
Extending LATEX’s color facilities: the xcolor

package

Dr. Uwe Kern

v2.06 (2005/10/15) ∗

Abstract

xcolor provides easy driver-independent access to several kinds of colors,
tints, shades, tones, and mixes of arbitrary colors by means of color expres-
sions like \color{red!50!green!20!blue}. It allows to select a document-
wide target color model and offers tools for automatic color schemes, conver-
sion between nine color models, alternating table row colors, color blending
and masking, and color separation.

Contents

1 Introduction 4
1.1 Purpose of this package . 4
1.2 Color tints, shades, tones, and complements 5
1.3 Color models . 5

2 The User Interface 6
2.1 Preparation . 6

2.1.1 Package installation . 6
2.1.2 Package options . 6
2.1.3 Executing additional initialisation commands 7

2.2 Color models . 7
2.2.1 Supported color models . 7
2.2.2 Substituting individual color models 9
2.2.3 Changing the target color model within a document 10

2.3 Arguments and terminology . 10
2.3.1 Additional remarks and restrictions on arguments 10
2.3.2 Meaning of standard color expressions 13
2.3.3 Meaning of extended color expressions 14

∗This package can be downloaded from CTAN/macros/latex/contrib/xcolor/. There is also
an xcolor homepage: www.ukern.de/tex/xcolor.html. Please send error reports and suggestions
for improvements to the author: xcolor@ukern.de.

1

mailto:xcolor@ukern.de
http://www.ctan.org/tex-archive/macros/latex/contrib/xcolor/
http://www.ukern.de/tex/xcolor.html
mailto:xcolor@ukern.de

xcolor v2.06 (2005/10/15) 2

2.4 Predefined colors . 15
2.4.1 Colors that are always available 15
2.4.2 Additional sets of colors . 15

2.5 Color definition . 15
2.5.1 Ordinary and named colors 15
2.5.2 Color definition in xcolor . 17
2.5.3 Defining sets of colors . 17
2.5.4 Immediate and deferred definitions 18
2.5.5 Global color definitions . 19

2.6 Color application . 19
2.6.1 Standard color commands 19
2.6.2 Using the current color . 20
2.6.3 Color testing . 20

2.7 Color blending . 21
2.8 Color masks and separation . 21
2.9 Color series . 22

2.9.1 Definition of a color series 22
2.9.2 Initialisation of a color series 23
2.9.3 Application of a color series 24
2.9.4 Differences between colors and color series 24

2.10 Border colors for hyperlinks . 24
2.11 Additional color specification in the pstricks world 25
2.12 Color in tables . 26
2.13 Color information . 26
2.14 Color conversion . 27
2.15 Problems and solutions . 27

2.15.1 Page breaks and pdfTEX . 27

3 Examples 28

4 Technical Supplement 33
4.1 Color models supported by drivers 33
4.2 How xcolor handles driver-specific color models 33
4.3 Behind the scenes: internal color representation 34
4.4 A remark on accuracy . 34

5 The Formulas 36
5.1 Color mixing . 36
5.2 Conversion between integer and real models 36

5.2.1 Real to integer conversion 38
5.2.2 Integer to real conversion 38

5.3 Color conversion and complements 39
5.3.1 The rgb model . 40
5.3.2 The cmy model . 42
5.3.3 The cmyk model . 43
5.3.4 The hsb model . 44

xcolor v2.06 (2005/10/15) 3

5.3.5 The gray model . 46
5.3.6 The RGB model . 46
5.3.7 The HTML model . 47
5.3.8 The HSB model . 47
5.3.9 The Gray model . 47
5.3.10 The wave model . 47

6 Colors by Name 50
6.1 Base Colors . 50
6.2 Colors via dvipsnames . 50
6.3 Colors via svgnames . 50

References 52

Appendix 53
Acknowledgement . 53
Trademarks . 53
Known Issues . 53
History . 53

Index 57

List of Tables

1 Package options . 8
2 Package loading order . 9
3 Supported color models . 9
4 Arguments and terminology . 11
5 Drivers and color models . 33
6 Driver-dependent internal color representation 35
7 Color constants . 37
8 Color conversion pairs . 37

