enc.def}{\def\cyrillicencoding{X2}}\relax
54.28 \IfFileExists{t2cenc.def}{\def\cyrillicencoding{T2C}}\relax
54.29 \IfFileExists{t2benc.def}{\def\cyrillicencoding{T2B}}\relax
54.30 \IfFileExists{t2aenc.def}{\def\cyrillicencoding{T2A}}\relax

If \cyrillicencoding is still undefined, then the user seems not to have a
properly installed distribution. A fatal error.

54.31 \ifx\cyrillicencoding\undefined
54.32 \PackageError{babel}%
54.33 {No Cyrillic encoding definition files were found}%
54.34 {Your installation is incomplete.\MessageBreak
54.35 You need at least one of the following files:\MessageBreak
54.36 \space\space
54.37 x2enc.def, t2aenc.def, t2benc.def, t2cenc.def,\MessageBreak
54.38 \space\space
54.39 lcyenc.def, lwnenc.def, ot2enc.def.}%
54.40 \else

We avoid \usepackage[\cyrillicencoding]{fontenc} because we don’t
want to force the switch of \encodingdefault.

54.41 \lowercase
54.42 \expandafter{\expandafter\input\cyrillicencoding enc.def\relax}%
54.43 \fi
54.44 \fi

\PackageInfo{babel}
{Using ‘\cyrillicencoding’ as a default Cyrillic encoding}%

54.45 \DeclareRobustCommand{\Russian}{%
54.46 \fontencoding\cyrillicencoding\selectfont

304

54.47 \let\encodingdefault\cyrillicencoding
54.48 \expandafter\set@hyphenmins\russianhyphenmins
54.49 \language\l@russian}%
54.50 \DeclareRobustCommand{\English}{%
54.51 \fontencoding\latinencoding\selectfont
54.52 \let\encodingdefault\latinencoding
54.53 \expandafter\set@hyphenmins\englishhyphenmins
54.54 \language\l@english}%
54.55 \let\Rus\Russian
54.56 \let\Eng\English
54.57 \let\cyrillictext\Russian
54.58 \let\cyr\Russian

Since the X2 encoding does not contain Latin letters, we should make some
redefinitions of LATEX macros which implicitly produce Latin letters.

54.59 \expandafter\ifx\csname T@X2\endcsname\relax\else

We put \latinencoding in braces to avoid problems with \@alph inside mini-
pages (e.g., footnotes inside minipages) where \@alph is expanded and we get for
example ‘\fontencoding OT1’ (\fontencoding is robust).

54.60 \def\@alph#1{{\fontencoding{\latinencoding}\selectfont
54.61 \ifcase#1\or
54.62 a\or b\or c\or d\or e\or f\or g\or h\or
54.63 i\or j\or k\or l\or m\or n\or o\or p\or
54.64 q\or r\or s\or t\or u\or v\or w\or x\or
54.65 y\or z\else\@ctrerr\fi}}%
54.66 \def\@Alph#1{{\fontencoding{\latinencoding}\selectfont
54.67 \ifcase#1\or
54.68 A\or B\or C\or D\or E\or F\or G\or H\or
54.69 I\or J\or K\or L\or M\or N\or O\or P\or
54.70 Q\or R\or S\or T\or U\or V\or W\or X\or
54.71 Y\or Z\else\@ctrerr\fi}}%

Unfortunately, the commands \AA and \aa are not encoding dependent in
LATEX (unlike e.g., \oe or \DH). They are defined as \r{A} and \r{a}. This leads
to unpredictable results when the font encoding does not contain the Latin letters
‘A’ and ‘a’ (like X2).

54.72 \DeclareTextSymbolDefault{\AA}{OT1}
54.73 \DeclareTextSymbolDefault{\aa}{OT1}
54.74 \DeclareTextCommand{\aa}{OT1}{\r a}
54.75 \DeclareTextCommand{\AA}{OT1}{\r A}
54.76 \fi

The following block redefines the character class of uppercase Greek letters
and some accents, if it is equal to 7 (variable family), to avoid incorrect results if
the font encoding in some math family does not contain these characters in places
of OT1 encoding. The code was taken from amsmath.dtx. See comments and
further explanation there.

54.77 % \begingroup\catcode‘\"=12

305

54.78 % % uppercase greek letters:
54.79 % \def\@tempa#1{\expandafter\@tempb\meaning#1\relax\relax\relax\relax
54.80 % "0000\@nil#1}
54.81 % \def\@tempb#1"#2#3#4#5#6\@nil#7{%
54.82 % \ifnum"#2=7 \count@"1#3#4#5\relax
54.83 % \ifnum\count@<"1000 \else \global\mathchardef#7="0#3#4#5\relax \fi
54.84 % \fi}
54.85 % \@tempa\Gamma\@tempa\Delta\@tempa\Theta\@tempa\Lambda\@tempa\Xi
54.86 % \@tempa\Pi\@tempa\Sigma\@tempa\Upsilon\@tempa\Phi\@tempa\Psi
54.87 % \@tempa\Omega
54.88 % % some accents:
54.89 % \def\@tempa#1#2\@nil{\def\@tempc{#1}}\def\@tempb{\mathaccent}
54.90 % \expandafter\@tempa\hat\relax\relax\@nil
54.91 % \ifx\@tempb\@tempc
54.92 % \def\@tempa#1\@nil{#1}%
54.93 % \def\@tempb#1{\afterassignment\@tempa\mathchardef\@tempc=}%
54.94 % \def\do#1"#2{}
54.95 % \def\@tempd#1{\expandafter\@tempb#1\@nil
54.96 % \ifnum\@tempc>"FFF
54.97 % \xdef#1{\mathaccent"\expandafter\do\meaning\@tempc\space}%
54.98 % \fi}
54.99 % \@tempd\hat\@tempd\check\@tempd\tilde\@tempd\acute\@tempd\grave

54.100 % \@tempd\dot\@tempd\ddot\@tempd\breve\@tempd\bar
54.101 % \fi
54.102 % \endgroup

The user should use the inputenc package when any 8-bit Cyrillic font encod-
ing is used, selecting one of the Cyrillic input encodings. We do not assume any
default input encoding, so the user should explicitly call the inputenc package
by \usepackage{inputenc}. We also removed \AtBeginDocument, so inputenc
should be used before babel.

54.103 \@ifpackageloaded{inputenc}{}{%
54.104 \def\reserved@a{LWN}%
54.105 \ifx\reserved@a\cyrillicencoding\else
54.106 \def\reserved@a{OT2}%
54.107 \ifx\reserved@a\cyrillicencoding\else
54.108 \PackageWarning{babel}%
54.109 {No input encoding specified for Russian language}
54.110 \fi\fi}

Now we define two commands that offer the possibility to switch between
Cyrillic and Roman encodings.

\cyrillictext
\latintext

The command \cyrillictext will switch from Latin font encoding to the Cyrillic
font encoding, the command \latintext switches back. This assumes that the
‘normal’ font encoding is a Latin one. These commands are declarations, for
shorter peaces of text the commands \textlatin and \textcyrillic can be
used.

54.111 %\DeclareRobustCommand{\latintext}{%

306

54.112 % \fontencoding{\latinencoding}\selectfont
54.113 % \def\encodingdefault{\latinencoding}}
54.114 \let\lat\latintext

\textcyrillic
\textlatin

These commands take an argument which is then typeset using the requested font
encoding.

54.115 \DeclareTextFontCommand{\textcyrillic}{\cyrillictext}
54.116 %\DeclareTextFontCommand{\textlatin}{\latintext}

We make the TEX
54.117 %\ifx\ltxTeX\undefined\let\ltxTeX\TeX\fi
54.118 %\ProvideTextCommandDefault{\TeX}{\textlatin{\ltxTeX}}

and LATEX logos encoding independent.
54.119 %\ifx\ltxLaTeX\undefined\let\ltxLaTeX\LaTeX\fi
54.120 %\ProvideTextCommandDefault{\LaTeX}{\textlatin{\ltxLaTeX}}

The next step consists of defining commands to switch to (and from) the Rus-
sian language.

\captionsrussian The macro \captionsrussian defines all strings used in the four standard doc-
ument classes provided with LATEX. The two commands \cyr and \lat activate
Cyrillic resp. Latin encoding.

54.121 \addto\captionsrussian{%
54.122 % FIXME: Where is the \prefacename used?
54.123 \def\prefacename{%
54.124 {\cyr\CYRP\cyrr\cyre\cyrd\cyri\cyrs\cyrl\cyro\cyrv\cyri\cyre}}%
54.125 % {\cyr\CYRV\cyrv\cyre\cyrd\cyre\cyrn\cyri\cyre}}%
54.126 \def\refname{%
54.127 {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk
54.128 \ \cyrl\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyrery}}%
54.129 % \def\refname{%
54.130 % {\cyr\CYRL\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}}%
54.131 \def\abstractname{%
54.132 {\cyr\CYRA\cyrn\cyrn\cyro\cyrt\cyra\cyrc\cyri\cyrya}}%
54.133 \def\bibname{%
54.134 {\cyr\CYRL\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}}%
54.135 % \def\bibname{%
54.136 % {\cyr\CYRB\cyri\cyrb\cyrl\cyri\cyro
54.137 % \cyrg\cyrr\cyra\cyrf\cyri\cyrya}}%
54.138 % for reports according to GOST:
54.139 % \def\bibname{%
54.140 % {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk
54.141 % \ \cyri\cyrs\cyrp\cyro\cyrl\cyrsftsn\cyrz\cyro\cyrv\cyra\cyrn
54.142 % \cyrn\cyrery\cyrh\ \cyri\cyrs\cyrt\cyro\cyrch\cyrn\cyri
54.143 % \cyrk\cyro\cyrv}}%
54.144 \def\chaptername{{\cyr\CYRG\cyrl\cyra\cyrv\cyra}}%
54.145 % \@ifundefined{chapter}{}{%
54.146 % \def\chaptername{{\cyr\CYRG\cyrl\cyra\cyrv\cyra}}}%
54.147 \def\appendixname{%
54.148 {\cyr\CYRP\cyrr\cyri\cyrl\cyro\cyrzh\cyre\cyrn\cyri\cyre}}%

307

There are two names for the Table of Contents that are used in Russian pub-
lications. For books (and reports) the second variant is appropriate, but for pro-
ceedings the first variant is preferred:

54.149 \@ifundefined{thechapter}%
54.150 {\def\contentsname{%
54.151 {\cyr\CYRS\cyro\cyrd\cyre\cyrr\cyrzh\cyra\cyrn\cyri\cyre}}}%
54.152 {\def\contentsname{%
54.153 {\cyr\CYRO\cyrg\cyrl\cyra\cyrv\cyrl\cyre\cyrn\cyri\cyre}}}%
54.154 \def\listfigurename{%
54.155 {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk
54.156 \ \cyri\cyrl\cyrl\cyryu\cyrs\cyrt\cyrr\cyra\cyrc\cyri\cyrishrt}}%
54.157 % \def\listfigurename{%
54.158 % {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk
54.159 % \ \cyrr\cyri\cyrs\cyru\cyrn\cyrk\cyro\cyrv}}%
54.160 \def\listtablename{%
54.161 {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk
54.162 \ \cyrt\cyra\cyrb\cyrl\cyri\cyrc}}%
54.163 \def\indexname{%
54.164 {\cyr\CYRP\cyrr\cyre\cyrd\cyrm\cyre\cyrt\cyrn\cyrery\cyrishrt
54.165 \ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl\cyrsftsn}}%
54.166 \def\authorname{%
54.167 {\cyr\CYRI\cyrm\cyre\cyrn\cyrn\cyro\cyrishrt
54.168 \ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl\cyrsftsn}}%
54.169 \def\figurename{{\cyr\CYRR\cyri\cyrs.}}%
54.170 \def\tablename{{\cyr\CYRT\cyra\cyrb\cyrl\cyri\cyrc\cyra}}%
54.171 \def\partname{{\cyr\CYRCH\cyra\cyrs\cyrt\cyrsftsn}}%
54.172 \def\enclname{{\cyr\cyrv\cyrk\cyrl.}}%
54.173 \def\ccname{{\cyr\cyri\cyrs\cyrh.}}%
54.174 % \def\ccname{{\cyr\cyri\cyrz}}%
54.175 \def\headtoname{{\cyr\cyrv\cyrh.}}%
54.176 % \def\headtoname{{\cyr\cyrv}}%
54.177 \def\pagename{{\cyr\cyrs.}}%
54.178 % \def\pagename{{\cyr\cyrs\cyrt\cyrr.}}%
54.179 \def\seename{{\cyr\cyrs\cyrm.}}%
54.180 \def\alsoname{{\cyr\cyrs\cyrm.\ \cyrt\cyra\cyrk\cyrzh\cyre}}%

54.181 \def\proofname{{\cyr\CYRD\cyro\cyrk\cyra\cyrz\cyra\cyrt
54.182 \cyre\cyrl\cyrsftsn\cyrs\cyrt\cyrv\cyro}}%
54.183 \def\glossaryname{Glossary}% <-- Needs translation
54.184 }

\daterussian The macro \daterussian redefines the command \today to produce Russian
dates.

54.185 \def\daterussian{%
54.186 \def\today{\number\day~\ifcase\month\or
54.187 \cyrya\cyrn\cyrv\cyra\cyrr\cyrya\or
54.188 \cyrf\cyre\cyrv\cyrr\cyra\cyrl\cyrya\or
54.189 \cyrm\cyra\cyrr\cyrt\cyra\or
54.190 \cyra\cyrp\cyrr\cyre\cyrl\cyrya\or

308

54.191 \cyrm\cyra\cyrya\or
54.192 \cyri\cyryu\cyrn\cyrya\or
54.193 \cyri\cyryu\cyrl\cyrya\or
54.194 \cyra\cyrv\cyrg\cyru\cyrs\cyrt\cyra\or
54.195 \cyrs\cyre\cyrn\cyrt\cyrya\cyrb\cyrr\cyrya\or
54.196 \cyro\cyrk\cyrt\cyrya\cyrb\cyrr\cyrya\or
54.197 \cyrn\cyro\cyrya\cyrb\cyrr\cyrya\or
54.198 \cyrd\cyre\cyrk\cyra\cyrb\cyrr\cyrya\fi
54.199 \ \number\year~\cyrg.}}

\extrasrussian The macro \extrasrussian will perform all the extra definitions needed for the
Russian language. The macro \noextrasrussian is used to cancel the actions of
\extrasrussian.

The first action we define is to switch on the selected Cyrillic encoding whenever
we enter ‘russian’.

54.200 \addto\extrasrussian{\cyrillictext}

When the encoding definition file was processed by LATEX the current font
encoding is stored in \latinencoding, assuming that LATEX uses T1 or OT1 as
default. Therefore we switch back to \latinencoding whenever the Russian lan-
guage is no longer ‘active’.

54.201 \addto\noextrasrussian{\latintext}

\verbatim@font In order to get both Latin and Cyrillic letters in verbatim text we need to change
the definition of an internal LATEX command somewhat:

54.202 %\def\verbatim@font{%
54.203 % \let\encodingdefault\latinencoding
54.204 % \normalfont\ttfamily
54.205 % \expandafter\def\csname\cyrillicencoding-cmd\endcsname##1##2{%
54.206 % \ifx\protect\@typeset@protect
54.207 % \begingroup\UseTextSymbol\cyrillicencoding##1\endgroup
54.208 % \else\noexpand##1\fi}}

The category code of the characters ‘:’, ‘;’, ‘!’, and ‘?’ is made \active to
insert a little white space.

For Russian (as well as for German) the " character also is made active.
Note: It is very questionable whether the Russian typesetting tradition re-

quires additional spacing before those punctuation signs. Therefore, we make the
corresponding code optional. If you need it, then define the frenchpunct docstrip
option in babel.ins.

Borrowed from french. Some users dislike automatic insertion of a space before
‘double punctuation’, and prefer to decide themselves whether a space should be
added or not; so a hook \NoAutoSpaceBeforeFDP is provided: if this command is
added (in file russianb.cfg, or anywhere in a document) russianb will respect
your typing, and introduce a suitable space before ‘double punctuation’ if and
only if a space is typed in the source file before those signs.

The command \AutoSpaceBeforeFDP switches back to the default behavior of
russianb.

309

54.209 〈∗frenchpunct〉
54.210 \initiate@active@char{:}
54.211 \initiate@active@char{;}
54.212 〈/frenchpunct〉
54.213 〈∗frenchpunct | spanishligs〉
54.214 \initiate@active@char{!}
54.215 \initiate@active@char{?}
54.216 〈/frenchpunct | spanishligs〉
54.217 \initiate@active@char{"}

The code above is necessary because we need extra active characters. The
character " is used as indicated in table 27.

We specify that the Russian group of shorthands should be used.

54.218 \addto\extrasrussian{\languageshorthands{russian}}

These characters are ‘turned on’ once, later their definition may vary.

54.219 \addto\extrasrussian{%
54.220 〈frenchpunct〉 \bbl@activate{:}\bbl@activate{;}%
54.221 〈frenchpunct | spanishligs〉 \bbl@activate{!}\bbl@activate{?}%
54.222 \bbl@activate{"}}
54.223 \addto\noextrasrussian{%
54.224 〈frenchpunct〉 \bbl@deactivate{:}\bbl@deactivate{;}%
54.225 〈frenchpunct | spanishligs〉 \bbl@deactivate{!}\bbl@deactivate{?}%
54.226 \bbl@deactivate{"}}

The X2 and T2* encodings do not contain spanish_shriek and spanish_query
symbols; as a consequence, the ligatures ‘?‘’ and ‘!‘’ do not work with them (these
characters are useless for Cyrillic texts anyway). But we define the shorthands to
emulate these ligatures (optionally).

We do not use \latinencoding here (but instead explicitly use OT1) because
the user may choose T2A to be the primary encoding, but it does not contain these
characters.

54.227 〈∗spanishligs〉
54.228 \declare@shorthand{russian}{?‘}{\UseTextSymbol{OT1}\textquestiondown}
54.229 \declare@shorthand{russian}{!‘}{\UseTextSymbol{OT1}\textexclamdown}
54.230 〈/spanishligs〉

\russian@sh@;@
\russian@sh@:@
\russian@sh@!@
\russian@sh@?@

We have to reduce the amount of white space before ;, : and !. This should only
happen in horizontal mode, hence the test with \ifhmode.

54.231 〈∗frenchpunct〉
54.232 \declare@shorthand{russian}{;}{%
54.233 \ifhmode

In horizontal mode we check for the presence of a ‘space’, ‘unskip’ if it exists
and place a 0.1em kerning.

54.234 \ifdim\lastskip>\z@
54.235 \unskip\nobreak\kern.1em
54.236 \else

310

If no space has been typed, we add \FDP@thinspace which will be defined, up to
the user’s wishes, as an automatic added thinspace, or as \@empty.

54.237 \FDP@thinspace
54.238 \fi
54.239 \fi

Now we can insert a ‘;’ character.

54.240 \string;}

The other definitions are very similar.

54.241 \declare@shorthand{russian}{:}{%
54.242 \ifhmode
54.243 \ifdim\lastskip>\z@
54.244 \unskip\nobreak\kern.1em
54.245 \else
54.246 \FDP@thinspace
54.247 \fi
54.248 \fi
54.249 \string:}

54.250 \declare@shorthand{russian}{!}{%
54.251 \ifhmode
54.252 \ifdim\lastskip>\z@
54.253 \unskip\nobreak\kern.1em
54.254 \else
54.255 \FDP@thinspace
54.256 \fi
54.257 \fi
54.258 \string!}

54.259 \declare@shorthand{russian}{?}{%
54.260 \ifhmode
54.261 \ifdim\lastskip>\z@
54.262 \unskip\nobreak\kern.1em
54.263 \else
54.264 \FDP@thinspace
54.265 \fi
54.266 \fi
54.267 \string?}

\AutoSpaceBeforeFDP
\NoAutoSpaceBeforeFDP

\FDP@thinspace

\FDP@thinspace is defined as unbreakable spaces if \AutoSpaceBeforeFDP is
activated or as \@empty if \NoAutoSpaceBeforeFDP is in use. The default is
\AutoSpaceBeforeFDP.

54.268 \def\AutoSpaceBeforeFDP{%
54.269 \def\FDP@thinspace{\nobreak\kern.1em}}
54.270 \def\NoAutoSpaceBeforeFDP{\let\FDP@thinspace\@empty}
54.271 \AutoSpaceBeforeFDP

\FDPon
\FDPoff

The next macros allow to switch on/off activeness of double punctuation signs.

311

54.272 \def\FDPon{\bbl@activate{:}%
54.273 \bbl@activate{;}%
54.274 \bbl@activate{?}%
54.275 \bbl@activate{!}}
54.276 \def\FDPoff{\bbl@deactivate{:}%
54.277 \bbl@deactivate{;}%
54.278 \bbl@deactivate{?}%
54.279 \bbl@deactivate{!}}

\system@sh@:@
\system@sh@!@
\system@sh@?@
\system@sh@;@

When the active characters appear in an environment where their Russian be-
haviour is not wanted they should give an ‘expected’ result. Therefore we define
shorthands at system level as well.

54.280 \declare@shorthand{system}{:}{\string:}
54.281 \declare@shorthand{system}{;}{\string;}
54.282 〈/frenchpunct〉
54.283 〈∗frenchpunct&!spanishligs〉
54.284 \declare@shorthand{system}{!}{\string!}
54.285 \declare@shorthand{system}{?}{\string?}
54.286 〈/frenchpunct&!spanishligs〉

To be able to define the function of ‘"’, we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ‘"’.

54.287 \begingroup \catcode‘\"12
54.288 \def\reserved@a{\endgroup
54.289 \def\@SS{\mathchar"7019 }
54.290 \def\dq{"}}
54.291 \reserved@a

Now we can define the doublequote macros: german and french quotes. We
use definitions of these quotes made in babel.sty. The french quotes are contained
in the T2* encodings.

54.292 \declare@shorthand{russian}{"‘}{\glqq}
54.293 \declare@shorthand{russian}{"’}{\grqq}
54.294 \declare@shorthand{russian}{"<}{\flqq}
54.295 \declare@shorthand{russian}{">}{\frqq}

Some additional commands:
54.296 \declare@shorthand{russian}{""}{\hskip\z@skip}
54.297 \declare@shorthand{russian}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
54.298 \declare@shorthand{russian}{"=}{\nobreak-\hskip\z@skip}
54.299 \declare@shorthand{russian}{"|}{%
54.300 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
54.301 \allowhyphens}{}}

The next two macros for "- and "--- are somewhat different. We must check
whether the second token is a hyphen character:

54.302 \declare@shorthand{russian}{"-}{%

312

If the next token is ‘-’, we typeset an emdash, otherwise a hyphen sign:

54.303 \def\russian@sh@tmp{%
54.304 \if\russian@sh@next-\expandafter\russian@sh@emdash
54.305 \else\expandafter\russian@sh@hyphen\fi
54.306 }%

TEX looks for the next token after the first ‘-’: the meaning of this token is
written to \russian@sh@next and \russian@sh@tmp is called.

54.307 \futurelet\russian@sh@next\russian@sh@tmp}

Here are the definitions of hyphen and emdash. First the hyphen:

54.308 \def\russian@sh@hyphen{%
54.309 \nobreak\-\bbl@allowhyphens}

For the emdash definition, there are the two parameters: we must ‘eat’ two
last hyphen signs of our emdash. . . :

54.310 \def\russian@sh@emdash#1#2{\cdash-#1#2}

\cdash . . . these two parameters are useful for another macro: \cdash:
54.311 %\ifx\cdash\undefined % should be defined earlier
54.312 \def\cdash#1#2#3{\def\tempx@{#3}%
54.313 \def\tempa@{-}\def\tempb@{~}\def\tempc@{*}%
54.314 \ifx\tempx@\tempa@\@Acdash\else
54.315 \ifx\tempx@\tempb@\@Bcdash\else
54.316 \ifx\tempx@\tempc@\@Ccdash\else
54.317 \errmessage{Wrong usage of cdash}\fi\fi\fi}

second parameter (or third for \cdash) shows what kind of emdash to create in
next step

"--- ordinary (plain) Cyrillic emdash inside text: an unbreakable thinspace will
be inserted before only in case of a space before the dash (it is necessary
for dashes after display maths formulae: there could be lists, enumerations
etc. started with “— where a is ...” i.e., the dash starts a line). (Firstly
there were planned rather soft rules for user: he may put a space before
the dash or not. But it is difficult to place this thinspace automatically,
i.e., by checking modes because after display formulae TEX uses horizontal
mode. Maybe there is a misunderstanding? Maybe there is another way?)
After a dash a breakable thinspace is always placed;

54.318 % What is more grammatically: .2em or .2\fontdimen6\font ?
54.319 \def\@Acdash{\ifdim\lastskip>\z@\unskip\nobreak\hskip.2em\fi
54.320 \cyrdash\hskip.2em\ignorespaces}%

"--~ emdash in compound names or surnames (like Mendeleev–Klapeiron); this
dash has no space characters around; after the dash some space is added
\exhyphenalty

54.321 \def\@Bcdash{\leavevmode\ifdim\lastskip>\z@\unskip\fi
54.322 \nobreak\cyrdash\penalty\exhyphenpenalty\hskip\z@skip\ignorespaces}%

313

"--* for denoting direct speech (a space like \enskip must follow the emdash);

54.323 \def\@Ccdash{\leavevmode
54.324 \nobreak\cyrdash\nobreak\hskip.35em\ignorespaces}%
54.325 %\fi

\cyrdash Finally the macro for “body” of the Cyrillic emdash. The \cyrdash macro will
be defined in case this macro hasn’t been defined in a fontenc file. For T2* fonts,
cyrdash will be placed in the code of the English emdash thus it uses ligature ---.

54.326 % Is there an IF necessary?
54.327 \ifx\cyrdash\undefined
54.328 \def\cyrdash{\hbox to.8em{--\hss--}}
54.329 \fi

Here a really new macro—to place thinspace between initials. This macro used
instead of \, allows hyphenation in the following surname.

54.330 \declare@shorthand{russian}{",}{\nobreak\hskip.2em\ignorespaces}

\mdqon
\mdqoff

All that’s left to do now is to define a couple of commands for ".
54.331 \def\mdqon{\bbl@activate{"}}
54.332 \def\mdqoff{\bbl@deactivate{"}}

The Russian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

54.333 \providehyphenmins{\CurrentOption}{\tw@\tw@}
54.334 % temporary hack:
54.335 \ifx\englishhyphenmins\undefined
54.336 \def\englishhyphenmins{\tw@\thr@@}
54.337 \fi

Now the action \extrasrussian has to execute is to make sure that the
command \frenchspacing is in effect. If this is not the case the execution of
\noextrasrussian will switch it off again.

54.338 \addto\extrasrussian{\bbl@frenchspacing}
54.339 \addto\noextrasrussian{\bbl@nonfrenchspacing}

Next we add a new enumeration style for Russian manuscripts with Cyrillic
letters, and later on we define some math operator names in accordance with
Russian typesetting traditions.

\Asbuk We begin by defining \Asbuk which works like \Alph, but produces (uppercase)
Cyrillic letters intead of Latin ones. The letters YO, ISHRT, HRDSN, ERY, and
SFTSN are skipped, as usual for such enumeration.

54.340 \def\Asbuk#1{\expandafter\@Asbuk\csname c@#1\endcsname}
54.341 \def\@Asbuk#1{\ifcase#1\or
54.342 \CYRA\or\CYRB\or\CYRV\or\CYRG\or\CYRD\or\CYRE\or\CYRZH\or
54.343 \CYRZ\or\CYRI\or\CYRK\or\CYRL\or\CYRM\or\CYRN\or\CYRO\or
54.344 \CYRP\or\CYRR\or\CYRS\or\CYRT\or\CYRU\or\CYRF\or\CYRH\or
54.345 \CYRC\or\CYRCH\or\CYRSH\or\CYRSHCH\or\CYREREV\or\CYRYU\or
54.346 \CYRYA\else\@ctrerr\fi}

314

\asbuk The macro \asbuk is similar to \alph; it produces lowercase Russian letters.

54.347 \def\asbuk#1{\expandafter\@asbuk\csname c@#1\endcsname}
54.348 \def\@asbuk#1{\ifcase#1\or
54.349 \cyra\or\cyrb\or\cyrv\or\cyrg\or\cyrd\or\cyre\or\cyrzh\or
54.350 \cyrz\or\cyri\or\cyrk\or\cyrl\or\cyrm\or\cyrn\or\cyro\or
54.351 \cyrp\or\cyrr\or\cyrs\or\cyrt\or\cyru\or\cyrf\or\cyrh\or
54.352 \cyrc\or\cyrch\or\cyrsh\or\cyrshch\or\cyrerev\or\cyryu\or
54.353 \cyrya\else\@ctrerr\fi}

Set up default Cyrillic math alphabets. To use Cyrillic letters in math mode
user should load the textmath package before loading fontenc package (or babel).
Note, that by default Cyrillic letters are taken from upright font in math mode
(unlike Latin letters).

54.354 %\RequirePackage{textmath}
54.355 \@ifundefined{sym\cyrillicencoding letters}{}{%
54.356 \SetSymbolFont{\cyrillicencoding letters}{bold}\cyrillicencoding
54.357 \rmdefault\bfdefault\updefault
54.358 \DeclareSymbolFontAlphabet\cyrmathrm{\cyrillicencoding letters}

And we need a few commands to be able to switch to different variants.
54.359 \DeclareMathAlphabet\cyrmathbf\cyrillicencoding
54.360 \rmdefault\bfdefault\updefault
54.361 \DeclareMathAlphabet\cyrmathsf\cyrillicencoding
54.362 \sfdefault\mddefault\updefault
54.363 \DeclareMathAlphabet\cyrmathit\cyrillicencoding
54.364 \rmdefault\mddefault\itdefault
54.365 \DeclareMathAlphabet\cyrmathtt\cyrillicencoding
54.366 \ttdefault\mddefault\updefault
54.367 %
54.368 \SetMathAlphabet\cyrmathsf{bold}\cyrillicencoding
54.369 \sfdefault\bfdefault\updefault
54.370 \SetMathAlphabet\cyrmathit{bold}\cyrillicencoding
54.371 \rmdefault\bfdefault\itdefault
54.372 }

Some math functions in Russian math books have other names: e.g., sinh in
Russian is written as sh etc. So we define a number of new math operators.

\sinh:
54.373 \def\sh{\mathop{\operator@font sh}\nolimits}

\cosh:
54.374 \def\ch{\mathop{\operator@font ch}\nolimits}

\tan:
54.375 \def\tg{\mathop{\operator@font tg}\nolimits}

\arctan:
54.376 \def\arctg{\mathop{\operator@font arctg}\nolimits}

arcctg:
54.377 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

315

The following macro conflicts with \th defined in Latin 1 encoding:
\tanh:

54.378 \addto\extrasrussian{%
54.379 \babel@save{\th}%
54.380 \let\ltx@th\th
54.381 \def\th{\textormath{\ltx@th}%
54.382 {\mathop{\operator@font th}\nolimits}}%
54.383 }

\cot:
54.384 \def\ctg{\mathop{\operator@font ctg}\nolimits}

\coth:
54.385 \def\cth{\mathop{\operator@font cth}\nolimits}

\csc:
54.386 \def\cosec{\mathop{\operator@font cosec}\nolimits}

And finally some other Russian mathematical symbols:
54.387 \def\Prob{\mathop{\kern\z@\mathsf{P}}\nolimits}
54.388 \def\Variance{\mathop{\kern\z@\mathsf{D}}\nolimits}
54.389 \def\nod{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrd.}}\nolimits}
54.390 \def\nok{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrk.}}\nolimits}
54.391 \def\NOD{\mathop{\cyrmathrm{\CYRN\CYRO\CYRD}}\nolimits}
54.392 \def\NOK{\mathop{\cyrmathrm{\CYRN\CYRO\CYRK}}\nolimits}
54.393 \def\Proj{\mathop{\cyrmathrm{\CYRP\cyrr}}\nolimits}

This is for compatibility with older Russian packages.
54.394 \DeclareRobustCommand{\No}{%
54.395 \ifmmode{\nfss@text{\textnumero}}\else\textnumero\fi}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

54.396 \ldf@finish{russian}
54.397 〈/code〉

316

55 The Bulgarian language
The file bulgarian.dtx63 provides the language-specific macros for the Bulgarian
language.

Users should take note of the vaious “cyrillic” dashes available now (see below).
These should remove many causes of headache. Also, although by default the Bul-
garian quotation marks will appear automatically when typesetting in Bulgarian,
it is better to use the new commands \"’ and \"’ which explicitly typeset them.
Note: automatic switch to Bulgarian quotation is withdrawn for the moment and
may not be reintroduced at all.

For this language the character " is made active. In table 29 an overview is
given of its purpose.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"--- Cyrillic emdash in plain text.
"--~ Cyrillic emdash in compound names (surnames).
"--* Cyrillic emdash for denoting direct speech.
"" like "-, but producing no hyphen sign (for compound

words with hyphen, e.g. x-""y or some other signs
as “disable/enable”).

"~ for a compound word mark without a breakpoint.
"= for a compound word mark with a breakpoint, allow-

ing hyphenation in the composing words.
", thinspace for initials with a breakpoint in following

surname.
"‘ for German left double quotes (looks like ,,).
"’ for German right double quotes (looks like “).
” "< for French left double quotes (looks like <<).
"> for French right double quotes (looks like >>).

Table 29: The extra definitions made bybulgarian

The quotes in table 29 can also be typeset by using the commands in table 30.
The French quotes are also available as ligatures ‘<<’ and ‘>>’ in 8-bit Cyrillic

font encodings (LCY, X2, T2*) and as ‘<’ and ‘>’ characters in 7-bit Cyrillic font
encodings (OT2 and LWN).

The quotation marks traditionally used in Bulgarian were borrowed from Ger-
man o they keep their original names. French quotation marks may be seen as
well in older books.

63The file described in this section has version number ? and was last revised on ?. This file
was initially derived from the August-1998 version of russianb.dtx.

It is (reasonably) backward compatible with the 1994/1996 (non-babel) bulgarian style (bul-
garia.sty) by Georgi Boshnakov—files prepared for that style should compile successfully (with
vastly improved appearance due to usage of standard fonts).

317

\cdash--- Cyrillic emdash in plain text.
\cdash--~ Cyrillic emdash in compound names (surnames).
\cdash--* Cyrillic emdash for denoting direct speech.
\glqq for German left double quotes (looks like,,).
\grqq for German right double quotes (looks like “).
” \flqq for French left double quotes (looks like <<).
\frqq for French right double quotes (looks like >>).
\dq the original quotes character (").

Table 30: More commands which produce quotes, defined by babel

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

55.1 〈∗code〉
55.2 \LdfInit{bulgarian}{captionsbulgarian}

When this file is read as an option, i.e., by the \usepackage command,
bulgarian will be an ‘unknown’ language, in which case we have to make it
known. So we check for the existence of \l@bulgarian to see whether we have to
do something here.

55.3 \ifx\l@bulgarian\@undefined
55.4 \@nopatterns{Bulgarian}
55.5 \adddialect\l@bulgarian0
55.6 \fi

\latinencoding We need to know the encoding for text that is supposed to be which is active at
the end of the babel package. If the fontenc package is loaded later, then . . . too
bad!

55.7 \let\latinencoding\cf@encoding

The user may choose between different available Cyrillic encodings—e.g., X2,
LCY, or LWN. If the user wants to use a font encoding other than the default (T2A),
he has to load the corresponding file before bulgarian.sty. This may be done in
the following way:

\usepackage[LCY,OT1]{fontenc} %overwrite the default encoding;
\usepackage[english,bulgarian]{babel}

Note: most people would prefer the T2A to X2, because X2 does not contain
Latin letters, and users should be very careful to switch the language every time
they want to typeset a Latin word inside a Bulgarian phrase or vice versa. On
the other hand, switching the language is a good practice anyway. With a decent
text processing program it does not involve more work than switching between the
Bulgarian and English keyboard. Moreover that the far most common disruption
occurs as a result of forgetting to switch back to cyrillic keyboard.

318

We parse the \cdp@list containing the encodings known to LATEX in the order
they were loaded. We set the \cyrillicencoding to the last loaded encoding in
the list of supported Cyrillic encodings: OT2, LWN, LCY, X2, T2C, T2B, T2A, if any.

55.8 \def\reserved@a#1#2{%
55.9 \edef\reserved@b{#1}%

55.10 \edef\reserved@c{#2}%
55.11 \ifx\reserved@b\reserved@c
55.12 \let\cyrillicencoding\reserved@c
55.13 \fi}
55.14 \def\cdp@elt#1#2#3#4{%
55.15 \reserved@a{#1}{OT2}%
55.16 \reserved@a{#1}{LWN}%
55.17 \reserved@a{#1}{LCY}%
55.18 \reserved@a{#1}{X2}%
55.19 \reserved@a{#1}{T2C}%
55.20 \reserved@a{#1}{T2B}%
55.21 \reserved@a{#1}{T2A}}
55.22 \cdp@list

Now, if \cyrillicencoding is undefined, then the user did not load any of
supported encodings. So, we have to set \cyrillicencoding to some default
value. We test the presence of the encoding definition files in the order from
less preferable to more preferable encodings. We use the lowercase names (i.e.,
lcyenc.def instead of LCYenc.def).

55.23 \ifx\cyrillicencoding\undefined
55.24 \IfFileExists{ot2enc.def}{\def\cyrillicencoding{OT2}}\relax
55.25 \IfFileExists{lwnenc.def}{\def\cyrillicencoding{LWN}}\relax
55.26 \IfFileExists{lcyenc.def}{\def\cyrillicencoding{LCY}}\relax
55.27 \IfFileExists{x2enc.def}{\def\cyrillicencoding{X2}}\relax
55.28 \IfFileExists{t2cenc.def}{\def\cyrillicencoding{T2C}}\relax
55.29 \IfFileExists{t2benc.def}{\def\cyrillicencoding{T2B}}\relax
55.30 \IfFileExists{t2aenc.def}{\def\cyrillicencoding{T2A}}\relax

If \cyrillicencoding is still undefined, then the user seems not to have a
properly installed distribution. A fatal error.

55.31 \ifx\cyrillicencoding\undefined
55.32 \PackageError{babel}%
55.33 {No Cyrillic encoding definition files were found}%
55.34 {Your installation is incomplete. \MessageBreak
55.35 You need at least one of the following files: \MessageBreak
55.36 \space\space
55.37 x2enc.def, t2aenc.def, t2benc.def, t2cenc.def, \MessageBreak
55.38 \space\space
55.39 lcyenc.def, lwnenc.def, ot2enc.def.}%
55.40 \else

We avoid \usepackage[\cyrillicencoding]{fontenc} because we don’t
want to force the switch of \encodingdefault.

55.41 \lowercase

319

55.42 \expandafter{\expandafter\input\cyrillicencoding enc.def\relax}%
55.43 \fi
55.44 \fi

\PackageInfo{babel}
{Using ‘\cyrillicencoding’ as a default Cyrillic encoding}%

55.45 \DeclareRobustCommand{\Bulgarian}{%
55.46 \fontencoding\cyrillicencoding\selectfont
55.47 \let\encodingdefault\cyrillicencoding
55.48 \expandafter\set@hyphenmins\bulgarianhyphenmins
55.49 \language\l@bulgarian}
55.50 \DeclareRobustCommand{\English}{%
55.51 \fontencoding\latinencoding\selectfont
55.52 \let\encodingdefault\latinencoding
55.53 \expandafter\set@hyphenmins\englishhyphenmins
55.54 \language\l@english}
55.55 \let\Bul\Bulgarian
55.56 \let\Bg\Bulgarian
55.57 \let\cyrillictext\Bulgarian
55.58 \let\cyr\Bulgarian
55.59 \let\Eng\English
55.60 \def\selectenglanguage{\selectlanguage{english}}
55.61 \def\selectbglanguage{\selectlanguage{bulgarian}}

Since the X2 encoding does not contain Latin letters,we should make some
redefinitions of LATEX macros which implicitly produce Latin letters.

55.62 \expandafter\ifx\csname T@X2\endcsname\relax\else

We put \latinencoding in braces to avoid problems with \@alph inside mini-
pages (e.g., footnotes inside minipages) where \@alph is expanded and we get for
example ‘\fontencoding OT1’ (\fontencoding is robust).

55.63 \def\@Alph@eng#1{{\fontencoding{\latinencoding}\selectfont
55.64 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or
55.65 K\or L\or M\or N\or O\or P\or Q\or R\or S\or T\or U\or V\or W\or
55.66 X\or Y\or Z\else \@ctrerr\fi}}%
55.67 \def\@alph@eng#1{{\fontencoding{\latinencoding}\selectfont
55.68 \ifcase#1\or a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or
55.69 k\or l\or m\or n\or o\or p\or q\or r\or s\or t\or u\or v\or w\or
55.70 x\or y\or z\else \@ctrerr\fi}}%
55.71 \let\@Alph\@Alph@eng
55.72 \let\@alph\@alph@eng

Unfortunately, the commands \AA and \aa are not encoding dependent in
LATEX (unlike e.g., \oe or \DH). They are defined as \r{A} and \r{a}. This leads
to unpredictable results when the font encoding does not contain the Latin letters
‘A’ and ‘a’ (like X2).