List of Figures

1 Color spectrum . 28
2 Color testing . 28
3 Progressing from one to another color 29
4 Target color model . 30
5 Standard color expressions . 30
6 Standard color expressions . 30
7 Current color . 30
8 Color series . 31
9 Color masking . 32
10 Alternating row colors in tables: \rowcolors vs. \rowcolors* . . 32

xcolor v2.06 (2005/10/15) 4

1 Introduction

1.1 Purpose of this package

The color package provides a powerful and stable tool for handling colors within
(pdf)LATEX in a consistent and driver-independent way, supporting several color
models (slightly less driver-independent).
Nevertheless, it is sometimes a bit clumsy to use, especially in cases where slight
color variations, color mixes or color conversions are involved: this usually implies
the usage of another program that calculates the necessary parameters, which are
then copied into a \definecolor command in LATEX. Quite often, also a pocket
calculator is involved in the treatment of issues like the following:

• My company has defined a corporate color, and the printing office tells me
how expensive it is to use more than two colors in our new brochure, whereas
all kinds of tints (e.g., a 75% version) of our color can be used at no extra
cost. But how to access these color variations in LATEX?
(Answer: \color{CorporateColor!75} etc.)

• My friend uses a nice color which I would like to apply in my own documents;
unfortunately, it is defined in the hsb model which is not supported in my
favorite application pdfLATEX. What to do now?
(Answer: just use the hsb definitions, xcolor will do the necessary calcula-
tions)

• How does a mixture of 40% green and 60% yellow look like?
(Answer: 40% + 60% = , e.g., \color{green!40!yellow})

• And how does its complementary color look like?
(Answer: , accessible via \color{-green!40!yellow})

• Now I want to mix three parts of the last color with two parts of its com-
plement and one part of red. How does that look?
(Answer: 3× +2× +1× = , the last color being accessible
via \color{rgb:-green!40!yellow,3;green!40!yellow,2;red,1})

• I know that light waves of 485nm are within the visible range. But which
color do they represent?
(Answer: approximately , via \color[wave]{485})

• My printing office wants all color definitions in my document to be trans-
formed into the cmyk model. How can I do the calculations efficiently?
(Answer: \usepackage[cmyk]{xcolor} or \selectcolormodel{cmyk})

• I have a table with 50 rows. How can I get alternating colors for entire rows
without copying 50 \rowcolor commands? The alternating scheme should
start in the 3rd row.
(Answer: something like \rowcolors{3}{OddColor}{EvenColor})

xcolor v2.06 (2005/10/15) 5

These are some of the issues solved by the xcolor package. Its purpose can be
summarized as to maintain the characteristics of color, while providing additional
features and flexibility with (hopefully) easy-to-use interfaces.

1.2 Color tints, shades, tones, and complements

According to [13] we define the terms

• tint: a color with white added,

• shade: a color with black added,

• tone: a color with gray added.

These are special cases of a general function mix(C,C ′, p) which constructs a new
color, consisting of p parts of color C and 1−p parts of color C ′, where 0 ≤ p ≤ 1.
Thus, we set

tint(C, p) := mix(C, white, p) (1)

shade(C, p) := mix(C, black, p) (2)

tone(C, p) := mix(C, gray, p) (3)

where white, black, and gray are model-specific constants, see table 7 on page 37.
Further we define the term

• complement: a color C∗ that yields white if superposed with the original
color C.

See section 5.3 on page 39 for details.

1.3 Color models

A color model is a tool to describe or represent a certain set of colors in a way
that is suitable for the desired target device, e.g., a screen or a printer. There
are proprietary models (like Pantone or HKS) that provide finite sets of colors
(often called spot colors), where the user has to choose from without caring about
parametrisations; on the other hand, there are parameter-driven models like gray,
rgb, and cmyk, that aim to represent large finite or even (theoretically) infinite
sets of colors, built on very small subsets of base colors and rules, how to construct
other colors from these base colors. For example, a large range of colors can be
constructed by linear combinations of the base colors red, green, and blue. On
the other hand, usually spot colors can only be approximated by parameter values
in models like cmyk or rgb; the original colors are being physically mixed even
dependent on the targeted kind of paper. Finally, there are certain colors like gold
and silver that are hardly reproducable by any parameter-driven color model on
standard ink or laser printers.

xcolor v2.06 (2005/10/15) 6

2 The User Interface

2.1 Preparation

2.1.1 Package installation

First of all, put xcolor.sty and all the .def files to some place where (pdf)LATEX
finds them. A typical place according to the TEX Directory Structure (TDS)
would be the directory texmf/tex/latex/xcolor, where texmf denotes the main
directory of your TEX installation. Additionally, put xcolor.pro to a place where
dvips finds it, typically texmf/dvips/xcolor. Usually, you will have to run some
kind of filename database update in order to make the files known and quickly
searchable to the TEX system. Then simply use xcolor (instead of color) in your
document. Thus, the general command is \usepackage[〈options〉]{xcolor} in
the document preamble. Table 2 on page 9 shows what has to be taken into
account with respect to the package loading order.

2.1.2 Package options

In general, there are several types of options:

• options that determine the color driver as explained in [3] and [4], currently:
dvips, xdvi, dvipdf, dvipdfm, dvipdfmx, pdftex, dvipsone, dviwindo,
emtex, dviwin, oztex, textures, pctexps, pctexwin, pctexhp, pctex32,
truetex, tcidvi, vtex, xetex,

• options that determine the target color model1 (natural, rgb, cmy, cmyk,
hsb, gray, RGB, HTML, HSB, Gray) or disable colored output (monochrome),

• options that control whether and how certain sets of predefined colors are
being loaded: dvipsnames, dvipsnames*, svgnames, svgnames*,

• options that determine which other packages are to be loaded (table,
fixpdftex, pst2) or supported (hyperref),

• options that determine the behaviour of other commands: prologue,
showerrors, hideerrors,

• obsolete options: override, usenames, nodvipsnames.

All available package options (except driver selection and obsolete options) are
listed in table 1 on page 8. In order to facilitate the co-operation with the hyperref\GetGinDriver

\GinDriver package, there is a command \GetGinDriver3 that grabs the driver actually used
and puts it into the command \GinDriver. The latter can then be used within

1Section 2.2.3 on page 10 explains how this setting can be overridden at any point in a
document.

2This option will soon become obsolete, since recent pstricks.sty versions do load xcolor,
whereas pstcol is no longer needed.

3This command is executed automatically if the package option hyperref is used.

xcolor v2.06 (2005/10/15) 7

hyperref (or other packages), see the code example on page 7. If there is no
corresponding hyperref option, hypertex will be taken as default.
Warning: there is a substantial difference between xcolor and color regarding
how the dvips option is being handled. The color package implicitly invokes
the dvipsnames option, whenever one of the dvips, oztex, xdvi drivers is se-
lected. This makes documents less portable, since whenever one of these colors is
used without explicit dvipsnames option, other drivers like pdftex will issue error
messages because of unknown colors. Therefore, xcolor always requires an explicit
dvipsnames option to use these names — which then works for all drivers.

2.1.3 Executing additional initialisation commands

Here is a simple interface to pass commands that should be executed at the end\xcolorcmd

of the xcolor package (immediately before the initialising \color{black} is ex-
ecuted). Just say \def\xcolorcmd{〈commands〉} at some point before xcolor is
loaded.
Example: assuming that a.tex is a complete LATEX document, the command
latex \def\xcolorcmd{\colorlet{black}{red}}\input{a} at the console gen-
erates a file a.dvi with all occurences of black being replaced by red, without the
necessity to change the source file itself.

2.2 Color models

2.2.1 Supported color models

The list of supported color models is given in table 3 on page 9. We emphasize
that this color support is independent of the chosen driver.
‘Color model support’ also means that it is possible to specify colors directly with
their parameters, e.g., by saying \textcolor[cmy]{0.7,0.5,0.3}{foo} (foo) or
\textcolor[HTML]{AFFE90}{foo} (foo). It is noteworthy that the HTML model
accepts any combination of the characters 0–9, A–F, a–f, as long as the string has
a length of exactly 6 characters. However, outputs of conversions to HTML will
always consist of numbers and uppercase letters.
There is a special command to fine-tune the mechanisms of undercolor-removal\adjustUCRBG

and black-generation during conversion to the cmyk model, see section 5.3.2 on
page 42 for details.
For the integer models RGB, HSB, and Gray, the constants L,M,N of table 3\rangeRGB

\rangeHSB

\rangeGray

are defined via the commands \def\rangeRGB{〈L〉}, \def\rangeHSB{〈M 〉}, and
\def\rangeGray{〈N 〉}. Changes of these constants can be done before or after
the xcolor package is loaded, e.g.,

\documentclass{article}

...