55.73 \DeclareTextSymbolDefault{\AA}{OT1}
55.74 \DeclareTextSymbolDefault{\aa}{OT1}

320

55.75 \DeclareTextCommand{\AA}{OT1}{\r A}
55.76 \DeclareTextCommand{\aa}{OT1}{\r a}
55.77 \fi

The following block redefines the character class of uppercase Greek letters
and some accents, if it is equal to 7 (variable family), to avoid incorrect results if
the font encoding in some math family does not contain these characters in places
of OT1 encoding. The code was taken from amsmath.dtx. See comments and
further explanation there.

55.78 \begingroup\catcode‘\"=12
55.79 % uppercase greek letters:
55.80 \def\@tempa#1{\expandafter\@tempb\meaning#1\relax\relax\relax\relax
55.81 "0000\@nil#1}
55.82 \def\@tempb#1"#2#3#4#5#6\@nil#7{%
55.83 \ifnum"#2=7 \count@"1#3#4#5\relax
55.84 \ifnum\count@<"1000 \else \global\mathchardef#7="0#3#4#5\relax \fi
55.85 \fi}
55.86 \@tempa\Gamma\@tempa\Delta\@tempa\Theta\@tempa\Lambda\@tempa\Xi
55.87 \@tempa\Pi\@tempa\Sigma\@tempa\Upsilon\@tempa\Phi\@tempa\Psi
55.88 \@tempa\Omega
55.89 % some accents:
55.90 \def\@tempa#1#2\@nil{\def\@tempc{#1}}\def\@tempb{\mathaccent}
55.91 \expandafter\@tempa\hat\relax\relax\@nil
55.92 \ifx\@tempb\@tempc
55.93 \def\@tempa#1\@nil{#1}%
55.94 \def\@tempb#1{\afterassignment\@tempa\mathchardef\@tempc=}%
55.95 \def\do#1"#2{}
55.96 \def\@tempd#1{\expandafter\@tempb#1\@nil
55.97 \ifnum\@tempc>"FFF
55.98 \xdef#1{\mathaccent"\expandafter\do\meaning\@tempc\space}%
55.99 \fi}

55.100 \@tempd\hat\@tempd\check\@tempd\tilde\@tempd\acute\@tempd\grave
55.101 \@tempd\dot\@tempd\ddot\@tempd\breve\@tempd\bar
55.102 \fi
55.103 \endgroup

The user should use the inputenc package when any 8-bit Cyrillic font encod-
ing is used, selecting one of the Cyrillic input encodings. We do not assume any
default input encoding, so the user should explicitly call the inputenc package
by \usepackage{inputenc}. We also removed \AtBeginDocument, so inputenc
should be used before babel.

55.104 \@ifpackageloaded{inputenc}{}{%
55.105 \def\reserved@a{LWN}%
55.106 \ifx\reserved@a\cyrillicencoding\else
55.107 \def\reserved@a{OT2}%
55.108 \ifx\reserved@a\cyrillicencoding\else
55.109 \PackageWarning{babel}%
55.110 {No input encoding specified for Bulgarian language}\fi\fi}

321

Now we define two commands that offer the possibility to switch between
Cyrillic and Roman encodings.

\cyrillictext
\latintext

The command \cyrillictext will switch from Latin font encoding to the Cyrillic
font encoding, the command \latintext switches back. This assumes that the
‘normal’ font encoding is a Latin one. These commands are declarations, for
shorter peaces of text the commands \textlatin and \textcyrillic can be
used.

We comment out \latintext since it is defined in the core of babel (babel.def).
We add the shorthand \lat for \latintext. Note that \cyrillictext has been
defined above.

55.111 % \DeclareRobustCommand{\latintext}{%
55.112 % \fontencoding{\latinencoding}\selectfont
55.113 % \def\encodingdefault{\latinencoding}}
55.114 \let\lat\latintext

\textcyrillic
\textlatin

These commands take an argument which is then typeset using the requested font
encoding. \textlatin is commented out since it is defined in the core of babel.
(It is defined there with \DeclareRobustCommand instead.)

55.115 \DeclareTextFontCommand{\textcyrillic}{\cyrillictext}
55.116 % \DeclareTextFontCommand{\textlatin}{\latintext}

The next step consists of defining commands to switch to (and from) the Bul-
garian language.

\captionsbulgarian The macro \captionsbulgarian defines all strings used in the four standard
document classes provided with LATEX. The two commands \cyr and \lat activate
Cyrillic resp. Latin encoding.

55.117 \addto\captionsbulgarian{%
55.118 \def\prefacename{%
55.119 {\cyr\CYRP\cyrr\cyre\cyrd\cyrg\cyro\cyrv\cyro\cyrr}}%
55.120 \def\refname{%
55.121 {\cyr\CYRL\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}}%
55.122 \def\abstractname{%
55.123 {\cyr\CYRA\cyrb\cyrs\cyrt\cyrr\cyra\cyrk\cyrt}}%
55.124 \def\bibname{%
55.125 {\cyr\CYRB\cyri\cyrb\cyrl\cyri\cyro\cyrg\cyrr\cyra\cyrf\cyri\cyrya}}%
55.126 \def\chaptername{%
55.127 {\cyr\CYRG\cyrl\cyra\cyrv\cyra}}%
55.128 \def\appendixname{%
55.129 {\cyr\CYRP\cyrr\cyri\cyrl\cyro\cyrzh\cyre\cyrn\cyri\cyre}}%
55.130 \def\contentsname{%
55.131 {\cyr\CYRS\cyrhrdsn\cyrd\cyrhrdsn\cyrr\cyrzh\cyra\cyrn\cyri\cyre}}%
55.132 \def\listfigurename{%
55.133 {\cyr\CYRS\cyrp\cyri\cyrs\cyrhrdsn\cyrk\ \cyrn\cyra\ \cyrf\cyri\cyrg\cyru\cyrr\cyri\cyrt\cyre}}%
55.134 \def\listtablename{%
55.135 {\cyr\CYRS\cyrp\cyri\cyrs\cyrhrdsn\cyrk\ \cyrn\cyra\ \cyrt\cyra\cyrb\cyrl\cyri\cyrc\cyri\cyrt\cyre}}%
55.136 \def\indexname{%

322

55.137 {\cyr\CYRA\cyrz\cyrb\cyru\cyrch\cyre\cyrn\ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl}}%
55.138 \def\authorname{%
55.139 {\cyr\CYRI\cyrm\cyre\cyrn\cyre\cyrn\ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl}}%
55.140 \def\figurename{%
55.141 {\cyr\CYRF\cyri\cyrg\cyru\cyrr\cyra}}%
55.142 \def\tablename{%
55.143 {\cyr\CYRT\cyra\cyrb\cyrl\cyri\cyrc\cyra}}%
55.144 \def\partname{%
55.145 {\cyr\CYRCH\cyra\cyrs\cyrt}}%
55.146 \def\enclname{%
55.147 {\cyr\CYRP\cyrr\cyri\cyrl\cyro\cyrzh\cyre\cyrn\cyri\cyrya}}%
55.148 \def\ccname{%
55.149 {\cyr\cyrk\cyro\cyrp\cyri\cyrya}}%
55.150 \def\headtoname{%
55.151 {\cyr\CYRZ\cyra}}%
55.152 \def\pagename{%
55.153 {\cyr\CYRS\cyrt\cyrr.}}%
55.154 \def\seename{%
55.155 {\cyr\cyrv\cyrzh.}}%
55.156 \def\alsoname{%
55.157 {\cyr\cyrv\cyrzh.\ \cyrs\cyrhrdsn\cyrshch\cyro\ \cyri}}%
55.158 \def\proofname{Proof}% <-- Needs translation
55.159 \def\glossaryname{Glossary}% <-- Needs translation
55.160 }

\datebulgarian The macro \datebulgarian redefines the command \today to produce Bulgarian
dates. It also provides the command \todayRoman which produces the date with
the month in capital roman numerals, a popular format for dates in Bulgarian.

55.161 \def\datebulgarian{%
55.162 \def\month@bulgarian{\ifcase\month\or
55.163 \cyrya\cyrn\cyru\cyra\cyrr\cyri\or
55.164 \cyrf\cyre\cyrv\cyrr\cyru\cyra\cyrr\cyri\or
55.165 \cyrm\cyra\cyrr\cyrt\or
55.166 \cyra\cyrp\cyrr\cyri\cyrl\or
55.167 \cyrm\cyra\cyrishrt\or
55.168 \cyryu\cyrn\cyri\or
55.169 \cyryu\cyrl\cyri\or
55.170 \cyra\cyrv\cyrg\cyru\cyrs\cyrt\or
55.171 \cyrs\cyre\cyrp\cyrt\cyre\cyrm\cyrv\cyrr\cyri\or
55.172 \cyro\cyrk\cyrt\cyro\cyrm\cyrv\cyrr\cyri\or
55.173 \cyrn\cyro\cyre\cyrm\cyrv\cyrr\cyri\or
55.174 \cyrd\cyre\cyrk\cyre\cyrm\cyrv\cyrr\cyri\fi}%
55.175 \def\month@Roman{\expandafter\@Roman\month}%
55.176 \def\today{\number\day~\month@bulgarian\ \number\year~\cyrg.}%
55.177 \def\todayRoman{\number\day.\,\month@Roman.\,\number\year~\cyrg.}%
55.178 }

\todayRoman The month is often written with roman numbers in Bulgarian dates. Here we
define date in this format:

323

55.179 \def\Romannumeral#1{\uppercase\expandafter{\romannumeral #1}}
55.180 \def\todayRoman{\number\day.\Romannumeral{\month}.\number\year~\cyrg.}

\extrasbulgarian The macro \extrasbulgarian will perform all the extra definitions needed for
the Bulgarian language. The macro \noextrasbulgarian is used to cancel the
actions of \extrasbulgarian.

The first action we define is to switch on the selected Cyrillic encoding whenever
we enter ‘bulgarian’.

55.181 \addto\extrasbulgarian{\cyrillictext}

When the encoding definition file was processed by LATEX the current font
encoding is stored in \latinencoding, assuming that LATEX uses T1 or OT1 as
default. Therefore we switch back to \latinencoding whenever the Bulgarian
language is no longer ‘active’.

55.182 \addto\noextrasbulgarian{\latintext}

For Bulgarian the " character also is made active.

55.183 \initiate@active@char{"}

The code above is necessary because we need extra active characters. The
character " is used as indicated in table 29. We specify that the Bulgarian group
of shorthands should be used.

55.184 \addto\extrasbulgarian{\languageshorthands{bulgarian}}

These characters are ‘turned on’ once, later their definition may vary.

55.185 \addto\extrasbulgarian{%
55.186 \bbl@activate{"}}
55.187 \addto\noextrasbulgarian{%
55.188 \bbl@deactivate{"}}

The X2 and T2* encodings do not contain spanish_shriek and spanish_query
symbols; as a consequence, the ligatures ‘?‘’ and ‘!‘’ do not work with them (these
characters are useless for Cyrillic texts anyway). But we define the shorthands to
emulate these ligatures (optionally).

We do not use \latinencoding here (but instead explicitly use OT1) because
the user may choose T2A to be the primary encoding, but it does not contain these
characters.

55.189 〈∗spanishligs〉
55.190 \declare@shorthand{bulgarian}{?‘}{\UseTextSymbol{OT1}\textquestiondown}
55.191 \declare@shorthand{bulgarian}{!‘}{\UseTextSymbol{OT1}\textexclamdown}
55.192 〈/spanishligs〉

To be able to define the function of ‘"’, we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \"can now be typed as ‘"’.

55.193 \begingroup \catcode‘\"12

324

55.194 \def\reserved@a{\endgroup
55.195 \def\@SS{\mathchar"7019}
55.196 \def\dq{"}}
55.197 \reserved@a

Now we can define the doublequote macros: german and french quotes. We
use definitions of these quotes made in babel.sty. The french quotes are contained
in the T2* encodings.

55.198 \declare@shorthand{bulgarian}{"‘}{\glqq}
55.199 \declare@shorthand{bulgarian}{"’}{\grqq}
55.200 \declare@shorthand{bulgarian}{"<}{\flqq}
55.201 \declare@shorthand{bulgarian}{">}{\frqq}

Some additional commands:
55.202 \declare@shorthand{bulgarian}{""}{\hskip\z@skip}
55.203 \declare@shorthand{bulgarian}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
55.204 \declare@shorthand{bulgarian}{"=}{\nobreak-\hskip\z@skip}
55.205 \declare@shorthand{bulgarian}{"|}{%
55.206 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
55.207 \allowhyphens}{}}

The next two macros for "- and "--- are somewhat different. We must check
whether the second token is a hyphen character:

55.208 \declare@shorthand{bulgarian}{"-}{%

If the next token is ‘-’, we typeset an emdash, otherwise a hyphen sign:
55.209 \def\bulgarian@sh@tmp{%
55.210 \if\bulgarian@sh@next-\expandafter\bulgarian@sh@emdash
55.211 \else\expandafter\bulgarian@sh@hyphen\fi
55.212 }%

TEX looks for the next token after the first ‘-’: the meaning of this token is
written to \bulgarian@sh@next and \bulgarian@sh@tmp is called.

55.213 \futurelet\bulgarian@sh@next\bulgarian@sh@tmp}

Here are the definitions of hyphen and emdash. First the hyphen:
55.214 \def\bulgarian@sh@hyphen{\nobreak\-\bbl@allowhyphens}

For the emdash definition, there are the two parameters: we must ‘eat’ two
last hyphen signs of our emdash . . . :

55.215 \def\bulgarian@sh@emdash#1#2{\cdash-#1#2}

\cdash . . . these two parameters are useful for another macro: \cdash:
55.216 \ifx\cdash\undefined % should be defined earlier
55.217 \def\cdash#1#2#3{\def\tempx@{#3}%
55.218 \def\tempa@{-}\def empb@{~}\def empc@{*}%
55.219 \ifx\tempx@\tempa@\@Acdash\else
55.220 \ifx\tempx@\tempb@\@Bcdash\else
55.221 \ifx\tempx@\tempc@\@Ccdash\else
55.222 \errmessage{Wrong usage of cdash}\fi\fi\fi}

325

second parameter (or third for \cdash) shows what kind of emdash to create
in next step

"--- ordinary (plain) Cyrillic emdash inside text: an unbreakable thinspace will
be inserted before only in case of a space before the dash (it is necessary
for dashes after display maths formulae: there could be lists, enumerations
etc. started with “—where a is ...” i.e., the dash starts a line). (Firstly
there were planned rather soft rules for user:he may put a space before
the dash or not. But it is difficult to place this thinspace automatically,
i.e., by checking modes because after display formulae TEX uses horizontal
mode. Maybe there is a misunderstanding? Maybe there is another way?)
After a dash a breakable thinspace is always placed;

55.223 % What is more grammatically: .2em or .2\fontdimen6\font?
55.224 \def\@Acdash{\ifdim\lastskip>\z@\unskip\nobreak\hskip.2em\fi
55.225 \cyrdash\hskip.2em\ignorespaces}%

"--~ emdash in compound names or surnames (like Mendeleev–Klapeiron); this
dash has no space characters around; after the dash some space is added
\exhyphenalty

55.226 \def\@Bcdash{\leavevmode\ifdim\lastskip>\z@\unskip\fi
55.227 \nobreak\cyrdash\penalty\exhyphenpenalty\hskip\z@skip\ignorespaces}%

"--* for denoting direct speech (a space like \enskip must follow the emdash);

55.228 \def\@Ccdash{\leavevmode
55.229 \nobreak\cyrdash\nobreak\hskip.35em\ignorespaces}%
55.230 %\fi

\cyrdash Finally the macro for “body” of the Cyrillic emdash. The \cyrdash macro will
be defined in case this macro hasn’t been defined in a fontenc file. For T2*fonts,
cyrdash will be placed in the code of the English emdash thus it uses ligature ---.

55.231 % Is there an IF necessary?
55.232 \ifx\cyrdash\undefined
55.233 \def\cyrdash{\hbox to.8em{--\hss--}}
55.234 \fi

Here a really new macro—to place thinspace between initials. This macro used
instead of \, allows hyphenation in the following surname.

55.235 \declare@shorthand{bulgarian}{",}{\nobreak\hskip.2em\ignorespaces}

The Bulgarian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

55.236 \providehyphenmins{\CurrentOption}{\tw@\tw@}
55.237 \fi

Now the action \extrasbulgarian has to execute is to make sure that the
command \frenchspacing is in effect. If this is not the case the execution of
\noextrasbulgarian will switch it off again.

326

55.238 \addto\extrasbulgarian{\bbl@frenchspacing}
55.239 \addto\noextrasbulgarian{\bbl@nonfrenchspacing}

Make the double quotes produce the traditional quotes used in Bulgarian texts
(these are the German quotes).

55.240 % \initiate@active@char{‘}
55.241 % \initiate@active@char{’}
55.242 % \addto\extrasbulgarian{%
55.243 % \bbl@activate{‘}}
55.244 % \addto\extrasbulgarian{%
55.245 % \bbl@activate{’}}
55.246 % \addto\noextrasbulgarian{%
55.247 % \bbl@deactivate{‘}}
55.248 % \addto\noextrasbulgarian{%
55.249 % \bbl@deactivate{’}}
55.250 % \def\mlron{\bbl@activate{‘}\bbl@activate{’}}
55.251 % \def\mlroff{\bbl@deactivate{‘}\bbl@deactivate{’}}
55.252 % \declare@shorthand{bulgarian}{‘‘}{\glqq}
55.253 % \declare@shorthand{bulgarian}{’’}{\grqq}

Next we add a new enumeration style for Bulgarian manuscripts with Cyril-
lic letters,and later on we define some math operator names in accordance with
Bulgarian typesetting traditions.

\@Alph@bul We begin by defining \@Alph@bul which works like \@Alph, but produces (up-
percase) Cyrillic letters intead of Latin ones. The letters ISHRT, HRDSN and
SFTSN are skipped, as usual for such enumeration.

55.254 \def\enumBul{\let\@Alph\@Alph@bul \let\@alph\@alph@bul}
55.255 \def\enumEng{\let\@Alph\@Alph@eng \let\@alph\@alph@eng}
55.256 \def\enumLat{\let\@Alph\@Alph@eng \let\@alph\@alph@eng}
55.257 \addto\extrasbulgarian{\enumBul}
55.258 \addto\noextrasbulgarian{\enumLat}
55.259 \def\@Alph@bul#1{%
55.260 \ifcase#1\or
55.261 \CYRA\or \CYRB\or \CYRV\or \CYRG\or \CYRD\or \CYRE\or \CYRZH\or
55.262 \CYRZ\or \CYRI\or \CYRK\or \CYRL\or \CYRM\or \CYRN\or \CYRO\or
55.263 \CYRP\or \CYRR\or \CYRS\or \CYRT\or \CYRU\or \CYRF\or \CYRH\or
55.264 \CYRC\or \CYRCH\or \CYRSH\or \CYRSHCH\or \CYRYU\or \CYRYA\else
55.265 \@ctrerr\fi
55.266 }
55.267 \def\@Alph@eng#1{%
55.268 \ifcase#1\or
55.269 A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or K\or L\or M\or
55.270 N\or O\or P\or Q\or R\or S\or T\or U\or V\or W\or X\or Y\or Z\else
55.271 \@ctrerr\fi
55.272 }

\@alph@bul The macro \@alph@bul is similar to \@Alph@bul; it produces lowercase Bulgarian
letters.

327

55.273 \def\@alph@bul#1{%
55.274 \ifcase#1\or
55.275 \cyra\or \cyrb\or \cyrv\or \cyrg\or \cyrd\or \cyre\or \cyrzh\or
55.276 \cyrz\or \cyri\or \cyrk\or \cyrl\or \cyrm\or \cyrn\or \cyro\or
55.277 \cyrp\or \cyrr\or \cyrs\or \cyrt\or \cyru\or \cyrf\or \cyrh\or
55.278 \cyrc\or \cyrch\or \cyrsh\or \cyrshch\or \cyryu\or \cyrya\else
55.279 \@ctrerr\fi
55.280 }
55.281 \def\@alph@eng#1{%
55.282 \ifcase#1\or
55.283 a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or k\or l\or m\or
55.284 n\or o\or p\or q\or r\or s\or t\or u\or v\or w\or x\or y\or z\else
55.285 \@ctrerr\fi
55.286 }

Set up default Cyrillic math alphabets. To use Cyrillic letters in math mode
user should load the textmath package before loading fontenc package (or babel).
Note,that by default Cyrillic letters are taken from upright font in math mode
(unlike Latin letters).

55.287 %\RequirePackage{textmath}
55.288 \@ifundefined{sym\cyrillicencoding letters}{}{%
55.289 \SetSymbolFont{\cyrillicencoding letters}{bold}\cyrillicencoding
55.290 \rmdefault\bfdefault\updefault
55.291 \DeclareSymbolFontAlphabet\cyrmathrm{\cyrillicencoding letters}

And we need a few commands to be able to switch to different variants.
55.292 \DeclareMathAlphabet\cyrmathbf\cyrillicencoding
55.293 \rmdefault\bfdefault\updefault
55.294 \DeclareMathAlphabet\cyrmathsf\cyrillicencoding
55.295 \sfdefault\mddefault\updefault
55.296 \DeclareMathAlphabet\cyrmathit\cyrillicencoding
55.297 \rmdefault\mddefault\itdefault
55.298 \DeclareMathAlphabet\cyrmathtt\cyrillicencoding
55.299 \ttdefault\mddefault\updefault
55.300 \SetMathAlphabet\cyrmathsf{bold}\cyrillicencoding
55.301 \sfdefault\bfdefault\updefault
55.302 \SetMathAlphabet\cyrmathit{bold}\cyrillicencoding
55.303 \rmdefault\bfdefault\itdefault
55.304 }

Some math functions in Bulgarian math books have other names: e.g., sinh
in Bulgarian is written as sh etc. So we define a number of new math operators.

\sinh:
55.305 \def\sh{\mathop{\operator@font sh}\nolimits}

\cosh:
55.306 \def\ch{\mathop{\operator@font ch}\nolimits}

\tan:
55.307 \def\tg{\mathop{\operator@font tg}\nolimits}

328

\arctan:

55.308 \def\arctg{\mathop{\operator@font arctg}\nolimits}

\arccot:

55.309 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

The following macro conflicts with \th defined in Latin 1 encoding: \tanh:
55.310 \addto\extrasrussian{%
55.311 \babel@save{\th}%
55.312 \let\ltx@th\th
55.313 \def\th{\textormath{\ltx@th}%
55.314 {\mathop{\operator@font th}\nolimits}}%
55.315 }

\cot:

55.316 \def\ctg{\mathop{\operator@font ctg}\nolimits}

\coth:

55.317 \def\cth{\mathop{\operator@font cth}\nolimits}

\csc:

55.318 \def\cosec{\mathop{\operator@font cosec}\nolimits}

This is for compatibility with older Bulgarian packages.

55.319 \DeclareRobustCommand{\No}{%
55.320 \ifmmode{\nfss@text{\textnumero}}\else\textnumero\fi}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

55.321 \ldf@finish{bulgarian}
55.322 〈/code〉

329

56 The Ukrainian language
The file ukraineb.dtx64 defines all the language-specific macros for the Ukrainian
language. It needs the file cyrcod for success documentation with Ukrainian
encodings (see below).

For this language the character " is made active. In table 31 an overview is
given of its purpose.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the

rest of the word.
"--- Cyrillic emdash in plain text.
"--~ Cyrillic emdash in compound names (surnames).
"--* Cyrillic emdash for denoting direct speech.
"" like "-, but producing no hyphen sign (for compund

words with hyphen, e.g. x-""y or some other signs
as “disable/enable”).

"~ for a compound word mark without a breakpoint.
"= for a compound word mark with a breakpoint, allow-

ing hyphenation in the composing words.
", thinspace for initials with a breakpoint in following

surname.
"‘ for German left double quotes (looks like ,,).
"’ for German right double quotes (looks like “).
” "< for French left double quotes (looks like <<).
"> for French right double quotes (looks like >>).

Table 31: The extra definitions made by ukraineb

The quotes in table 31 (see, also table 27) can also be typeset by using the
commands in table 32 (see, also table 28).

\cdash--- Cyrillic emdash in plain text.
\cdash--~ Cyrillic emdash in compound names (surnames).
\cdash--* Cyrillic emdash for denoting direct speech.
\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like “).
” \flqq for French left double quotes (looks like <<).
\frqq for French right double quotes (looks like >>).
\dq the original quotes character (").

Table 32: More commands which produce quotes, defined by babel

64The file described in this section has version number ?. This file was derived from the
russianb.dtx version 1.1g.

330

The French quotes are also available as ligatures ‘<<’ and ‘>>’ in 8-bit Cyrillic
font encodings (LCY, X2, T2*) and as ‘<’ and ‘>’ characters in 7-bit Cyrillic font
encodings (OT2 and LWN).

The quotation marks traditionally used in Ukrainian and Russian languages
were borrowed from other languages (e.g. French and German) so they keep their
original names.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

56.1 〈∗code〉
56.2 \LdfInit{ukrainian}{captionsukrainian}

When this file is read as an option, i.e., by the \usepackage command,
ukraineb will be an ‘unknown’ language, in which case we have to make it known.
So we check for the existence of \l@ukrainian to see whether we have to do some-
thing here.

56.3 \ifx\l@ukrainian\@undefined
56.4 \@nopatterns{Ukrainian}
56.5 \adddialect\l@ukrainian0
56.6 \fi

\latinencoding We need to know the encoding for text that is supposed to be which is active at
the end of the babel package. If the fontenc package is loaded later, then. . . too
bad!

56.7 \let\latinencoding\cf@encoding

The user may choose between different available Cyrillic encodings—e.g., X2,
LCY, or LWN. Hopefully, X2 will eventually replace the two latter encodings (LCY
and LWN). If the user wants to use another font encoding than the default (T2A),
he has to load the corresponding file before ukraineb.sty. This may be done in
the following way:

% override the default X2 encoding used in Babel
\usepackage[LCY,OT1]{fontenc}
\usepackage[english,ukrainian]{babel}

Note: for the Ukrainian language, the T2A encoding is better than X2, because
X2 does not contain Latin letters, and users should be very careful to switch the
language every time they want to typeset a Latin word inside a Ukrainian phrase
or vice versa.

We parse the \cdp@list containing the encodings known to LATEX in the order
they were loaded. We set the \cyrillicencoding to the last loaded encoding in
the list of supported Cyrillic encodings: OT2, LWN, LCY, X2, T2C, T2B, T2A, if any.

56.8 \def\reserved@a#1#2{%
56.9 \edef\reserved@b{#1}%

56.10 \edef\reserved@c{#2}%
56.11 \ifx\reserved@b\reserved@c
56.12 \let\cyrillicencoding\reserved@c

331

56.13 \fi}
56.14 \def\cdp@elt#1#2#3#4{%
56.15 \reserved@a{#1}{OT2}%
56.16 \reserved@a{#1}{LWN}%
56.17 \reserved@a{#1}{LCY}%
56.18 \reserved@a{#1}{X2}%
56.19 \reserved@a{#1}{T2C}%
56.20 \reserved@a{#1}{T2B}%
56.21 \reserved@a{#1}{T2A}}
56.22 \cdp@list

Now, if \cyrillicencoding is undefined, then the user did not load any of
supported encodings. So, we have to set \cyrillicencoding to some default
value. We test the presence of the encoding definition files in the order from
less preferable to more preferable encodings. We use the lowercase names (i.e.,
lcyenc.def instead of LCYenc.def).

56.23 \ifx\cyrillicencoding\undefined
56.24 \IfFileExists{ot2enc.def}{\def\cyrillicencoding{OT2}}\relax
56.25 \IfFileExists{lwnenc.def}{\def\cyrillicencoding{LWN}}\relax
56.26 \IfFileExists{lcyenc.def}{\def\cyrillicencoding{LCY}}\relax
56.27 \IfFileExists{x2enc.def}{\def\cyrillicencoding{X2}}\relax
56.28 \IfFileExists{t2cenc.def}{\def\cyrillicencoding{T2C}}\relax
56.29 \IfFileExists{t2benc.def}{\def\cyrillicencoding{T2B}}\relax
56.30 \IfFileExists{t2aenc.def}{\def\cyrillicencoding{T2A}}\relax

If \cyrillicencoding is still undefined, then the user seems not to have a
properly installed distribution. A fatal error.

56.31 \ifx\cyrillicencoding\undefined
56.32 \PackageError{babel}%
56.33 {No Cyrillic encoding definition files were found}%
56.34 {Your installation is incomplete.\MessageBreak
56.35 You need at least one of the following files:\MessageBreak
56.36 \space\space
56.37 x2enc.def, t2aenc.def, t2benc.def, t2cenc.def,\MessageBreak
56.38 \space\space
56.39 lcyenc.def, lwnenc.def, ot2enc.def.}%
56.40 \else

We avoid \usepackage[\cyrillicencoding]{fontenc} because we don’t
want to force the switch of \encodingdefault.

56.41 \lowercase
56.42 \expandafter{\expandafter\input\cyrillicencoding enc.def\relax}%
56.43 \fi
56.44 \fi

\PackageInfo{babel}
{Using ‘\cyrillicencoding’ as a default Cyrillic encoding}%

332

56.45 \DeclareRobustCommand{\Ukrainian}{%
56.46 \fontencoding\cyrillicencoding\selectfont
56.47 \let\encodingdefault\cyrillicencoding
56.48 \expandafter\set@hyphenmins\ukrainianhyphenmins
56.49 \language\l@ukrainian}%
56.50 \DeclareRobustCommand{\English}{%
56.51 \fontencoding\latinencoding\selectfont
56.52 \let\encodingdefault\latinencoding
56.53 \expandafter\set@hyphenmins\englishhyphenmins
56.54 \language\l@english}%
56.55 \let\Ukr\Ukrainian
56.56 \let\Eng\English
56.57 \let\cyrillictext\Ukrainian
56.58 \let\cyr\Ukrainian

Since the X2 encoding does not contain Latin letters, we should make some
redefinitions of LATEX macros which implicitly produce Latin letters.

56.59 \expandafter\ifx\csname T@X2\endcsname\relax\else

We put \latinencoding in braces to avoid problems with \@alph inside mini-
pages (e.g., footnotes inside minipages) where \@alph is expanded and we get for
example ‘\fontencoding OT1’ (\fontencoding is robust).

56.60 \def\@alph#1{{\fontencoding{\latinencoding}\selectfont
56.61 \ifcase#1\or
56.62 a\or b\or c\or d\or e\or f\or g\or h\or
56.63 i\or j\or k\or l\or m\or n\or o\or p\or
56.64 q\or r\or s\or t\or u\or v\or w\or x\or
56.65 y\or z\else\@ctrerr\fi}}%
56.66 \def\@Alph#1{{\fontencoding{\latinencoding}\selectfont
56.67 \ifcase#1\or
56.68 A\or B\or C\or D\or E\or F\or G\or H\or
56.69 I\or J\or K\or L\or M\or N\or O\or P\or
56.70 Q\or R\or S\or T\or U\or V\or W\or X\or
56.71 Y\or Z\else\@ctrerr\fi}}%

Unfortunately, the commands \AA and \aa are not encoding dependent in
LATEX (unlike e.g., \oe or \DH). They are defined as \r{A} and \r{a}. This leads
to unpredictable results when the font encoding does not contain the Latin letters
‘A’ and ‘a’ (like X2).

56.72 \DeclareTextSymbolDefault{\AA}{OT1}
56.73 \DeclareTextSymbolDefault{\aa}{OT1}
56.74 \DeclareTextCommand{\aa}{OT1}{\r a}
56.75 \DeclareTextCommand{\AA}{OT1}{\r A}
56.76 \fi

The following block redefines the character class of uppercase Greek letters
and some accents, if it is equal to 7 (variable family), to avoid incorrect results if
the font encoding in some math family does not contain these characters in places
of OT1 encoding. The code was taken from amsmath.dtx. See comments and
further explanation there.

333

56.77 % \begingroup\catcode‘\"=12
56.78 % % uppercase greek letters:
56.79 % \def\@tempa#1{\expandafter\@tempb\meaning#1\relax\relax\relax\relax
56.80 % "0000\@nil#1}
56.81 % \def\@tempb#1"#2#3#4#5#6\@nil#7{%
56.82 % \ifnum"#2=7 \count@"1#3#4#5\relax
56.83 % \ifnum\count@<"1000 \else \global\mathchardef#7="0#3#4#5\relax \fi
56.84 % \fi}
56.85 % \@tempa\Gamma\@tempa\Delta\@tempa\Theta\@tempa\Lambda\@tempa\Xi
56.86 % \@tempa\Pi\@tempa\Sigma\@tempa\Upsilon\@tempa\Phi\@tempa\Psi
56.87 % \@tempa\Omega
56.88 % % some accents:
56.89 % \def\@tempa#1#2\@nil{\def\@tempc{#1}}\def\@tempb{\mathaccent}
56.90 % \expandafter\@tempa\hat\relax\relax\@nil
56.91 % \ifx\@tempb\@tempc
56.92 % \def\@tempa#1\@nil{#1}%
56.93 % \def\@tempb#1{\afterassignment\@tempa\mathchardef\@tempc=}%
56.94 % \def\do#1"#2{}
56.95 % \def\@tempd#1{\expandafter\@tempb#1\@nil
56.96 % \ifnum\@tempc>"FFF
56.97 % \xdef#1{\mathaccent"\expandafter\do\meaning\@tempc\space}%
56.98 % \fi}
56.99 % \@tempd\hat\@tempd\check\@tempd\tilde\@tempd\acute\@tempd\grave

56.100 % \@tempd\dot\@tempd\ddot\@tempd\breve\@tempd\bar
56.101 % \fi
56.102 % \endgroup

The user must use the inputenc package when any 8-bit Cyrillic font encoding
is used, selecting one of the Cyrillic input encodings. We do not assume any
default input encoding, so the user should explicitly call the inputenc package
by \usepackage{inputenc}. We also removed \AtBeginDocument, so inputenc
should be used before babel.

56.103 \@ifpackageloaded{inputenc}{}{%
56.104 \def\reserved@a{LWN}%
56.105 \ifx\reserved@a\cyrillicencoding\else
56.106 \def\reserved@a{OT2}%
56.107 \ifx\reserved@a\cyrillicencoding\else
56.108 \PackageWarning{babel}%
56.109 {No input encoding specified for Ukrainian language}
56.110 \fi\fi}

Now we define two commands that offer the possibility to switch between
Cyrillic and Roman encodings.

\cyrillictext
\latintext

The command \cyrillictext will switch from Latin font encoding to the Cyrillic
font encoding, the command \latintext switches back. This assumes that the
‘normal’ font encoding is a Latin one. These commands are declarations, for
shorter peaces of text the commands \textlatin and \textcyrillic can be
used.

334

56.111 %\DeclareRobustCommand{\latintext}{%
56.112 % \fontencoding{\latinencoding}\selectfont
56.113 % \def\encodingdefault{\latinencoding}}
56.114 \let\lat\latintext

\textcyrillic
\textlatin

These commands take an argument which is then typeset using the requested font
encoding.

56.115 \DeclareTextFontCommand{\textcyrillic}{\cyrillictext}
56.116 %\DeclareTextFontCommand{\textlatin}{\latintext}

We make the TEX
56.117 %\ifx\ltxTeX\undefined\let\ltxTeX\TeX\fi
56.118 %\ProvideTextCommandDefault{\TeX}{\textlatin{\ltxTeX}}

and LATEX logos encoding independent.
56.119 %\ifx\ltxLaTeX\undefined\let\ltxLaTeX\LaTeX\fi
56.120 %\ProvideTextCommandDefault{\LaTeX}{\textlatin{\ltxLaTeX}}

The next step consists of defining commands to switch to (and from) the
Ukrainian language.

\captionsukrainian The macro \captionsukrainian defines all strings used in the four standard
document classes provided with LATEX. The two commands \cyr and \lat activate
Cyrillic resp. Latin encoding.

56.121 \addto\captionsukrainian{%
56.122 \def\prefacename{{\cyr\CYRV\cyrs\cyrt\cyru\cyrp}}%
56.123 % \def\prefacename{{\cyr\CYRP\cyre\cyrr\cyre\cyrd\cyrm\cyro\cyrv\cyra}}%
56.124 \def\refname{%
56.125 {\cyr\CYRL\cyrii\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}}%
56.126 % \def\refname{%
56.127 % {\cyr\CYRP\cyre\cyrr\cyre\cyrl\cyrii\cyrk
56.128 % \ \cyrp\cyro\cyrs\cyri\cyrl\cyra\cyrn\cyrsftsn}}%
56.129 \def\abstractname{%
56.130 {\cyr\CYRA\cyrn\cyro\cyrt\cyra\cyrc\cyrii\cyrya}}%
56.131 % \def\abstractname{{\cyr\CYRR\cyre\cyrf\cyre\cyrr\cyra\cyrt}}%
56.132 \def\bibname{%
56.133 {\cyr\CYRB\cyrii\cyrb\cyrl\cyrii\cyro\cyrgup\cyrr\cyra\cyrf\cyrii\cyrya}}%
56.134 % \def\bibname{{\cyr\CYRL\cyrii\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}}%
56.135 \def\chaptername{{\cyr\CYRR\cyro\cyrz\cyrd\cyrii\cyrl}}%
56.136 % \def\chaptername{{\cyr\CYRG\cyrl\cyra\cyrv\cyra}}%
56.137 \def\appendixname{{\cyr\CYRD\cyro\cyrd\cyra\cyrt\cyro\cyrk}}%
56.138 \def\contentsname{{\cyr\CYRZ\cyrm\cyrii\cyrs\cyrt}}%
56.139 \def\listfigurename{{\cyr\CYRP\cyre\cyrr\cyre\cyrl\cyrii\cyrk
56.140 \ \cyrii\cyrl\cyryu\cyrs\cyrt\cyrr\cyra\cyrc\cyrii\cyrishrt}}%
56.141 \def\listtablename{{\cyr\CYRP\cyre\cyrr\cyre\cyrl\cyrii\cyrk
56.142 \ \cyrt\cyra\cyrb\cyrl\cyri\cyrc\cyrsftsn}}%
56.143 \def\indexname{{\cyr\CYRP\cyro\cyrk\cyra\cyrzh\cyrch\cyri\cyrk}}%
56.144 \def\authorname{{\cyr\CYRII\cyrm\cyre\cyrn\cyrn\cyri\cyrishrt
56.145 \ \cyrp\cyro\cyrk\cyra\cyrzh\cyrch\cyri\cyrk}}%
56.146 \def\figurename{{\cyr\CYRR\cyri\cyrs.}}%

335

56.147 % \def\figurename{\cyr\CYRR\cyri\cyrs\cyru\cyrn\cyro\cyrk}}%
56.148 \def\tablename{{\cyr\CYRT\cyra\cyrb\cyrl.}}%
56.149 % \def\tablename{\cyr\CYRT\cyra\cyrb\cyrl\cyri\cyrc\cyrya}}%
56.150 \def\partname{{\cyr\CYRCH\cyra\cyrs\cyrt\cyri\cyrn\cyra}}%
56.151 \def\enclname{{\cyr\cyrv\cyrk\cyrl\cyra\cyrd\cyrk\cyra}}%
56.152 \def\ccname{{\cyr\cyrk\cyro\cyrp\cyrii\cyrya}}%
56.153 \def\headtoname{{\cyr\CYRD\cyro}}%
56.154 \def\pagename{{\cyr\cyrs.}}%
56.155 % \def\pagename{{\cyr\cyrs\cyrt\cyro\cyrr\cyrii\cyrn\cyrk\cyra}}%
56.156 \def\seename{{\cyr\cyrd\cyri\cyrv.}}%
56.157 \def\alsoname{{\cyr\cyrd\cyri\cyrv.\ \cyrt\cyra\cyrk\cyro\cyrzh}}
56.158 \def\proofname{{\cyr\CYRD\cyro\cyrv\cyre\cyrd\cyre\cyrn\cyrn\cyrya}}%
56.159 \def\glossaryname{{\cyr\CYRS\cyrl\cyro\cyrv\cyrn\cyri\cyrk\ %
56.160 \cyrt\cyre\cyrr\cyrm\cyrii\cyrn\cyrii\cyrv}}%
56.161 }

\dateukrainian The macro \dateukrainian redefines the command \today to produce Ukrainian
dates.

56.162 \def\dateukrainian{%
56.163 \def\today{\number\day~\ifcase\month\or
56.164 \cyrs\cyrii\cyrch\cyrn\cyrya\or
56.165 \cyrl\cyryu\cyrt\cyro\cyrg\cyro\or
56.166 \cyrb\cyre\cyrr\cyre\cyrz\cyrn\cyrya\or
56.167 \cyrk\cyrv\cyrii\cyrt\cyrn\cyrya\or
56.168 \cyrt\cyrr\cyra\cyrv\cyrn\cyrya\or
56.169 \cyrch\cyre\cyrr\cyrv\cyrn\cyrya\or
56.170 \cyrl\cyri\cyrp\cyrn\cyrya\or
56.171 \cyrs\cyre\cyrr\cyrp\cyrn\cyrya\or
56.172 \cyrv\cyre\cyrr\cyre\cyrs\cyrn\cyrya\or
56.173 \cyrzh\cyro\cyrv\cyrt\cyrn\cyrya\or
56.174 \cyrl\cyri\cyrs\cyrt\cyro\cyrp\cyra\cyrd\cyra\or
56.175 \cyrg\cyrr\cyru\cyrd\cyrn\cyrya\fi
56.176 \space\number\year~\cyrr.}}

\extrasukrainian The macro \extrasukrainian will perform all the extra definitions needed for
the Ukrainian language. The macro \noextrasukrainian is used to cancel the
actions of \extrasukrainian.