\def\rangeRGB{15}

\usepackage[dvips]{xcolor}

...

\GetGinDriver

xcolor v2.06 (2005/10/15) 8

Table 1: Package options

Option Description

natural (Default.) Keep all colors in their model, except RGB (converted
to rgb), HSB (converted to hsb), and Gray (converted to gray).

rgb Convert all colors to the rgb model.

cmy Convert all colors to the cmy model.

cmyk Convert all colors to the cmyk model.

hsb Convert all colors to the hsb model.

gray Convert all colors to the gray model. Especially useful to simulate
how a black & white printer will output the document.

RGB Convert all colors to the RGB model (and afterwards to rgb).

HTML Convert all colors to the HTML model (and afterwards to rgb).

HSB Convert all colors to the HSB model (and afterwards to hsb).

Gray Convert all colors to the Gray model (and afterwards to gray).

dvipsnames, dvipsnames* Load a set of predefined colors.1

svgnames, svgnames* Load a set of predefined colors according to SVG 1.1.1

table Load the colortbl package, in order to use the tools for coloring
rows, columns, and cells within tables.

fixpdftex Load the pdfcolmk package, in order to improve pdftex’s color
behaviour (see section 2.15.1 on page 27).

pst Load the pstcol package, in order to use ‘normal’ color definitions
within pstricks macros (see footnote 2 on page 6).

hyperref Support the hyperref package in terms of color expressions by
defining additional keys (see section 2.10 on page 24).

prologue Write prologue information to .xcp file for every color definition
(as described in section 2.5.1 on page 15).

showerrors (Default.) Display an error message if an undefined color is being
used (same behaviour as in the original color package).

hideerrors Display only a warning if an undefined color is being used, and
replace this color by black.

1 these options are explained in section 2.4.2 on page 15

xcolor v2.06 (2005/10/15) 9

Table 2: Package loading order

Action/Package color colortbl pdfcolmk pstcol hyperref

load before xcolor no no no no allowed

load with xcolor option — table fixpdftex pst1 —

load after xcolor no no allowed no allowed

1 not recommended, better use recent pstricks.sty

Table 3: Supported color models

Name Base colors/notions Parameter range Default

rgb red, green, blue [0, 1]
3

cmy cyan, magenta, yellow [0, 1]
3

cmyk cyan, magenta, yellow, black [0, 1]
4

hsb hue, saturation, brightness [0, 1]
3

gray gray [0, 1]

RGB Red, Green, Blue {0, 1, . . . , L}3 L = 255

HTML RRGGBB {000000, . . . , FFFFFF}

HSB Hue, Saturation, Brightness {0, 1, . . . ,M}3 M = 240

Gray Gray {0, 1, . . . , N} N = 15

wave lambda (nm) [363, 814]

L,M,N are positive integers

\usepackage[\GinDriver]{hyperref}

...

\begin{document}

...

\def\rangeRGB{63}

...

2.2.2 Substituting individual color models

{〈source model〉}{〈target model-list〉}\substitutecolormodel

Substitute 〈source model〉 by the first actually present model that occurs in 〈target
model-list〉. Only color models of type 〈num model〉 are allowed; all changes are
local to the current group, but a prepended \xglobal is obeyed.
Example: assume the actual driver has an incorrect implementation of hsb whereas
rgb looks well. Then \substitutecolormodel{hsb}{rgb} could be a good choice,
since it converts — from that point onwards — all definitions of hsb colors by
xcolor’s algorithms into rgb specifications, without touching other models.

xcolor v2.06 (2005/10/15) 10

2.2.3 Changing the target color model within a document

{〈num model〉}\selectcolormodel

Sets the target model to 〈num model〉, where the latter is one of the model names
allowed as package option (i.e., natural, rgb, cmy, cmyk, hsb, gray, RGB, HTML,
HSB, Gray), see figure 4 on page 30 for an example. There are two possible hooks,
where the conversion to the target model can take place:

• at color definition time4 (i.e., within \definecolor and friends); this is\ifconvertcolorsD

controlled by the switch \ifconvertcolorsD;

• at time of color usage (immediately before a color is displayed, therefore\ifconvertcolorsU

covering colors that have been defined in other models or that are being
specified directly like \color[rgb]{.1,.2,.3}); this is controlled by the
switch \ifconvertcolorsU.