The first action we define is to switch on the selected Cyrillic encoding whenever
we enter ‘ukrainian’.

56.177 \addto\extrasukrainian{\cyrillictext}

When the encoding definition file was processed by LATEX the current font
encoding is stored in \latinencoding, assuming that LATEX uses T1 or OT1 as
default. Therefore we switch back to \latinencoding whenever the Ukrainian
language is no longer ‘active’.

56.178 \addto\noextrasukrainian{\latintext}

Next we must allow hyphenation in the Ukrainian words with apostrophe
whenever we enter ‘ukrainian’. This solution was proposed by Vladimir Volovich
<vvv@vvv.vsu.ru>

336

56.179 \addto\extrasukrainian{\lccode‘\’=‘\’}
56.180 \addto\noextrasukrainian{\lccode‘\’=0}

\verbatim@font In order to get both Latin and Cyrillic letters in verbatim text we need to change
the definition of an internal LATEX command somewhat:

56.181 %\def\verbatim@font{%
56.182 % \let\encodingdefault\latinencoding
56.183 % \normalfont\ttfamily
56.184 % \expandafter\def\csname\cyrillicencoding-cmd\endcsname##1##2{%
56.185 % \ifx\protect\@typeset@protect
56.186 % \begingroup\UseTextSymbol\cyrillicencoding##1\endgroup
56.187 % \else\noexpand##1\fi}}

The category code of the characters ‘:’, ‘;’, ‘!’, and ‘?’ is made \active to
insert a little white space.

For Ukrainian (as well as for Russian and German) the " character also is made
active.

Note: It is very questionable whether the Russian typesetting tradition re-
quires additional spacing before those punctuation signs. Therefore, we make the
corresponding code optional. If you need it, then define the frenchpunct docstrip
option in babel.ins.

Borrowed from french. Some users dislike automatic insertion of a space before
‘double punctuation’, and prefer to decide themselves whether a space should be
added or not; so a hook \NoAutoSpaceBeforeFDP is provided: if this command is
added (in file ukraineb.cfg, or anywhere in a document) ukraineb will respect
your typing, and introduce a suitable space before ‘double punctuation’ if and
only if a space is typed in the source file before those signs.

The command \AutoSpaceBeforeFDP switches back to the default behavior of
ukraineb.

56.188 〈∗frenchpunct〉
56.189 \initiate@active@char{:}
56.190 \initiate@active@char{;}
56.191 〈/frenchpunct〉
56.192 〈∗frenchpunct | spanishligs〉
56.193 \initiate@active@char{!}
56.194 \initiate@active@char{?}
56.195 〈/frenchpunct | spanishligs〉
56.196 \initiate@active@char{"}

The code above is necessary because we need extra active characters. The
character " is used as indicated in table 31.

We specify that the Ukrainian group of shorthands should be used.
56.197 \addto\extrasukrainian{\languageshorthands{ukrainian}}

These characters are ‘turned on’ once, later their definition may vary.
56.198 \addto\extrasukrainian{%
56.199 〈frenchpunct〉 \bbl@activate{:}\bbl@activate{;}%
56.200 〈frenchpunct | spanishligs〉 \bbl@activate{!}\bbl@activate{?}%

337

56.201 \bbl@activate{"}}
56.202 \addto\noextrasukrainian{%
56.203 〈frenchpunct〉 \bbl@deactivate{:}\bbl@deactivate{;}%
56.204 〈frenchpunct | spanishligs〉 \bbl@deactivate{!}\bbl@deactivate{?}%
56.205 \bbl@deactivate{"}}

The X2 and T2* encodings do not contain spanish_shriek and spanish_query
symbols; as a consequence, the ligatures ‘?‘’ and ‘!‘’ do not work with them (these
characters are useless for Cyrillic texts anyway). But we define the shorthands to
emulate these ligatures (optionally).

We do not use \latinencoding here (but instead explicitly use OT1) because
the user may choose T2A to be the primary encoding, but it does not contain these
characters.

56.206 〈∗spanishligs〉
56.207 \declare@shorthand{ukrainian}{?‘}{\UseTextSymbol{OT1}\textquestiondown}
56.208 \declare@shorthand{ukrainian}{!‘}{\UseTextSymbol{OT1}\textexclamdown}
56.209 〈/spanishligs〉

\ukrainian@sh@;@
\ukrainian@sh@:@
\ukrainian@sh@!@
\ukrainian@sh@?@

We have to reduce the amount of white space before ;, : and !. This should only
happen in horizontal mode, hence the test with \ifhmode.

56.210 〈∗frenchpunct〉
56.211 \declare@shorthand{ukrainian}{;}{%
56.212 \ifhmode

In horizontal mode we check for the presence of a ‘space’, ‘unskip’ if it exists
and place a 0.1em kerning.

56.213 \ifdim\lastskip>\z@
56.214 \unskip\nobreak\kern.1em
56.215 \else

If no space has been typed, we add \FDP@thinspace which will be defined, up to
the user’s wishes, as an automatic added thinspace, or as \@empty.

56.216 \FDP@thinspace
56.217 \fi
56.218 \fi

Now we can insert a ‘;’ character.

56.219 \string;}

The other definitions are very similar.

56.220 \declare@shorthand{ukrainian}{:}{%
56.221 \ifhmode
56.222 \ifdim\lastskip>\z@
56.223 \unskip\nobreak\kern.1em
56.224 \else
56.225 \FDP@thinspace
56.226 \fi
56.227 \fi
56.228 \string:}

338

56.229 \declare@shorthand{ukrainian}{!}{%
56.230 \ifhmode
56.231 \ifdim\lastskip>\z@
56.232 \unskip\nobreak\kern.1em
56.233 \else
56.234 \FDP@thinspace
56.235 \fi
56.236 \fi
56.237 \string!}

56.238 \declare@shorthand{ukrainian}{?}{%
56.239 \ifhmode
56.240 \ifdim\lastskip>\z@
56.241 \unskip\nobreak\kern.1em
56.242 \else
56.243 \FDP@thinspace
56.244 \fi
56.245 \fi
56.246 \string?}

\AutoSpaceBeforeFDP
\NoAutoSpaceBeforeFDP

\FDP@thinspace

\FDP@thinspace is defined as unbreakable spaces if \AutoSpaceBeforeFDP is
activated or as \@empty if \NoAutoSpaceBeforeFDP is in use. The default is
\AutoSpaceBeforeFDP.

56.247 \def\AutoSpaceBeforeFDP{%
56.248 \def\FDP@thinspace{\nobreak\kern.1em}}
56.249 \def\NoAutoSpaceBeforeFDP{\let\FDP@thinspace\@empty}
56.250 \AutoSpaceBeforeFDP

\FDPon
\FDPoff

The next macros allow to switch on/off activeness of double punctuation signs.

56.251 \def\FDPon{\bbl@activate{:}%
56.252 \bbl@activate{;}%
56.253 \bbl@activate{?}%
56.254 \bbl@activate{!}}
56.255 \def\FDPoff{\bbl@deactivate{:}%
56.256 \bbl@deactivate{;}%
56.257 \bbl@deactivate{?}%
56.258 \bbl@deactivate{!}}

\system@sh@:@
\system@sh@!@
\system@sh@?@
\system@sh@;@

When the active characters appear in an environment where their Ukrainian be-
haviour is not wanted they should give an ‘expected’ result. Therefore we define
shorthands at system level as well.

56.259 \declare@shorthand{system}{:}{\string:}
56.260 \declare@shorthand{system}{;}{\string;}
56.261 〈/frenchpunct〉
56.262 〈∗frenchpunct&!spanishligs〉
56.263 \declare@shorthand{system}{!}{\string!}
56.264 \declare@shorthand{system}{?}{\string?}
56.265 〈/frenchpunct&!spanishligs〉

339

To be able to define the function of ‘"’, we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ‘"’.

56.266 \begingroup \catcode‘\"12
56.267 \def\reserved@a{\endgroup
56.268 \def\@SS{\mathchar"7019 }
56.269 \def\dq{"}}
56.270 \reserved@a

Now we can define the doublequote macros: german and french quotes. We
use definitions of these quotes made in babel.sty. The french quotes are contained
in the T2* encodings.

56.271 \declare@shorthand{ukrainian}{"‘}{\glqq}
56.272 \declare@shorthand{ukrainian}{"’}{\grqq}
56.273 \declare@shorthand{ukrainian}{"<}{\flqq}
56.274 \declare@shorthand{ukrainian}{">}{\frqq}

Some additional commands:

56.275 \declare@shorthand{ukrainian}{""}{\hskip\z@skip}
56.276 \declare@shorthand{ukrainian}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
56.277 \declare@shorthand{ukrainian}{"=}{\nobreak-\hskip\z@skip}
56.278 \declare@shorthand{ukrainian}{"|}{%
56.279 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
56.280 \allowhyphens}{}}

The next two macros for "- and "--- are somewhat different. We must check
whether the second token is a hyphen character:

56.281 \declare@shorthand{ukrainian}{"-}{%

If the next token is ‘-’, we typeset an emdash, otherwise a hyphen sign:

56.282 \def\ukrainian@sh@tmp{%
56.283 \if\ukrainian@sh@next-\expandafter\ukrainian@sh@emdash
56.284 \else\expandafter\ukrainian@sh@hyphen\fi
56.285 }%

TEX looks for the next token after the first ‘-’: the meaning of this token is
written to \ukrainian@sh@next and \ukrainian@sh@tmp is called.

56.286 \futurelet\ukrainian@sh@next\ukrainian@sh@tmp}

Here are the definitions of hyphen and emdash. First the hyphen:

56.287 \def\ukrainian@sh@hyphen{%
56.288 \nobreak\-\bbl@allowhyphens}

For the emdash definition, there are the two parameters: we must ‘eat’ two
last hyphen signs of our emdash. . . :

56.289 \def\ukrainian@sh@emdash#1#2{\cdash-#1#2}

340

\cdash . . . these two parameters are useful for another macro: \cdash:
56.290 %\ifx\cdash\undefined % should be defined earlier
56.291 \def\cdash#1#2#3{\def\tempx@{#3}%
56.292 \def\tempa@{-}\def\tempb@{~}\def\tempc@{*}%
56.293 \ifx\tempx@\tempa@\@Acdash\else
56.294 \ifx\tempx@\tempb@\@Bcdash\else
56.295 \ifx\tempx@\tempc@\@Ccdash\else
56.296 \errmessage{Wrong usage of cdash}\fi\fi\fi}

second parameter (or third for \cdash) shows what kind of emdash to create in
next step

"--- ordinary (plain) Cyrillic emdash inside text: an unbreakable thinspace will
be inserted before only in case of a space before the dash (it is necessary
for dashes after display maths formulae: there could be lists, enumerations
etc. started with “— where a is ...” i.e., the dash starts a line). (Firstly
there were planned rather soft rules for user: he may put a space before
the dash or not. But it is difficult to place this thinspace automatically,
i.e., by checking modes because after display formulae TEX uses horizontal
mode. Maybe there is a misunderstanding? Maybe there is another way?)
After a dash a breakable thinspace is always placed;

56.297 % What is more grammatically: .2em or .2\fontdimen6\font ?
56.298 \def\@Acdash{\ifdim\lastskip>\z@\unskip\nobreak\hskip.2em\fi
56.299 \cyrdash\hskip.2em\ignorespaces}%

"--~ emdash in compound names or surnames (like Mendeleev–Klapeiron); this
dash has no space characters around; after the dash some space is added
\exhyphenalty

56.300 \def\@Bcdash{\leavevmode\ifdim\lastskip>\z@\unskip\fi
56.301 \nobreak\cyrdash\penalty\exhyphenpenalty\hskip\z@skip\ignorespaces}%

"--* for denoting direct speech (a space like \enskip must follow the emdash);

56.302 \def\@Ccdash{\leavevmode
56.303 \nobreak\cyrdash\nobreak\hskip.35em\ignorespaces}%
56.304 %\fi

\cyrdash Finally the macro for “body” of the Cyrillic emdash. The \cyrdash macro will
be defined in case this macro hasn’t been defined in a fontenc file. For T2* fonts,
cyrdash will be placed in the code of the English emdash thus it uses ligature ---.

56.305 % Is there an IF necessary?
56.306 \ifx\cyrdash\undefined
56.307 \def\cyrdash{\hbox to.8em{--\hss--}}
56.308 \fi

Here a really new macro—to place thinspace between initials. This macro used
instead of \, allows hyphenation in the following surname.

56.309 %\declare@shorthand{ukrainian}{",}{\nobreak\hskip.2em\ignorespaces}

341

\mdqon
\mdqoff

All that’s left to do now is to define a couple of commands for ".
56.310 \def\mdqon{\bbl@activate{"}}
56.311 \def\mdqoff{\bbl@deactivate{"}}

The Ukrainian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

56.312 \providehyphenmins{\CurrentOption}{\tw@\tw@}
56.313 % temporary hack:
56.314 \ifx\englishhyphenmins\undefined
56.315 \def\englishhyphenmins{\tw@\thr@@}
56.316 \fi

Now the action \extrasukrainian has to execute is to make sure that the
command \frenchspacing is in effect. If this is not the case the execution of
\noextrasukrainian will switch it off again.

56.317 \addto\extrasukrainian{\bbl@frenchspacing}
56.318 \addto\noextrasukrainian{\bbl@nonfrenchspacing}

Next we add a new enumeration style for Ukrainian manuscripts with Cyrillic
letters, and later on we define some math operator names in accordance with
Ukrainian and Russian typesetting traditions.

\Asbuk We begin by defining \Asbuk which works like \Alph, but produces (uppercase)
Cyrillic letters intead of Latin ones. The letters CYRGUP, and SFTSN are
skipped, as usual for such enumeration.

56.319 \def\Asbuk#1{\expandafter\@Asbuk\csname c@#1\endcsname}
56.320 \def\@Asbuk#1{\ifcase#1\or
56.321 \CYRA\or\CYRB\or\CYRV\or\CYRG\or\CYRD\or\CYRE\or\CYRIE\or
56.322 \CYRZH\or\CYRZ\or\CYRI\or\CYRII\or\CYRYI\or\CYRISHRT\or
56.323 \CYRK\or\CYRL\or\CYRM\or\CYRN\or\CYRO\or\CYRP\or\CYRR\or
56.324 \CYRS\or\CYRT\or\CYRU\or\CYRF\or\CYRH\or\CYRC\or\CYRCH\or
56.325 \CYRSH\or\CYRSHCH\or\CYRYU\or\CYRYA\else\@ctrerr\fi}

\asbuk The macro \asbuk is similar to \alph; it produces lowercase Ukrainian letters.

56.326 \def\asbuk#1{\expandafter\@asbuk\csname c@#1\endcsname}
56.327 \def\@asbuk#1{\ifcase#1\or
56.328 \cyra\or\cyrb\or\cyrv\or\cyrg\or\cyrd\or\cyre\or\cyrie\or
56.329 \cyrzh\or\cyrz\or\cyri\or\cyrii\or\cyryi\or\cyrishrt\or
56.330 \cyrk\or\cyrl\or\cyrm\or\cyrn\or\cyro\or\cyrp\or\cyrr\or
56.331 \cyrs\or\cyrt\or\cyru\or\cyrf\or\cyrh\or\cyrc\or\cyrch\or
56.332 \cyrsh\or\cyrshch\or\cyryu\or\cyrya\else\@ctrerr\fi}

Set up default Cyrillic math alphabets. The math groups for cyrillic letters are
defined in the encoding definition files. First, declare a new alphabet for symbols,
\cyrmathrm, based on the symbol font for Cyrillic letters defined in the encoding
definition file. Note, that by default Cyrillic letters are taken from upright font in
math mode (unlike Latin letters).

56.333 %\RequirePackage{textmath}

342

56.334 \@ifundefined{sym\cyrillicencoding letters}{}{%
56.335 \SetSymbolFont{\cyrillicencoding letters}{bold}\cyrillicencoding
56.336 \rmdefault\bfdefault\updefault
56.337 \DeclareSymbolFontAlphabet\cyrmathrm{\cyrillicencoding letters}

And we need a few commands to be able to switch to different variants.
56.338 \DeclareMathAlphabet\cyrmathbf\cyrillicencoding
56.339 \rmdefault\bfdefault\updefault
56.340 \DeclareMathAlphabet\cyrmathsf\cyrillicencoding
56.341 \sfdefault\mddefault\updefault
56.342 \DeclareMathAlphabet\cyrmathit\cyrillicencoding
56.343 \rmdefault\mddefault\itdefault
56.344 \DeclareMathAlphabet\cyrmathtt\cyrillicencoding
56.345 \ttdefault\mddefault\updefault
56.346 %
56.347 \SetMathAlphabet\cyrmathsf{bold}\cyrillicencoding
56.348 \sfdefault\bfdefault\updefault
56.349 \SetMathAlphabet\cyrmathit{bold}\cyrillicencoding
56.350 \rmdefault\bfdefault\itdefault
56.351 }

Some math functions in Ukrainian and Russian math books have other names:
e.g., sinh in Russian is written as sh etc. So we define a number of new math
operators.

\sinh:
56.352 \def\sh{\mathop{\operator@font sh}\nolimits}

\cosh:
56.353 \def\ch{\mathop{\operator@font ch}\nolimits}

\tan:
56.354 \def\tg{\mathop{\operator@font tg}\nolimits}

\arctan:
56.355 \def\arctg{\mathop{\operator@font arctg}\nolimits}

arcctg:
56.356 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

The following macro conflicts with \th defined in Latin 1 encoding:
\tanh:

56.357 \addto\extrasrussian{%
56.358 \babel@save{\th}%
56.359 \let\ltx@th\th
56.360 \def\th{\textormath{\ltx@th}%
56.361 {\mathop{\operator@font th}\nolimits}}%
56.362 }

\cot:
56.363 \def\ctg{\mathop{\operator@font ctg}\nolimits}

\coth:
56.364 \def\cth{\mathop{\operator@font cth}\nolimits}

343

\csc:
56.365 \def\cosec{\mathop{\operator@font cosec}\nolimits}

And finally some other Ukrainian and Russian mathematical symbols:
56.366 \def\Prob{\mathop{\kern\z@\mathsf{P}}\nolimits}
56.367 \def\Variance{\mathop{\kern\z@\mathsf{D}}\nolimits}
56.368 \def\nsd{\mathop{\cyrmathrm{\cyrn.\cyrs.\cyrd.}}\nolimits}
56.369 \def\nsk{\mathop{\cyrmathrm{\cyrn.\cyrs.\cyrk.}}\nolimits}
56.370 \def\NSD{\mathop{\cyrmathrm{\CYRN\CYRS\CYRD}}\nolimits}
56.371 \def\NSK{\mathop{\cyrmathrm{\CYRN\CYRS\CYRK}}\nolimits}
56.372 \def\nod{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrd.}}\nolimits} % ??????
56.373 \def\nok{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrk.}}\nolimits} % ??????
56.374 \def\NOD{\mathop{\cyrmathrm{\CYRN\CYRO\CYRD}}\nolimits} % ??????
56.375 \def\NOK{\mathop{\cyrmathrm{\CYRN\CYRO\CYRK}}\nolimits} % ??????
56.376 \def\Proj{\mathop{\cyrmathrm{\CYRP\cyrr}}\nolimits}

This is for compatibility with older Ukrainian packages.
56.377 \DeclareRobustCommand{\No}{%
56.378 \ifmmode{\nfss@text{\textnumero}}\else\textnumero\fi}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

56.379 \ldf@finish{ukrainian}
56.380 〈/code〉

344

57 The Lower Sorbian language
The file lsorbian.dtx65 It defines all the language-specific macros for Lower Sor-
bian.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

57.1 〈∗code〉
57.2 \LdfInit{lsorbian}\captionslsorbian

When this file is read as an option, i.e. by the \usepackage command,
lsorbian will be an ‘unknown’ languagein which case we have to make it known.
So we check for the existence of \l@lsorbian to see whether we have to do some-
thing here.

57.3 \ifx\l@lsorbian\@undefined
57.4 \@nopatterns{Lsorbian}
57.5 \adddialect\l@lsorbian\l@usorbian\fi

The next step consists of defining commands to switch to (and from) the Lower
Sorbian language.

\captionslsorbian The macro \captionslsorbian defines all strings used in the four standard doc-
umentclasses provided with LATEX.

57.6 \addto\captionslsorbian{%
57.7 \def\prefacename{Zawod}%
57.8 \def\refname{Referency}%
57.9 \def\abstractname{Abstrakt}%

57.10 \def\bibname{Literatura}%
57.11 \def\chaptername{Kapitl}%
57.12 \def\appendixname{Dodawki}%
57.13 \def\contentsname{Wop\’simje\’se}%
57.14 \def\listfigurename{Zapis wobrazow}%
57.15 \def\listtablename{Zapis tabulkow}%
57.16 \def\indexname{Indeks}%
57.17 \def\figurename{Wobraz}%
57.18 \def\tablename{Tabulka}%
57.19 \def\partname{\’Z\v el}%
57.20 \def\enclname{P\’si\l oga}%
57.21 \def\ccname{CC}%
57.22 \def\headtoname{Komu}%
57.23 \def\pagename{Strona}%
57.24 \def\seename{gl.}%
57.25 \def\alsoname{gl.~teke}%
57.26 \def\proofname{Proof}% <-- needs translation
57.27 \def\glossaryname{Glossary}% <-- Needs translation
57.28 }%

65The file described in this section has version number v1.0f and was last revised on 2005/03/31.
It was written by Eduard Werner (edi@kaihh.hanse.de).

345

\newdatelsorbian The macro \newdatelsorbian redefines the command \today to produce Lower
Sorbian dates.

57.29 \def\newdatelsorbian{%
57.30 \def\today{\number\day.~\ifcase\month\or
57.31 januara\or februara\or m\v erca\or apryla\or maja\or
57.32 junija\or julija\or awgusta\or septembra\or oktobra\or
57.33 nowembra\or decembra\fi
57.34 \space \number\year}}

\olddatelsorbian The macro \olddatelsorbian redefines the command \today to produce old-style
Lower Sorbian dates.

57.35 \def\olddatelsorbian{%
57.36 \def\today{\number\day.~\ifcase\month\or
57.37 wjelikego ro\v zka\or
57.38 ma\l ego ro\v zka\or
57.39 nal\v etnika\or
57.40 jat\v sownika\or
57.41 ro\v zownika\or
57.42 sma\v znika\or
57.43 pra\v znika\or
57.44 \v znje\’nca\or
57.45 po\v znje\’nca\or
57.46 winowca\or
57.47 nazymnika\or
57.48 godownika\fi \space \number\year}}

The default will be the new-style dates.
57.49 \let\datelsorbian\newdatelsorbian

\extraslsorbian
\noextraslsorbian

The macro \extraslsorbian will perform all the extra definitions needed for the
lsorbian language. The macro \noextraslsorbian is used to cancel the actions of
\extraslsorbian. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

57.50 \addto\extraslsorbian{}
57.51 \addto\noextraslsorbian{}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

57.52 \ldf@finish{lsorbian}
57.53 〈/code〉

346

58 The Upper Sorbian language
The file usorbian.dtx66 It defines all the language-specific macros for Upper
Sorbian.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

58.1 〈∗code〉
58.2 \LdfInit{usorbian}\captionsusorbian

When this file is read as an option, i.e. by the \usepackage command,
usorbian will be an ‘unknown’ languagein which case we have to make it known.
So we check for the existence of \l@usorbian to see whether we have to do some-
thing here.

58.3 \ifx\l@usorbian\@undefined
58.4 \@nopatterns{Usorbian}
58.5 \adddialect\l@usorbian0\fi

The next step consists of defining commands to switch to (and from) the Upper
Sorbian language.

\captionsusorbian The macro \captionsusorbian defines all strings used in the four standard doc-
umentclasses provided with LATEX.

58.6 \addto\captionsusorbian{%
58.7 \def\prefacename{Zawod}%
58.8 \def\refname{Referency}%
58.9 \def\abstractname{Abstrakt}%

58.10 \def\bibname{Literatura}%
58.11 \def\chaptername{Kapitl}%
58.12 \def\appendixname{Dodawki}%
58.13 \def\contentsname{Wobsah}%
58.14 \def\listfigurename{Zapis wobrazow}%
58.15 \def\listtablename{Zapis tabulkow}%
58.16 \def\indexname{Indeks}%
58.17 \def\figurename{Wobraz}%
58.18 \def\tablename{Tabulka}%
58.19 \def\partname{D\’z\v el}%
58.20 \def\enclname{P\v r\l oha}%
58.21 \def\ccname{CC}%
58.22 \def\headtoname{Komu}%
58.23 \def\pagename{Strona}%
58.24 \def\seename{hl.}%
58.25 \def\alsoname{hl.~te\v z}
58.26 \def\proofname{Proof}% <-- needs translation
58.27 \def\glossaryname{Glossary}% <-- Needs translation
58.28 }%

66The file described in this section has version number v1.0i and was last revised on 2005/03/31.
It was written by Eduard Werner (edi@kaihh.hanse.de).

347

\newdateusorbian The macro \newdateusorbian redefines the command \today to produce Upper
Sorbian dates.

58.29 \def\newdateusorbian{%
58.30 \def\today{\number\day.~\ifcase\month\or
58.31 januara\or februara\or m\v erca\or apryla\or meje\or junija\or
58.32 julija\or awgusta\or septembra\or oktobra\or
58.33 nowembra\or decembra\fi
58.34 \space \number\year}}

\olddateusorbian The macro \olddateusorbian redefines the command \today to produce old-style
Upper Sorbian dates.

58.35 \def\olddateusorbian{%
58.36 \def\today{\number\day.~\ifcase\month\or
58.37 wulkeho r\’o\v zka\or ma\l eho r\’o\v zka\or nal\v etnika\or
58.38 jutrownika\or r\’o\v zownika\or sma\v znika\or pra\v znika\or
58.39 \v znjenca\or po\v znjenca\or winowca\or nazymnika\or
58.40 hodownika\fi \space \number\year}}

The default will be the new-style dates.
58.41 \let\dateusorbian\newdateusorbian

\extrasusorbian The macro \extrasusorbian will perform all the extra definitions needed for
the Upper Sorbian language. It’s pirated from germanb.sty. The macro
\noextrasusorbian is used to cancel the actions of \extrasusorbian.

Because for Upper Sorbian (as well as for Dutch) the " character is made
active. This is done once, later on its definition may vary.

58.42 \initiate@active@char{"}
58.43 \addto\extrasusorbian{\languageshorthands{usorbian}}
58.44 \addto\extrasusorbian{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
58.45 \addto\noextrasusorbian{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German Upper Sorbian words which
contain ‘ß’ we have to give the character a nonzero \lccode (see Appendix H, the
TEXbook).

58.46 \addto\extrasusorbian{\babel@savevariable{\lccode‘\^^Y}%
58.47 \lccode‘\^^Y‘\^^Y}

The umlaut accent macro \" is changed to lower the umlaut dots. The redefinition
is done with the help of \umlautlow.

58.48 \addto\extrasusorbian{\babel@save\"\umlautlow}
58.49 \addto\noextrasusorbian{\umlauthigh}

The Upper Sorbian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

58.50 \providehyphenmins{\CurrentOption}{\tw@\tw@}

348

\dq We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ". Also we store the original meaning of the
command \" for future use.

58.51 \begingroup \catcode‘\"12
58.52 \def\x{\endgroup
58.53 \def\@SS{\mathchar"7019 }
58.54 \def\dq{"}}
58.55 \x

Now we can define the doublequote macros: the umlauts,
58.56 \declare@shorthand{usorbian}{"a}{\textormath{\"{a}}{\ddot a}}
58.57 \declare@shorthand{usorbian}{"o}{\textormath{\"{o}}{\ddot o}}
58.58 \declare@shorthand{usorbian}{"u}{\textormath{\"{u}}{\ddot u}}
58.59 \declare@shorthand{usorbian}{"A}{\textormath{\"{A}}{\ddot A}}
58.60 \declare@shorthand{usorbian}{"O}{\textormath{\"{O}}{\ddot O}}
58.61 \declare@shorthand{usorbian}{"U}{\textormath{\"{U}}{\ddot U}}

tremas,
58.62 \declare@shorthand{usorbian}{"e}{\textormath{\"{e}}{\ddot e}}
58.63 \declare@shorthand{usorbian}{"E}{\textormath{\"{E}}{\ddot E}}
58.64 \declare@shorthand{usorbian}{"i}{\textormath{\"{\i}}{\ddot\imath}}
58.65 \declare@shorthand{usorbian}{"I}{\textormath{\"{I}}{\ddot I}}

usorbian es-zet (sharp s),
58.66 \declare@shorthand{usorbian}{"s}{\textormath{\ss{}}{\@SS{}}}
58.67 \declare@shorthand{usorbian}{"S}{SS}

german and french quotes,
58.68 \declare@shorthand{usorbian}{"‘}{%
58.69 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
58.70 \declare@shorthand{usorbian}{"’}{%
58.71 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
58.72 \declare@shorthand{usorbian}{"<}{%
58.73 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
58.74 \declare@shorthand{usorbian}{">}{%
58.75 \textormath{\guillemotright}{\mbox{\guillemotright}}}

discretionary commands
58.76 \declare@shorthand{usorbian}{"c}{\textormath{\bbl@disc ck}{c}}
58.77 \declare@shorthand{usorbian}{"C}{\textormath{\bbl@disc CK}{C}}
58.78 \declare@shorthand{usorbian}{"f}{\textormath{\bbl@disc f{ff}}{f}}
58.79 \declare@shorthand{usorbian}{"F}{\textormath{\bbl@disc F{FF}}{F}}
58.80 \declare@shorthand{usorbian}{"l}{\textormath{\bbl@disc l{ll}}{l}}
58.81 \declare@shorthand{usorbian}{"L}{\textormath{\bbl@disc L{LL}}{L}}
58.82 \declare@shorthand{usorbian}{"m}{\textormath{\bbl@disc m{mm}}{m}}
58.83 \declare@shorthand{usorbian}{"M}{\textormath{\bbl@disc M{MM}}{M}}
58.84 \declare@shorthand{usorbian}{"n}{\textormath{\bbl@disc n{nn}}{n}}
58.85 \declare@shorthand{usorbian}{"N}{\textormath{\bbl@disc N{NN}}{N}}
58.86 \declare@shorthand{usorbian}{"p}{\textormath{\bbl@disc p{pp}}{p}}
58.87 \declare@shorthand{usorbian}{"P}{\textormath{\bbl@disc P{PP}}{P}}
58.88 \declare@shorthand{usorbian}{"t}{\textormath{\bbl@disc t{tt}}{t}}

349

58.89 \declare@shorthand{usorbian}{"T}{\textormath{\bbl@disc T{TT}}{T}}

and some additional commands:
58.90 \declare@shorthand{usorbian}{"-}{\nobreak\-\bbl@allowhyphens}
58.91 \declare@shorthand{usorbian}{"|}{%
58.92 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%
58.93 \allowhyphens}{}}
58.94 \declare@shorthand{usorbian}{""}{\hskip\z@skip}

\mdqon
\mdqoff

\ck

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with german.sty.

58.95 \def\mdqon{\shorthandon{"}}
58.96 \def\mdqoff{\shorthandoff{"}}
58.97 \def\ck{\allowhyphens\discretionary{k-}{k}{ck}\allowhyphens}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

58.98 \ldf@finish{usorbian}
58.99 〈/code〉

350

59 The Turkish language
The file turkish.dtx67 defines all the language definition macros for the Turkish
language68.

Turkish typographic rules specify that a little ‘white space’ should be added
before the characters ‘:’, ‘!’ and ‘=’. In order to insert this white space automat-
ically these characters are made ‘active’. Also \frenhspacing is set.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

59.1 〈∗code〉
59.2 \LdfInit{turkish}\captionsturkish

When this file is read as an option, i.e. by the \usepackage command, turkish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@turkish to see whether we have to do something
here.

59.3 \ifx\l@turkish\@undefined
59.4 \@nopatterns{Turkish}
59.5 \adddialect\l@turkish0\fi

The next step consists of defining commands to switch to (and from) the Turk-
ish language.

\captionsturkish The macro \captionsturkish defines all strings used in the four standard docu-
mentclasses provided with LATEX.

59.6 \addto\captionsturkish{%
59.7 \def\prefacename{\"Ons\"oz}%
59.8 \def\refname{Kaynaklar}%
59.9 \def\abstractname{\"Ozet}%

59.10 \def\bibname{Kaynak\c ca}%
59.11 \def\chaptername{B\"ol\"um}%
59.12 \def\appendixname{Ek}%
59.13 \def\contentsname{\.I\c cindekiler}%
59.14 \def\listfigurename{\c Sekil Listesi}%
59.15 \def\listtablename{Tablo Listesi}%
59.16 \def\indexname{Dizin}%
59.17 \def\figurename{\c Sekil}%
59.18 \def\tablename{Tablo}%
59.19 \def\partname{K\i s\i m}%
59.20 \def\enclname{\.Ili\c sik}%
59.21 \def\ccname{Di\u ger Al\i c\i lar}%
59.22 \def\headtoname{Al\i c\i}%
59.23 \def\pagename{Sayfa}%
59.24 \def\subjectname{\.Ilgili}%

67The file described in this section has version number v1.2m and was last revised on
2005/03/31.

68Mustafa Burc, z6001@rziris01.rrz.uni-hamburg.de provided the code for this file. It is
based on the work by Pierre Mackay; Turgut Uyar, uyar@cs.itu.edu.tr supplied additional
translations in version 1.2j and later

351

59.25 \def\seename{bkz.}%
59.26 \def\alsoname{ayr\i ca bkz.}%
59.27 \def\proofname{Kan\i t}%
59.28 \def\glossaryname{Glossary}% <-- Needs translation
59.29 }%

\dateturkish The macro \dateturkish redefines the command \today to produce Turkish
dates.

59.30 \def\dateturkish{%
59.31 \def\today{\number\day~\ifcase\month\or
59.32 Ocak\or \c Subat\or Mart\or Nisan\or May\i{}s\or Haziran\or
59.33 Temmuz\or A\u gustos\or Eyl\"ul\or Ekim\or Kas\i{}m\or
59.34 Aral\i{}k\fi
59.35 \space\number\year}}

\extrasturkish
\noextrasturkish

The macro \extrasturkish will perform all the extra definitions needed for the
Turkish language. The macro \noextrasturkish is used to cancel the actions of
\extrasturkish.

Turkish typographic rules specify that a little ‘white space’ should be added
before the characters ‘:’, ‘!’ and ‘=’. In order to insert this white space automat-
ically these characters are made \active, so they have to be treated in a special
way.

59.36 \initiate@active@char{:}
59.37 \initiate@active@char{!}
59.38 \initiate@active@char{=}

We specify that the turkish group of shorthands should be used.
59.39 \addto\extrasturkish{\languageshorthands{turkish}}

These characters are ‘turned on’ once, later their definition may vary.
59.40 \addto\extrasturkish{%
59.41 \bbl@activate{:}\bbl@activate{!}\bbl@activate{=}}

For Turkish texts \frenchspacing should be in effect. We make sure this is
the case and reset it if necessary.

59.42 \addto\extrasturkish{\bbl@frenchspacing}
59.43 \addto\noextrasturkish{\bbl@nonfrenchspacing}

\turkish@sh@!@
\turkish@sh@=@
\turkish@sh@:@

The definitions for the three active characters were made using intermediate
macros. These are defined now. The insertion of extra ‘white space’ should only
happen outside math mode, hence the check \ifmmode in the macros.

59.44 \declare@shorthand{turkish}{:}{%
59.45 \ifmmode
59.46 \string:%
59.47 \else\relax
59.48 \ifhmode
59.49 \ifdim\lastskip>\z@
59.50 \unskip\penalty\@M\thinspace
59.51 \fi
59.52 \fi

352

59.53 \string:%
59.54 \fi}
59.55 \declare@shorthand{turkish}{!}{%
59.56 \ifmmode
59.57 \string!%
59.58 \else\relax
59.59 \ifhmode
59.60 \ifdim\lastskip>\z@
59.61 \unskip\penalty\@M\thinspace
59.62 \fi
59.63 \fi
59.64 \string!%
59.65 \fi}
59.66 \declare@shorthand{turkish}{=}{%
59.67 \ifmmode
59.68 \string=%
59.69 \else\relax
59.70 \ifhmode
59.71 \ifdim\lastskip>\z@
59.72 \unskip\kern\fontdimen2\font
59.73 \kern-1.4\fontdimen3\font
59.74 \fi
59.75 \fi
59.76 \string=%
59.77 \fi}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

59.78 \ldf@finish{turkish}
59.79 〈/code〉

353

60 The Hebrew language
The file hebrew.dtx69 provides the following packages and files for Hebrew lan-
guage support:

hebrew.ldf file defines all the language-specific macros for the Hebrew language.

rlbabel.def file is used by hebrew.ldf for bidirectional versions of the major
LATEX commands and environments. It is designed to be used with other
right-to-left languages, not only with Hebrew.

hebcal.sty package defines a set of macros for computing Hebrew date from
Gregorian one.

Additional Hebrew input and font encoding definition files that should be in-
cluded and used with hebrew.ldf are:

hebinp.dtx provides Hebrew input encodings, such as ISO 8859-8, MS Windows
codepage 1255 or IBM PC codepage 862 (see Section 61 on page 400).

hebrew.fdd contains Hebrew font encodings, related font definition files and
hebfont package that provides Hebrew font switching commands (see Sec-
tion 62 on page 408 for further details).

LATEX 2.09 compatibility files are included with heb209.dtx and gives possibil-
ity to compile existing LATEX 2.09 Hebrew documents with small (if any) changes
(see Section 63 on page 427 for details).

Finally, optional document class hebtech may be useful for writing theses and
dissertations in both Hebrew and English (and any other languages included with
babel). It designed to meet requirements of the Graduate School of the Technion
— Israel Institute of Technology.

As of version 2.3e hebtech is no longer distributed together with heblatex. It
should be part of a new "hebclasses" package

60.1 Acknowledgement
The following people have contributed to Hebrew package in one way or another,
knowingly or unknowingly. In alphabetical order: Irina Abramovici, Yaniv Bar-
gury, Yael Dubinsky, Sergio Fogel, Dan Haran, Rama Porrat, Michail Rozman,
Alon Ziv.

Tatiana Samoilov and Vitaly Surazhsky found a number of serious bugs in
preliminary version of Hebrew package.

A number of other people have contributed comments and information. Specific
contributions are acknowledged within the document.

I want to thank my wife, Vita, and son, Mishka, for their infinite love and
patience.

If you made a contribution and I haven’t mentioned it, don’t worry, it was an
accident. I’m sorry. Just tell me and I will add you to the next version.

69The Hebrew language support files described in this section have version number v2.3h and
were last revised on 2005/03/30.

354

60.2 The docstrip modules
The following modules are used in the implementation to direct docstrip in
generating external files:

driver produce a documentation driver file

hebrew produce Hebrew language support file
rightleft create right-to-left support file
calendar create Hebrew calendar package

A typical docstrip command file would then have entries like:

\generateFile{hebrew.ldf}{t}{\from{hebrew.dtx}{hebrew}}

60.3 Hebrew language definitions
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

60.1 〈∗hebrew〉
60.2 \LdfInit{hebrew}{captionshebrew}

When this file is read as an option, i.e., by the \usepackage command, hebrew
will be an ‘unknown’ language, in which case we have to make it known. So we
check for the existence of \l@hebrew to see whether we have to do something here.

60.3 \ifx\l@hebrew\@undefined
60.4 \@nopatterns{Hebrew}%
60.5 \adddialect\l@hebrew0
60.6 \fi

\hebrewencoding FIX DOCS REGARDING 8BIT
Typesetting Hebrew texts implies that a special input and output encoding

needs to be used. Generally, the user may choose between different available
Hebrew encodings provided. The current support for Hebrew uses all available
fonts from the Hebrew University of Jerusalem encoded in ‘old-code’ 7-bit encoding
also known as Israeli Standard SI-960. We define for these fonts the Local Hebrew
Encoding LHE (see the file hebrew.fdd for more details), and the LHE encoding
definition file should be loaded by default.

Other fonts are available in windows-cp1255 (a superset of ISO-8859-8 with
nikud). For those, the encoding HE8 should be used. Such fonts are, e.g., windows’
TrueType fonts (once cnverted to Type1 or MetaFont) and IBM’s Type1 fonts.

However, if an user wants to use another font encoding, for example, cyrillic
encoding T2 and extended latin encoding T1, — he/she has to load the corre-
sponding file before the hebrew package. This may be done in the following way:

\usepackage[LHE,T2,T1]{fontenc}
\usepackage[hebrew,russian,english]{babel}

We make sure that the LHE encoding is known to LATEX at end of this package.
Also note that if you want to use the encoding HE8 , you should define the

following in your document, before loading babel :

355

\def\HeblatexEncoding{HE8}
\def\HeblatexEncodingFile{he8enc}

60.7 \providecommand{\HeblatexEncoding}{LHE}%
60.8 \providecommand{\HeblatexEncodingFile}{lheenc}%
60.9 \newcommand{\heblatex@set@encoding}[2]{

60.10 }
60.11 \AtEndOfPackage{%
60.12 \@ifpackageloaded{fontenc}{%
60.13 \@ifl@aded{def}{%
60.14 \HeblatexEncodingFile}{\def\hebrewencoding{\HeblatexEncoding}}{}%
60.15 }{%
60.16 \input{\HeblatexEncodingFile.def}%
60.17 \def\hebrewencoding{\HeblatexEncoding}%
60.18 }}

We also need to load inputenc package with one of the Hebrew input encodings.
By default, we set up the 8859-8 codepage. If an user wants to use many input
encodings in the same document, for example, the MS Windows Hebrew codepage
cp1255 and the standard IBM PC Russian codepage cp866, he/she has to load
the corresponding file before the hebrew package too. This may be done in the
following way:

\usepackage[cp1255,cp866]{inputenc}
\usepackage[hebrew,russian,english]{babel}

An user can switch input encodings in the document using the command
\inputencoding, for example, to use the cp1255:

\inputencoding{cp1255}

60.19 \AtEndOfPackage{%
60.20 \@ifpackageloaded{inputenc}{}{\RequirePackage[8859-8]{inputenc}}}

The next step consists of defining commands to switch to (and from) the He-
brew language.

\hebrewhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin. They are set to 2.

60.21 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\captionshebrew The macro \captionshebrew replaces all captions used in the four standard doc-
ument classes provided with LATEX2εwith their Hebrew equivalents.

60.22 \addto\captionshebrew{%
60.23 \def\prefacename{\@ensure@R{\hebmem\hebbet\hebvav\hebalef}}%
60.24 \def\refname{\@ensure@R{\hebresh\hebshin\hebyod\hebmem\hebtav\ %
60.25 \hebmem\hebqof\hebvav\hebresh\hebvav\hebtav}}%
60.26 \def\abstractname{\@ensure@R{\hebtav\hebqof\hebtsadi\hebyod\hebresh}}%
60.27 \def\bibname{\@ensure@R{\hebbet\hebyod\hebbet\heblamed\hebyod\hebvav%
60.28 \hebgimel\hebresh\hebpe\hebyod\hebhe}}%

356

60.29 \def\chaptername{\@ensure@R{\hebpe\hebresh\hebqof}}%
60.30 \def\appendixname{\@ensure@R{\hebnun\hebsamekh\hebpe\hebhet}}%
60.31 \def\contentsname{\@ensure@R{%
60.32 \hebtav\hebvav\hebkaf\hebfinalnun\ %
60.33 \hebayin\hebnun\hebyod\hebyod\hebnun\hebyod\hebfinalmem}}%
60.34 \def\listfigurename{\@ensure@R{%
60.35 \hebresh\hebshin\hebyod\hebmem\hebtav\ %
60.36 \hebalef\hebyod\hebvav\hebresh\hebyod\hebfinalmem}}%
60.37 \def\listtablename{\@ensure@R{%
60.38 \hebresh\hebshin\hebyod\hebmem\hebtav\
60.39 \hebtet\hebbet\heblamed\hebalef\hebvav\hebtav}}%
60.40 \def\indexname{\@ensure@R{\hebmem\hebpe\hebtav\hebhet}}%
60.41 \def\figurename{\@ensure@R{\hebalef\hebyod\hebvav\hebresh}}%
60.42 \def\tablename{\@ensure@R{\hebtet\hebbet\heblamed\hebhe}}%
60.43 \def\partname{\@ensure@R{\hebhet\heblamed\hebqof}}%
60.44 \def\enclname{\@ensure@R{\hebresh\hebtsadi"\hebbet}}%
60.45 \def\ccname{\@ensure@R{\hebhe\hebayin\hebtav\hebqof\hebyod%
60.46 \hebfinalmem}}%
60.47 \def\headtoname{\@ensure@R{\hebalef\heblamed}}%
60.48 \def\pagename{\@ensure@R{\hebayin\hebmem\hebvav\hebdalet}}%
60.49 \def\psname{\@ensure@R{\hebnun.\hebbet.}}%
60.50 \def\seename{\@ensure@R{\hebresh\hebalef\hebhe}}%
60.51 \def\alsoname{\@ensure@R{\hebresh\hebalef\hebhe \hebgimel%
60.52 \hebmemesof}}%
60.53 \def\proofname{\@ensure@R{\hebhe\hebvav\hebkaf\hebhet\hebhe}}
60.54 \def\glossaryname{\@ensure@L{Glossary}}% <-- Needs translation
60.55 }

\slidelabel Here we fix the macro slidelabel of the seminar package. Note that this still
won’t work well enough when overlays will be involved

60.56 \@ifclassloaded{seminar}{%
60.57 \def\slidelabel{\bf \if@rl\R{\hebshin\hebqof\hebfinalpe{} \theslide}%
60.58 \else\L{Slide \theslide}%
60.59 \fi}%
60.60 }{}

Here we provide an user with translation of Gregorian dates to Hebrew. In
addition, the hebcal package can be used to create Hebrew calendar dates.

\hebmonth The macro \hebmonth{month} produces month names in Hebrew.
60.61 \def\hebmonth#1{%
60.62 \ifcase#1\or \hebyod\hebnun\hebvav\hebalef\hebresh\or %
60.63 \hebpe\hebbet\hebresh\hebvav\hebalef\hebresh\or %
60.64 \hebmem\hebresh\hebfinaltsadi\or %
60.65 \hebalef\hebpe\hebresh\hebyod\heblamed\or %
60.66 \hebmem\hebalef\hebyod\or \hebyod\hebvav\hebnun\hebyod\or %
60.67 \hebyod\hebvav\heblamed\hebyod\or %
60.68 \hebalef\hebvav\hebgimel\hebvav\hebsamekh\hebtet\or %
60.69 \hebsamekh\hebpe\hebtet\hebmem\hebbet\hebresh\or %
60.70 \hebalef\hebvav\hebqof\hebtet\hebvav\hebbet\hebresh\or %

357

60.71 \hebnun\hebvav\hebbet\hebmem\hebbet\hebresh\or %
60.72 \hebdalet\hebtsadi\hebmem\hebbet\hebresh\fi}

\hebdate The macro \hebdate{day}{month}{year} translates a given Gregorian date to
Hebrew.

60.73 \def\hebdate#1#2#3{%
60.74 \beginR\beginL\number#1\endL\ \hebbet\hebmonth{#2}
60.75 \beginL\number#3\endL\endR}

\hebday The macro \hebday will replace \today command when in Hebrew mode.
60.76 \def\hebday{\hebdate{\day}{\month}{\year}}

\datehebrew The macro \datehebrew redefines the command \today to produce Gregorian
dates in Hebrew. It uses the macro \hebday.

60.77 \def\datehebrew{\let\today=\hebday}

The macro \extrashebrew will perform all the extra definitions needed for the
Hebrew language. The macro \noextrashebrew is used to cancel the actions of
\extrashebrew.

\extrashebrew We switch font encoding to Hebrew and direction to right-to-left. We can-
not use the regular language switching commands (for example, \sethebrew
and \unsethebrew or \selectlanguage{hebrew}), when in restricted horizon-
tal mode, because it will result in unbalanced \beginR or \beginL primitives.
Instead, in TEX’s restricted horizontal mode, the \L{latin text} and \R{hebrew
text}, or \embox{latin text} and \hmbox{hebrew text} should be used.

Hence, we use \beginR and \beginL switching commands only when not in
restricted horizontal mode.

60.78 \addto\extrashebrew{%
60.79 \tohebrew%
60.80 \ifhmode\ifinner\else\beginR\fi\fi}

\noextrashebrew The macro \noextrashebrew is used to cancel the actions of \extrashebrew. We
switch back to the previous font encoding and restore left-to-right direction.

60.81 \addto\noextrashebrew{%
60.82 \fromhebrew%
60.83 \ifhmode\ifinner\else\beginL\fi\fi}

Generally, we can switch to- and from- Hebrew by means of standard babel-
defined commands, for example,

\selectlanguage{hebrew}

or

\begin{otherlanguage}{hebrew}
some Hebrew text

\end{otherlanguage}

358

Now we define two additional commands that offer the possibility to switch to
and from Hebrew language. These commands are backward compatible with the
previous versions of hebrew.sty.

\sethebrew
\unsethebrew

The command \sethebrew will switch from the current font encoding to the he-
brew font encoding, and from the current direction of text to the right-to-left
mode. The command \unsethebrew switches back.

Both commands use standard right-to-left switching macros \setrllanguage{
r2l language name} and \unsetrllanguage{r2l language name}, that defined in
the rlbabel.def file.

60.84 \def\sethebrew{\setrllanguage{hebrew}}
60.85 \def\unsethebrew{\unsetrllanguage{hebrew}}

\hebrewtext
\nohebrewtext

The following two commands are obsolete and work only in LATEX2.09 compatibil-
ity mode. They are synonyms of \sethebrew and \unsethebrew defined above.

60.86 \if@compatibility
60.87 \let\hebrewtext=\sethebrew
60.88 \let\nohebrewtext=\unsethebrew
60.89 \fi

\tohebrew
\fromhebrew

These two commands change only the current font encoding to- and from- He-
brew encoding. Their implementation uses \@torl{language name} and \@fromrl
macros defined in rlbabel.def file. Both commands may be useful only for pack-
age and class writers, not for regular users.

60.90 \def\tohebrew{\@torl{hebrew}}%
60.91 \def\fromhebrew{\@fromrl}

\@hebrew Sometimes we need to preserve Hebrew mode without knowing in which environ-
ment we are located now. For these cases, the \@hebrew{hebrew text} macro will
be useful. Not that this macro is similar to the \@number and \@latin macros
defined in rlbabel.def file.

60.92 \def\@@hebrew#1{\beginR{{\tohebrew#1}}\endR}
60.93 \def\@hebrew{\protect\@@hebrew}

60.3.1 Hebrew numerals

We provide commands to print numbers in the traditional notation using Hebrew
letters. We need commands that print a Hebrew number from a decimal input, as
well as commands to print the value of a counter as a Hebrew number.

\if@gim@apost
\if@gim@final

Hebrew numbers can be written in various styles: with or without apostrophes,
and with the letters kaf, mem, nun, pe, tsadi as either final or initial forms when
they are the last letters in the sequence. We provide two flags to set the style
options.

60.94 \newif\if@gim@apost % whether we print apostrophes
60.95 \newif\if@gim@final % whether we use final or initial letters

359

\hebrewnumeral
\Hebrewnumeral

\Hebrewnumeralfinal

The commands that print a Hebrew number must specify the style locally: relying
on a global style option could cause a counter to print in an inconsistent manner—
for instance, page numbers might appear in different styles if the global style option
changed mid-way through a document. The commands only allow three of the four
possible flag combinations (I do not know of a use that requires the combination
of final letters and no apostrophes –RA).

Each command sets the style flags and calls \@hebrew@numeral. Double braces
are used in order to protect the values of \@tempcnta and \@tempcntb, which are
changed by this call; they also keep the flag assignments local (this is not important
because the global values are never used).

60.96 \newcommand*{\hebrewnumeral}[1] % no apostrophe, no final letters
60.97 {{\@gim@finalfalse\@gim@apostfalse\@hebrew@numeral{#1}}}
60.98 \newcommand*{\Hebrewnumeral}[1] % apostrophe, no final letters
60.99 {{\@gim@finalfalse\@gim@aposttrue\@hebrew@numeral{#1}}}

60.100 \newcommand*{\Hebrewnumeralfinal}[1] % apostrophe, final letters
60.101 {{\@gim@finaltrue\@gim@aposttrue\@hebrew@numeral{#1}}}

\alph
\@alph
\Alph

\@Alph
\Alphfinal

\@Alphfinal

Counter-printing commands are based on the above commands. The natural name
for the counter-printing commands is \alph, because Hebrew numerals are the only
way to represent numbers with Hebrew letters (kaf always means 20, never 11).
Hebrew has no uppercase letters, hence no need for the familiar meaning of \Alph;
we therefore define \alph to print counters as Hebrew numerals without apostro-
phes, and \Alph to print with apostrophes. A third form, \Alphfinal, is provided
to print with apostrophes and final letters, as is required for Hebrew year designa-
tors. The commands \alph and \Alph are defined in latex.ltx, and we only need
to redefine the internal commands \@alph and \@Alph; for \Alphfinal we need
to provide both a wrapper and an internal command. The counter printing com-
mands are made semi-robust: without the \protect, commands like \theenumii
break (I’m not quite clear on why this happens, –RA); at the same time, we cannot
make the commands too robust (e.g. with \DeclareRobustCommand) because this
would enter the command name rather than its value into files like .aux, .toc
etc. The old meanings of meaning of \@alph and \@Alph are saved upon entering
Hebrew mode and restored upon exiting it.

60.102 \addto\extrashebrew{%
60.103 \let\saved@alph=\@alph%
60.104 \let\saved@Alph=\@Alph%
60.105 \renewcommand*{\@alph}[1]{\protect\hebrewnumeral{\number#1}}%
60.106 \renewcommand*{\@Alph}[1]{\protect\Hebrewnumeral{\number#1}}%
60.107 \def\Alphfinal#1{\expandafter\@Alphfinal\csname c@#1\endcsname}%
60.108 \providecommand*{\@Alphfinal}[1]{\protect\Hebrewnumeralfinal{\number#1}}}
60.109 \addto\noextrashebrew{%
60.110 \let\@alph=\saved@alph%
60.111 \let\@Alph=\saved@Alph}

Note that \alph (without apostrophes) is already the appropriate choice for the
second-level enumerate label, and \Alph (with apostrophes) is an appropriate
choice for appendix; however, the default LATEX labels need to be redefined for
appropriate cross-referencing, see below. LATEX default class files specify \Alph

360

for the fourth-level enumerate level, this should probably be changed. Also, the
way labels get flushed left by default looks inappropriate for Hebrew numerals, so
we should redefine \labelenumii as well as \labelenumiv (presently not imple-
mented).

\theenumii
\theenumiv

\label

Cross-references to counter labels need to be printed according to the language
environment in which a label was issued, not the environment in which it is called:
for example, a label (1b) issued in a Latin environment should be referred to as (1b)
in a Hebrew text, and label (2dalet) issued in a Hebrew environment should be
referred to as (2dalet) in a Latin text. This was the unanimous opinion in a poll
sent to the IvriTEX list. We therefore redefine \theenumii and \theenumiv, so
that an explicit language instruction gets written to the .aux file.

60.112 \renewcommand{\theenumii}
60.113 {\if@rl\protect\hebrewnumeral{\number\c@enumii}%
60.114 \else\protect\L{\protect\@@alph{\number\c@enumii}}\fi}
60.115 \renewcommand{\theenumiv}
60.116 {\if@rl\protect\Hebrewnumeral{\number\c@enumiv}%
60.117 \else\protect\L{\protect\@@Alph{\number\c@enumiv}}\fi}

We also need to control for the font and direction in which a counter label is
printed. Direction is straightforward: a Latin label like (1b) should be written
left-to-right when called in a Hebrew text, and a Hebrew label like (2dalet) should
be written right-to-left when called in a Latin text. The font question is more
delicate, because we should decide whether the numerals should be typeset in
the font of the language enviroment in which the label was issued, or that of the
environment in which it is called.

• A purely numeric label like (23) looks best if it is set in the font of the
surrounding language.

• But a mixed alphanumeric label like (1b) lookes weird if the ‘1’ is taken
from the Hebrew font; likewise, (2dalet) looks weird if the ‘2’ is taken from
a Latin font.

• Finally, mixing the two possibilities is worst, because a single Hebrew sen-
tence referring to examples (1b) and (2) would take the ‘1’ from the Latin
font and the ‘2’ from the Hebrew font, and this looks really awful. (It is also
very hard to implement).

In light of the conflicting considerations it seems like there’s no perfect solution.
I have chosen to implement the top option, where numerals are taken from the
font of the surrounding language, because it seems to me that reference to purely
numeric labels is the most common, so this gives a good solution to the majority
of cases and a mediocre solution to the minority.

We redefine the \label command which writes to the .aux file. Depending on
the language environment we issue appropriate \beginR/L· · ·\endR/L commands
to control the direction without affecting the font. Since these commands do not
affect the value of \if@rl, we cannot use the macro \@brackets to determine

361

the correct brackets to be used with \p@enumiii; instead, we let the language
environment determine an explicit definition.

60.118 \def\label#1{\@bsphack
60.119 \if@rl
60.120 \def\p@enumiii{\p@enumii)\theenumii(}%
60.121 \protected@write\@auxout{}%
60.122 {\string\newlabel{#1}{{\beginR\@currentlabel\endR}{\thepage}}}%
60.123 \else
60.124 \def\p@enumiii{\p@enumii(\theenumii)}%
60.125 \protected@write\@auxout{}%
60.126 {\string\newlabel{#1}{{\beginL\@currentlabel\endL}{\thepage}}}%
60.127 \fi
60.128 \@esphack}

NOTE: it appears that the definition of \label is language-independent and thus
belongs in rlbabel.def, but this is not the case. The decision to typeset label
numerals in the font of the surrounding language is reasonable for Hebrew, be-
cause mixed-font (1b) and (2dalet) are somewhat acceptable. The same may not
be acceptable for Arabic, whose numeral glyphs are radically different from those
in the Latin fonts. The decision about the direction may also be different for Ara-
bic, which is more right-to-left oriented than Hebrew (two examples: dates like
15/6/2003 are written left-to-right in Hebrew but right-to-left in Arabic; equa-
tions like 1 + 2 = 3 are written left-to-right in Hebrew but right-to-left in Arabic
elementary school textbooks using Arabic numeral glyphs). My personal hunch is
that a label like (1b) in an Arabic text would be typeset left-to-right if the ‘1’ is
a Western glyph, but right-to-left if the ‘1’ is an Arabic glyph. But this is just a
guess, I’d have to ask Arab typesetters to find the correct answer. –RA.

\appendix The following code provides for the proper printing of appendix numbers in tables
of contents. Section and chapter headings are normally bilingual: regardless of
the text language, the author supplies each section/chapter with two headings—
one for the Hebrew table of contents and one for the Latin table of contents. It
makes sense that the label should be a Latin letter in the Latin table of contents
and a Hebrew letter in the Hebrew table of contents. The definition is similar to
that of \theenumii and \theenumiv above, but additional \protect commands
ensure that the entire condition is written the .aux file. The appendix number
will therefore be typeset according to the environment in which it is used rather
than issued: a Hebrew number (with apostrophes) in a Hebrew environment and
a Latin capital letter in a Latin environment (the command \@@Alph is set in
rlbabel.def to hold the default meaning of LATEX [latin] \@Alph, regardless of
the mode in which it is issued). The net result is that the second appendix will
be marked with ‘B’ in the Latin table of contents and with ‘bet’ in the Hebrew
table of contents; the mark in the main text will depend on the language of the
appendix itself.

60.129 \@ifclassloaded{letter}{}{%
60.130 \@ifclassloaded{slides}{}{%
60.131 \let\@@appendix=\appendix%
60.132 \@ifclassloaded{article}{%

362

60.133 \renewcommand\appendix{\@@appendix%
60.134 \renewcommand\thesection
60.135 {\protect\if@rl\protect\Hebrewnumeral{\number\c@section}%
60.136 \protect\else\@@Alph\c@section\protect\fi}}}
60.137 {\renewcommand\appendix{\@@appendix%
60.138 \renewcommand\thechapter
60.139 {\protect\if@rl\protect\Hebrewnumeral{\number\c@chapter}%
60.140 \protect\else\@@Alph\c@chapter\protect\fi}}}}}

QUESTION: is this also the appropriate way to refer to an appendix in the text,
or should we retain the original label the same way we did with enumerate labels?
ANOTHER QUESTION: are similar redefinitions needed for other counters that
generate texts in bilingual lists like .lof/.fol and .lot/.tol? –RA.

\@hebrew@numeral The command \@hebrew@numeral prints a Hebrew number. The groups of thou-
sands, millions, billions are separated by apostrophes and typeset without apostro-
phes or final letters; the remainder (under 1000) is typeset conventionally, with the
selected styles for apostrophes and final letters. The function calls on \gim@no@mil
to typeset each three-digit block. The algorithm is recursive, but the maximum re-
cursion depth is 4 because TEX only allows numbers up to 231−1 = 2,147,483,647.
The typesetting routine is wrapped in \@hebrew in order to ensure that numbers
are always typeset in Hebrew mode.

Initialize: \@tempcnta holds the value, \@tempcntb is used for calculations.
60.141 \newcommand*{\@hebrew@numeral}[1]
60.142 {\@hebrew{\@tempcnta=#1\@tempcntb=#1\relax
60.143 \divide\@tempcntb by 1000

If we’re under 1000, call \gim@nomil
60.144 \ifnum\@tempcntb=0\gim@nomil\@tempcnta\relax

If we’re above 1000 then force no apostrophe and no final letter styles for the
value above 1000, recur for the value above 1000, add an apostrophe, and call
\gim@nomil for the remainder.

60.145 \else{\@gim@apostfalse\@gim@finalfalse\@hebrew@numeral\@tempcntb}’%
60.146 \multiply\@tempcntb by 1000\relax
60.147 \advance\@tempcnta by -\@tempcntb\relax
60.148 \gim@nomil\@tempcnta\relax
60.149 \fi
60.150 }}

NOTE: is it the case that 15,000 and 16,000 are written as yod-he and yod-vav,
rather than tet-vav and tet-zayin? This vaguely rings a bell, but I’m not certain.
If this is the case, then the current behavior is incorrect and should be changed.
–RA.

\gim@nomil The command \gim@nomil typesets an integer between 0 and 999 (for 0 it typesets
nothing). The code has been modified from the old hebcal.sty (appropriate
credits—Boris Lavva and Michail Rozman ?). \@tempcnta holds the total value
that remains to be typeset. At each stage we find the highest valued letter that is

363

less than or equal to \@tempcnta, and call on \gim@print to subtract this value
and print the letter.

Initialize: \@tempcnta holds the value, there is no previous letter.
60.151 \newcommand*{\gim@nomil}[1]{\@tempcnta=#1\@gim@prevfalse

Find the hundreds digit.
60.152 \@tempcntb=\@tempcnta\divide\@tempcntb by 100\relax % hundreds digit
60.153 \ifcase\@tempcntb % print nothing if no hundreds
60.154 \or\gim@print{100}{\hebqof}%
60.155 \or\gim@print{200}{\hebresh}%
60.156 \or\gim@print{300}{\hebshin}%
60.157 \or\gim@print{400}{\hebtav}%
60.158 \or\hebtav\@gim@prevtrue\gim@print{500}{\hebqof}%
60.159 \or\hebtav\@gim@prevtrue\gim@print{600}{\hebresh}%
60.160 \or\hebtav\@gim@prevtrue\gim@print{700}{\hebshin}%
60.161 \or\hebtav\@gim@prevtrue\gim@print{800}{\hebtav}%
60.162 \or\hebtav\@gim@prevtrue\hebtav\gim@print{900}{\hebqof}%
60.163 \fi

Find the tens digit. The numbers 15 and 16 are traditionally printed as tet-vav
(9 + 6) and tet-zayin (9 + 7) to avoid spelling the Lord’s name.

60.164 \@tempcntb=\@tempcnta\divide\@tempcntb by 10\relax % tens digit
60.165 \ifcase\@tempcntb % print nothing if no tens
60.166 \or % number between 10 and 19
60.167 \ifnum\@tempcnta = 16 \gim@print {9}{\hebtet}% tet-zayin
60.168 \else\ifnum\@tempcnta = 15 \gim@print {9}{\hebtet}% tet-vav
60.169 \else \gim@print{10}{\hebyod}%
60.170 \fi % \@tempcnta = 15
60.171 \fi % \@tempcnta = 16

Initial or final forms are selected according to the current style option; \gim@print
will force a non-final letter in non-final position by means of a local style change.

60.172 \or\gim@print{20}{\if@gim@final\hebfinalkaf\else\hebkaf\fi}%
60.173 \or\gim@print{30}{\heblamed}%
60.174 \or\gim@print{40}{\if@gim@final\hebfinalmem\else\hebmem\fi}%
60.175 \or\gim@print{50}{\if@gim@final\hebfinalnun\else\hebnun\fi}%
60.176 \or\gim@print{60}{\hebsamekh}%
60.177 \or\gim@print{70}{\hebayin}%
60.178 \or\gim@print{80}{\if@gim@final\hebfinalpe\else\hebpe\fi}%
60.179 \or\gim@print{90}{\if@gim@final\hebfinaltsadi\else\hebtsadi\fi}%
60.180 \fi

Print the ones digit.
60.181 \ifcase\@tempcnta % print nothing if no ones
60.182 \or\gim@print{1}{\hebalef}%
60.183 \or\gim@print{2}{\hebbet}%
60.184 \or\gim@print{3}{\hebgimel}%
60.185 \or\gim@print{4}{\hebdalet}%
60.186 \or\gim@print{5}{\hebhe}%
60.187 \or\gim@print{6}{\hebvav}%
60.188 \or\gim@print{7}{\hebzayin}%

364

60.189 \or\gim@print{8}{\hebhet}%
60.190 \or\gim@print{9}{\hebtet}%
60.191 \fi
60.192 }

\gim@print
\if@gim@prev

The actual printing routine typesets a digit with the appropriate apostrophes:
if a number sequence consists of a single letter then it is followed by a single
apostrophe, and if it consists of more than one letter then a double apostrophe is
inserted before the last letter. We typeset the letters one at a time, keeping a flag
that tells us if any previous letters had been typeset.

60.193 \newif\if@gim@prev % flag if a previous letter has been typeset

For each letter, we first subtract its value from the total. Then,

• if the result is zero then this is the last letter; we check the flag to see if this
is the only letter and print it with the appropriate apostrophe;

• if the result is not zero then there remain additional letters to be typeset;
we print without an apostrophe and set the ‘previous letter’ flag.

\@tempcnta holds the total value that remains to be typeset. We first deduct the
letter’s value from \@tempcnta, so \@tempcnta is zero if and only if this is the
last letter.

60.194 \newcommand*{\gim@print}[2]{% #2 is a letter, #1 is its value.
60.195 \advance\@tempcnta by -#1\relax% deduct the value from the remainder

If this is the last letter, we print with the appropriate apostrophe (depending
on the style option): if there is a preceding letter, print "x if the style calls for
apostrophes, x if it doesn’t; otherwise, this is the only letter: print x’ if the style
calls for apostrophes, x if it doesn’t.

60.196 \ifnum\@tempcnta=0% if this is the last letter
60.197 \if@gim@prev\if@gim@apost"\fi#2%
60.198 \else#2\if@gim@apost’\fi\fi%

If this is not the last letter: print a non-final form (by forcing a local style option)
and set the ‘previous letter’ flag.

60.199 \else{\@gim@finalfalse#2}\@gim@prevtrue\fi}

\hebr
\gim

The older Hebrew counter commands \hebr and \gim are retained in order to
keep older documents from breaking. They are set to be equivalent to \alph, and
their use is deprecated. Note that \hebr gives different results than it had in the
past—it now typesets 11 as yod-alef rather than kaf.

60.200 \let\hebr=\alph
60.201 \let\gim=\alph

For backward compatibility with ‘older’ hebrew.sty packages, we define He-
brew equivalents of some useful LATEX commands. Note, however, that 8-bit
macros defined in Hebrew are no longer supported.

60.202 \def\hebcopy{\protect\R{\hebhe\hebayin\hebtav\hebqof}}
60.203 \def\hebincl{\protect\R{\hebresh\hebtsadi"\hebbet}}

365

60.204 \def\hebpage{\protect\R{\hebayin\hebmem\hebvav\hebdalet}}
60.205 \def\hebto{\protect\R{\hebayin\hebdalet}}

\hadgesh produce “poor man’s bold” (heavy printout), when used with normal
font glyphs. It is advisable to use bold font (for example, Dead Sea) instead of
this macro.

60.206 \def\hadgesh#1{\leavevmode\setbox0=\hbox{#1}%
60.207 \kern-.025em\copy0\kern-\wd0
60.208 \kern.05em\copy0\kern-\wd0
60.209 \kern-.025em\raise.0433em\box0 }

\piska and \piskapiska sometimes used in ‘older’ hebrew sources, and should
not be used in LATEX2ε.

60.210 \if@compatibility
60.211 \def\piska#1{\item{#1}\hangindent=-\hangindent}
60.212 \def\piskapiska#1{\itemitem{#1}\hangindent=-\hangindent}
60.213 \fi

The following commands are simply synonyms for the standard ones, provided
with LATEX2ε.

60.214 \let\makafgadol=\textendash
60.215 \let\makafanak=\textemdash
60.216 \let\geresh=\textquoteright
60.217 \let\opengeresh=\textquoteright
60.218 \let\closegeresh=\textquoteleft
60.219 \let\openquote=\textquotedblright
60.220 \let\closequote=\textquotedblleft
60.221 \let\leftquotation=\textquotedblright
60.222 \let\rightquotation=\textquotedblleft

We need to ensure that Hebrew is used as the default right-to-left language
at \begin{document}. The mechanism of defining the \@rllanguagename is
the same as in babel’s \languagename: the last right-to-left language in the
\usepackage{babel} line is set as the default right-to-left language at document
beginning.

For example, the following code:

\usepackage[russian,hebrew,arabic,greek,english]{babel}

will set the Arabic language as the default right-to-left language and the English
language as the default language. As a result, the commands \L{} and \embox{}
will use English and \R{} and \hmbox{} will use Arabic by default. These defaults
can be changed with the next \sethebrew or \selectlanguage{language name}
command.

60.223 \AtBeginDocument{\def\@rllanguagename{hebrew}}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

60.224 \ldf@finish{hebrew}
60.225 〈/hebrew〉

366

60.4 Right to left support
This file rlbabel.def defines necessary bidirectional macro support for LATEX2ε.
It is designed for use not only with Hebrew, but with any Right-to-Left languages,
supported by babel. The macros provided in this file are language and encoding
independent.

Right-to-left languages will use TEX extensions, namely TEX primitives
\beginL, \endL and \beginR, \endR, currently implemented only in ε-TEX and
in TEX--XET.

If ε-TEX is used, we should switch it to the enhanced mode:
60.226 〈∗rightleft〉
60.227 \ifx\TeXXeTstate\undefined\else%
60.228 \TeXXeTstate=1
60.229 \fi

Note, that ε-TEX’s format file should be created for extended mode. Mode can
be checked by running ε-TEX on some TEX file, for example:

This is e-TeX, Version 3.14159-1.1 (Web2c 7.0)
entering extended mode

The second line should be entering extended mode.
We check if user uses Right-to-Left enabled engine instead of regular Knuth’s

TEX:
60.230 \ifx\beginL\@undefined%
60.231 \newlinechar‘\^^J
60.232 \typeout{^^JTo avoid this error message,^^J%
60.233 run TeX--XeT or e-TeX engine instead of regular TeX.^^J}
60.234 \errmessage{Right-to-Left Support Error: use TeX--XeT or e-TeX
60.235 engine}%
60.236 \fi

60.4.1 Switching from LR to RL mode and back

\@torl and \@fromrl are called each time the horizontal direction changes.
They do all that is necessary besides changing the direction. Currently their
task is to change the encoding information and mode (condition \if@rl). They
should not normally be called by users: user-level macros, such as \sethebrew
and \unsethebrew, as well as babel’s \selectlanguage are defined in language-
definition files and should be used to change default language (and direction).

Local direction changing commands (for small pieces of text): \L{}, \R{},
\embox{} and \hmbox{} are defined below in this file in language-independent
manner.

\if@rl rltrue means that the main mode is currently Right-to-Left.
rlfalse means that the main mode is currently Left-to-Right.

60.237 \newif\if@rl

367

\if@rlmain This is the main direction of the document. Unlike \if@rl it is set once and never
changes.

rltrue means that the document is Right-to-Left.
rlfalse means that the document is Left-to-Right.

Practically \if@rlmain is set according to the value of \if@rl in the beginning
of the run.

60.238 \AtBeginDocument{% Here we set the main document direction
60.239 \newif\if@rlmain%
60.240 \if@rl% e.g: if the options to babel were [english,hebrew]
60.241 \@rlmaintrue%
60.242 \else% e.g: if the options to babel were [hebrew,english]
60.243 \@rlmainfalse%
60.244 \fi%
60.245 }

\@torl Switches current direction to Right-to-Left: saves current Left-to-Right en-
coding in \lr@encodingdefault, sets required Right-to-Left language name in
\@rllanguagename (similar to babel’s \languagename) and changes derection.

The Right-to-Left language encoding should be defined in .ldf file as special
macro created by concatenation of the language name and string encoding, for
example, for Hebrew it will be \hebrewencoding.

60.246 \DeclareRobustCommand{\@torl}[1]{%
60.247 \if@rl\else%
60.248 \let\lr@encodingdefault=\encodingdefault%
60.249 \fi%
60.250 \def\@rllanguagename{#1}%
60.251 \def\encodingdefault{\csname#1encoding\endcsname}%
60.252 \fontencoding{\encodingdefault}%
60.253 \selectfont%
60.254 \@rltrue}

\@fromrl Opposite to \@torl, switches current direction to Left-to-Right: restores saved
Left-to-Right encoding (\lr@encodingdefault) and changes direction.

60.255 \DeclareRobustCommand{\@fromrl}{%
60.256 \if@rl%
60.257 \let\encodingdefault=\lr@encodingdefault%
60.258 \fi%
60.259 \fontencoding{\encodingdefault}%
60.260 \selectfont%
60.261 \@rlfalse}

\selectlanguage This standard babel’s macro should be redefined to support bidirectional tables.
We divide \selectlanguage implementation to two parts, and the first part calls
the second \@@selectlanguage.

60.262 \expandafter\def\csname selectlanguage \endcsname#1{%
60.263 \edef\languagename{%
60.264 \ifnum\escapechar=\expandafter‘\string#1\@empty

368

60.265 \else \string#1\@empty\fi}%
60.266 \@@selectlanguage{\languagename}}

\@@selectlanguage This new internal macro redefines a final part of the standard babel’s \select-
language implementation.

Standard LATEX provides us with 3 tables: Table of Contents (.toc), List of
Figures (.lof), and List of Tables (.lot). In multi-lingual texts mixing Left-to-
Right languages with Right-to-Left ones, the use of various directions in one table
results in very ugly output. Therefore, these 3 standard tables will be used now
only for Left-to-Right languages, and we will add 3 Right-to-Left tables (their
extensions are simply reversed ones): RL Table of Contents (.cot), RL List of
Figures (.fol), and RL List of Tables (.lof).

60.267 \def\@@selectlanguage#1{%
60.268 \select@language{#1}%
60.269 \if@filesw
60.270 \protected@write\@auxout{}{\string\select@language{#1}}%
60.271 \if@rl%
60.272 \addtocontents{cot}{\xstring\select@language{#1}}%
60.273 \addtocontents{fol}{\xstring\select@language{#1}}%
60.274 \addtocontents{tol}{\xstring\select@language{#1}}%
60.275 \else%
60.276 \addtocontents{toc}{\xstring\select@language{#1}}%
60.277 \addtocontents{lof}{\xstring\select@language{#1}}%
60.278 \addtocontents{lot}{\xstring\select@language{#1}}%
60.279 \fi%
60.280 \fi}

\setrllanguage
\unsetrllanguage

The \setrllanguage and \unsetrllanguage pair of macros is proved to very
useful in bilingual texts, for example, in Hebrew-English texts. The language-
specific commands, for example, \sethebrew and \unsethebrew use these macros
as basis.

Implementation saves and restores other language in \other@languagename
variable, and uses internal macro \@@selectlanguage, defined above, to switch
between languages.

60.281 \let\other@languagename=\languagename
60.282 \DeclareRobustCommand{\setrllanguage}[1]{%
60.283 \if@rl\else%
60.284 \let\other@languagename=\languagename%
60.285 \fi%
60.286 \def\languagename{#1}%
60.287 \@@selectlanguage{\languagename}}

60.288 \DeclareRobustCommand{\unsetrllanguage}[1]{%
60.289 \if@rl%
60.290 \let\languagename=\other@languagename%
60.291 \fi
60.292 \@@selectlanguage{\languagename}}

369

\L
\R

\HeblatexRedefineL

Macros for changing direction, originally taken from TUGboat. Usage: \L{Left to
Right text} and \R{Right to Left text}. Numbers should also be enclosed in \L{},
as in \L{123}.

Note, that these macros do not receive language name as parameter. Instead,
the saved \@rllanguagename will be used. We assume that each Right-to-Left
language defines \tolanguagename and \fromlanguagename macros in language
definition file, for example, for Hebrew: \tohebrew and \fromhebrew macros in
hebrew.ldf file.

The macros \L and \R include ‘protect’ to to make them robust and allow use,
for example, in tables.

Due to the fact that some packages have different definitions for \L the macro
\HeblatexRedefineL is provided to overide them. This may be required with
hyperref, for instance.

60.293 \let\next=\
60.294 \def\HeblatexRedefineL{%
60.295 \def\L{\protect\pL}%
60.296 }
60.297 \HeblatexRedefineL
60.298 \def\pL{\protect\afterassignment\moreL \let\next= }
60.299 \def\moreL{\bracetext \aftergroup\endL \beginL\csname
60.300 from\@rllanguagename\endcsname}

60.301 \def\R{\protect\pR}
60.302 \def\pR{\protect\afterassignment\moreR \let\next= }
60.303 \def\moreR{\bracetext \aftergroup\endR \beginR\csname
60.304 to\@rllanguagename\endcsname}
60.305 \def\bracetext{\ifcat\next{\else\ifcat\next}\fi
60.306 \errmessage{Missing left brace has been substituted}\fi \bgroup}
60.307 \everydisplay{\if@rl\aftergroup\beginR\fi }

\@ensure@R
\@ensure@L

Two small internal macros, a-la \ensuremath
60.308 \def\@ensure@R#1{\if@rl#1\else\R{#1}\fi}
60.309 \def\@ensure@L#1{\if@rl\L{#1}\else#1\fi}

Take care of Right-to-Left indentation in every paragraph. Originally,
\noindent was redefined for right-to-left by Yaniv Bargury, then the implemen-
tation was rewritten by Alon Ziv using an idea by Chris Rowley: \noindent now
works unmodified.

60.310 \def\rl@everypar{\if@rl{\setbox\z@\lastbox\beginR\usebox\z@}\fi}
60.311 \let\o@everypar=\everypar
60.312 \def\everypar#1{\o@everypar{\rl@everypar#1}}

\hmbox
\embox

Useful vbox commands. All text in math formulas is best enclosed in these: LR
text in \embox and RL text in \hmbox. \mbox{} is useless for both cases, since
it typesets in Left-to-Right even for Right-to-Left languages (additions by Yaniv
Bargury).

60.313 \newcommand{\hmbox}[1]{\mbox{\R{#1}}}
60.314 \newcommand{\embox}[1]{\mbox{\L{#1}}}

370

\@brackets When in Right-to-Left mode, brackets should be swapped. This macro receives 3
parameters: left bracket, content, right bracket. Brackets can be square brackets,
braces, or parentheses.

60.315 \def\@brackets#1#2#3{\protect\if@rl #3#2#1\protect\else
60.316 #1#2#3\protect\fi}

\@number
\@latin

\@number preserves numbers direction from Left to Right. \@latin in addition
switches current encoding to the latin.

60.317 \def\@@number#1{\ifmmode\else\beginL\fi#1\ifmmode\else\endL\fi}
60.318 \def\@@latin#1{\@@number{{\@fromrl#1}}}
60.319 \def\@number{\protect\@@number}
60.320 \def\@latin{\protect\@@latin}

60.4.2 Counters

To make counter references work in Right to Left text, we need to surround their
original definitions with an \@number{. . . } or \@latin{. . . }. Note, that language-
specific counters, such as \hebr or \gim are provided with language definition file.

We start with saving the original definitions:
60.321 \let\@@arabic=\@arabic
60.322 \let\@@roman=\@roman
60.323 \let\@@Roman=\@Roman
60.324 \let\@@alph=\@alph
60.325 \let\@@Alph=\@Alph

\@arabic
\@roman
\@Roman

Arabic and roman numbers should be from Left to Right. In addition, roman
numerals, both lower- and upper-case should be in latin encoding.

60.326 \def\@arabic#1{\@number{\@@arabic#1}}
60.327 \def\@roman#1{\@latin{\@@roman#1}}
60.328 \def\@Roman#1{\@latin{\@@Roman#1}}

\arabicnorl This macro preserves the original definition of \arabic (overrides the overriding
of \@arabic)

60.329 \def\arabicnorl#1{\expandafter\@@arabic\csname c@#1\endcsname}

\make@lr In Right to Left documents all counters defined in the standard document
classes article, report and book provided with LATEX2ε, such as \thesection,
\thefigure, \theequation should be typed as numbers from left to right. To
ensure direction, we use the following \make@lr{counter} macro:

60.330 \def\make@lr#1{\begingroup
60.331 \toks@=\expandafter{#1}%
60.332 \edef\x{\endgroup
60.333 \def\noexpand#1{\noexpand\@number{\the\toks@}}}%
60.334 \x}

60.335 \@ifclassloaded{letter}{}{%
60.336 \@ifclassloaded{slides}{}{%
60.337 \make@lr\thesection

371

60.338 \make@lr\thesubsection
60.339 \make@lr\thesubsubsection
60.340 \make@lr\theparagraph
60.341 \make@lr\thesubparagraph
60.342 \make@lr\thefigure
60.343 \make@lr\thetable
60.344 }
60.345 \make@lr\theequation
60.346 }

60.4.3 Preserving logos

Preserve TEX, LATEX and LATEX2ε logos.