Both switches are set to ‘true’ by selecting any of the models, except natural,
which sets them to ‘false’. This applies for selection via a package option as
well as via \selectcolormodel. Why don’t we simply convert all colors at time
of usage? If many colors are involved, it can save some processing time when
all conversions are already done during color definitions. Best performance can
be achieved by saying \usepackage[rgb,...]{xcolor}\convertcolorsUfalse,
which is actually the way how xcolor worked up to version 1.07.

2.3 Arguments and terminology

Before we describe xcolor’s color-related commands in detail, we define several ele-
ments or identifiers that appear repeatedly within arguments of those commands.
A general syntax overview is given in table 4 on the next page.

2.3.1 Additional remarks and restrictions on arguments

Basic strings and numbers These arguments do not need much explanation.〈empty〉
〈minus〉
〈plus〉
〈int〉

〈num〉
〈dec〉
〈pct〉
〈div〉

However, as far as numerical values are concerned, it is noteworthy that real
numbers in (La)TEX are — as long as they are to be used in the context of lengths,
dimensions, or skips — are restricted to a maximum absolute value < 16384.
Certainly, in a chain of numerical calculations, this constraint has also to be obeyed
for every single interim result, which usually implies further range restrictions.
Since xcolor makes extensive use of TEX’s internal dimension registers for most
types of calculations, this should be kept in mind whenever 〈ext expr〉 expressions
are to be used.

Color names A 〈name〉 denotes the declared name (or the name to be declared)〈name〉
of a color or a color series; it may be declared explicitly by one of the follow-
ing commands: \definecolor, \providecolor, \colorlet, \definecolorset,

4This means that all newly defined colors will be first converted to the target model, then
saved.

xcolor v2.06 (2005/10/15) 11

Table 4: Arguments and terminology

Element Replacement string

〈empty〉 → empty string ‘’

〈minus〉 → non-empty string consisting of one or more minus signs ‘-’

〈plus〉 → non-empty string consisting of one or more plus signs ‘+’

〈int〉 → integer number (integer)

〈num〉 → non-negative integer number (number)

〈dec〉 → real number (decimal)

〈div〉 → non-zero real number (divisor)

〈pct〉 → real number from the interval [0, 100] (percentage)

〈id〉 → non-empty string consisting of letters and digits (identifier)

〈ext id〉 → 〈id〉
→ 〈id〉1=〈id〉2

〈id-list〉 → 〈ext id〉1,〈ext id〉2,...,〈ext id〉l
〈name〉 → 〈id〉 (explicit name)

→ ‘.’ (implicit name)

〈core model〉 → ‘rgb’, ‘cmy’, ‘cmyk’, ‘hsb’, ‘gray’ (core models)

〈num model〉 → 〈core model〉
→ ‘RGB’, ‘HTML’, ‘HSB’, ‘Gray’ (integer models)
→ ‘wave’ (real model)

〈model〉 → 〈num model〉 (numerical models)
→ ‘named’ (pseudo model)

〈model-list〉 → 〈model〉1/〈model〉2/.../〈model〉m (multiple models)

〈spec〉 → comma-separated list of numerical values (explicit specification)
→ name of a ‘named’ color (implicit specification)

〈spec-list〉 → 〈spec〉1/〈spec〉2/.../〈spec〉m (multiple specifications)

〈type〉 → 〈empty〉
→ ‘named’, ‘ps’

〈expr〉 → 〈prefix 〉〈name〉〈mix expr〉〈postfix〉 (standard color expression)

〈prefix 〉 → 〈empty〉
→ 〈minus〉 (complement indicator)

〈mix expr〉 → !〈pct〉1!〈name〉1!〈pct〉2!〈name〉2!...!〈pct〉n!〈name〉n (complete mix expr.)
→ !〈pct〉1!〈name〉1!〈pct〉2!〈name〉2!...!〈pct〉n (incomplete mix expr.)