\TeX

60.347 \let\@@TeX\TeX
60.348 \def\TeX{\@latin{\@@TeX}}

\LaTeX

60.349 \let\@@LaTeX\LaTeX
60.350 \def\LaTeX{\@latin{\@@LaTeX}}

\LaTeXe

60.351 \let\@@LaTeXe\LaTeXe
60.352 \def\LaTeXe{\@latin{\@@LaTeXe}}

60.4.4 List environments

List environments in Right-to-Left languages, are ticked and indented from the
right instead of from the left. All the definitions that caused indentation are
revised for Right-to-Left languages. LATEX keeps track on the indentation with
the \leftmargin and \rightmargin values.

list Thus we need to override the definition of the \list macro: when in RTL mode,
the right margins are the begining of the line.

60.353 \def\list#1#2{%
60.354 \ifnum \@listdepth >5\relax
60.355 \@toodeep
60.356 \else
60.357 \global\advance\@listdepth\@ne
60.358 \fi
60.359 \rightmargin\z@
60.360 \listparindent\z@
60.361 \itemindent\z@
60.362 \csname @list\romannumeral\the\@listdepth\endcsname
60.363 \def\@itemlabel{#1}%
60.364 \let\makelabel\@mklab
60.365 \@nmbrlistfalse
60.366 #2\relax

372

60.367 \@trivlist
60.368 \parskip\parsep
60.369 \parindent\listparindent
60.370 \advance\linewidth -\rightmargin
60.371 \advance\linewidth -\leftmargin

The only change in the macro is the \if@rl case:
60.372 \if@rl
60.373 \advance\@totalleftmargin \rightmargin
60.374 \else
60.375 \advance\@totalleftmargin \leftmargin
60.376 \fi
60.377 \parshape \@ne \@totalleftmargin \linewidth
60.378 \ignorespaces}

\labelenumii
\p@enumiii

The \labelenumii and \p@enumiii commands use parentheses. They are revised
to work Right-to-Left with the help of \@brackets macro defined above.

60.379 \def\labelenumii{\@brackets(\theenumii)}
60.380 \def\p@enumiii{\p@enumii\@brackets(\theenumii)}

60.4.5 Tables of moving stuff

Tables of moving arguments: table of contents (toc), list of figures (lof) and list
of tables (lot) are handles here. These three default LATEX tables will be used
now exclusively for Left to Right stuff.

Three additional Right-to-Left tables: RL table of contents (cot), RL list of
figures (fol), and RL list of tables (tol) are added. These three tables will be
used exclusively for Right to Left stuff.

\@tableofcontents
\@listoffigures
\@listoftables

We define 3 new macros similar to the standard LATEX tables, but with one pa-
rameter — table file extension. These macros will help us to define our additional
tables below.

60.381 \@ifclassloaded{letter}{}{% other
60.382 \@ifclassloaded{slides}{}{% other
60.383 \@ifclassloaded{article}{% article
60.384 \newcommand\@tableofcontents[1]{%
60.385 \section*{\contentsname\@mkboth%
60.386 {\MakeUppercase\contentsname}%
60.387 {\MakeUppercase\contentsname}}%
60.388 \@starttoc{#1}}
60.389 \newcommand\@listoffigures[1]{%
60.390 \section*{\listfigurename\@mkboth%
60.391 {\MakeUppercase\listfigurename}%
60.392 {\MakeUppercase\listfigurename}}%
60.393 \@starttoc{#1}}
60.394 \newcommand\@listoftables[1]{%
60.395 \section*{\listtablename\@mkboth%
60.396 {\MakeUppercase\listtablename}%
60.397 {\MakeUppercase\listtablename}}%

373

60.398 \@starttoc{#1}}}%
60.399 {% else report or book
60.400 \newcommand\@tableofcontents[1]{%
60.401 \@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn%
60.402 \fi\chapter*{\contentsname\@mkboth%
60.403 {\MakeUppercase\contentsname}%
60.404 {\MakeUppercase\contentsname}}%
60.405 \@starttoc{#1}\if@restonecol\twocolumn\fi}
60.406 \newcommand\@listoffigures[1]{%
60.407 \@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn%
60.408 \fi\chapter*{\listfigurename\@mkboth%
60.409 {\MakeUppercase\listfigurename}%
60.410 {\MakeUppercase\listfigurename}}%
60.411 \@starttoc{#1}\if@restonecol\twocolumn\fi}
60.412 \newcommand\@listoftables[1]{%
60.413 \if@twocolumn\@restonecoltrue\onecolumn\else\@restonecolfalse\fi%
60.414 \chapter*{\listtablename\@mkboth%
60.415 {\MakeUppercase\listtablename}%
60.416 {\MakeUppercase\listtablename}}%
60.417 \@starttoc{#1}\if@restonecol\twocolumn\fi}}%

\lrtableofcontents
\lrlistoffigures
\lrlistoftables

Left-to-Right tables are called now \lrxxx and defined with the aid of three macros
defined above (extensions toc, lof, and lot).

60.418 \newcommand\lrtableofcontents{\@tableofcontents{toc}}%
60.419 \newcommand\lrlistoffigures{\@listoffigures{lof}}%
60.420 \newcommand\lrlistoftables{\@listoftables{lot}}%

\rltableofcontents
\rllistoffigures
\rllistoftables

Right-to-Left tables will be called \rlxxx and defined with the aid of three macros
defined above (extensions cot, fol, and tol).

60.421 \newcommand\rltableofcontents{\@tableofcontents{cot}}%
60.422 \newcommand\rllistoffigures{\@listoffigures{fol}}%
60.423 \newcommand\rllistoftables{\@listoftables{tol}}%

\tableofcontents
\listoffigures
\listoftables

Let \xxx be \rlxxx if the current direction is Right-to-Left and \lrxxx if it is
Left-to-Right.

60.424 \renewcommand\tableofcontents{\if@rl\rltableofcontents%
60.425 \else\lrtableofcontents\fi}
60.426 \renewcommand\listoffigures{\if@rl\rllistoffigures%
60.427 \else\lrlistoffigures\fi}
60.428 \renewcommand\listoftables{\if@rl\rllistoftables%
60.429 \else\lrlistoftables\fi}}}

\@dottedtocline The following makes problems when making a Right-to-Left tables, since it uses
\leftskip and \rightskip which are both mode dependent.

60.430 \def\@dottedtocline#1#2#3#4#5{%
60.431 \ifnum #1>\c@tocdepth \else
60.432 \vskip \z@ \@plus.2\p@
60.433 {\if@rl\rightskip\else\leftskip\fi #2\relax
60.434 \if@rl\leftskip\else\rightskip\fi \@tocrmarg \parfillskip

374

60.435 -\if@rl\leftskip\else\rightskip\fi
60.436 \parindent #2\relax\@afterindenttrue
60.437 \interlinepenalty\@M
60.438 \leavevmode
60.439 \@tempdima #3\relax
60.440 \advance\if@rl\rightskip\else\leftskip\fi \@tempdima
60.441 \null\nobreak\hskip -\if@rl\rightskip\else\leftskip\fi
60.442 {#4}\nobreak
60.443 \leaders\hbox{$\m@th
60.444 \mkern \@dotsep mu\hbox{.}\mkern \@dotsep
60.445 mu$}\hfill
60.446 \nobreak
60.447 \hb@xt@\@pnumwidth{\hfil\normalfont \normalcolor \beginL#5\endL}%
60.448 \par}%
60.449 \fi}

\l@part This standard macro was redefined for table of contents since it uses \rightskip
which is mode dependent.

60.450 \@ifclassloaded{letter}{}{% other
60.451 \@ifclassloaded{slides}{}{% other
60.452 \renewcommand*\l@part[2]{%
60.453 \ifnum \c@tocdepth >-2\relax
60.454 \addpenalty{-\@highpenalty}%
60.455 \addvspace{2.25em \@plus\p@}%
60.456 \begingroup
60.457 \setlength\@tempdima{3em}%
60.458 \parindent \z@ \if@rl\leftskip\else\rightskip\fi \@pnumwidth
60.459 \parfillskip -\@pnumwidth
60.460 {\leavevmode
60.461 \large \bfseries #1\hfil \hb@xt@\@pnumwidth{\hss#2}}\par
60.462 \nobreak
60.463 \global\@nobreaktrue
60.464 \everypar{\global\@nobreakfalse\everypar{}}%
60.465 \endgroup
60.466 \fi}}}

\@part Part is redefined to support new Right-to-Left table of contents (cot) as well as
the Left-to-Right one (toc).

60.467 \@ifclassloaded{article}{% article class
60.468 \def\@part[#1]#2{%
60.469 \ifnum \c@secnumdepth >\m@ne
60.470 \refstepcounter{part}%
60.471 \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}%
60.472 \addcontentsline{cot}{part}{\thepart\hspace{1em}#1}%
60.473 \else
60.474 \addcontentsline{toc}{part}{#1}%
60.475 \addcontentsline{cot}{part}{#1}%
60.476 \fi
60.477 {\parindent \z@ \raggedright

375

60.478 \interlinepenalty \@M
60.479 \normalfont
60.480 \ifnum \c@secnumdepth >\m@ne
60.481 \Large\bfseries \partname~\thepart
60.482 \par\nobreak
60.483 \fi
60.484 \huge \bfseries #2%
60.485 \markboth{}{}\par}%
60.486 \nobreak
60.487 \vskip 3ex
60.488 \@afterheading}%
60.489 }{% report and book classes
60.490 \def\@part[#1]#2{%
60.491 \ifnum \c@secnumdepth >-2\relax
60.492 \refstepcounter{part}%
60.493 \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}%
60.494 \addcontentsline{cot}{part}{\thepart\hspace{1em}#1}%
60.495 \else
60.496 \addcontentsline{toc}{part}{#1}%
60.497 \addcontentsline{cot}{part}{#1}%
60.498 \fi
60.499 \markboth{}{}%
60.500 {\centering
60.501 \interlinepenalty \@M
60.502 \normalfont
60.503 \ifnum \c@secnumdepth >-2\relax
60.504 \huge\bfseries \partname~\thepart
60.505 \par
60.506 \vskip 20\p@
60.507 \fi
60.508 \Huge \bfseries #2\par}%
60.509 \@endpart}}

\@sect Section was redefined from the latex.ltx file. It is changed to support both
Left-to-Right (toc) and Right-to-Left (cot) table of contents simultaneously.

60.510 \def\@sect#1#2#3#4#5#6[#7]#8{%
60.511 \ifnum #2>\c@secnumdepth
60.512 \let\@svsec\@empty
60.513 \else
60.514 \refstepcounter{#1}%
60.515 \protected@edef\@svsec{\@seccntformat{#1}\relax}%
60.516 \fi
60.517 \@tempskipa #5\relax
60.518 \ifdim \@tempskipa>\z@
60.519 \begingroup
60.520 #6{%
60.521 \@hangfrom{\hskip #3\relax\@svsec}%
60.522 \interlinepenalty \@M #8\@@par}%
60.523 \endgroup
60.524 \csname #1mark\endcsname{#7}%

376

60.525 \addcontentsline{toc}{#1}{%
60.526 \ifnum #2>\c@secnumdepth \else
60.527 \protect\numberline{\csname the#1\endcsname}%
60.528 \fi
60.529 #7}%
60.530 \addcontentsline{cot}{#1}{%
60.531 \ifnum #2>\c@secnumdepth \else
60.532 \protect\numberline{\csname the#1\endcsname}%
60.533 \fi
60.534 #7}%
60.535 \else
60.536 \def\@svsechd{%
60.537 #6{\hskip #3\relax
60.538 \@svsec #8}%
60.539 \csname #1mark\endcsname{#7}%
60.540 \addcontentsline{toc}{#1}{%
60.541 \ifnum #2>\c@secnumdepth \else
60.542 \protect\numberline{\csname the#1\endcsname}%
60.543 \fi
60.544 #7}%
60.545 \addcontentsline{cot}{#1}{%
60.546 \ifnum #2>\c@secnumdepth \else
60.547 \protect\numberline{\csname the#1\endcsname}%
60.548 \fi
60.549 #7}}%
60.550 \fi
60.551 \@xsect{#5}}

\@caption Caption was redefined from the latex.ltx file. It is changed to support Left-to-
Right list of figures and list of tables (lof and lot) as well as new Right-to-Left
lists (fol and tol) simultaneously.

60.552 \long\def\@caption#1[#2]#3{%
60.553 \par
60.554 \addcontentsline{\csname ext@#1\endcsname}{#1}%
60.555 {\protect\numberline{\csname the#1\endcsname}%
60.556 {\ignorespaces #2}}%
60.557 \def\@fignm{figure}
60.558 \ifx#1\@fignm\addcontentsline{fol}{#1}%
60.559 {\protect\numberline{\csname the#1\endcsname}%
60.560 {\ignorespaces #2}}\fi%
60.561 \def\@tblnm{table}
60.562 \ifx#1\@tblnm\addcontentsline{tol}{#1}%
60.563 {\protect\numberline{\csname the#1\endcsname}%
60.564 {\ignorespaces #2}}\fi%
60.565 \begingroup
60.566 \@parboxrestore
60.567 \if@minipage
60.568 \@setminipage
60.569 \fi
60.570 \normalsize

377

60.571 \@makecaption{\csname fnum@#1\endcsname}{\ignorespaces #3}\par
60.572 \endgroup}

\l@chapter This standard macro was redefined for table of contents since it uses \rightskip
which is mode dependent.

60.573 \@ifclassloaded{letter}{}{%
60.574 \@ifclassloaded{slides}{}{%
60.575 \@ifclassloaded{article}{}{%
60.576 \renewcommand*\l@chapter[2]{%
60.577 \ifnum \c@tocdepth >\m@ne
60.578 \addpenalty{-\@highpenalty}%
60.579 \vskip 1.0em \@plus\p@
60.580 \setlength\@tempdima{1.5em}%
60.581 \begingroup
60.582 \parindent \z@ \if@rl\leftskip\else\rightskip\fi \@pnumwidth
60.583 \parfillskip -\@pnumwidth
60.584 \leavevmode \bfseries
60.585 \advance\if@rl\rightskip\else\leftskip\fi\@tempdima
60.586 \hskip -\if@rl\rightskip\else\leftskip\fi
60.587 #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss#2}\par
60.588 \penalty\@highpenalty
60.589 \endgroup
60.590 \fi}}}}

\l@section
\l@subsection

\l@subsubsection
\l@paragraph

\l@subparagraph

The toc entry for section did not work in article style. Also it does not print dots,
which is funny when most of your work is divided into sections.

It was revised to use \@dottedtocline as in report.sty (by Yaniv Bargury)
and was updated later for all kinds of sections (by Boris Lavva).

60.591 \@ifclassloaded{article}{%
60.592 \renewcommand*\l@section{\@dottedtocline{1}{1.5em}{2.3em}}
60.593 \renewcommand*\l@subsection{\@dottedtocline{2}{3.8em}{3.2em}}
60.594 \renewcommand*\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}}
60.595 \renewcommand*\l@paragraph{\@dottedtocline{4}{10em}{5em}}
60.596 \renewcommand*\l@subparagraph{\@dottedtocline{5}{12em}{6em}}}{}

60.4.6 Two-column mode

This is the support of twocolumn option for the standard LATEX2ε classes.
The following code was originally borrowed from the ArabTEX package, file
latexext.sty, copyright by Klaus Lagally, Institut fuer Informatik, Universitaet
Stuttgart. It was updated for this package by Boris Lavva.

\@outputdblcol
\set@outputdblcol

rl@outputdblcol

First column is \@leftcolumn will be shown at the right side, Second column is
\@outputbox will be shown at the left side.

\set@outputdblcol IS CURRENTLY DISABLED. TODO: REMOVE IT
[tzafrir]

60.597 \let\@@outputdblcol\@outputdblcol
60.598 %\def\set@outputdblcol{%

378

60.599 % \if@rl\renewcommand{\@outputdblcol}{\rl@outputdblcol}%
60.600 % \else\renewcommand{\@outputdblcol}{\@@outputdblcol}\fi}
60.601 \renewcommand{\@outputdblcol}{%
60.602 \if@rlmain%
60.603 \rl@outputdblcol%
60.604 \else%
60.605 \@@outputdblcol%
60.606 \fi%
60.607 }
60.608 \newcommand{\rl@outputdblcol}{%
60.609 \if@firstcolumn
60.610 \global \@firstcolumnfalse
60.611 \global \setbox\@leftcolumn \box\@outputbox
60.612 \else
60.613 \global \@firstcolumntrue
60.614 \setbox\@outputbox \vbox {\hb@xt@\textwidth {%
60.615 \hskip\columnwidth%
60.616 \hfil\vrule\@width\columnseprule\hfil
60.617 \hb@xt@\columnwidth {%
60.618 \box\@leftcolumn \hss}%
60.619 \hb@xt@\columnwidth {%
60.620 \hskip-\textwidth%
60.621 \box\@outputbox \hss}%
60.622 \hskip\columnsep%
60.623 \hskip\columnwidth}}%
60.624 \@combinedblfloats
60.625 \@outputpage
60.626 \begingroup
60.627 \@dblfloatplacement
60.628 \@startdblcolumn
60.629 \@whilesw\if@fcolmade \fi
60.630 {\@outputpage
60.631 \@startdblcolumn}%
60.632 \endgroup
60.633 \fi}

60.4.7 Footnotes

\footnoterule The Right-to-Left footnote rule is simply reversed default Left-to-Right one. Foot-
notes can be used in RL or LR main modes, but changing mode while a footnote
is pending is still unsolved.

60.634 \let\@@footnoterule=\footnoterule
60.635 \def\footnoterule{\if@rl\hb@xt@\hsize{\hss\vbox{\@@footnoterule}}%
60.636 \else\@@footnoterule\fi}

60.4.8 Headings and two-side support

When using headings or myheadings modes, we have to ensure that the language
and direction of heading is the same as the whole chapter/part of the document.

379

This is implementing by setting special variable \headlanguage when starting
new chapter/part.

In addition, when selecting the twoside option (default in book document
class), the LR and RL modes need to be set properly for things on the heading
and footing. This is done here too.

ps@headings
ps@myheadings

headeven
headodd

First, we will support the standard letter class:
60.637 \@ifclassloaded{letter}{%
60.638 \def\headodd{\protect\if@rl\beginR\fi\headtoname{}
60.639 \ignorespaces\toname
60.640 \hfil \@date
60.641 \hfil \pagename{} \thepage\protect\if@rl\endR\fi}
60.642 \if@twoside
60.643 \def\ps@headings{%
60.644 \let\@oddfoot\@empty\let\@evenfoot\@empty
60.645 \def\@oddhead{\select@language{\headlanguage}\headodd}
60.646 \let\@evenhead\@oddhead}
60.647 \else
60.648 \def\ps@headings{%
60.649 \let\@oddfoot\@empty
60.650 \def\@oddhead{\select@language{\headlanguage}\headodd}}
60.651 \fi
60.652 \def\headfirst{\protect\if@rl\beginR\fi\fromlocation \hfill %
60.653 \telephonenum\protect\if@rl\endR\fi}
60.654 \def\ps@firstpage{%
60.655 \let\@oddhead\@empty
60.656 \def\@oddfoot{\raisebox{-45\p@}[\z@]{%
60.657 \hb@xt@\textwidth{\hspace*{100\p@}%
60.658 \ifcase \@ptsize\relax
60.659 \normalsize
60.660 \or
60.661 \small
60.662 \or
60.663 \footnotesize
60.664 \fi
60.665 \select@language{\headlanguage}\headfirst}}\hss}}
60.666 %
60.667 \renewcommand{\opening}[1]{%
60.668 \let\headlanguage=\languagename%
60.669 \ifx\@empty\fromaddress%
60.670 \thispagestyle{firstpage}%
60.671 {\raggedleft\@date\par}%
60.672 \else % home address
60.673 \thispagestyle{empty}%
60.674 {\raggedleft
60.675 \if@rl\begin{tabular}{@{\beginR\csname%
60.676 to\@rllanguagename\endcsname}r@{\endR}}\ignorespaces
60.677 \fromaddress *[2\parskip]%
60.678 \@date \end{tabular}\par%

380

60.679 \else\begin{tabular}{l}\ignorespaces
60.680 \fromaddress *[2\parskip]%
60.681 \@date \end{tabular}\par%
60.682 \fi}%
60.683 \fi
60.684 \vspace{2\parskip}%
60.685 {\raggedright \toname \\ \toaddress \par}%
60.686 \vspace{2\parskip}%
60.687 #1\par\nobreak}
60.688 }

Then, the article, report and book document classes are supported. Note, that
in one-sided mode \markright was changed to \markboth.

60.689 {% article, report, book
60.690 \def\headeven{\protect\if@rl\beginR\thepage\hfil\rightmark\endR
60.691 \protect\else\thepage\hfil{\slshape\leftmark}
60.692 \protect\fi}
60.693 \def\headodd{\protect\if@rl\beginR\leftmark\hfil\thepage\endR
60.694 \protect\else{\slshape\rightmark}\hfil\thepage
60.695 \protect\fi}
60.696 \@ifclassloaded{article}{% article
60.697 \if@twoside % two-sided
60.698 \def\ps@headings{%
60.699 \let\@oddfoot\@empty\let\@evenfoot\@empty
60.700 \def\@evenhead{\select@language{\headlanguage}\headeven}%
60.701 \def\@oddhead{\select@language{\headlanguage}\headodd}%
60.702 \let\@mkboth\markboth
60.703 \def\sectionmark##1{%
60.704 \markboth {\MakeUppercase{%
60.705 \ifnum \c@secnumdepth >\z@
60.706 \thesection\quad
60.707 \fi
60.708 ##1}}{}}%
60.709 \def\subsectionmark##1{%
60.710 \markright{%
60.711 \ifnum \c@secnumdepth >\@ne
60.712 \thesubsection\quad
60.713 \fi
60.714 ##1}}}
60.715 \else % one-sided
60.716 \def\ps@headings{%
60.717 \let\@oddfoot\@empty
60.718 \def\@oddhead{\headodd}%
60.719 \let\@mkboth\markboth
60.720 \def\sectionmark##1{%
60.721 \markboth{\MakeUppercase{%
60.722 \ifnum \c@secnumdepth >\m@ne
60.723 \thesection\quad
60.724 \fi
60.725 ##1}}{\MakeUppercase{%

381

60.726 \ifnum \c@secnumdepth >\m@ne
60.727 \thesection\quad
60.728 \fi
60.729 ##1}}}}
60.730 \fi
60.731 %
60.732 \def\ps@myheadings{%
60.733 \let\@oddfoot\@empty\let\@evenfoot\@empty
60.734 \def\@evenhead{\select@language{\headlanguage}\headeven}%
60.735 \def\@oddhead{\select@language{\headlanguage}\headodd}%
60.736 \let\@mkboth\@gobbletwo
60.737 \let\sectionmark\@gobble
60.738 \let\subsectionmark\@gobble
60.739 }}{% report and book
60.740 \if@twoside % two-sided
60.741 \def\ps@headings{%
60.742 \let\@oddfoot\@empty\let\@evenfoot\@empty
60.743 \def\@evenhead{\select@language{\headlanguage}\headeven}
60.744 \def\@oddhead{\select@language{\headlanguage}\headodd}
60.745 \let\@mkboth\markboth
60.746 \def\chaptermark##1{%
60.747 \markboth{\MakeUppercase{%
60.748 \ifnum \c@secnumdepth >\m@ne
60.749 \@chapapp\ \thechapter. \ %
60.750 \fi
60.751 ##1}}{}}%
60.752 \def\sectionmark##1{%
60.753 \markright {\MakeUppercase{%
60.754 \ifnum \c@secnumdepth >\z@
60.755 \thesection. \ %
60.756 \fi
60.757 ##1}}}}
60.758 \else % one-sided
60.759 \def\ps@headings{%
60.760 \let\@oddfoot\@empty
60.761 \def\@oddhead{\select@language{\headlanguage}\headodd}
60.762 \let\@mkboth\markboth
60.763 \def\chaptermark##1{%
60.764 \markboth{\MakeUppercase{%
60.765 \ifnum \c@secnumdepth >\m@ne
60.766 \@chapapp\ \thechapter. \ %
60.767 \fi
60.768 ##1}}{\MakeUppercase{%
60.769 \ifnum \c@secnumdepth >\m@ne
60.770 \@chapapp\ \thechapter. \ %
60.771 \fi
60.772 ##1}}}}
60.773 \fi
60.774 \def\ps@myheadings{%
60.775 \let\@oddfoot\@empty\let\@evenfoot\@empty

382

60.776 \def\@evenhead{\select@language{\headlanguage}\headeven}%
60.777 \def\@oddhead{\select@language{\headlanguage}\headodd}%
60.778 \let\@mkboth\@gobbletwo
60.779 \let\chaptermark\@gobble
60.780 \let\sectionmark\@gobble
60.781 }}}

60.4.9 Postscript Porblems

Any command that is implemented by PostScript directives, e.g commands from
the ps-tricks package, needs to be fixed, because the PostScript directives are being
interpeted after the document has been converted by TEXto visual Hebrew (DVI,
PostScript and PDF have visual Hebrew).

For instance: Suppose you wrote in your document:
\textcolor{cyan}{some ltr text}
This would be interpeted by TEXto something like:
[postscript:make color cyan]some LTR text[postscript:make color black]
However, with the bidirectionality support we get:
\textcolor{cyan}{\hebalef\hebbet}
Translated to:
[postscript:make color black]{bet}{alef}[postscript:make color cyan]
While we want:
[postscript:make color cyan]{bet}{alef}[postscript:make color black]
The following code will probably work at least with code that stays in the same

line:

@textcolor

60.782 \AtBeginDocument{%
60.783 %I assume that \@textcolor is only defined by the package color
60.784 \ifx\@textcolor\@undefined\else%
60.785 % If that macro was defined before the beginning of the document,
60.786 % that is: the package was loaded: redefine it with bidi support
60.787 \def\@textcolor#1#2#3{%
60.788 \if@rl%
60.789 \beginL\protect\leavevmode{\color#1{#2}\beginR#3\endR}\endL%
60.790 \else%
60.791 \protect\leavevmode{\color#1{#2}#3}%
60.792 \fi%
60.793 }%
60.794 \fi%
60.795 }
60.796 % \end{macrocode}
60.797 % \end{macro}
60.798 % \begin{macro}{\thetrueSlideCounter}
60.799 % This macro probably needs to be overriden for when using |prosper|,
60.800 % (waiting for feedback. Tzafrir)
60.801 % \begin{macrocode}
60.802 \@ifclassloaded{prosper}{%

383

60.803 \def\thetrueSlideCounter{\arabicnorl{trueSlideCounter}}
60.804 }{}

60.4.10 Miscellaneous internal LATEX macros

\raggedright
\raggedleft

\raggedright was changed from latex.ltx file to support Right-to-Left mode,
because of the bug in its implementation.

60.805 \def\raggedright{%
60.806 \let\\\@centercr
60.807 \leftskip\z@skip\rightskip\@flushglue
60.808 \parindent\z@\parfillskip\z@skip}

Swap meanings of \raggedright and \raggedleft in Right-to-Left mode.
60.809 \let\@@raggedleft=\raggedleft
60.810 \let\@@raggedright=\raggedright
60.811 \renewcommand\raggedleft{\if@rl\@@raggedright%
60.812 \else\@@raggedleft\fi}
60.813 \renewcommand\raggedright{\if@rl\@@raggedleft%
60.814 \else\@@raggedright\fi}

\author \author is inserted with tabular environment, and will be used in restricted
horizontal mode. Therefore we have to add explicit direction change command
when in Right-to-Left mode.

60.815 \let\@@author=\author
60.816 \renewcommand{\author}[1]{\@@author{\if@rl\beginR #1\endR\else #1\fi}}

\MakeUppercase
\MakeLowercase

There are no uppercase and lowercase letters in most Right-to-Left languages,
therefore we should redefine \MakeUppercase and \MakeLowercase LATEX2ε com-
mands.

60.817 \let\@@MakeUppercase=\MakeUppercase
60.818 \def\MakeUppercase#1{\if@rl#1\else\@@MakeUppercase{#1}\fi}
60.819 \let\@@MakeLowercase=\MakeLowercase
60.820 \def\MakeLowercase#1{\if@rl#1\else\@@MakeLowercase{#1}\fi}

\underline We should explicitly use \L and \R commands in \underlined text.
60.821 \let\@@@underline=\underline
60.822 \def\underline#1{\@@@underline{\if@rl\R{#1}\else #1\fi}}

\undertext was added for LATEX2.09 compatibility mode.
60.823 \if@compatibility
60.824 \let\undertext=\underline
60.825 \fi

\@xnthm
\@opargbegintheorem

The following has been inserted to correct the appearance of the number in
\newtheorem to reorder theorem number components. A similar correction in
the definition of \@opargbegintheorem was added too.

60.826 \def\@xnthm#1#2[#3]{%
60.827 \expandafter\@ifdefinable\csname #1\endcsname

384

60.828 {\@definecounter{#1}\@addtoreset{#1}{#3}%
60.829 \expandafter\xdef\csname the#1\endcsname{\noexpand\@number
60.830 {\expandafter\noexpand\csname the#3\endcsname \@thmcountersep
60.831 \@thmcounter{#1}}}%
60.832 \global\@namedef{#1}{\@thm{#1}{#2}}%
60.833 \global\@namedef{end#1}{\@endtheorem}}}
60.834 %
60.835 \def\@opargbegintheorem#1#2#3{%
60.836 \trivlist
60.837 \item[\hskip \labelsep{\bfseries #1\ #2\
60.838 \@brackets({#3})}]\itshape}

\@chapter
\@schapter

The following was added for pretty printing of the chapter numbers, for supporting
Right-to-Left tables (cot, fol, and tol), to save \headlanguage for use in running
headers, and to start two-column mode depending on chapter’s main language.

60.839 \@ifclassloaded{article}{}{%
60.840 % For pretty priniting
60.841 \def\@@chapapp{Chapter}
60.842 \def\@@thechapter{\@@arabic\c@chapter}
60.843 \def\@chapter[#1]#2{%
60.844 \let\headlanguage=\languagename%
60.845 %\set@outputdblcol%
60.846 \ifnum \c@secnumdepth >\m@ne
60.847 \refstepcounter{chapter}%
60.848 \typeout{\@@chapapp\space\@@thechapter.}%
60.849 \addcontentsline{toc}{chapter}%
60.850 {\protect\numberline{\thechapter}#1}
60.851 \addcontentsline{cot}{chapter}%
60.852 {\protect\numberline{\thechapter}#1}
60.853 \else
60.854 \addcontentsline{toc}{chapter}{#1}%
60.855 \addcontentsline{cot}{chapter}{#1}%
60.856 \fi
60.857 \chaptermark{#1}
60.858 \addtocontents{lof}{\protect\addvspace{10\p@}}%
60.859 \addtocontents{fol}{\protect\addvspace{10\p@}}%
60.860 \addtocontents{lot}{\protect\addvspace{10\p@}}%
60.861 \addtocontents{tol}{\protect\addvspace{10\p@}}%
60.862 \if@twocolumn
60.863 \@topnewpage[\@makechapterhead{#2}]%
60.864 \else
60.865 \@makechapterhead{#2}%
60.866 \@afterheading
60.867 \fi}
60.868 %
60.869 \def\@schapter#1{%
60.870 \let\headlanguage=\languagename%
60.871 %\set@outputdblcol%
60.872 \if@twocolumn
60.873 \@topnewpage[\@makeschapterhead{#1}]%

385

60.874 \else
60.875 \@makeschapterhead{#1}%
60.876 \@afterheading
60.877 \fi}}

\appendix Changed mainly for pretty printing of appendix numbers, and to start two-column
mode with the right language (if needed).

60.878 \@ifclassloaded{letter}{}{% other
60.879 \@ifclassloaded{slides}{}{% other
60.880 \@ifclassloaded{article}{% article
60.881 \renewcommand\appendix{\par
60.882 \setcounter{section}{0}%
60.883 \setcounter{subsection}{0}%
60.884 \renewcommand\thesection{\@Alph\c@section}}
60.885 }{% report and book
60.886 \renewcommand\appendix{\par
60.887 %\set@outputdblcol%
60.888 \setcounter{chapter}{0}%
60.889 \setcounter{section}{0}%
60.890 \renewcommand\@chapapp{\appendixname}%
60.891 % For pretty priniting
60.892 \def\@@chapapp{Appendix}%
60.893 \def\@@thechapter{\@@Alph\c@chapter}
60.894 \renewcommand\thechapter{\@Alph\c@chapter}}}}}

60.4.11 Bibliography and citations

\@cite
\@biblabel
\@lbibitem

Citations are produced by the macro \@cite{LABEL}{NOTE}. Both the citation
label and the note is typeset in the current direction. We have to use \@brackets
macro in \@cite and \@biblabel macros. In addition, when using alpha or similar
bibliography style, the \@lbibitem is used and have to be update to support bot
Right-to-Left and Left-to-Right citations.

60.895 \def\@cite#1#2{\@brackets[{#1\if@tempswa , #2\fi}]}
60.896 \def\@biblabel#1{\@brackets[{#1}]}
60.897 \def\@lbibitem[#1]#2{\item[\@biblabel{#1}\hfill]\if@filesw
60.898 {\let\protect\noexpand
60.899 \immediate
60.900 \if@rl\write\@auxout{\string\bibcite{#2}{\R{#1}}}%
60.901 \else\write\@auxout{\string\bibcite{#2}{\L{#1}}}\fi%
60.902 }\fi\ignorespaces}

thebibliography Use \rightmargin instead of \leftmargin when in RL mode.
60.903 \@ifclassloaded{letter}{}{% other
60.904 \@ifclassloaded{slides}{}{% other
60.905 \@ifclassloaded{article}{%
60.906 \renewenvironment{thebibliography}[1]
60.907 {\section*{\refname\@mkboth%
60.908 {\MakeUppercase\refname}%
60.909 {\MakeUppercase\refname}}%

386

60.910 \list{\@biblabel{\@arabic\c@enumiv}}%
60.911 {\settowidth\labelwidth{\@biblabel{#1}}%
60.912 \if@rl\leftmargin\else\rightmargin\fi\labelwidth
60.913 \advance\if@rl\leftmargin\else\rightmargin\fi\labelsep
60.914 \@openbib@code
60.915 \usecounter{enumiv}%
60.916 \let\p@enumiv\@empty
60.917 \renewcommand\theenumiv{\@arabic\c@enumiv}}%
60.918 \sloppy
60.919 \clubpenalty4000
60.920 \@clubpenalty \clubpenalty
60.921 \widowpenalty4000%
60.922 \sfcode‘\.\@m}
60.923 {\def\@noitemerr
60.924 {\@latex@warning{Empty ‘thebibliography’ environment}}%
60.925 \endlist}}%
60.926 {\renewenvironment{thebibliography}[1]{%
60.927 \chapter*{\bibname\@mkboth%
60.928 {\MakeUppercase\bibname}%
60.929 {\MakeUppercase\bibname}}%
60.930 \list{\@biblabel{\@arabic\c@enumiv}}%
60.931 {\settowidth\labelwidth{\@biblabel{#1}}%
60.932 \if@rl\leftmargin\else\rightmargin\fi\labelwidth
60.933 \advance\if@rl\leftmargin\else\rightmargin\fi\labelsep
60.934 \@openbib@code
60.935 \usecounter{enumiv}%
60.936 \let\p@enumiv\@empty
60.937 \renewcommand\theenumiv{\@arabic\c@enumiv}}%
60.938 \sloppy
60.939 \clubpenalty4000
60.940 \@clubpenalty \clubpenalty
60.941 \widowpenalty4000%
60.942 \sfcode‘\.\@m}
60.943 {\def\@noitemerr
60.944 {\@latex@warning{Empty ‘thebibliography’ environment}}%
60.945 \endlist}}}}

\@verbatim All kinds of verbs (\verb,\verb*,verbatim and verbatim*) now can be used in
Right-to-Left mode. Errors in latin mode solved too.

60.946 \def\@verbatim{%
60.947 \let\do\@makeother \dospecials%
60.948 \obeylines \verbatim@font \@noligs}

\@makecaption Captions are set always centered. This allows us to use bilingual captions, for
example: \caption{\R{RLtext} \\ \L{LRtext}}, which will be formatted as:

Right to left caption here (RLtext)
Left to right caption here (LRtext)

See also \bcaption command below.

387

60.949 \long\def\@makecaption#1#2{%
60.950 \vskip\abovecaptionskip%
60.951 \begin{center}%
60.952 #1: #2%
60.953 \end{center} \par%
60.954 \vskip\belowcaptionskip}

60.4.12 Additional bidirectional commands

• Section headings are typeset with the default global direction.

• Text in section headings in the reverse language do not have to be protected
for the reflection command, as in: \protect\L{Latin Text}, because \L and
\R are robust now.

• Table of contents, list of figures and list of tables should be typeset with
the \tableofcontents, \listoffigures and \listoftables commands
respectively.

• The above tables will be typeset in the main direction (and language) in
effect where the above commands are placed.

• Only 2 tables of each kind are supported: one for Right-to-Left and another
for Left-to-Right directions.

How to include line to both tables? One has to use bidirectional sectioning
commands as following:

1. Use the \bxxx version of the sectioning commands in the text instead of
the \xxx version (xxx is one of: part, chapter, section, subsection,
subsubsection, caption).

2. Syntax of the \bxxx command is \bxxx{RL text}{LR text}. Both arguments
are typeset in proper direction by default (no need to change direction for
the text inside).

3. The section header inside the document will be typeset in the global direction
in effect at the time. i.e. The {RL text} will be typeset if Right-to-Left mode
is in effect and {LR text} otherwise.

\bpart

60.955 \newcommand{\bpart}[2]{\part{\protect\if@rl%
60.956 #1 \protect\else #2 \protect\fi}}

\bchapter

60.957 \newcommand{\bchapter}[2]{\chapter{\protect\if@rl%
60.958 #1 \protect\else #2 \protect\fi}}

\bsection

60.959 \newcommand{\bsection}[2]{\section{\protect\if@rl%
60.960 #1 \protect\else #2 \protect\fi}}

388

\bsubsection

60.961 \newcommand{\bsubsection}[2]{\subsection{\protect\if@rl%
60.962 #1 \protect\else #2 \protect\fi}}

\bsubsubsection

60.963 \newcommand{\bsubsubsection}[2]{\subsubsection{\protect\if@rl%
60.964 #1 \protect\else #2 \protect\fi}}

\bcaption

60.965 \newcommand{\bcaption}[2]{%
60.966 \caption[\protect\if@rl \R{#1}\protect\else \L{#2}\protect\fi]{%
60.967 \if@rl\R{#1}\protect\\ \L{#2}
60.968 \else\L{#2}\protect\\ \R{#1}\fi}}

The following definition is a modified version of \bchapter, meant as a bilin-
gual twin for \chapter* and \section* (added by Irina Abramovici).

\bchapternn

60.969 \newcommand{\bchapternn}[2]{\chapter*{\protect\if@rl%
60.970 #1 \protect\else #2 \protect\fi}}

\bsectionnn

60.971 \newcommand{\bsectionnn}[2]{\section*{\protect\if@rl%
60.972 #1 \protect\else #2 \protect\fi}}

Finally, at end of babel package, the \headlanguage and two-column mode
will be initialized according to the current language.

60.973 \AtEndOfPackage{\rlAtEndOfPackage}
60.974 %
60.975 \def\rlAtEndOfPackage{%
60.976 \global\let\headlanguage=\languagename%\set@outputdblcol%
60.977 }
60.978 〈/rightleft〉

60.5 Hebrew calendar
The original version of the package hebcal.sty70 for TEX and LATEX2.09, entitled
“TEX & LATEX macros for computing Hebrew date from Gregorian one” was created
by Michail Rozman, misha@iop.tartu.ew.su71

Released: Tammuz 12, 5751–June 24, 1991
Corrected: Shebat 10, 5752–January 15, 1992 by Rama Porrat
Corrected: Adar II 5, 5752–March 10, 1992 by Misha
Corrected: Tebeth, 5756–January 1996 Dan Haran

(haran@math.tau.ac.il)

70The following description of hebcal package is based on the comments included with original
source by the author, Michail Rozman.

71Please direct any comments, bug reports, questions, etc. about the package to this address.

389

The package was adjusted for babel and LATEX2ε by Boris Lavva.
Changes to the printing routine (only) by Ron Artstein, June 1, 2003.
This package should be included after the babel with hebrew option, as fol-

lowing:

\documentclass[. . .]{. . . }
\usepackage[hebrew,. . . ,other languages, . . .]{babel}
\usepackage{hebcal}

Two main user-level commands are provided by this package:
Computes today’s Hebrew date and prints it. If we are presently in Hebrew\Hebrewtoday

mode, the date will be printed in Hebrew, otherwise — in English (like Shebat 10,
5752).

Computes the Hebrew date from the given Gregorian date and prints it. If we\Hebrewdate
are presently in Hebrew mode, the date will be printed in Hebrew, otherwise —
in English (like Shebat 10, 5752). An example of usage is shown below:

\newcount\hd \newcount\hm \newcount\hy
\hd=10 \hm=3 \hy=1992
\Hebrewdate{\hd}{\hm}{\hy}

The package option full sets the flag \@full@hebrew@year, which causesfull
years from the current millenium to be printed with the thousands digit (he-
tav-shin-samekh-gimel). Without this option, thousands are not printed for the
current millenium. NOTE: should this be a command option rather than a package
option? –RA.

60.5.1 Introduction

The Hebrew calendar is inherently complicated: it is lunisolar – each year starts
close to the autumn equinox, but each month must strictly start at a new moon.
Thus Hebrew calendar must be harmonized simultaneously with both lunar and
solar events. In addition, for reasons of the religious practice, the year cannot
start on Sunday, Wednesday or Friday.

For the full description of Hebrew calendar and for the list of references see:

Nachum Dershowitz and Edward M. Reingold, “Calendarical Calcu-
lations”, Software–Pract.Exper., vol. 20 (9), pp.899–928 (September
1990).

C translation of LISP programs from the above article available from Mr. Wayne
Geiser, geiser%pictel@uunet.uu.net.

The 4th distribution (July 1989) of hdate/hcal (Hebrew calendar programs
similar to UNIX date/cal) by Mr. Amos Shapir, amos@shum.huji.ac.il, contains
short and very clear description of algorithms.

390

60.5.2 Registers, Commands, Formatting Macros

The command \Hebrewtoday produces today’s date for Hebrew calendar. It is
similar to the standard LATEX2ε command \today. In addition three numerical
registers \Hebrewday, \Hebrewmonth and \Hebrewyear are set. For setting this
registers without producing of date string command \Hebrewsetreg can be used.

The command \Hebrewdate{Gday}{Gmonth}{Gyear} produces Hebrew cal-
endar date corresponding to Gregorian date Gday.Gmonth.Gyear. Three numeri-
cal registers \Hebrewday, \Hebrewmonth and \Hebrewyear are set.

For converting arbitrary Gregorian date Gday.Gmonth.Gyear to Hebrew date
Hday.Hmonth.Hyear without producing date string the command:

\HebrewFromGregorian{Gday}{Gmonth}{ Gyear}{Hday}{Hmonth}{Hyear}

can be used.
60.979 〈∗calendar〉
60.980 \newif\if@full@hebrew@year
60.981 \@full@hebrew@yearfalse
60.982 \DeclareOption{full}{\@full@hebrew@yeartrue}
60.983 \ProcessOptions
60.984 \newcount\Hebrewday \newcount\Hebrewmonth \newcount\Hebrewyear

\Hebrewdate Hebrew calendar date corresponding to Gregorian date Gday.Gmonth.Gyear. If
Hebrew (right-to-left) fonts & macros are not loaded, we have to use English
format.

60.985 \def\Hebrewdate#1#2#3{%
60.986 \HebrewFromGregorian{#1}{#2}{#3}
60.987 {\Hebrewday}{\Hebrewmonth}{\Hebrewyear}%
60.988 \ifundefined{if@rl}%
60.989 \FormatForEnglish{\Hebrewday}{\Hebrewmonth}{\Hebrewyear}%
60.990 \else%
60.991 \FormatDate{\Hebrewday}{\Hebrewmonth}{\Hebrewyear}%
60.992 \fi}

\Hebrewtoday Today’s date in Hebrew calendar.
60.993 \def\Hebrewtoday{\Hebrewdate{\day}{\month}{\year}}
60.994 \let\hebrewtoday=\Hebrewtoday

\Hebrewsetreg Set registers: today’s date in hebrew calendar.
60.995 \def\Hebrewsetreg{%
60.996 \HebrewFromGregorian{\day}{\month}{\year}
60.997 {\Hebrewday}{\Hebrewmonth}{\Hebrewyear}}

\FormatDate Prints a Hebrew calendar date Hebrewday.Hebrewmonth.Hebrewyear.
60.998 \def\FormatDate#1#2#3{%
60.999 \if@rl%

60.1000 \FormatForHebrew{#1}{#2}{#3}%
60.1001 \else%
60.1002 \FormatForEnglish{#1}{#2}{#3}
60.1003 \fi}

391

To prepare another language version of Hebrew calendar commands, one should
change or add commands here.

We start with Hebrew language macros.

\HebrewYearName Prints Hebrew year as a Hebrew number. Disambiguates strings by adding lamed-
pe-gimel to years of the first Jewish millenium and to years divisible by 1000.
Suppresses the thousands digit in the current millenium unless the package option
full is selected. NOTE: should this be provided as a command option rather
than a package option? –RA.

60.1004 \def\HebrewYearName#1{{%
60.1005 \@tempcnta=#1\divide\@tempcnta by 1000\multiply\@tempcnta by 1000
60.1006 \ifnum#1=\@tempcnta\relax % divisible by 1000: disambiguate
60.1007 \Hebrewnumeralfinal{#1}\)\heblamed\hebpe"\hebgimel(%
60.1008 \else % not divisible by 1000
60.1009 \ifnum#1<1000\relax % first millennium: disambiguate
60.1010 \Hebrewnumeralfinal{#1}\)\heblamed\hebpe"\hebgimel(%
60.1011 \else
60.1012 \ifnum#1<5000
60.1013 \Hebrewnumeralfinal{#1}%
60.1014 \else
60.1015 \ifnum#1<6000 % current millenium, print without thousands
60.1016 \@tempcnta=#1\relax
60.1017 \if@full@hebrew@year\else\advance\@tempcnta by -5000\fi
60.1018 \Hebrewnumeralfinal{\@tempcnta}%
60.1019 \else % #1>6000
60.1020 \Hebrewnumeralfinal{#1}%
60.1021 \fi
60.1022 \fi
60.1023 \fi
60.1024 \fi}}

\HebrewMonthName The macro \HebrewMonthName{month}{year} returns the name of month in the
‘year’.

60.1025 \def\HebrewMonthName#1#2{%
60.1026 \ifnum #1 = 7 %
60.1027 \CheckLeapHebrewYear{#2}%
60.1028 \if@HebrewLeap \hebalef\hebdalet\hebresh\ \hebbet’%
60.1029 \else \hebalef\hebdalet\hebresh%
60.1030 \fi%
60.1031 \else%
60.1032 \ifcase#1%
60.1033 % nothing for 0
60.1034 \or\hebtav\hebshin\hebresh\hebyod%
60.1035 \or\hebhet\hebshin\hebvav\hebfinalnun%
60.1036 \or\hebkaf\hebsamekh\heblamed\hebvav%
60.1037 \or\hebtet\hebbet\hebtav%
60.1038 \or\hebshin\hebbet\hebtet%
60.1039 \or\hebalef\hebdalet\hebresh\ \hebalef’%
60.1040 \or\hebalef\hebdalet\hebresh\ \hebbet’%

392

60.1041 \or\hebnun\hebyod\hebsamekh\hebfinalnun%
60.1042 \or\hebalef\hebyod\hebyod\hebresh%
60.1043 \or\hebsamekh\hebyod\hebvav\hebfinalnun%
60.1044 \or\hebtav\hebmem\hebvav\hebzayin%
60.1045 \or\hebalef\hebbet%
60.1046 \or\hebalef\heblamed\hebvav\heblamed%
60.1047 \fi%
60.1048 \fi}

\HebrewDayName Name of day in Hebrew letters (gimatria).
60.1049 \def\HebrewDayName#1{\Hebrewnumeral{#1}}

\FormatForHebrew The macro \FormatForHebrew{hday}{hmonth }{hyear} returns the formatted
Hebrew date in Hebrew language.

60.1050 \def\FormatForHebrew#1#2#3{%
60.1051 \HebrewDayName{#1}~\hebbet\HebrewMonthName{#2}{#3},~%
60.1052 \HebrewYearName{#3}}

We continue with two English language macros for Hebrew calendar.

\HebrewMonthNameInEnglish The macro \HebrewMonthNameInEnglish{month}{ year} is similar to \Hebrew-
MonthName described above. It returns the name of month in the Hebrew ‘year’
in English.

60.1053 \def\HebrewMonthNameInEnglish#1#2{%
60.1054 \ifnum #1 = 7%
60.1055 \CheckLeapHebrewYear{#2}%
60.1056 \if@HebrewLeap Adar II\else Adar\fi%
60.1057 \else%
60.1058 \ifcase #1%
60.1059 % nothing for 0
60.1060 \or Tishrei%
60.1061 \or Heshvan%
60.1062 \or Kislev%
60.1063 \or Tebeth%
60.1064 \or Shebat%
60.1065 \or Adar I%
60.1066 \or Adar II%
60.1067 \or Nisan%
60.1068 \or Iyar%
60.1069 \or Sivan%
60.1070 \or Tammuz%
60.1071 \or Av%
60.1072 \or Elul%
60.1073 \fi
60.1074 \fi}

\FormatForEnglish The macro \FormatForEnglish{hday}{hmonth }{hyear} is similar to \Format-
ForHebrew macro described above and returns the formatted Hebrew date in En-
glish.

393

60.1075 \def\FormatForEnglish#1#2#3{%
60.1076 \HebrewMonthNameInEnglish{#2}{#3} \number#1,\ \number#3}

60.5.3 Auxiliary Macros

60.1077 \newcount\@common

\Remainder \Remainder{a}{b}{c} calculates c = a%b == a− b× a
b

60.1078 \def\Remainder#1#2#3{%
60.1079 #3 = #1% % c = a
60.1080 \divide #3 by #2% % c = a/b
60.1081 \multiply #3 by -#2% % c = -b(a/b)
60.1082 \advance #3 by #1}% % c = a - b(a/b)

60.1083 \newif\if@Divisible

\CheckIfDivisible \CheckIfDivisible{a}{b} sets \@Divisibletrue if a%b == 0
60.1084 \def\CheckIfDivisible#1#2{%
60.1085 {%
60.1086 \countdef\tmp = 0% \tmp == \count0 - temporary variable
60.1087 \Remainder{#1}{#2}{\tmp}%
60.1088 \ifnum \tmp = 0%
60.1089 \global\@Divisibletrue%
60.1090 \else%
60.1091 \global\@Divisiblefalse%
60.1092 \fi}}

\ifundefined From the TEXbook, ex. 7.7:

\ifundefined{command}<true text>\else<false text>\fi

60.1093 \def\ifundefined#1{\expandafter\ifx\csname#1\endcsname\relax}

60.5.4 Gregorian Part

60.1094 \newif\if@GregorianLeap

\IfGregorianLeap Conditional which is true if Gregorian ‘year’ is a leap year: ((year%4 == 0) ∧
(year%100 6= 0)) ∨ (year%400 == 0)

60.1095 \def\IfGregorianLeap#1{%
60.1096 \CheckIfDivisible{#1}{4}%
60.1097 \if@Divisible%
60.1098 \CheckIfDivisible{#1}{100}%
60.1099 \if@Divisible%
60.1100 \CheckIfDivisible{#1}{400}%
60.1101 \if@Divisible%
60.1102 \@GregorianLeaptrue%
60.1103 \else%
60.1104 \@GregorianLeapfalse%
60.1105 \fi%
60.1106 \else%

394

60.1107 \@GregorianLeaptrue%
60.1108 \fi%
60.1109 \else%
60.1110 \@GregorianLeapfalse%
60.1111 \fi%
60.1112 \if@GregorianLeap}

\GregorianDaysInPriorMonths The macro \GregorianDaysInPriorMonths{month}{year}{days} calculates the
number of days in months prior to ‘month’ in the ‘year’.

60.1113 \def\GregorianDaysInPriorMonths#1#2#3{%
60.1114 {%
60.1115 #3 = \ifcase #1%
60.1116 0 \or% % no month number 0
60.1117 0 \or%
60.1118 31 \or%
60.1119 59 \or%
60.1120 90 \or%
60.1121 120 \or%
60.1122 151 \or%
60.1123 181 \or%
60.1124 212 \or%
60.1125 243 \or%
60.1126 273 \or%
60.1127 304 \or%
60.1128 334%
60.1129 \fi%
60.1130 \IfGregorianLeap{#2}%
60.1131 \ifnum #1 > 2% % if month after February
60.1132 \advance #3 by 1% % add leap day
60.1133 \fi%
60.1134 \fi%
60.1135 \global\@common = #3}%
60.1136 #3 = \@common}

\GregorianDaysInPriorYears The macro \GregorianDaysInPriorYears{year}{days} calculates the number of
days in years prior to the ‘year’.

60.1137 \def\GregorianDaysInPriorYears#1#2{%
60.1138 {%
60.1139 \countdef\tmpc = 4% % \tmpc==\count4
60.1140 \countdef\tmpb = 2% % \tmpb==\count2
60.1141 \tmpb = #1% %
60.1142 \advance \tmpb by -1% %
60.1143 \tmpc = \tmpb% % \tmpc = \tmpb = year-1
60.1144 \multiply \tmpc by 365% % Days in prior years =
60.1145 #2 = \tmpc% % = 365*(year-1) ...
60.1146 \tmpc = \tmpb% %
60.1147 \divide \tmpc by 4% % \tmpc = (year-1)/4
60.1148 \advance #2 by \tmpc% % ... plus Julian leap days ...
60.1149 \tmpc = \tmpb% %

395

60.1150 \divide \tmpc by 100% % \tmpc = (year-1)/100
60.1151 \advance #2 by -\tmpc% % ... minus century years ...
60.1152 \tmpc = \tmpb% %
60.1153 \divide \tmpc by 400% % \tmpc = (year-1)/400
60.1154 \advance #2 by \tmpc% % ... plus 4-century years.
60.1155 \global\@common = #2}%
60.1156 #2 = \@common}

\AbsoluteFromGregorian The macro \AbsoluteFromGregorian{day}{month}{year}{absdate} calculates
the absolute date (days since 01.01.0001) from Gregorian date day.month.year.

60.1157 \def\AbsoluteFromGregorian#1#2#3#4{%
60.1158 {%
60.1159 \countdef\tmpd = 0% % \tmpd==\count0
60.1160 #4 = #1% % days so far this month
60.1161 \GregorianDaysInPriorMonths{#2}{#3}{\tmpd}%
60.1162 \advance #4 by \tmpd% % add days in prior months
60.1163 \GregorianDaysInPriorYears{#3}{\tmpd}%
60.1164 \advance #4 by \tmpd% % add days in prior years
60.1165 \global\@common = #4}%
60.1166 #4 = \@common}

60.5.5 Hebrew Part

60.1167 \newif\if@HebrewLeap

\CheckLeapHebrewYear Set \@HebrewLeaptrue if Hebrew ‘year’ is a leap year, i.e. if (1+7×year)%19 < 7
then true else false

60.1168 \def\CheckLeapHebrewYear#1{%
60.1169 {%
60.1170 \countdef\tmpa = 0% % \tmpa==\count0
60.1171 \countdef\tmpb = 1% % \tmpb==\count1
60.1172 %
60.1173 \tmpa = #1%
60.1174 \multiply \tmpa by 7%
60.1175 \advance \tmpa by 1%
60.1176 \Remainder{\tmpa}{19}{\tmpb}%
60.1177 \ifnum \tmpb < 7% % \tmpb = (7*year+1)%19
60.1178 \global\@HebrewLeaptrue%
60.1179 \else%
60.1180 \global\@HebrewLeapfalse%
60.1181 \fi}}

\HebrewElapsedMonths The macro \HebrewElapsedMonths{year}{months} determines the number of
months elapsed from the Sunday prior to the start of the Hebrew calendar to
the mean conjunction of Tishri of Hebrew ‘year’.

60.1182 \def\HebrewElapsedMonths#1#2{%
60.1183 {%
60.1184 \countdef\tmpa = 0% % \tmpa==\count0
60.1185 \countdef\tmpb = 1% % \tmpb==\count1

396

60.1186 \countdef\tmpc = 2% % \tmpc==\count2
60.1187 %
60.1188 \tmpa = #1% %
60.1189 \advance \tmpa by -1% %
60.1190 #2 = \tmpa% % #2 = \tmpa = year-1
60.1191 \divide #2 by 19% % Number of complete Meton cycles
60.1192 \multiply #2 by 235% % #2 = 235*((year-1)/19)
60.1193 %
60.1194 \Remainder{\tmpa}{19}{\tmpb}% \tmpa = years%19-years this cycle
60.1195 \tmpc = \tmpb% %
60.1196 \multiply \tmpb by 12% %
60.1197 \advance #2 by \tmpb% % add regular months this cycle
60.1198 %
60.1199 \multiply \tmpc by 7% %
60.1200 \advance \tmpc by 1% %
60.1201 \divide \tmpc by 19% % \tmpc = (1+7*((year-1)%19))/19 -
60.1202 % % number of leap months this cycle
60.1203 \advance #2 by \tmpc% % add leap months
60.1204 %
60.1205 \global\@common = #2}%
60.1206 #2 = \@common}

\HebrewElapsedDays The macro \HebrewElapsedDays{year}{days} determines the number of days
elapsed from the Sunday prior to the start of the Hebrew calendar to the mean
conjunction of Tishri of Hebrew ‘year’.

60.1207 \def\HebrewElapsedDays#1#2{%
60.1208 {%
60.1209 \countdef\tmpa = 0% % \tmpa==\count0
60.1210 \countdef\tmpb = 1% % \tmpb==\count1
60.1211 \countdef\tmpc = 2% % \tmpc==\count2
60.1212 %
60.1213 \HebrewElapsedMonths{#1}{#2}%
60.1214 \tmpa = #2% %
60.1215 \multiply \tmpa by 13753% %
60.1216 \advance \tmpa by 5604% % \tmpa=MonthsElapsed*13758 + 5604
60.1217 \Remainder{\tmpa}{25920}{\tmpc}% \tmpc == ConjunctionParts
60.1218 \divide \tmpa by 25920%
60.1219 %
60.1220 \multiply #2 by 29%
60.1221 \advance #2 by 1%
60.1222 \advance #2 by \tmpa% % #2 = 1 + MonthsElapsed*29 +
60.1223 % % PartsElapsed/25920
60.1224 \Remainder{#2}{7}{\tmpa}% % \tmpa == DayOfWeek
60.1225 \ifnum \tmpc < 19440%
60.1226 \ifnum \tmpc < 9924%
60.1227 \else% % New moon at 9 h. 204 p. or later
60.1228 \ifnum \tmpa = 2% % on Tuesday ...
60.1229 \CheckLeapHebrewYear{#1}% of a common year
60.1230 \if@HebrewLeap%
60.1231 \else%

397

60.1232 \advance #2 by 1%
60.1233 \fi%
60.1234 \fi%
60.1235 \fi%
60.1236 \ifnum \tmpc < 16789%
60.1237 \else% % New moon at 15 h. 589 p. or later
60.1238 \ifnum \tmpa = 1% % on Monday ...
60.1239 \advance #1 by -1%
60.1240 \CheckLeapHebrewYear{#1}% at the end of leap year
60.1241 \if@HebrewLeap%
60.1242 \advance #2 by 1%
60.1243 \fi%
60.1244 \fi%
60.1245 \fi%
60.1246 \else%
60.1247 \advance #2 by 1% % new moon at or after midday
60.1248 \fi%
60.1249 %
60.1250 \Remainder{#2}{7}{\tmpa}% % \tmpa == DayOfWeek
60.1251 \ifnum \tmpa = 0% % if Sunday ...
60.1252 \advance #2 by 1%
60.1253 \else% %
60.1254 \ifnum \tmpa = 3% % Wednesday ...
60.1255 \advance #2 by 1%
60.1256 \else%
60.1257 \ifnum \tmpa = 5% % or Friday
60.1258 \advance #2 by 1%
60.1259 \fi%
60.1260 \fi%
60.1261 \fi%
60.1262 \global\@common = #2}%
60.1263 #2 = \@common}

\DaysInHebrewYear The macro \DaysInHebrewYear{year}{days} calculates the number of days in
Hebrew ‘year’.

60.1264 \def\DaysInHebrewYear#1#2{%
60.1265 {%
60.1266 \countdef\tmpe = 12% % \tmpe==\count12
60.1267 %
60.1268 \HebrewElapsedDays{#1}{\tmpe}%
60.1269 \advance #1 by 1%
60.1270 \HebrewElapsedDays{#1}{#2}%
60.1271 \advance #2 by -\tmpe%
60.1272 \global\@common = #2}%
60.1273 #2 = \@common}

\HebrewDaysInPriorMonths The macro \HebrewDaysInPriorMonths{month}{year}{days} calculates the nu-
mber of days in months prior to ‘month’ in the ‘year’.

60.1274 \def\HebrewDaysInPriorMonths#1#2#3{%

398

60.1275 {%
60.1276 \countdef\tmpf= 14% % \tmpf==\count14
60.1277 %
60.1278 #3 = \ifcase #1% % Days in prior month of regular year
60.1279 0 \or% % no month number 0
60.1280 0 \or% % Tishri
60.1281 30 \or% % Heshvan
60.1282 59 \or% % Kislev
60.1283 89 \or% % Tebeth
60.1284 118 \or% % Shebat
60.1285 148 \or% % Adar I
60.1286 148 \or% % Adar II
60.1287 177 \or% % Nisan
60.1288 207 \or% % Iyar
60.1289 236 \or% % Sivan
60.1290 266 \or% % Tammuz
60.1291 295 \or% % Av
60.1292 325 \or% % Elul
60.1293 400% % Dummy
60.1294 \fi%
60.1295 \CheckLeapHebrewYear{#2}%
60.1296 \if@HebrewLeap% % in leap year
60.1297 \ifnum #1 > 6% % if month after Adar I
60.1298 \advance #3 by 30% % add 30 days
60.1299 \fi%
60.1300 \fi%
60.1301 \DaysInHebrewYear{#2}{\tmpf}%
60.1302 \ifnum #1 > 3%
60.1303 \ifnum \tmpf = 353% %
60.1304 \advance #3 by -1% %
60.1305 \fi% % Short Kislev
60.1306 \ifnum \tmpf = 383% %
60.1307 \advance #3 by -1% %
60.1308 \fi% %
60.1309 \fi%
60.1310 %
60.1311 \ifnum #1 > 2%
60.1312 \ifnum \tmpf = 355% %
60.1313 \advance #3 by 1% %
60.1314 \fi% % Long Heshvan
60.1315 \ifnum \tmpf = 385% %
60.1316 \advance #3 by 1% %
60.1317 \fi% %
60.1318 \fi%
60.1319 \global\@common = #3}%
60.1320 #3 = \@common}

\AbsoluteFromHebrew The macro \AbsoluteFromHebrew{day}{month}{year}{absdate} calculates the
absolute date of Hebrew date day.month.year.

60.1321 \def\AbsoluteFromHebrew#1#2#3#4{%

399

60.1322 {%
60.1323 #4 = #1%
60.1324 \HebrewDaysInPriorMonths{#2}{#3}{#1}%
60.1325 \advance #4 by #1% % Add days in prior months this year
60.1326 \HebrewElapsedDays{#3}{#1}%
60.1327 \advance #4 by #1% % Add days in prior years
60.1328 \advance #4 by -1373429% % Subtract days before Gregorian
60.1329 \global\@common = #4}% % 01.01.0001
60.1330 #4 = \@common}

\HebrewFromGregorian The macro \HebrewFromGregorian{Gday}{Gmonth}{Gyear}{Hday}{Hmonth}-
{Hyear} evaluates Hebrew date Hday, Hmonth, Hyear from Gregorian date Gday,
Gmonth, Gyear.

60.1331 \def\HebrewFromGregorian#1#2#3#4#5#6{%
60.1332 {%
60.1333 \countdef\tmpx= 17% % \tmpx==\count17
60.1334 \countdef\tmpy= 18% % \tmpy==\count18
60.1335 \countdef\tmpz= 19% % \tmpz==\count19
60.1336 %
60.1337 #6 = #3% %
60.1338 \global\advance #6 by 3761% approximation from above
60.1339 \AbsoluteFromGregorian{#1}{#2}{#3}{#4}%
60.1340 \tmpz = 1 \tmpy = 1%
60.1341 \AbsoluteFromHebrew{\tmpz}{\tmpy}{#6}{\tmpx}%
60.1342 \ifnum \tmpx > #4% %
60.1343 \global\advance #6 by -1% Hyear = Gyear + 3760
60.1344 \AbsoluteFromHebrew{\tmpz}{\tmpy}{#6}{\tmpx}%
60.1345 \fi% %
60.1346 \advance #4 by -\tmpx% % Days in this year
60.1347 \advance #4 by 1% %
60.1348 #5 = #4% %
60.1349 \divide #5 by 30% % Approximation for month from below
60.1350 \loop% % Search for month
60.1351 \HebrewDaysInPriorMonths{#5}{#6}{\tmpx}%
60.1352 \ifnum \tmpx < #4%
60.1353 \advance #5 by 1%
60.1354 \tmpy = \tmpx%
60.1355 \repeat%
60.1356 \global\advance #5 by -1%
60.1357 \global\advance #4 by -\tmpy}}
60.1358 〈/calendar〉

61 Hebrew input encodings
Hebrew input encodings defined in file hebinp.dtx72 should be used with
inputenc LATEX2ε package. This package allows the user to specify an input

72The files described in this section have version number v1.1b and were last revised on
2004/02/20.

400

encoding from this file (for example, ISO Hebrew/Latin 8859-8, IBM Hebrew
codepage 862 or MS Windows Hebrew codepage 1255) by saying:

\usepackage[encoding name]{inputenc}

The encoding can also be selected in the document with:

\inputencoding{encoding name}

The only practical use of this command within a document is when using text
from several documents to build up a composite work such as a volume of journal
articles. Therefore this command will be used only in vertical mode.

The encodings provided by this package are:

• si960 7-bit Hebrew encoding for the range 32–127. This encoding also
known as “old-code” and defined by Israeli Standard SI-960.

• 8859-8 ISO 8859-8 Hebrew/Latin encoding commonly used in UNIX sys-
tems. This encoding also known as “new-code” and includes hebrew letters
in positions starting from 224.

• cp862 IBM 862 code page commonly used by DOS on IBM-compatible per-
sonal computers. This encoding also known as “pc-code” and includes hebrew
letters in positions starting from 128.

• cp1255 MS Windows 1255 (hebrew) code page which is similar to 8859-8.
In addition to hebrew letters, this encoding contains also hebrew vowels and
dots (nikud).

Each encoding has an associated .def file, for example 8859-8.def which defines
the behaviour of each input character, using the commands:

\DeclareInputText{slot}{text}
\DeclareInputMath{slot}{math}

This defines the input character slot to be the text material or math material
respectively. For example, 8859-8.def defines slots "EA (letter hebalef) and "B5
(µ) by saying:

\DeclareInputText{224}{\hebalef}
\DeclareInputMath{181}{\mu}

Note that the commands should be robust, and should not be dependent on the
output encoding. The same slot should not have both a text and a math declara-
tion for it. (This restriction may be removed in future releases of inputenc).

The .def file may also define commands using the declarations:
\providecommand or \ProvideTextCommandDefault. For example, 8859-8.def

defines:

\ProvideTextCommandDefault{\textonequarter}{\ensuremath{\frac14}}
\DeclareInputText{188}{\textonequarter}

401

The use of the ‘provide’ forms here will ensure that a better definition will not
be over-written; their use is recommended since, in general, the best defintion
depends on the fonts available.

See the documentation in inputenc.dtx for details of how to declare input
definitions for various encodings.

61.1 Default definitions for characters
First, we insert a \makeatletter at the beginning of all .def files to use @ symbol
in the macros’ names.

61.1 〈−driver〉\makeatletter
Some input characters map to internal functions which are not in either the

T1 or OT1 font encoding. For this reason default definitions are provided in the
encoding file: these will be used unless some other output encoding is used which
supports those glyphs. In some cases this default defintion has to be simply an
error message.

Note that this works reasonably well only because the encoding files for both
OT1 and T1 are loaded in the standard LaTeX format.

61.2 〈∗8859 − 8 | cp862 | cp1255〉
61.3 \ProvideTextCommandDefault{\textdegree}{\ensuremath{{^\circ}}}
61.4 \ProvideTextCommandDefault{\textonehalf}{\ensuremath{\frac12}}
61.5 \ProvideTextCommandDefault{\textonequarter}{\ensuremath{\frac14}}
61.6 〈/8859 − 8 | cp862 | cp1255〉
61.7 〈∗8859 − 8 | cp1255〉
61.8 \ProvideTextCommandDefault{\textthreequarters}{\ensuremath{\frac34}}
61.9 〈/8859 − 8 | cp1255〉

61.10 〈∗cp862 | cp1255〉
61.11 \ProvideTextCommandDefault{\textflorin}{\textit{f}}
61.12 〈/cp862 | cp1255〉
61.13 〈∗cp862〉
61.14 \ProvideTextCommandDefault{\textpeseta}{Pt}
61.15 〈/cp862〉

The name \textblacksquare is derived from the AMS symbol name since
Adobe seem not to want this symbol. The default definition, as a rule, makes no
claim to being a good design.

61.16 〈∗cp862〉
61.17 \ProvideTextCommandDefault{\textblacksquare}
61.18 {\vrule \@width .3em \@height .4em \@depth -.1em\relax}
61.19 〈/cp862〉

Some commands can’t be faked, so we have them generate an error message.
61.20 〈∗8859 − 8 | cp862 | cp1255〉
61.21 \ProvideTextCommandDefault{\textcent}
61.22 {\TextSymbolUnavailable\textcent}
61.23 \ProvideTextCommandDefault{\textyen}
61.24 {\TextSymbolUnavailable\textyen}
61.25 〈/8859 − 8 | cp862 | cp1255〉

402

61.26 〈∗8859 − 8〉
61.27 \ProvideTextCommandDefault{\textcurrency}
61.28 {\TextSymbolUnavailable\textcurrency}
61.29 〈/8859 − 8〉
61.30 〈∗cp1255〉
61.31 \ProvideTextCommandDefault{\newsheqel}
61.32 {\TextSymbolUnavailable\newsheqel}
61.33 〈/cp1255〉
61.34 〈∗8859 − 8 | cp1255〉
61.35 \ProvideTextCommandDefault{\textbrokenbar}
61.36 {\TextSymbolUnavailable\textbrokenbar}
61.37 〈/8859 − 8 | cp1255〉
61.38 〈∗cp1255〉
61.39 \ProvideTextCommandDefault{\textperthousand}
61.40 {\TextSymbolUnavailable\textperthousand}
61.41 〈/cp1255〉

Characters that are supposed to be used only in math will be defined by
\providecommand because LATEX2ε assumes that the font encoding for math fonts
is static.

61.42 〈∗8859 − 8 | cp1255〉
61.43 \providecommand{\mathonesuperior}{{^1}}
61.44 \providecommand{\maththreesuperior}{{^3}}
61.45 〈/8859 − 8 | cp1255〉
61.46 〈∗8859 − 8 | cp862 | cp1255〉
61.47 \providecommand{\mathtwosuperior}{{^2}}
61.48 〈/8859 − 8 | cp862 | cp1255〉
61.49 〈∗cp862〉
61.50 \providecommand{\mathordmasculine}{{^o}}
61.51 \providecommand{\mathordfeminine}{{^a}}
61.52 〈/cp862〉

61.2 The SI-960 encoding
The SI-960 or “old-code” encoding only allows characters in the range 32–127, so
we only need to provide an empty si960.def file.

61.3 The ISO 8859-8 encoding and the MS Windows cp1255
encoding

The 8859-8.def encoding file defines the characters in the ISO 8859-8 encoding.
The MS Windows Hebrew character set incorporates the Hebrew letter reper-

toire of ISO 8859-8, and uses the same code points (starting from 224). It has also
some important additions in the 128–159 and 190–224 ranges.

61.53 〈∗cp1255〉
61.54 \DeclareInputText{130}{\quotesinglbase}
61.55 \DeclareInputText{131}{\textflorin}
61.56 \DeclareInputText{132}{\quotedblbase}

403

61.57 \DeclareInputText{133}{\dots}
61.58 \DeclareInputText{134}{\dag}
61.59 \DeclareInputText{135}{\ddag}
61.60 \DeclareInputText{136}{\^{}}
61.61 \DeclareInputText{137}{\textperthousand}
61.62 \DeclareInputText{139}{\guilsinglleft}
61.63 \DeclareInputText{145}{\textquoteleft}
61.64 \DeclareInputText{146}{\textquoteright}
61.65 \DeclareInputText{147}{\textquotedblleft}
61.66 \DeclareInputText{148}{\textquotedblright}
61.67 \DeclareInputText{149}{\textbullet}
61.68 \DeclareInputText{150}{\textendash}
61.69 \DeclareInputText{151}{\textemdash}
61.70 \DeclareInputText{152}{\~{}}
61.71 \DeclareInputText{153}{\texttrademark}
61.72 \DeclareInputText{155}{\guilsinglright}
61.73 〈/cp1255〉

61.74 〈∗8859 − 8 | cp1255〉
61.75 \DeclareInputText{160}{\nobreakspace}
61.76 \DeclareInputText{162}{\textcent}
61.77 \DeclareInputText{163}{\pounds}
61.78 〈+8859 − 8〉\DeclareInputText{164}{\textcurrency}
61.79 〈+cp1255〉\DeclareInputText{164}{\newsheqel}
61.80 \DeclareInputText{165}{\textyen}
61.81 \DeclareInputText{166}{\textbrokenbar}
61.82 \DeclareInputText{167}{\S}
61.83 \DeclareInputText{168}{\"{}}
61.84 \DeclareInputText{169}{\textcopyright}
61.85 〈+8859 − 8〉\DeclareInputMath{170}{\times}
61.86 \DeclareInputText{171}{\guillemotleft}
61.87 \DeclareInputMath{172}{\lnot}
61.88 \DeclareInputText{173}{\-}
61.89 \DeclareInputText{174}{\textregistered}
61.90 \DeclareInputText{175}{\@tabacckludge={}}
61.91 \DeclareInputText{176}{\textdegree}
61.92 \DeclareInputMath{177}{\pm}
61.93 \DeclareInputMath{178}{\mathtwosuperior}
61.94 \DeclareInputMath{179}{\maththreesuperior}
61.95 \DeclareInputText{180}{\@tabacckludge’{}}
61.96 \DeclareInputMath{181}{\mu}
61.97 \DeclareInputText{182}{\P}
61.98 \DeclareInputText{183}{\textperiodcentered}
61.99 〈+8859 − 8〉\DeclareInputText{184}{\c\ }

61.100 \DeclareInputMath{185}{\mathonesuperior}
61.101 〈+8859 − 8〉\DeclareInputMath{186}{\div}
61.102 \DeclareInputText{187}{\guillemotright}
61.103 \DeclareInputText{188}{\textonequarter}
61.104 \DeclareInputText{189}{\textonehalf}
61.105 \DeclareInputText{190}{\textthreequarters}

404

61.106 〈/8859 − 8 | cp1255〉

Hebrew vowels and dots (nikud) are included only to MS Windows cp1255
page and start from the position 192.

61.107 〈∗cp1255〉
61.108 \DeclareInputText{192}{\hebsheva}
61.109 \DeclareInputText{193}{\hebhatafsegol}
61.110 \DeclareInputText{194}{\hebhatafpatah}
61.111 \DeclareInputText{195}{\hebhatafqamats}
61.112 \DeclareInputText{196}{\hebhiriq}
61.113 \DeclareInputText{197}{\hebtsere}
61.114 \DeclareInputText{198}{\hebsegol}
61.115 \DeclareInputText{199}{\hebpatah}
61.116 \DeclareInputText{200}{\hebqamats}
61.117 \DeclareInputText{201}{\hebholam}
61.118 \DeclareInputText{203}{\hebqubuts}
61.119 \DeclareInputText{204}{\hebdagesh}
61.120 \DeclareInputText{205}{\hebmeteg}
61.121 \DeclareInputText{206}{\hebmaqaf}
61.122 \DeclareInputText{207}{\hebrafe}
61.123 \DeclareInputText{208}{\hebpaseq}
61.124 \DeclareInputText{209}{\hebshindot}
61.125 \DeclareInputText{210}{\hebsindot}
61.126 \DeclareInputText{211}{\hebsofpasuq}
61.127 \DeclareInputText{212}{\hebdoublevav}
61.128 \DeclareInputText{213}{\hebvavyod}
61.129 \DeclareInputText{214}{\hebdoubleyod}
61.130 〈/cp1255〉

Hebrew letters start from the position 224 in both encodings.
61.131 〈∗8859 − 8 | cp1255〉
61.132 \DeclareInputText{224}{\hebalef}
61.133 \DeclareInputText{225}{\hebbet}
61.134 \DeclareInputText{226}{\hebgimel}
61.135 \DeclareInputText{227}{\hebdalet}
61.136 \DeclareInputText{228}{\hebhe}
61.137 \DeclareInputText{229}{\hebvav}
61.138 \DeclareInputText{230}{\hebzayin}
61.139 \DeclareInputText{231}{\hebhet}
61.140 \DeclareInputText{232}{\hebtet}
61.141 \DeclareInputText{233}{\hebyod}
61.142 \DeclareInputText{234}{\hebfinalkaf}
61.143 \DeclareInputText{235}{\hebkaf}
61.144 \DeclareInputText{236}{\heblamed}
61.145 \DeclareInputText{237}{\hebfinalmem}
61.146 \DeclareInputText{238}{\hebmem}
61.147 \DeclareInputText{239}{\hebfinalnun}
61.148 \DeclareInputText{240}{\hebnun}
61.149 \DeclareInputText{241}{\hebsamekh}
61.150 \DeclareInputText{242}{\hebayin}

405

61.151 \DeclareInputText{243}{\hebfinalpe}
61.152 \DeclareInputText{244}{\hebpe}
61.153 \DeclareInputText{245}{\hebfinaltsadi}
61.154 \DeclareInputText{246}{\hebtsadi}
61.155 \DeclareInputText{247}{\hebqof}
61.156 \DeclareInputText{248}{\hebresh}
61.157 \DeclareInputText{249}{\hebshin}
61.158 \DeclareInputText{250}{\hebtav}
61.159 〈/8859 − 8 | cp1255〉

Special symbols which define the direction of symbols explicitly. Currently,
they are not used in LATEX.

61.160 〈∗cp1255〉
61.161 \DeclareInputText{253}{\lefttorightmark}
61.162 \DeclareInputText{254}{\righttoleftmark}
61.163 〈/cp1255〉

61.4 The IBM code page 862
The cp862.def encoding file defines the characters in the IBM codepage 862
encoding. The DOS graphics ‘letters’ and a few other positions are ignored (left
undefined).

Hebrew letters start from the position 128.
61.164 〈∗cp862〉
61.165 \DeclareInputText{128}{\hebalef}
61.166 \DeclareInputText{129}{\hebbet}
61.167 \DeclareInputText{130}{\hebgimel}
61.168 \DeclareInputText{131}{\hebdalet}
61.169 \DeclareInputText{132}{\hebhe}
61.170 \DeclareInputText{133}{\hebvav}
61.171 \DeclareInputText{134}{\hebzayin}
61.172 \DeclareInputText{135}{\hebhet}
61.173 \DeclareInputText{136}{\hebtet}
61.174 \DeclareInputText{137}{\hebyod}
61.175 \DeclareInputText{138}{\hebfinalkaf}
61.176 \DeclareInputText{139}{\hebkaf}
61.177 \DeclareInputText{140}{\heblamed}
61.178 \DeclareInputText{141}{\hebfinalmem}
61.179 \DeclareInputText{142}{\hebmem}
61.180 \DeclareInputText{143}{\hebfinalnun}
61.181 \DeclareInputText{144}{\hebnun}
61.182 \DeclareInputText{145}{\hebsamekh}
61.183 \DeclareInputText{146}{\hebayin}
61.184 \DeclareInputText{147}{\hebfinalpe}
61.185 \DeclareInputText{148}{\hebpe}
61.186 \DeclareInputText{149}{\hebfinaltsadi}
61.187 \DeclareInputText{150}{\hebtsadi}
61.188 \DeclareInputText{151}{\hebqof}
61.189 \DeclareInputText{152}{\hebresh}

406

61.190 \DeclareInputText{153}{\hebshin}
61.191 \DeclareInputText{154}{\hebtav}

61.192 \DeclareInputText{155}{\textcent}
61.193 \DeclareInputText{156}{\pounds}
61.194 \DeclareInputText{157}{\textyen}
61.195 \DeclareInputText{158}{\textpeseta}
61.196 \DeclareInputText{159}{\textflorin}
61.197 \DeclareInputText{160}{\@tabacckludge’a}
61.198 \DeclareInputText{161}{\@tabacckludge’\i}
61.199 \DeclareInputText{162}{\@tabacckludge’o}
61.200 \DeclareInputText{163}{\@tabacckludge’u}
61.201 \DeclareInputText{164}{\~n}
61.202 \DeclareInputText{165}{\~N}
61.203 \DeclareInputMath{166}{\mathordfeminine}
61.204 \DeclareInputMath{167}{\mathordmasculine}
61.205 \DeclareInputText{168}{\textquestiondown}
61.206 \DeclareInputMath{170}{\lnot}
61.207 \DeclareInputText{171}{\textonehalf}
61.208 \DeclareInputText{172}{\textonequarter}
61.209 \DeclareInputText{173}{\textexclamdown}
61.210 \DeclareInputText{174}{\guillemotleft}
61.211 \DeclareInputText{175}{\guillemotright}

61.212 \DeclareInputMath{224}{\alpha}
61.213 \DeclareInputText{225}{\ss}
61.214 \DeclareInputMath{226}{\Gamma}
61.215 \DeclareInputMath{227}{\pi}
61.216 \DeclareInputMath{228}{\Sigma}
61.217 \DeclareInputMath{229}{\sigma}
61.218 \DeclareInputMath{230}{\mu}
61.219 \DeclareInputMath{231}{\tau}
61.220 \DeclareInputMath{232}{\Phi}
61.221 \DeclareInputMath{233}{\Theta}
61.222 \DeclareInputMath{234}{\Omega}
61.223 \DeclareInputMath{235}{\delta}
61.224 \DeclareInputMath{236}{\infty}
61.225 \DeclareInputMath{237}{\phi}
61.226 \DeclareInputMath{238}{\varepsilon}
61.227 \DeclareInputMath{239}{\cap}
61.228 \DeclareInputMath{240}{\equiv}
61.229 \DeclareInputMath{241}{\pm}
61.230 \DeclareInputMath{242}{\ge}
61.231 \DeclareInputMath{243}{\le}
61.232 \DeclareInputMath{246}{\div}
61.233 \DeclareInputMath{247}{\approx}
61.234 \DeclareInputText{248}{\textdegree}
61.235 \DeclareInputText{249}{\textperiodcentered}
61.236 \DeclareInputText{250}{\textbullet}
61.237 \DeclareInputMath{251}{\surd}
61.238 \DeclareInputMath{252}{\mathnsuperior}

407

61.239 \DeclareInputMath{253}{\mathtwosuperior}
61.240 \DeclareInputText{254}{\textblacksquare}
61.241 \DeclareInputText{255}{\nobreakspace}
61.242 〈/cp862〉

\DisableNikud A utility macro to ignore any nikud character that may appear in the input. This
allows you to ignore cp1255 nikud characters that happened to appear in the input.

61.243 〈∗8859 − 8〉
61.244 \newcommand{\DisableNikud}{%
61.245 \DeclareInputText{192}{}%
61.246 \DeclareInputText{193}{}%
61.247 \DeclareInputText{194}{}%
61.248 \DeclareInputText{195}{}%
61.249 \DeclareInputText{196}{}%
61.250 \DeclareInputText{197}{}%
61.251 \DeclareInputText{198}{}%
61.252 \DeclareInputText{199}{}%
61.253 \DeclareInputText{200}{}%
61.254 \DeclareInputText{201}{}%
61.255 \DeclareInputText{203}{}%
61.256 \DeclareInputText{204}{}%
61.257 \DeclareInputText{205}{}%
61.258 \DeclareInputText{206}{}%
61.259 \DeclareInputText{207}{}%
61.260 \DeclareInputText{208}{}%
61.261 \DeclareInputText{209}{}%
61.262 \DeclareInputText{210}{}%
61.263 \DeclareInputText{211}{}%
61.264 \DeclareInputText{212}{}%
61.265 \DeclareInputText{213}{}%
61.266 \DeclareInputText{214}{}%
61.267 }
61.268 〈/8859 − 8〉

Finally, we reset the category code of the @ sign at the end of all .def files.
61.269 〈−driver〉\makeatother

62 Hebrew font encodings
Don’t forget to update the docs...

62.1 THIS SECTION IS OUT OF DATE. UPDATE DOCS
TO MATCH HE8 ENCODING

The file hebrew.fdd73 contains the Local Hebrew Encoding (LHE) definition, the
external font information needed to use the Hebrew 7-bit fonts (old code fonts)

73The files described in this section have version number v1.2c and were last revised on
2005/05/20.

408

and hebfont package that provides Hebrew font switching commands.
Using this file as an input, lheenc.def encoding definition file, all .fd files

(font definition files) and font switching package for available Hebrew fonts are
generated. We chose to use 7-bit encoding as default font encoding, because:

1. There are many 7-bit encoded Hebrew fonts available, more then for any
other encoding.

2. Available TEX Hebrew fonts do not include latin alphabet, and we can safely
map Hebrew glyphs to the ASCII positions (0 – 127).

Current definition of the LHE encoding supports only Hebrew letters (\hebalef–
\hebtav), but not Hebrew points, such as \hebdagesh, \hebqamats, \hebpatah,
\hebshindot, etc. We are working now on such addition.

62.2 The docstrip modules
The following modules are used in the implementation to direct docstrip in
generating external files:

409

driver produce a documentation driver file

HE8enc produce the encoding definition for CodePage 1255 (HE8)

HE8cmr make Hebrew default font in HE8
HE8cmss make Hebrew sans-serif font in HE8
HE8cmtt make Hebrew typewriter font in HE8
HE8OmegaHebrew Hebrew font from the Omega project (by ???)
HE8aharoni Hebrew sans-serif font (Culmus)
HE8david Hebrew serif font (Culmus)
HE8drugulin Hebrew old serif font (Culmus)
HE8ellinia Hebrew isans-serif font (Culmus)
HE8frankruehl Hebrew serif font (Culmus)
HE8KtavYad Hebrew handwriting font (Culmus)
HE8MiriamMono Hebrew monospaced font
HE8Nachlieli Hebrew sans-serif font (Culmus)
HE8CourierShalom Hebrew Shalom (Courier) font (by IBM)
HE8HelveticaNarkissTam Hebrew NarkisTam (Helvetica) (by Zvi Narkis)
HE8TimesNarkissim Hebrew Narkissim (Times) (by Zvi Narkis)
HE8mfdavid Hebrew David font (by ???)
HE8mffrank Hebrew Frank-Ruehl font (by ??)
HE8mffrankthick Hebrew Frank-Ruehl (thick) font (by ??)
HE8mffrankthin Hebrew Frank-Ruehl (thin) font (by ??)
HE8mfmiriam Hebrew Miriam font (by ???)
HE8mfmiriamwide Hebrew Miriam (wide) font (by ???)
HE8mfnarkistam Hebrew Narkis Tam font (by ???)
LHEenc produce the encoding definition for Local Hebrew Encoding (LHE)

LHEcmr make Hebrew default font in LHE
LHEcmss make Hebrew sans-serif font in LHE
LHEcmtt make Hebrew typewriter font in LHE
LHEclas make Hebrew classic font (by Joel M. Hoffman) in LHE
LHEshold make Hebrew shalom old font (by Jonathan Brecher) in LHE
LHEshscr make Hebrew shalom script font (by Jonathan Brecher) in LHE
LHEshstk make Hebrew shalom stick font (by Jonathan Brecher) in LHE
LHEfr make Hebrew frank-ruehl font in LHE
LHEcrml make Hebrew carmel font (by Dr. Samy Zafrany) in LHE
LHEredis make Hebrew redis font (by Prof. Jacques J. Goldberg) in LHE

nowarn option for font definition files, that used
to produce “silent” font substitutions without giving warnings

hebfont create Hebrew font switching commands package

A typical docstrip command file would then have entries like:

\generateFile{lhecmr.fd}{t}{\from{hebrew.fdd}{LHEcmr,nowarn}}

410

62.3 The LHEencoding definition file
The Hebrew font encoding LHE is based upon the old-code encoding also known as
the Israeli Standard SI-960. Many Hebrew TEX fonts from the Hebrew University
of Jerusalem are encoded in this encoding. It only uses the lower 128 positions of
the font table. As local encoding its name start with the letter ‘L’.

First we define the Local Hebrew Encoding; specify a default for the font
substitution process for the LHE encoding and supply a font to be used when all
else fails.

62.1 〈∗LHEenc〉
62.2 \DeclareFontEncoding{LHE}{}{}
62.3 \DeclareFontSubstitution{LHE}{cmr}{m}{n}
62.4 \DeclareErrorFont{LHE}{cmr}{m}{n}{10}
62.5 〈/LHEenc〉

Then we define a few commands in the LHE encoding.
62.6 〈∗LHEenc〉
62.7 \ProvideTextCommand{\textcopyright}{LHE}{\textcircled{\@latin{c}}}
62.8 \ProvideTextCommand{\textregistered}{LHE}{\textcircled{\scshape%
62.9 \@latin{r}}}

62.10 \ProvideTextCommand{\texttrademark}{LHE}{\textsuperscript{\@latin{TM}}}
62.11 〈/LHEenc〉

Because not everyone can input Hebrew input text directly from the keyboard
we need to define control sequences for all the Hebrew glyphs in the fonts. In
addition, we want to support many input encodings for Hebrew and to keep the
language definition file (hebrew.ldf) independent of the encoding. Therefore, we
exploit the standard LATEX2ε font encoding mechanism to define control sequences
for all the Hebrew glyphs in the fonts in encoding-specific way. The language
definition file uses only the control sequences and doesn’t need to check the current
font or input encoding.

In the LHE encoding (7-bit encoding) all the Hebrew glyphes reside in the lower
half of the font. Currently, only the Hebrew letters are supported. They use the
same positions as the latin small letters in ASCII encoding and the position of ‘.

The symbol ‘ (glyph 96) is used by Hebrew letter Alef, so we need to define its
lccode to allow hyphenation. All other letters retain the same lccodes as their
latin counterparts.

62.12 〈+LHEenc〉\lccode‘‘=‘‘
Hebrew letters occupy the positions 96–122 in LHE encoding:

62.13 〈∗LHEenc〉
62.14 \DeclareTextSymbol{\hebalef}{LHE}{96}
62.15 \DeclareTextSymbol{\hebbet}{LHE}{97}
62.16 \DeclareTextSymbol{\hebgimel}{LHE}{98}
62.17 \DeclareTextSymbol{\hebdalet}{LHE}{99}
62.18 \DeclareTextSymbol{\hebhe}{LHE}{100}
62.19 \DeclareTextSymbol{\hebvav}{LHE}{101}
62.20 \DeclareTextSymbol{\hebzayin}{LHE}{102}
62.21 \DeclareTextSymbol{\hebhet}{LHE}{103}

411

62.22 \DeclareTextSymbol{\hebtet}{LHE}{104}
62.23 \DeclareTextSymbol{\hebyod}{LHE}{105}
62.24 \DeclareTextSymbol{\hebfinalkaf}{LHE}{106}
62.25 \DeclareTextSymbol{\hebkaf}{LHE}{107}
62.26 \DeclareTextSymbol{\heblamed}{LHE}{108}
62.27 \DeclareTextSymbol{\hebfinalmem}{LHE}{109}
62.28 \DeclareTextSymbol{\hebmem}{LHE}{110}
62.29 \DeclareTextSymbol{\hebfinalnun}{LHE}{111}
62.30 \DeclareTextSymbol{\hebnun}{LHE}{112}
62.31 \DeclareTextSymbol{\hebsamekh}{LHE}{113}
62.32 \DeclareTextSymbol{\hebayin}{LHE}{114}
62.33 \DeclareTextSymbol{\hebfinalpe}{LHE}{115}
62.34 \DeclareTextSymbol{\hebpe}{LHE}{116}
62.35 \DeclareTextSymbol{\hebfinaltsadi}{LHE}{117}
62.36 \DeclareTextSymbol{\hebtsadi}{LHE}{118}
62.37 \DeclareTextSymbol{\hebqof}{LHE}{119}
62.38 \DeclareTextSymbol{\hebresh}{LHE}{120}
62.39 \DeclareTextSymbol{\hebshin}{LHE}{121}
62.40 \DeclareTextSymbol{\hebtav}{LHE}{122}
62.41 〈/LHEenc〉

Letter \hebsin is defined as a synonym of \hebshin:
62.42 〈+LHEenc〉\let\hebsin=\hebshin

62.4 The font definition files (in LHE encoding)
62.4.1 Hebrew default font

It uses Jerusalem font for regular font, Old Jaffa font for italic shape and small-
caps, Dead Sea font for bold face, and Tel-Aviv for bold-italic

62.43 〈∗LHEcmr〉
62.44 \DeclareFontFamily{LHE}{cmr}{\hyphenchar\font45}
62.45 \DeclareFontShape{LHE}{cmr}{m}{n}
62.46 {<-> jerus10 }{}
62.47 %%%%%%% Italicized shape
62.48 \DeclareFontShape{LHE}{cmr}{m}{it}
62.49 {<-> oldjaf10 }{}
62.50 \DeclareFontShape{LHE}{cmr}{m}{sl}
62.51 {<-> oldjaf10 }{}
62.52 \DeclareFontShape{LHE}{cmr}{m}{sc}
62.53 {<-> oldjaf10 }{}
62.54 %%%%%%% Bold extended series
62.55 \DeclareFontShape{LHE}{cmr}{bx}{n}
62.56 {<-> deads10 }{}
62.57 \DeclareFontShape{LHE}{cmr}{b}{n}
62.58 {<-> deads10 }{}
62.59 %%%%%%% Bold extended (Italic) series
62.60 \DeclareFontShape{LHE}{cmr}{bx}{sl}
62.61 {<-> telav10 }{}
62.62 \DeclareFontShape{LHE}{cmr}{bx}{it}

412

62.63 {<-> telav10 }{}
62.64 〈/LHEcmr〉

62.4.2 Hebrew sans-serif font

We use Tel Aviv font for the Sans family. Old Jaffa font is used for italic shape
and Dead Sea used for bold face.

62.65 〈∗LHEcmss〉
62.66 \DeclareFontFamily{LHE}{cmss}{\hyphenchar\font45}
62.67 \DeclareFontShape{LHE}{cmss}{m}{n}
62.68 {<-> telav10 }{}
62.69 %%%%%%% Font/shape undefined, therefore substituted
62.70 \DeclareFontShape{LHE}{cmss}{m}{sc}
62.71 〈−nowarn〉 {<->sub * cmss/m/n}{}
62.72 〈+nowarn〉 {<->ssub * cmss/m/n}{}
62.73 %%%%%%% Italicized shape
62.74 \DeclareFontShape{LHE}{cmss}{m}{it}
62.75 {<-> oldjaf10 }{}
62.76 %%%%%%% Font/shape undefined, therefore substituted
62.77 \DeclareFontShape{LHE}{cmss}{m}{sl}
62.78 〈−nowarn〉 {<->sub * cmss/m/it}{}
62.79 〈+nowarn〉 {<->ssub * cmss/m/it}{}
62.80 %%%%%%% Bold extended series
62.81 \DeclareFontShape{LHE}{cmss}{bx}{n}
62.82 {<-> deads10 }{}
62.83 %%%%%%% Font/shape undefined, therefore substituted
62.84 \DeclareFontShape{LHE}{cmss}{b}{n}
62.85 〈−nowarn〉 {<->sub * cmss/bx/n}{}
62.86 〈+nowarn〉 {<->ssub * cmss/bx/n}{}
62.87 %%%%%%% Font/shape undefined, therefore substituted
62.88 \DeclareFontShape{LHE}{cmss}{bx}{sl}
62.89 〈−nowarn〉 {<->sub * cmss/bx/n}{}
62.90 〈+nowarn〉 {<->ssub * cmss/bx/n}{}
62.91 %%%%%%% Font/shape undefined, therefore substituted
62.92 \DeclareFontShape{LHE}{cmss}{bx}{it}
62.93 〈−nowarn〉 {<->sub * cmss/bx/n}{}
62.94 〈+nowarn〉 {<->ssub * cmss/bx/n}{}
62.95 〈/LHEcmss〉

62.4.3 Hebrew typewriter font

We use Tel Aviv font as the typewriter font. Old Jaffa font is used for italic shape
and Dead Sea used for bold face.

62.96 〈∗LHEcmtt〉
62.97 \DeclareFontFamily{LHE}{cmtt}{\hyphenchar \font\m@ne}
62.98 \DeclareFontShape{LHE}{cmtt}{m}{n}
62.99 {<-> telav10 }{}

62.100 %%%%%%% Font/shape undefined, therefore substituted
62.101 \DeclareFontShape{LHE}{cmtt}{m}{sc}

413

62.102 〈−nowarn〉 {<->sub * cmtt/m/n}{}
62.103 〈+nowarn〉 {<->ssub * cmtt/m/n}{}
62.104 %%%%%%% Italicized shape
62.105 \DeclareFontShape{LHE}{cmtt}{m}{it}
62.106 {<-> oldjaf10 }{}
62.107 %%%%%%% Font/shape undefined, therefore substituted
62.108 \DeclareFontShape{LHE}{cmtt}{m}{sl}
62.109 〈−nowarn〉 {<->sub * cmtt/m/it}{}
62.110 〈+nowarn〉 {<->ssub * cmtt/m/it}{}
62.111 %%%%%%% Bold extended series
62.112 \DeclareFontShape{LHE}{cmtt}{bx}{n}
62.113 {<-> deads10 }{}
62.114 %%%%%%% Font/shape undefined, therefore substituted
62.115 \DeclareFontShape{LHE}{cmtt}{bx}{it}
62.116 〈−nowarn〉 {<->sub * cmtt/bx/n}{}
62.117 〈+nowarn〉 {<->ssub * cmtt/bx/n}{}
62.118 〈/LHEcmtt〉

62.4.4 Hebrew classic font

Hclassic and hcaption fonts are distributed freely from CTAN sites and copy-
righted by Joel M. Hoffman, of 19 Hillcrest Lane, Rye, NY 10580 USA, e-mail:
72700.402@compuserve.com.

Hclassic is a modernized Classical Hebrew font (in the same way that Knuth’s
cmr family is a modernized Roman font — but his fonts are much nicer). Hcaption
is a slanted version of hclassic font. Both fonts contain all of the Hebrew conso-
nants, the (rarely used) ligature alef-lamed and two versions of the letter ayin for
use with and without vowels. Hclassic also contains all of the vowels found in
Hebrew, a symbol for meteg, and dots for use as a dagesh and for differentiating
shin and sin letters.

Currently, only the Hebrew consonants (hebalef – hebtav) from these fonts
are supported by LATEX2ε, however one can use vowels and dots directly with
Plain TEX macros. We are working on generic vowels and dots support for
LATEX2ε.

62.119 〈∗LHEclas〉
62.120 \DeclareFontFamily{LHE}{clas}{}
62.121 \DeclareFontShape{LHE}{clas}{m}{n}
62.122 {<-> s * [0.83345] hclassic }{}
62.123 %%%%%%% Font/shape undefined, therefore substituted
62.124 \DeclareFontShape{LHE}{clas}{m}{sc}
62.125 〈−nowarn〉 {<->sub * clas/m/n}{}
62.126 〈+nowarn〉 {<->ssub * clas/m/n}{}
62.127 %%%%%%% Slanted shape
62.128 \DeclareFontShape{LHE}{clas}{m}{sl}
62.129 {<-> s * [0.69389] hcaption }{}
62.130 %%%%%%% Font/shape undefined, therefore substituted
62.131 \DeclareFontShape{LHE}{clas}{m}{it}
62.132 〈−nowarn〉 {<->sub * clas/m/sl}{}

414

62.133 〈+nowarn〉 {<->ssub * clas/m/sl}{}
62.134 〈/LHEclas〉

62.4.5 Hebrew shalom fonts

All three shalom fonts (ShalomScript10, ShalomStick10 and ShalomOldStyle10)
have been created by Jonathan Brecher, of 9 Skyview Road, Lexington, MA 02173-
1112 USA, e-mail: brecher@husc.harvard.edu.

All shalom fonts have been written in PostScript via Fontographer on a
Mac. The fonts have been converted to METAFONT by Rama Porrat (e-mail:
rama@cc.huji.ac.il), using the utility typo, a font editor + converter between
font formats (a commercial product). ShalomScript10.mf is the METAFONT

equivalent of ShalomScript.ps, ShalomStick10.mf came from ShalomStick.ps
and ShalomOldStyle10.mf originated in ShalomOldStyle.ps.

The fonts differ in the letters’ style. ShalomScript10 contains hand writing
Hebrew letters; ShalomStick10 contains sans-serif letters, and ShalomOldStyle10
contains old style letters. All three fonts contain vowels and dots (nikud). While
converting to METAFONT, letters and symbols within the fonts have been arranged
so as to get a usable font for writing Hebrew documents in TEX or LATEX, with as
well as without vowels.

Currently, only the Hebrew consonants (hebalef – hebtav) from these fonts
are supported by LATEX2ε, however one can use vowels and dots directly with
Plain TEX macros. We are working on generic vowels and dots support for
LATEX2ε.

62.135 〈∗LHEshold〉
62.136 \DeclareFontFamily{LHE}{shold}{}
62.137 \DeclareFontShape{LHE}{shold}{m}{n}
62.138 {<-> shold10 }{}
62.139 〈/LHEshold〉
62.140 〈∗LHEshscr〉
62.141 \DeclareFontFamily{LHE}{shscr}{}
62.142 \DeclareFontShape{LHE}{shscr}{m}{n}
62.143 {<-> shscr10 }{}
62.144 〈/LHEshscr〉
62.145 〈∗LHEshstk〉
62.146 \DeclareFontFamily{LHE}{shstk}{}
62.147 \DeclareFontShape{LHE}{shstk}{m}{n}
62.148 {<-> shstk10 }{}
62.149 〈/LHEshstk〉

62.4.6 Hebrew frank-ruehl font

Frank Ruehl font was written in METAFONT and includes three shapes: regular,
bold extaneded and slanted.

62.150 〈∗LHEfr〉
62.151 \DeclareFontFamily{LHE}{fr}{}
62.152 \DeclareFontShape{LHE}{fr}{m}{n}

415

62.153 {<-> fr }{}
62.154 %%%%%%% Font/shape undefined, therefore substituted
62.155 \DeclareFontShape{LHE}{fr}{m}{sc}
62.156 〈−nowarn〉 {<->sub * fr/m/n}{}
62.157 〈+nowarn〉 {<->ssub * fr/m/n}{}
62.158 %%%%%%% Slanted shape
62.159 \DeclareFontShape{LHE}{fr}{m}{sl}
62.160 {<-> frsl }{}
62.161 %%%%%%% Font/shape undefined, therefore substituted
62.162 \DeclareFontShape{LHE}{fr}{m}{it}
62.163 〈−nowarn〉 {<->sub * fr/m/sl}{}
62.164 〈+nowarn〉 {<->ssub * fr/m/sl}{}
62.165 %%%%%%% Bold extended series
62.166 \DeclareFontShape{LHE}{fr}{bx}{n}
62.167 {<-> frbx }{}
62.168 %%%%%%% Font/shape undefined, therefore substituted
62.169 \DeclareFontShape{LHE}{fr}{b}{n}
62.170 〈−nowarn〉 {<->sub * fr/bx/n}{}
62.171 〈+nowarn〉 {<->ssub * fr/bx/n}{}
62.172 %%%%%%% Font/shape undefined, therefore substituted
62.173 \DeclareFontShape{LHE}{fr}{bx}{sl}
62.174 〈−nowarn〉 {<->sub * fr/bx/n}{}
62.175 〈+nowarn〉 {<->ssub * fr/bx/n}{}
62.176 %%%%%%% Font/shape undefined, therefore substituted
62.177 \DeclareFontShape{LHE}{fr}{bx}{it}
62.178 〈−nowarn〉 {<->sub * fr/bx/n}{}
62.179 〈+nowarn〉 {<->ssub * fr/bx/n}{}
62.180 〈/LHEfr〉

62.4.7 Hebrew carmel font

Carmel font includes regular and slanted shapes. It was created by Dr. Samy
Zafrany of the Technion, Haifa, Israel with the intention of making nice fonts for
headers and emphasized text.

62.181 〈∗LHEcrml〉
62.182 \DeclareFontFamily{LHE}{crml}{}
62.183 \DeclareFontShape{LHE}{crml}{m}{n}
62.184 {<-> crml10 }{}
62.185 %%%%%%% Font/shape undefined, therefore substituted
62.186 \DeclareFontShape{LHE}{crml}{m}{sc}
62.187 〈−nowarn〉 {<->sub * crml/m/n}{}
62.188 〈+nowarn〉 {<->ssub * crml/m/n}{}
62.189 %%%%%%% Slanted shape
62.190 \DeclareFontShape{LHE}{crml}{m}{sl}
62.191 {<-> crmlsl10 }{}
62.192 %%%%%%% Font/shape undefined, therefore substituted
62.193 \DeclareFontShape{LHE}{crml}{m}{it}
62.194 〈−nowarn〉 {<->sub * crml/m/sl}{}
62.195 〈+nowarn〉 {<->ssub * crml/m/sl}{}

416

62.196 〈/LHEcrml〉

62.4.8 Hebrew redis font

Redis font has been created by Prof. Jacques J. Goldberg of the Technion. Haifa,
Israel. The font is available in regular, slanted and bold extanded shapes. This
font contains a full set of Hebrew letters in a “sans-serif vectorized” style, and
selected punctuation.

62.197 〈∗LHEredis〉
62.198 \DeclareFontFamily{LHE}{redis}{}
62.199 \DeclareFontShape{LHE}{redis}{m}{n}{%
62.200 <5> <6> redis7
62.201 <7> <8> <9> <10> <12> gen * redis
62.202 <10.95> redis10
62.203 <14.4> redis12
62.204 <17.28> <20.74> <24.88> redis17}{}
62.205 %%%%%%% Font/shape undefined, therefore substituted
62.206 \DeclareFontShape{LHE}{redis}{m}{sc}
62.207 〈−nowarn〉 {<->sub * redis/m/n}{}
62.208 〈+nowarn〉 {<->ssub * redis/m/n}{}
62.209 %%%%%%% Slanted shape
62.210 \DeclareFontShape{LHE}{redis}{m}{sl}{%
62.211 <5> <6> <7> rediss8
62.212 <8> <9> <10> <12> gen * rediss
62.213 <10.95> rediss10
62.214 <14.4> <17.28> <20.74> <24.88> rediss12}{}
62.215 %%%%%%% Font/shape undefined, therefore substituted
62.216 \DeclareFontShape{LHE}{redis}{m}{it}
62.217 〈−nowarn〉 {<->sub * redis/m/sl}{}
62.218 〈+nowarn〉 {<->ssub * redis/m/sl}{}
62.219 %%%%%%% Bold extended series
62.220 \DeclareFontShape{LHE}{redis}{bx}{n}{%
62.221 <5> <6> <7> <8> <9> <10> <10.95> <12>
62.222 <14.4> <17.28> <20.74> <24.88> redisb10}{}
62.223 %%%%%%% Font/shape undefined, therefore substituted
62.224 \DeclareFontShape{LHE}{redis}{b}{n}
62.225 〈−nowarn〉 {<->sub * redis/bx/n}{}
62.226 〈+nowarn〉 {<->ssub * redis/bx/n}{}
62.227 %%%%%%% Font/shape undefined, therefore substituted
62.228 \DeclareFontShape{LHE}{redis}{bx}{sl}
62.229 〈−nowarn〉 {<->sub * redis/bx/n}{}
62.230 〈+nowarn〉 {<->ssub * redis/bx/n}{}
62.231 %%%%%%% Font/shape undefined, therefore substituted
62.232 \DeclareFontShape{LHE}{redis}{bx}{it}
62.233 〈−nowarn〉 {<->sub * redis/bx/n}{}
62.234 〈+nowarn〉 {<->ssub * redis/bx/n}{}
62.235 〈/LHEredis〉

417

62.5 The HE8encoding definition file
The Hebrew font encoding HE8 is based upon an extention by Microsoft to the
ISO-8859-8 standard. This is an 8bit encoding. The extentions include hebrew
points (“Nikud”).

First we define the Codepage 1255; specify a default for the font substitution
process for the HE8 encoding and supply a font to be used when all else fails.

62.236 〈∗HE8enc〉
62.237 \DeclareFontEncoding{HE8}{}{}
62.238 \DeclareFontSubstitution{HE8}{cmr}{m}{n}
62.239 \DeclareErrorFont{HE8}{cmr}{m}{n}{10}
62.240 〈/HE8enc〉

Then we define a few commands in the HE8 encoding.
62.241 〈∗HE8enc〉
62.242 \ProvideTextCommand{\textcopyright}{HE8}{\textcircled{\@latin{c}}}
62.243 \ProvideTextCommand{\textregistered}{HE8}{\textcircled{\scshape%
62.244 \@latin{r}}}
62.245 \ProvideTextCommand{\texttrademark}{HE8}{\textsuperscript{\@latin{TM}}}
62.246 〈/HE8enc〉

62.5.1 CHECK HERE FOR HE8 UPDATES

Because not everyone can input Hebrew input text directly from the keyboard we
need to define control sequences for all the Hebrew glyphs in the fonts. In addition,
we want to support many input encodings for Hebrew and to keep the language
definition file (hebrew.ldf) independent of the encoding. Therefore, we exploit
the standard LATEX2ε font encoding mechanism to define control sequences for all
the Hebrew glyphs in the fonts in encoding-specific way. The language definition
file uses only the control sequences and doesn’t need to check the current font or
input encoding.

In the LHE encoding (7-bit encoding) all the Hebrew glyphes reside in the lower
half of the font. Currently, only the Hebrew letters are supported. They use the
same positions as the latin small letters in ASCII encoding and the position of ‘.

Some general symbols:
62.247 〈∗HE8enc〉
62.248 \ProvideTextCommand{\textcopyright}{HE8}{\textcircled{\@latin{c}}}
62.249 \ProvideTextCommand{\textregistered}{HE8}{\textcircled{\scshape%
62.250 \@latin{r}}}
62.251 \ProvideTextCommand{\texttrademark}{HE8}{\textsuperscript{\@latin{TM}}}
62.252 〈/HE8enc〉

The hebrew points:
62.253 〈∗HE8enc〉
62.254 \DeclareTextSymbol{\sheva}{HE8}{192}
62.255 \DeclareTextSymbol{\hatafsegol}{HE8}{193}
62.256 \DeclareTextSymbol{\hatafpatah}{HE8}{194}
62.257 \DeclareTextSymbol{\hatafqamats}{HE8}{195}
62.258 \DeclareTextSymbol{\hiriq}{HE8}{196}

418

62.259 \DeclareTextSymbol{\tsere}{HE8}{197}
62.260 \DeclareTextSymbol{\segol}{HE8}{198}
62.261 \DeclareTextSymbol{\patah}{HE8}{199}
62.262 \DeclareTextSymbol{\qamats}{HE8}{200}
62.263 \DeclareTextSymbol{\holam}{HE8}{201}
62.264 \DeclareTextSymbol{\qubuts}{HE8}{203}
62.265 \DeclareTextSymbol{\dagesh}{HE8}{204}
62.266 \DeclareTextSymbol{\meteg}{HE8}{205}
62.267 \DeclareTextSymbol{\maqaf}{HE8}{206}
62.268 \DeclareTextSymbol{\rafe}{HE8}{207}
62.269 \DeclareTextSymbol{\paseq}{HE8}{208}
62.270 \DeclareTextSymbol{\shindot}{HE8}{209}
62.271 \DeclareTextSymbol{\sindot}{HE8}{210}
62.272 \DeclareTextSymbol{\sofpasuq}{HE8}{211}
62.273 \DeclareTextSymbol{\doublevav}{HE8}{212}
62.274 \DeclareTextSymbol{\vavyod}{HE8}{213}
62.275 \DeclareTextSymbol{\doubleyod}{HE8}{214}
62.276 〈/HE8enc〉

Hebrew letters occupy the positions 224–250 in HE8 encoding [WHAT ABOUT
OTHER MARKS]:

62.277 〈∗HE8enc〉
62.278 % \lccode‘‘=‘‘ % probably not needed (Tzafrir)
62.279 \DeclareTextSymbol{\hebalef}{HE8}{224}
62.280 \DeclareTextSymbol{\hebbet}{HE8}{225}
62.281 \DeclareTextSymbol{\hebgimel}{HE8}{226}
62.282 \DeclareTextSymbol{\hebdalet}{HE8}{227}
62.283 \DeclareTextSymbol{\hebhe}{HE8}{228}
62.284 \DeclareTextSymbol{\hebvav}{HE8}{229}
62.285 \DeclareTextSymbol{\hebzayin}{HE8}{230}
62.286 \DeclareTextSymbol{\hebhet}{HE8}{231}
62.287 \DeclareTextSymbol{\hebtet}{HE8}{232}
62.288 \DeclareTextSymbol{\hebyod}{HE8}{233}
62.289 \DeclareTextSymbol{\hebfinalkaf}{HE8}{234}
62.290 \DeclareTextSymbol{\hebkaf}{HE8}{235}
62.291 \DeclareTextSymbol{\heblamed}{HE8}{236}
62.292 \DeclareTextSymbol{\hebfinalmem}{HE8}{237}
62.293 \DeclareTextSymbol{\hebmem}{HE8}{238}
62.294 \DeclareTextSymbol{\hebfinalnun}{HE8}{239}
62.295 \DeclareTextSymbol{\hebnun}{HE8}{240}
62.296 \DeclareTextSymbol{\hebsamekh}{HE8}{241}
62.297 \DeclareTextSymbol{\hebayin}{HE8}{242}
62.298 \DeclareTextSymbol{\hebfinalpe}{HE8}{243}
62.299 \DeclareTextSymbol{\hebpe}{HE8}{244}
62.300 \DeclareTextSymbol{\hebfinaltsadi}{HE8}{245}
62.301 \DeclareTextSymbol{\hebtsadi}{HE8}{246}
62.302 \DeclareTextSymbol{\hebqof}{HE8}{247}
62.303 \DeclareTextSymbol{\hebresh}{HE8}{248}
62.304 \DeclareTextSymbol{\hebshin}{HE8}{249}
62.305 \DeclareTextSymbol{\hebtav}{HE8}{250}

419

62.306 〈/HE8enc〉
Letter \hebsin is defined as a synonym of \hebshin:

62.307 〈+HE8enc〉\let\hebsin=\hebshin

62.6 The font definition files (in HE8 encoding)
62.6.1 Hebrew default font

It uses OmegaHebrew font for regular font, Old Jaffa font for italic shape and
small-caps, Dead Sea font for bold face, and Tel-Aviv for bold-italic

62.308 〈∗HE8cmr〉
62.309 \DeclareFontFamily{HE8}{cmr}{\hyphenchar\font45}
62.310 \DeclareFontShape{HE8}{cmr}{m}{n}
62.311 {<-> david }{}
62.312 %%%%%%% Italicized shape
62.313 \DeclareFontShape{HE8}{cmr}{m}{it}
62.314 {<-> davidi }{}
62.315 \DeclareFontShape{HE8}{cmr}{m}{sl}
62.316 {<-> davidi }{}
62.317 \DeclareFontShape{HE8}{cmr}{m}{sc}
62.318 {<-> david }{}
62.319 %%%%%%% Bold extended series
62.320 \DeclareFontShape{HE8}{cmr}{bx}{n}
62.321 {<-> davidb }{}
62.322 \DeclareFontShape{HE8}{cmr}{b}{n}
62.323 {<-> davidb }{}
62.324 %%%%%%% Bold extended (Italic) series
62.325 \DeclareFontShape{HE8}{cmr}{bx}{sl}
62.326 {<-> davidbi }{}
62.327 \DeclareFontShape{HE8}{cmr}{bx}{it}
62.328 {<-> davidbi }{}
62.329 〈/HE8cmr〉

62.6.2 Hebrew sans-serif font

Until we have a real sans-serif font in this distribution, this file will remain a copy
of the roman fonts definitons above.

62.330 〈∗HE8cmss〉
62.331 \DeclareFontFamily{HE8}{cmss}{\hyphenchar\font45}
62.332 \DeclareFontShape{HE8}{cmss}{m}{n}
62.333 {<-> nachlieli }{}
62.334 %%%%%%% Italicized shape
62.335 \DeclareFontShape{HE8}{cmss}{m}{it}
62.336 {<-> nachlieli }{}
62.337 \DeclareFontShape{HE8}{cmss}{m}{sl}
62.338 {<-> nachlieli }{}
62.339 \DeclareFontShape{HE8}{cmss}{m}{sc}
62.340 {<-> nachlieli }{}

420

62.341 %%%%%%% Bold extended series
62.342 \DeclareFontShape{HE8}{cmss}{bx}{n}
62.343 {<-> nachlieli }{}
62.344 \DeclareFontShape{HE8}{cmss}{b}{n}
62.345 {<-> nachlieli }{}
62.346 %%%%%%% Bold extended (Italic) series
62.347 \DeclareFontShape{HE8}{cmss}{bx}{sl}
62.348 {<-> nachlieli }{}
62.349 \DeclareFontShape{HE8}{cmss}{bx}{it}
62.350 {<-> nachlieli }{}
62.351 〈/HE8cmss〉

62.6.3 Hebrew typewriter font

Until we have a real sans-serif font in this distribution, this file will remain a copy
of the roman fonts definitons above.

62.352 〈∗HE8cmtt〉
62.353 \DeclareFontFamily{HE8}{cmtt}{\hyphenchar\font45}
62.354 \DeclareFontShape{HE8}{cmtt}{m}{n}
62.355 {<-> miriam }{}
62.356 %%%%%%% Italicized shape
62.357 \DeclareFontShape{HE8}{cmtt}{m}{it}
62.358 {<-> miriam }{}
62.359 \DeclareFontShape{HE8}{cmtt}{m}{sl}
62.360 {<-> miriam }{}
62.361 \DeclareFontShape{HE8}{cmtt}{m}{sc}
62.362 {<-> miriam }{}
62.363 %%%%%%% Bold extended series
62.364 \DeclareFontShape{HE8}{cmtt}{bx}{n}
62.365 {<-> miriam }{}
62.366 \DeclareFontShape{HE8}{cmtt}{b}{n}
62.367 {<-> miriam }{}
62.368 %%%%%%% Bold extended (Italic) series
62.369 \DeclareFontShape{HE8}{cmtt}{bx}{sl}
62.370 {<-> miriam }{}
62.371 \DeclareFontShape{HE8}{cmtt}{bx}{it}
62.372 {<-> miriam }{}
62.373 〈/HE8cmtt〉

62.6.4 8Bit OmegaHebrew font

OmegaHebrew is a serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.374 〈∗HE8OmegaHebrew〉
62.375 \def\OmegaHebrewscale{0.9}
62.376 \DeclareFontFamily{HE8}{OmegaHebrew}{\hyphenchar\font45}
62.377 \DeclareFontShape{HE8}{OmegaHebrew}{m}{n}{<-> [\OmegaHebrewscale] OmegaHebrew }{}
62.378 %\endinput % is it needed [tzafrir]
62.379 〈/HE8OmegaHebrew〉

421

62.6.5 8Bit Aharoni font

Aharoni is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.380 〈∗HE8aharoni〉
62.381 \def\Aharoniscale{1.0}
62.382 \DeclareFontFamily{HE8}{aharoni}{\hyphenchar\font45}
62.383 \DeclareFontShape{HE8}{aharoni}{m}{n} {<-> [\Aharoniscale] aharoni}{}
62.384 \DeclareFontShape{HE8}{aharoni}{m}{it} {<-> [\Aharoniscale] aharonii}{}
62.385 \DeclareFontShape{HE8}{aharoni}{m}{sl} {<-> [\Aharoniscale] aharonii}{}
62.386 \DeclareFontShape{HE8}{aharoni}{b}{n} {<-> [\Aharoniscale] aharonib}{}
62.387 \DeclareFontShape{HE8}{aharoni}{bx}{n} {<-> [\Aharoniscale] aharonib}{}
62.388 \DeclareFontShape{HE8}{aharoni}{bx}{it} {<-> [\Aharoniscale] aharonibi}{}
62.389
62.390 %\endinput % is it needed [tzafrir]
62.391 〈/HE8aharoni〉

62.6.6 8Bit David font

David is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.392 〈∗HE8david〉
62.393 \def\Davidscale{1.0}
62.394 \DeclareFontFamily{HE8}{david}{\hyphenchar\font45}
62.395
62.396 \DeclareFontShape{HE8}{david}{m}{n} {<-> [\Davidscale] david}{}
62.397 \DeclareFontShape{HE8}{david}{m}{it} {<-> [\Davidscale] davidi}{}
62.398 \DeclareFontShape{HE8}{david}{m}{sl} {<-> [\Davidscale] davidi}{}
62.399 \DeclareFontShape{HE8}{david}{b}{n} {<-> [\Davidscale] davidb}{}
62.400 \DeclareFontShape{HE8}{david}{bx}{n} {<-> [\Davidscale] davidb}{}
62.401 \DeclareFontShape{HE8}{david}{bx}{it} {<-> [\Davidscale] davidbi}{}
62.402
62.403
62.404 %\endinput % is it needed [tzafrir]
62.405 〈/HE8david〉

62.6.7 8Bit Drugulin font

Drugulin is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.406 〈∗HE8drugulin〉
62.407 \def\Drugulinscale{1.0}
62.408 \DeclareFontFamily{HE8}{drugulin}{\hyphenchar\font45}
62.409 \DeclareFontShape{HE8}{drugulin}{m}{n} {<-> [\Drugulinscale] drugulinb}{}
62.410 \DeclareFontShape{HE8}{drugulin}{m}{it} {<-> [\Drugulinscale] drugulinbi}{}
62.411 \DeclareFontShape{HE8}{drugulin}{m}{sl} {<-> [\Drugulinscale] drugulinbi}{}
62.412 \DeclareFontShape{HE8}{drugulin}{b}{n} {<-> [\Drugulinscale] drugulinb}{}
62.413 \DeclareFontShape{HE8}{drugulin}{bx}{n} {<-> [\Drugulinscale] drugulinb}{}

422

62.414 \DeclareFontShape{HE8}{drugulin}{bx}{it} {<-> [\Drugulinscale] drugulinbi}{}
62.415 %\endinput % is it needed [tzafrir]
62.416 〈/HE8drugulin〉

62.6.8 8Bit Ellinia font

Ellinia is a sans-serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.417 〈∗HE8ellinia〉
62.418 \def\Elliniascale{1.0}
62.419 \DeclareFontFamily{HE8}{ellinia}{\hyphenchar\font45}
62.420 \DeclareFontShape{HE8}{ellinia}{m}{n} {<-> [\Elliniascale] ellinia}{}
62.421 \DeclareFontShape{HE8}{ellinia}{m}{it} {<-> [\Elliniascale] elliniai}{}
62.422 \DeclareFontShape{HE8}{ellinia}{m}{sl} {<-> [\Elliniascale] elliniai}{}
62.423 \DeclareFontShape{HE8}{ellinia}{b}{n} {<-> [\Elliniascale] elliniab}{}
62.424 \DeclareFontShape{HE8}{ellinia}{bx}{n} {<-> [\Elliniascale] elliniab}{}
62.425 \DeclareFontShape{HE8}{ellinia}{bx}{it} {<-> [\Elliniascale] elliniabi}{}
62.426 %\endinput % is it needed [tzafrir]
62.427 〈/HE8ellinia〉

62.6.9 8Bit FrankRuehl font

FrankRuehl is a serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.428 〈∗HE8frankruehl〉
62.429 \def\FrankRuehlscale{1.0}
62.430 \DeclareFontFamily{HE8}{frank}{\hyphenchar\font45}
62.431 \DeclareFontShape{HE8}{frank}{m}{n} {<-> [\FrankRuehlscale] frank}{}
62.432 \DeclareFontShape{HE8}{frank}{m}{it} {<-> [\FrankRuehlscale] franki}{}
62.433 \DeclareFontShape{HE8}{frank}{m}{sl} {<-> [\FrankRuehlscale] franki}{}
62.434 \DeclareFontShape{HE8}{frank}{b}{n} {<-> [\FrankRuehlscale] frankb}{}
62.435 \DeclareFontShape{HE8}{frank}{bx}{n} {<-> [\FrankRuehlscale] frankb}{}
62.436 \DeclareFontShape{HE8}{frank}{bx}{it} {<-> [\FrankRuehlscale] frankbi}{}
62.437 %\endinput % is it needed [tzafrir]
62.438 〈/HE8frankruehl〉

62.6.10 8Bit KtavYad font

KtavYad is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.439 〈∗HE8yad〉
62.440 \def\KtavYadscale{1.0}
62.441 \DeclareFontFamily{HE8}{yad}{\hyphenchar\font45}
62.442 \DeclareFontShape{HE8}{yad}{m}{n} {<-> [\KtavYadscale] yadi}{}
62.443 \DeclareFontShape{HE8}{yad}{m}{it} {<-> [\KtavYadscale] yadi}{}
62.444 \DeclareFontShape{HE8}{yad}{m}{sl} {<-> [\KtavYadscale] yadi}{}
62.445 \DeclareFontShape{HE8}{yad}{b}{n} {<-> [\KtavYadscale] yadbi}{}
62.446 \DeclareFontShape{HE8}{yad}{bx}{n} {<-> [\KtavYadscale] yadbi}{}

423

62.447 \DeclareFontShape{HE8}{yad}{bx}{it} {<-> [\KtavYadscale] yadbi}{}
62.448 %\endinput % is it needed [tzafrir]
62.449 〈/HE8yad〉

62.6.11 8Bit MiriamMono font

MiriamMono is a serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.450 〈∗HE8miriam〉
62.451 \def\MiriamMonoscale{1.0}
62.452 \DeclareFontFamily{HE8}{miriam}{\hyphenchar\font45}
62.453 \DeclareFontShape{HE8}{miriam}{m}{n} {<-> [\MiriamMonoscale] miriam}{}
62.454 \DeclareFontShape{HE8}{miriam}{m}{it} {<-> [\MiriamMonoscale] miriami}{}
62.455 \DeclareFontShape{HE8}{miriam}{m}{sl} {<-> [\MiriamMonoscale] miriami}{}
62.456 \DeclareFontShape{HE8}{miriam}{b}{n} {<-> [\MiriamMonoscale] miriamb}{}
62.457 \DeclareFontShape{HE8}{miriam}{bx}{n} {<-> [\MiriamMonoscale] miriamb}{}
62.458 \DeclareFontShape{HE8}{miriam}{bx}{it} {<-> [\MiriamMonoscale] miriambi}{}
62.459
62.460 %\endinput % is it needed [tzafrir]
62.461 〈/HE8miriam〉

62.6.12 8Bit Nachlieli font

Nachlieli is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

62.462 〈∗HE8nachlieli〉
62.463 \def\Nachlieliscale{1.0}
62.464 \DeclareFontFamily{HE8}{nachlieli}{\hyphenchar\font45}
62.465 \DeclareFontShape{HE8}{nachlieli}{m}{n} {<-> [\Nachlieliscale] nachlieli}{}
62.466 \DeclareFontShape{HE8}{nachlieli}{m}{it} {<-> [\Nachlieliscale] nachlielii}{}
62.467 \DeclareFontShape{HE8}{nachlieli}{m}{sl} {<-> [\Nachlieliscale] nachlielii}{}
62.468 \DeclareFontShape{HE8}{nachlieli}{b}{n} {<-> [\Nachlieliscale] nachlielib}{}
62.469 \DeclareFontShape{HE8}{nachlieli}{bx}{n} {<-> [\Nachlieliscale] nachlielib}{}
62.470 \DeclareFontShape{HE8}{nachlieli}{bx}{it} {<-> [\Nachlieliscale] nachlielibi}{}
62.471 %\endinput % is it needed [tzafrir]
62.472 〈/HE8nachlieli〉

62.6.13 Hebrew font switching commands

The hebfont package defines a number of high-level commands (all starting with
\text.. similar to the standard LATEX2ε font-change commands, for example
\textbf) that have one argument and typeset this argument in the requested
way. These commands are defined for all available Hebrew fonts defined above
and change only font parameters but not direction.

For example, to use Hebrew Classic font family, the following sequence of
commands should be included in a LATEX2ε document:

\sethebrew
\textclas{Hebrew text printed with Classic fonts}

424

Command Corresponds to Font family

\textjm{..} \rmfamily Jerusalem font
\textds{..} \bfseries Dead Sea font
\textoj{..} \itshape Old Jaffa font

\slshape
\emph

\textta{..} \sffamily Tel-Aviv font
\ttfamily

\textcrml{..} \fontfamily{crml} Carmel fonts
\textfr{..} \fontfamily{fr} Frank-Ruehl fonts
\textredis{..} \fontfamily{redis} Redis fonts
\textclas{..} \fontfamily{redis} Classic fonts
\textshold{..} \fontfamily{shold} Shalom Old Style font
\textshscr{..} \fontfamily{shscr} Shalom Script font
\textshstk{..} \fontfamily{shstk} Shalom Stick font

Table 33: Hebrew font-change commands with arguments

The font change commands provided here all start with \text.. to
emphasize that they are for use in normal text and to be easily mem-
orable.

or to use Hebrew with Classic fonts locally:

\R{\textclas{Hebrew text printed with Classic fonts}}

We declare LATEX2ε font commands, e.g. \textjm{. . . } for all available fonts.
Table 33 shows the meanings of all these new high-level commands.

\textjm Switches to Jerusalem font which is default regular Hebrew font (“roman” family).
Commands \textrm{. . . } and old-style {\rm . . . } will produce the same result.

62.473 〈∗hebfont〉
62.474 \def\ivritex@tmp{HE8}
62.475 \ifx\ivritex@tmp\HeblatexEncoding %
62.476 % compatibility with hebfonts:
62.477 \DeclareTextFontCommand{\textjm}{\rmfamily\selectfont}
62.478 \DeclareTextFontCommand{\textds}{\bfseries\selectfont}
62.479 \DeclareTextFontCommand{\textoj}{\itshape\selectfont}
62.480 \DeclareTextFontCommand{\textta}{\sffamily\selectfont}
62.481
62.482 % an attempt to give some replacements to the original hebfonts:
62.483 %
62.484 \DeclareTextFontCommand{\textcrml}{\fontfamily{david}\selectfont}
62.485 \DeclareTextFontCommand{\textfr}{\fontfamily{frank}\selectfont}
62.486 \DeclareTextFontCommand{\textredis}{\fontfamily{aharoni}\selectfont}

425

62.487 \DeclareTextFontCommand{\textclas}{\fontfamily{drugulin}\selectfont}
62.488 \DeclareTextFontCommand{\textshold}{\fontfamily{frank}\selectfont}
62.489 \DeclareTextFontCommand{\textshscr}{\fontfamily{yad}\selectfont}
62.490 \DeclareTextFontCommand{\textshstk}{\fontfamily{aharoni}\selectfont}
62.491 % note that redis is larger than shstk
62.492
62.493
62.494 \DeclareTextFontCommand{\textaha}{\fontfamily{aharoni}\selectfont}
62.495 \DeclareTextFontCommand{\textdav}{\fontfamily{david}\selectfont}
62.496 \DeclareTextFontCommand{\textdru}{\fontfamily{drugulin}\selectfont}
62.497 \DeclareTextFontCommand{\textel} {\fontfamily{ellinia}\selectfont}
62.498 % \textfr is already declared above
62.499 \DeclareTextFontCommand{\textmir}{\fontfamily{miriam}\selectfont}
62.500 \DeclareTextFontCommand{\textna} {\fontfamily{nachlieli}\selectfont}
62.501 % is this necessary:
62.502 \DeclareTextFontCommand{\textyad} {\fontfamily{yad}\selectfont}
62.503
62.504 \else%
62.505 \DeclareTextFontCommand{\textjm}{\rmfamily\selectfont}

\textds Switches to Dead Sea font which is default bold font in Hebrew. Commands
\textbf{. . . } and old-style {\bf . . . } will produce the same result.

62.506 \DeclareTextFontCommand{\textds}{\bfseries\selectfont}

\textoj Switches to Old Jaffa font which is default italic font in Hebrew. Commands
\textit{. . . }, \textsl{. . . }, \emph{. . . } and old-style {\it . . . } or {\em . . . }
will produce the same result.

62.507 \DeclareTextFontCommand{\textoj}{\itshape\selectfont}

\textta Switches to Tel-Aviv font which is default sans-serif font in Hebrew. Commands
\textsf{. . . }, \texttt{. . . } and old-style {\sf . . . } or {\tt . . . } will produce
the same result (because sans-serif is used as typewriter font when in Hebrew
mode).

62.508 \DeclareTextFontCommand{\textta}{\sffamily\selectfont}

\textcrml Switches to Carmel font. Regular and slanted variants of carmel font will be used..
62.509 \DeclareTextFontCommand{\textcrml}{\fontfamily{crml}\selectfont}

\textfr Switches to Frank-Ruehl font family. Regular, bold and slanted frank ruehl fonts
will be used.

62.510 \DeclareTextFontCommand{\textfr}{\fontfamily{fr}\selectfont}

\textredis Switches to Redis font family. Regular, bold and slanted redis fonts of various
sizes will be used.

62.511 \DeclareTextFontCommand{\textredis}{\fontfamily{redis}\selectfont}

\textclas Switches to Classic font family. The normal font will be hclassic and slanted —
hcaption.

62.512 \DeclareTextFontCommand{\textclas}{\fontfamily{clas}\selectfont}

426

Old font command Font name Comment

{\jm ..} Jerusalem default regular (roman) font
{\ds ..} Dead Sea default bold font
{\oj ..} Old Jaffa default italic and slanted font

used also to emphasize text
{\ta ..} Tel-Aviv default sans-serif and typewriter font

Table 34: Hebrew old font-change commands for compatibility mode

\textshold Switches to Shalom Old Style font.
62.513 \DeclareTextFontCommand{\textshold}{\fontfamily{shold}\selectfont}

\textshscr Switches to Shalom Script font.
62.514 \DeclareTextFontCommand{\textshscr}{\fontfamily{shscr}\selectfont}

\textshstk Switches to Shalom Stick font.
62.515 \DeclareTextFontCommand{\textshstk}{\fontfamily{shstk}\selectfont}
62.516 \fi

Finally, for backward compatibility with LATEX2.09. four old font commands,
e.g. {\jm . . . } are defined too (see Table 34).

62.517 \if@compatibility
62.518 \DeclareOldFontCommand{\jm}{\normalfont\rmfamily\selectfont}%
62.519 {\@nomath\jm}
62.520 \DeclareOldFontCommand{\ds}{\normalfont\bfseries\selectfont}%
62.521 {\@nomath\ds}
62.522 \DeclareOldFontCommand{\oj}{\normalfont\itshape\selectfont}%
62.523 {\@nomath\oj}
62.524 \DeclareOldFontCommand{\ta}{\normalfont\sffamily\selectfont}%
62.525 {\@nomath\ta}
62.526 \fi
62.527 〈/hebfont〉

63 Hebrew in LATEX 2.09 compatibility mode
\documentstyle command in the preamble of LATEX document indicates that it
is a LATEX 2.09 document, and should be processed in compatibility mode. In such
documents, one of the following three Hebrew style options can be included:

1. hebrew_newcode indicates that document will use UNIX ISO 8859-8 or Win-
dows cp1255 input encoding, i.e. Alef letter will be represented as 224.

2. hebrew_p indicates that document is encoded with IBM PC cp862 encoding,
i.e. Alef letter will be represented as 128.

427

3. hebrew_oldcode indicates that document uses old 7-bit encoding, as defined
in Israeli Standard 960, i.e. Alef is character number 96.

Note, that other hebrew-related styles, such as hebcal can be included after the
abovenamed Hebrew style option, for example:

\documentstyle[12pt,hebrew_p,hebcal]{report}.

Any Hebrew document which compiled under LATEX 2.09 should compile under
compatibility mode, unless it uses low-level commands such as \tenrm.

63.1 The docstrip modules
The following modules are used in the implementation to direct docstrip in
generating the external files:

newcode produce hebrew_newcode.sty
pccode produce hebrew_p.sty
oldcode produce hebrew_oldcode.sty

63.2 Obsolete style files
For each of the Hebrew LATEX 2.09 Hebrew styles, we produce a file which uses
correct input encoding and calls babel with Hebrew and English language op-
tions. This means that any styles which say \input hebrew_newcode.sty or
\documentstyle[. . . hebrew_newcode. . .]{. . . } should still work.

63.1 〈∗newcode | pccode | oldcode〉
63.2 \NeedsTeXFormat{LaTeX2e}
63.3 〈/newcode | pccode | oldcode〉

63.4 〈∗newcode〉
63.5 \@obsoletefile{hebrew.sty}{hebrew_newcode.sty}
63.6 \RequirePackage[8859-8]{inputenc}
63.7 〈/newcode〉
63.8 〈∗pccode〉
63.9 \@obsoletefile{hebrew.sty}{hebrew_p.sty}

63.10 \RequirePackage[cp862]{inputenc}
63.11 〈/pccode〉
63.12 〈∗oldcode〉
63.13 \@obsoletefile{hebrew.sty}{hebrew_oldcode.sty}
63.14 \RequirePackage[si960]{inputenc}
63.15 〈/oldcode〉

63.16 〈∗newcode | pccode | oldcode〉
63.17 \RequirePackage[english,hebrew]{babel}
63.18 〈/newcode | pccode | oldcode〉

428

64 The Bahasa language
The file bahasa.dtx74 defines all the language definition macros for the bahasa
indonesia / bahasa melayu language. Bahasa just means ‘language’ in bahasa
indonesia / bahasa melayu. Since both national versions of the language use the
same writing, although differing in pronounciation, this file can be used for both
languages.

For this language currently no special definitions are needed or available.
The macro \LdfInit takes care of preventing that this file is loaded more than

once, checking the category code of the @ sign, etc.
64.1 〈∗code〉
64.2 \LdfInit{bahasa}\captionsbahasa

When this file is read as an option, i.e. by the \usepackage command, bahasa
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@bahasa to see whether we have to do something here.

64.3 \ifx\l@bahasa\@undefined
64.4 \@nopatterns{Bahasa}
64.5 \adddialect\l@bahasa0\fi

The next step consists of defining commands to switch to (and from) the Ba-
hasa language.

\captionsbahasa The macro \captionsbahasa defines all strings used in the four standard docu-
mentclasses provided with LATEX.

64.6 \addto\captionsbahasa{%
64.7 \def\prefacename{Pendahuluan}%
64.8 \def\refname{Pustaka}%
64.9 \def\abstractname{Ringkasan}% (sometime it’s called ’intisari’

64.10 % or ’ikhtisar’)
64.11 \def\bibname{Bibliografi}%
64.12 \def\chaptername{Bab}%
64.13 \def\appendixname{Lampiran}%
64.14 \def\contentsname{Daftar Isi}%
64.15 \def\listfigurename{Daftar Gambar}%
64.16 \def\listtablename{Daftar Tabel}%
64.17 \def\indexname{Indeks}%
64.18 \def\figurename{Gambar}%
64.19 \def\tablename{Tabel}%
64.20 \def\partname{Bagian}%
64.21 % Subject: Subyek
64.22 % From: Dari
64.23 \def\enclname{Lampiran}%
64.24 \def\ccname{cc}%
64.25 \def\headtoname{Kepada}%
64.26 \def\pagename{Halaman}%
64.27 % Notes (Endnotes): Catatan

74The file described in this section has version number v1.0i and was last revised on 2005/03/29.

429

64.28 \def\seename{lihat}%
64.29 \def\alsoname{lihat juga}%
64.30 \def\proofname{Bukti}%
64.31 \def\glossaryname{Daftar Istilah}%
64.32 }

\datebahasa The macro \datebahasa redefines the command \today to produce Bahasa dates.

64.33 \def\datebahasa{%
64.34 \def\today{\number\day~\ifcase\month\or
64.35 Januari\or Pebruari\or Maret\or April\or Mei\or Juni\or
64.36 Juli\or Agustus\or September\or Oktober\or Nopember\or Desember\fi
64.37 \space \number\year}}

\extrasbahasa
\noextrasbahasa

The macro \extrasbahasa will perform all the extra definitions needed for the
Bahasa language. The macro \extrasbahasa is used to cancel the actions of
\extrasbahasa. For the moment these macros are empty but they are defined for
compatibility with the other language definition files.

64.38 \addto\extrasbahasa{}
64.39 \addto\noextrasbahasa{}

\bahasahyphenmins The bahasa hyphenation patterns should be used with \lefthyphenmin set to 2
and \righthyphenmin set to 2.

64.40 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The macro \ldf@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

64.41 \ldf@finish{bahasa}
64.42 〈/code〉

430

65 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to
designate his version of the american English hyphenation patterns, a new solution
has to be found in order to be able to load hyphenation patterns for other languages
in a plain-based TEX-format. When asked he responded:

That file name is "sacred", and if anybody changes it they will cause
severe upward/downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they
mustn’t diddle with hyphen.tex (or plain.tex except to preload addi-
tional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers
around plain.tex and lplain.tex to acheive the desired effect, based on the
babel package. If you load each of them with iniTEX, you will get a file called either
bplain.fmt or blplain.fmt, which you can use as replacements for plain.fmt
and lplain.fmt.

As these files are going to be read as the first thing iniTEX sees, we need to set
some category codes just to be able to change the definition of \input

65.1 〈∗bplain | blplain〉
65.2 \catcode‘\{=1 % left brace is begin-group character
65.3 \catcode‘\}=2 % right brace is end-group character
65.4 \catcode‘\#=6 % hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on TEX’s input
path by trying to open it for reading...

65.5 \openin 0 hyphen.cfg

If the file wasn’t found the following test turns out true.
65.6 \ifeof0
65.7 \else

When hyphen.cfg could be opened we make sure that it will be read instead of
the file hyphen.tex which should (according to Don Knuth’s ruling) contain the
american English hyphenation patterns and nothing else.

We do this by first saving the original meaning of \input (and I use a one
letter control sequence for that so as not to waste multi-letter control sequence on
this in the format).

65.8 \let\a\input

Then \input is defined to forget about its argument and load hyphen.cfg instead.
65.9 \def\input #1 {%

65.10 \let\input\a
65.11 \a hyphen.cfg

Once that’s done the original meaning of \input can be restored and the definition
of \a can be forgotten.

65.12 \let\a\undefined
65.13 }

431

65.14 \fi
65.15 〈/bplain | blplain〉

Now that we have made sure that hyphen.cfg will be loaded at the right moment
it is time to load plain.tex.

65.16 〈bplain〉\a plain.tex
65.17 〈blplain〉\a lplain.tex

Finally we change the contents of \fmtname to indicate that this is not the plain
format, but a format based on plain with the babel package preloaded.

65.18 〈bplain〉\def\fmtname{babel-plain}
65.19 〈blplain〉\def\fmtname{babel-lplain}

When you are using a different format, based on plain.tex you can make a copy
of blplain.tex, rename it and replace plain.tex with the name of your format file.

66 Support for formats based on plainTEX
The following code duplicates or emulates parts of LATEX2ε that are needed for
babel.

66.1 〈∗code〉
66.2 \ifx\adddialect\@undefined

When \adddialect is still undefined we are making a format. In that case only
the first part of this file is needed.

66.3 \def\@empty{}

We need to define \loadlocalcfg for plain users as the LATEX definition uses
\InputIfFileExists.

66.4 \def\loadlocalcfg#1{%
66.5 \openin0#1.cfg
66.6 \ifeof0
66.7 \closein0
66.8 \else
66.9 \closein0

66.10 {\immediate\write16{*************************************}%
66.11 \immediate\write16{* Local config file #1.cfg used}%
66.12 \immediate\write16{*}%
66.13 }
66.14 \input #1.cfg\relax
66.15 \fi

We have to execute \@endofldf in this case
66.16 \@endofldf
66.17 }

We want to add a message to the message LATEX 2.09 puts in the \everyjob
register. This could be done by the following code:

\let\orgeveryjob\everyjob
\def\everyjob#1{%

432

\orgeveryjob{#1}%
\orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{%

hyphenation patterns for \the\loaded@patterns loaded.}}%
\let\everyjob\orgeveryjob\let\orgeveryjob\@undefined}

The code above redefines the control sequence \everyjob in order to be able to
add something to the current contents of the register. This is necessary because
the processing of hyphenation patterns happens long before LATEX fills the register.

There are some problems with this approach though.

• When someone wants to use several hyphenation patterns with SLiTEX the
above scheme won’t work. The reason is that SLiTEX overwrites the contents
of the \everyjob register with its own message.

• Plain TEX does not use the \everyjob register so the message would not be
displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed
when creating a new format file there is one command that is sure to be used,
\dump. Therefore the original \dump is saved in \org@dump and a new definition
is supplied.

66.18 \let\orig@dump=\dump
66.19 \def\dump{%

To make sure that LATEX 2.09 executes the \@begindocumenthook we would want
to alter \begin{document}, but as this done too often already, we add the new
code at the front of \@preamblecmds. But we can only do that after it has been
defined, so we add this piece of code to \dump.

66.20 \ifx\@ztryfc\@undefined
66.21 \else
66.22 \toks0=\expandafter{\@preamblecmds}
66.23 \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}
66.24 \def\@begindocumenthook{}
66.25 \fi

This new definition starts by adding an instruction to write a message on the
terminal and in the transcript file to inform the user of the preloaded hyphenation
patterns.

66.26 \everyjob\expandafter{\the\everyjob%
66.27 \immediate\write16{\the\toks8 loaded.}}%

Then everything is restored to the old situation and the format is dumped.
66.28 \let\dump\orig@dump\let\orig@dump\@undefined\dump}
66.29 \expandafter\endinput
66.30 \fi

The rest of this file is not processed by iniTEX but during the normal document
run. A number of LATEX macro’s that are needed later on.

66.31 \long\def\@firstofone#1{#1}
66.32 \long\def\@firstoftwo#1#2{#1}

433

66.33 \long\def\@secondoftwo#1#2{#2}
66.34 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}
66.35 \def\@star@or@long#1{%
66.36 \@ifstar
66.37 {\let\l@ngrel@x\relax#1}%
66.38 {\let\l@ngrel@x\long#1}}
66.39 \let\l@ngrel@x\relax
66.40 \def\@car#1#2\@nil{#1}
66.41 \def\@cdr#1#2\@nil{#2}
66.42 \let\@typeset@protect\relax
66.43 \long\def\@gobble#1{}
66.44 \edef\@backslashchar{\expandafter\@gobble\string\\}
66.45 \def\strip@prefix#1>{}
66.46 \def\g@addto@macro#1#2{{%
66.47 \toks@\expandafter{#1#2}%
66.48 \xdef#1{\the\toks@}}}
66.49 \def\@namedef#1{\expandafter\def\csname #1\endcsname}
66.50 \def\@ifundefined#1{%
66.51 \expandafter\ifx\csname#1\endcsname\relax
66.52 \expandafter\@firstoftwo
66.53 \else
66.54 \expandafter\@secondoftwo
66.55 \fi}

LATEX2ε has the command \@onlypreamble which adds commands to a list of
commands that are no longer needed after \begin{document}.

66.56 \ifx\@preamblecmds\@undefined
66.57 \def\@preamblecmds{}
66.58 \fi
66.59 \def\@onlypreamble#1{%
66.60 \expandafter\gdef\expandafter\@preamblecmds\expandafter{%
66.61 \@preamblecmds\do#1}}
66.62 \@onlypreamble\@onlypreamble

Mimick LATEX’s \AtBeginDocument; for this to work the user needs to add
\begindocument to his file.

66.63 \def\begindocument{%
66.64 \@begindocumenthook
66.65 \global\let\@begindocumenthook\@undefined
66.66 \def\do##1{\global\let ##1\@undefined}%
66.67 \@preamblecmds
66.68 \global\let\do\noexpand
66.69 }

66.70 \ifx\@begindocumenthook\@undefined
66.71 \def\@begindocumenthook{}
66.72 \fi
66.73 \@onlypreamble\@begindocumenthook
66.74 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

434

We also have to mimick LATEX’s \AtEndOfPackage. Our replacement macro is
much simpler; it stores its argument in \@endofldf.

66.75 \def\AtEndOfPackage#1{\g@addto@macro\@endofldf{#1}}
66.76 \@onlypreamble\AtEndOfPackage
66.77 \def\@endofldf{}
66.78 \@onlypreamble\@endofldf

LATEX needs to be able to switch off writing to its auxiliary files; plain doesn’t
have them by default.

66.79 \ifx\if@filesw\@undefined
66.80 \expandafter\let\csname if@filesw\expandafter\endcsname
66.81 \csname iffalse\endcsname
66.82 \fi

Mimick LATEX’s commands to define control sequences.
66.83 \def\newcommand{\@star@or@long\new@command}
66.84 \def\new@command#1{%
66.85 \@testopt{\@newcommand#1}0}
66.86 \def\@newcommand#1[#2]{%
66.87 \@ifnextchar [{\@xargdef#1[#2]}%
66.88 {\@argdef#1[#2]}}
66.89 \long\def\@argdef#1[#2]#3{%
66.90 \@yargdef#1\@ne{#2}{#3}}
66.91 \long\def\@xargdef#1[#2][#3]#4{%
66.92 \expandafter\def\expandafter#1\expandafter{%
66.93 \expandafter\@protected@testopt\expandafter #1%
66.94 \csname\string#1\expandafter\endcsname{#3}}%
66.95 \expandafter\@yargdef \csname\string#1\endcsname
66.96 \tw@{#2}{#4}}
66.97 \long\def\@yargdef#1#2#3{%
66.98 \@tempcnta#3\relax
66.99 \advance \@tempcnta \@ne

66.100 \let\@hash@\relax
66.101 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fi}%
66.102 \@tempcntb #2%
66.103 \@whilenum\@tempcntb <\@tempcnta
66.104 \do{%
66.105 \edef\reserved@a{\reserved@a\@hash@\the\@tempcntb}%
66.106 \advance\@tempcntb \@ne}%
66.107 \let\@hash@##%
66.108 \l@ngrel@x\expandafter\def\expandafter#1\reserved@a}
66.109 \let\providecommand\newcommand

66.110 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}
66.111 \def\declare@robustcommand#1{%
66.112 \edef\reserved@a{\string#1}%
66.113 \def\reserved@b{#1}%
66.114 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@b}%
66.115 \edef#1{%
66.116 \ifx\reserved@a\reserved@b
66.117 \noexpand\x@protect

435

66.118 \noexpand#1%
66.119 \fi
66.120 \noexpand\protect
66.121 \expandafter\noexpand\csname
66.122 \expandafter\@gobble\string#1 \endcsname
66.123 }%
66.124 \expandafter\new@command\csname
66.125 \expandafter\@gobble\string#1 \endcsname
66.126 }
66.127 \def\x@protect#1{%
66.128 \ifx\protect\@typeset@protect\else
66.129 \@x@protect#1%
66.130 \fi
66.131 }
66.132 \def\@x@protect#1\fi#2#3{%
66.133 \fi\protect#1%
66.134 }

The following little macro \in@ is taken from latex.ltx; it checks whether its
first argument is part of its second argument. It uses the boolean \in@; allocating a
new boolean inside conditionally executed code is not possible, hence the construct
with the temporary definition of \bbl@tempa.

66.135 \def\bbl@tmpa{\csname newif\endcsname\ifin@}
66.136 \ifx\in@\@undefined
66.137 \def\in@#1#2{%
66.138 \def\in@@##1#1##2##3\in@@{%
66.139 \ifx\in@##2\in@false\else\in@true\fi}%
66.140 \in@@#2#1\in@\in@@}
66.141 \else
66.142 \let\bbl@tmpa\@empty
66.143 \fi
66.144 \bbl@tmpa

LATEX has a macro to check whether a certain package was loaded with specific
options. The command has two extra arguments which are code to be executed in
either the true or false case. This is used to detect whether the document needs
one of the accents to be activated (activegrave and activeacute). For plain TEX we
assume that the user wants them to be active by default. Therefore the only thing
we do is execute the third argument (the code for the true case).

66.145 \def\@ifpackagewith#1#2#3#4{%
66.146 #3}

The LATEX macro \@ifl@aded checks whether a file was loaded. This functionality
is not needed for plain TEX but we need the macro to be defined as a no-op.

66.147 \def\@ifl@aded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand
and \providecommand exist with some sensible definition. They are not fully
equivalent to their LATEX2ε versions; just enough to make things work in
plain TEXenvironments.

436

66.148 \ifx\@tempcnta\@undefined
66.149 \csname newcount\endcsname\@tempcnta\relax
66.150 \fi
66.151 \ifx\@tempcntb\@undefined
66.152 \csname newcount\endcsname\@tempcntb\relax
66.153 \fi

To prevent wasting two counters in LATEX 2.09 (because counters with the same
name are allocated later by it) we reset the counter that holds the next free counter
(\count10).

66.154 \ifx\bye\@undefined
66.155 \advance\count10 by -2\relax
66.156 \fi
66.157 \ifx\@ifnextchar\@undefined
66.158 \def\@ifnextchar#1#2#3{%
66.159 \let\reserved@d=#1%
66.160 \def\reserved@a{#2}\def\reserved@b{#3}%
66.161 \futurelet\@let@token\@ifnch}
66.162 \def\@ifnch{%
66.163 \ifx\@let@token\@sptoken
66.164 \let\reserved@c\@xifnch
66.165 \else
66.166 \ifx\@let@token\reserved@d
66.167 \let\reserved@c\reserved@a
66.168 \else
66.169 \let\reserved@c\reserved@b
66.170 \fi
66.171 \fi
66.172 \reserved@c}
66.173 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token
66.174 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
66.175 \fi
66.176 \def\@testopt#1#2{%
66.177 \@ifnextchar[{#1}{#1[#2]}}
66.178 \def\@protected@testopt#1{%%
66.179 \ifx\protect\@typeset@protect
66.180 \expandafter\@testopt
66.181 \else
66.182 \@x@protect#1%
66.183 \fi}
66.184 \long\def\@whilenum#1\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax
66.185 #2\relax}\fi}
66.186 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum
66.187 \else\expandafter\@gobble\fi{#1}}

Code from ltoutenc.dtx, adapted for use in the plain TEX environment.
66.188 \def\DeclareTextCommand{%
66.189 \@dec@text@cmd\providecommand
66.190 }
66.191 \def\ProvideTextCommand{%

437

66.192 \@dec@text@cmd\providecommand
66.193 }
66.194 \def\DeclareTextSymbol#1#2#3{%
66.195 \@dec@text@cmd\chardef#1{#2}#3\relax
66.196 }
66.197 \def\@dec@text@cmd#1#2#3{%
66.198 \expandafter\def\expandafter#2%
66.199 \expandafter{%
66.200 \csname#3-cmd\expandafter\endcsname
66.201 \expandafter#2%
66.202 \csname#3\string#2\endcsname
66.203 }%
66.204 % \let\@ifdefinable\@rc@ifdefinable
66.205 \expandafter#1\csname#3\string#2\endcsname
66.206 }
66.207 \def\@current@cmd#1{%
66.208 \ifx\protect\@typeset@protect\else
66.209 \noexpand#1\expandafter\@gobble
66.210 \fi
66.211 }
66.212 \def\@changed@cmd#1#2{%
66.213 \ifx\protect\@typeset@protect
66.214 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
66.215 \expandafter\ifx\csname ?\string#1\endcsname\relax
66.216 \expandafter\def\csname ?\string#1\endcsname{%
66.217 \@changed@x@err{#1}%
66.218 }%
66.219 \fi
66.220 \global\expandafter\let
66.221 \csname\cf@encoding \string#1\expandafter\endcsname
66.222 \csname ?\string#1\endcsname
66.223 \fi
66.224 \csname\cf@encoding\string#1%
66.225 \expandafter\endcsname
66.226 \else
66.227 \noexpand#1%
66.228 \fi
66.229 }
66.230 \def\@changed@x@err#1{%
66.231 \errhelp{Your command will be ignored, type <return> to proceed}%
66.232 \errmessage{Command \protect#1 undefined in encoding \cf@encoding}}
66.233 \def\DeclareTextCommandDefault#1{%
66.234 \DeclareTextCommand#1?%
66.235 }
66.236 \def\ProvideTextCommandDefault#1{%
66.237 \ProvideTextCommand#1?%
66.238 }
66.239 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd
66.240 \expandafter\let\csname?-cmd\endcsname\@changed@cmd
66.241 \def\DeclareTextAccent#1#2#3{%

438

66.242 \DeclareTextCommand#1{#2}[1]{\accent#3 ##1}
66.243 }
66.244 \def\DeclareTextCompositeCommand#1#2#3#4{%
66.245 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
66.246 \edef\reserved@b{\string##1}%
66.247 \edef\reserved@c{%
66.248 \expandafter\@strip@args\meaning\reserved@a:-\@strip@args}%
66.249 \ifx\reserved@b\reserved@c
66.250 \expandafter\expandafter\expandafter\ifx
66.251 \expandafter\@car\reserved@a\relax\relax\@nil
66.252 \@text@composite
66.253 \else
66.254 \edef\reserved@b##1{%
66.255 \def\expandafter\noexpand
66.256 \csname#2\string#1\endcsname####1{%
66.257 \noexpand\@text@composite
66.258 \expandafter\noexpand\csname#2\string#1\endcsname
66.259 ####1\noexpand\@empty\noexpand\@text@composite
66.260 {##1}%
66.261 }%
66.262 }%
66.263 \expandafter\reserved@b\expandafter{\reserved@a{##1}}%
66.264 \fi
66.265 \expandafter\def\csname\expandafter\string\csname
66.266 #2\endcsname\string#1-\string#3\endcsname{#4}
66.267 \else
66.268 \errhelp{Your command will be ignored, type <return> to proceed}%
66.269 \errmessage{\string\DeclareTextCompositeCommand\space used on
66.270 inappropriate command \protect#1}
66.271 \fi
66.272 }
66.273 \def\@text@composite#1#2#3\@text@composite{%
66.274 \expandafter\@text@composite@x
66.275 \csname\string#1-\string#2\endcsname
66.276 }
66.277 \def\@text@composite@x#1#2{%
66.278 \ifx#1\relax
66.279 #2%
66.280 \else
66.281 #1%
66.282 \fi
66.283 }
66.284 %
66.285 \def\@strip@args#1:#2-#3\@strip@args{#2}
66.286 \def\DeclareTextComposite#1#2#3#4{%
66.287 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}}%
66.288 \bgroup
66.289 \lccode‘\@=#4%
66.290 \lowercase{%
66.291 \egroup

439

66.292 \reserved@a @%
66.293 }%
66.294 }
66.295 %
66.296 \def\UseTextSymbol#1#2{%
66.297 % \let\@curr@enc\cf@encoding
66.298 % \@use@text@encoding{#1}%
66.299 #2%
66.300 % \@use@text@encoding\@curr@enc
66.301 }
66.302 \def\UseTextAccent#1#2#3{%
66.303 % \let\@curr@enc\cf@encoding
66.304 % \@use@text@encoding{#1}%
66.305 % #2{\@use@text@encoding\@curr@enc\selectfont#3}%
66.306 % \@use@text@encoding\@curr@enc
66.307 }
66.308 \def\@use@text@encoding#1{%
66.309 % \edef\f@encoding{#1}%
66.310 % \xdef\font@name{%
66.311 % \csname\curr@fontshape/\f@size\endcsname
66.312 % }%
66.313 % \pickup@font
66.314 % \font@name
66.315 % \@@enc@update
66.316 }
66.317 \def\DeclareTextSymbolDefault#1#2{%
66.318 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}%
66.319 }
66.320 \def\DeclareTextAccentDefault#1#2{%
66.321 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}%
66.322 }
66.323 \def\cf@encoding{OT1}

Currently we only use the LATEX2ε method for accents for those that are known
to be made active in some language definition file.

66.324 \DeclareTextAccent{\"}{OT1}{127}
66.325 \DeclareTextAccent{\’}{OT1}{19}
66.326 \DeclareTextAccent{\^}{OT1}{94}
66.327 \DeclareTextAccent{\‘}{OT1}{18}
66.328 \DeclareTextAccent{\~}{OT1}{126}

The following control sequences are used in babel.def but are not defined for
plain TEX.

66.329 \DeclareTextSymbol{\textquotedblleft}{OT1}{92}
66.330 \DeclareTextSymbol{\textquotedblright}{OT1}{‘\"}
66.331 \DeclareTextSymbol{\textquoteleft}{OT1}{‘\‘}
66.332 \DeclareTextSymbol{\textquoteright}{OT1}{‘\’}
66.333 \DeclareTextSymbol{\i}{OT1}{16}
66.334 \DeclareTextSymbol{\ss}{OT1}{25}

440

For a couple of languages we need the LATEX-control sequence \scriptsize to be
available. Because plain TEX doesn’t have such a sofisticated font mechanism as
LATEX has, we just \let it to \sevenrm.

66.335 \ifx\scriptsize\@undefined
66.336 \let\scriptsize\sevenrm
66.337 \fi
66.338 〈/code〉

441

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Acite= \subitem *+\Acite+, \usage{256}
adddialect= \subitem *+\adddialect+, \usage{11}
addlanguage= \subitem *+\addlanguage+, \usage{11}
addto= \subitem *+\addto+, \usage{14}
aliasshorthand= \subitem *+\aliasshorthand+, \usage{5}
allowhyphens= \subitem *+\allowhyphens+, \usage{14}
Apageref= \subitem *+\Apageref+, \usage{256}
Aref= \subitem *+\Aref+, \usage{256}
Az= \subitem *+\Az+, \usage{255}
Azc= \subitem *+\Azc+, \usage{256}
Azp= \subitem *+\Azp+, \usage{256}
Azr= \subitem *+\Azr+, \usage{255}

save= \subitem save+, \usage{13}
savevariable= \subitem savevariable+, \usage{13}
activate= \subitem activate+, \usage{13}
deactivate= \subitem deactivate+, \usage{13}
frenchspacing= \subitem frenchspacing+, \usage{14}
nonfrenchspacing= \subitem nonfrenchspacing+, \usage{14}

captionslang= \subitem *+\captionslang+, \usage{12}

datelang= \subitem *+\datelang+, \usage{12}
shorthand= \subitem shorthand+, \usage{13}
defineshorthand= \subitem *+\defineshorthand+, \usage{5}

environments:hyphenrules=>hyphenrules,
5

environments:otherlanguage*=>otherlanguage*,
5

environments:otherlanguage=>otherlanguage,
5

extraslang= \subitem *+\extraslang+, \usage{12}

foreignlanguage= \subitem *+\foreignlanguage+, \usage{5}
full= \subitem *+\full+, \usage{390}

Greeknumeral= \subitem *+\Greeknumeral+, \usage{116}
greeknumeral= \subitem *+\greeknumeral+, \usage{116}
greektext= \subitem *+\greektext+, \usage{115}

Hebrewdate= \subitem *+\Hebrewdate+, \usage{390}
Hebrewtoday= \subitem *+\Hebrewtoday+, \usage{390}
hyphenrules=hyphenrules

(environment), 5

iflanguage= \subitem *+\iflanguage+, \usage{5}

langhyphenmins= \subitem *+\langhyphenmins+, \usage{12}
languageattribute= \subitem *+\languageattribute+, \usage{6}
languagename= \subitem *+\languagename+, \usage{5}
languageshorthands= \subitem *+\languageshorthands+, \usage{5}
latintext= \subitem *+\latintext+, \usage{115}
finish= \subitem finish+, \usage{12}
quit= \subitem quit+, \usage{12}

LdfInit= \subitem *+\LdfInit+, \usage{12}
loadlocalcfg= \subitem *+\loadlocalcfg+, \usage{12}

language= \subitem language+, \usage{12}

noextraslang= \subitem *+\noextraslang+, \usage{12}

ontoday= \subitem *+\ontoday+, \usage{255}
otherlanguage*=otherlanguage*

(environment), 5
otherlanguage=otherlanguage

(environment), 5

providehyphenmins= \subitem *+\providehyphenmins+, \usage{12}
ProvidesLanguage= \subitem *+\ProvidesLanguage+, \usage{12}

selectlanguage= \subitem *+\selectlanguage+, \usage{5}
shorthandoff= \subitem *+\shorthandoff+, \usage{6}
shorthandon= \subitem *+\shorthandon+, \usage{6}
substitutefontfamily= \subitem *+\substitutefontfamily+, \usage{13}

textgreek= \subitem *+\textgreek+, \usage{115}
textlatin= \subitem *+\textlatin+, \usage{115}
textol= \subitem *+\textol+, \usage{115}

useshorthands= \subitem *+\useshorthands+, \usage{5}

442