〈postfix〉 → 〈empty〉
→ !!〈plus〉 (series step)
→ !![〈num〉] (series access)

〈ext expr〉 → 〈core model〉,〈div〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k
→ 〈core model〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

〈color〉 → 〈name〉
→ 〈expr〉
→ 〈ext expr〉

Remarks: Each → denotes a possible replacement string for the element in the left column; however,
further restrictions may apply — depending on the context. See main text for details. A
string ‘foo’ is always to be understood without the quotes.
k, l, m, n denote positive integers, m ≤ 8.

xcolor v2.06 (2005/10/15) 12

\providecolorset, \definecolorseries, \definecolors, \providecolors. On
the other hand, the reserved color name ‘.’ is declared implicitly and denotes the
current color. Actually, besides letters and digits, certain other characters do also
work for 〈name〉 declarations, but the given restriction avoids misunderstandings
and ensures compatibility with future extensions of xcolor.
Examples: ‘red’, ‘MySpecialGreen1980’, ‘.’.

Color models The differentiation between core models (rgb, cmy, cmyk, hsb,〈core model〉
〈num model〉

〈model〉
gray), integer models (RGB, HTML, HSB, Gray), and pseudo models (currently
‘named’, ‘ps’) has a simple reason: core models with their parameter ranges based
on the unit interval [0, 1] are best suited for all kinds of calculations, whereas
the purpose of the integer models is mainly to facilitate the input of parameters,
followed by some transformation into one of the core models. Finally, the real
model wave (which approximates the visual appearance of light waves) and the
pseudo model ‘named’ have a special status, since they are ‘calculation-averse’: it
is usually only possible to convert such a color into one of the other models, but
not the other way round. Even worse for the pseudo model ‘ps’: since such colors
contain PostScript code, they are absolutely intransparent for TEX.

Color specifications The 〈spec〉 argument — which specifies the parameters〈spec〉
of a color — obviously depends on the underlying color model. We differentiate
between explicit and implicit specification, the former referring to numerical pa-
rameters as explained in table 3 on page 9, the latter — ideally — referring to
driver-provided names.
Examples: ‘.1,.2,.3’, ‘0.56789’, ‘89ABCD’, ‘ForestGreen’.

Multiple models and specifications These arguments always appear in〈model-list〉
〈spec-list〉 (explicit or implicit) pairs within the following color definition commands:

\definecolor, \providecolor, \definecolorset, \providecolorset. First,
〈model-spec〉 is being reconciled with the current target model (as set by a package
option or the \selectcolormodel command); in case there is no exact match, the
first model of the list is chosen. Then, the corresponding color specification will
be selected from 〈spec-list〉, such that we arrive at a proper (〈model〉, 〈spec〉) pair.
Therefore, in the actual executed color definition there is no ambiguity anymore.
Examples: ‘rgb/cmyk/named/gray’, ‘0,0,0/0,0,0,1/Black/0’.

The type argument This is used only in the context of color defining com-〈type〉
mands, see the description of \definecolor and friends.

Standard color expressions These expressions serve as a tool to easily specify〈expr〉
〈prefix 〉

〈mix expr〉
〈postfix 〉

a certain form of cascaded color mixing which is described in detail in section 2.3.2
on the next page. The 〈prefix 〉 argument controls whether the color following
thereafter or its complement will be relevant: an odd number of minus signs
indicates that the color resulting from the remaining expression has to be converted
into its complementary color. An incomplete mix expression is just an abbreviation

xcolor v2.06 (2005/10/15) 13

for a complete mix expression with 〈name〉n = white, in order to save some
keystrokes in the case of tints. The 〈postfix 〉 string is usually empty, but it offers
some additional functionality in the case of a color series: the non-empty cases
require that

• 〈name〉 denotes the name of a color series,

• 〈mix expr〉 is a complete mix expression.

Examples: ‘red’, ‘-red’, ‘--red!50!green!12.345’, ‘red!50!green!20!blue’,
‘foo!!+’, ‘foo!![7]’, ‘foo!25!red!!+++’, ‘foo!25!red!70!green!![7]’.

Extended color expressions These expressions provide another method of〈ext expr〉
color mixing, see section 2.3.3 on the following page for details. The shorter form

〈core model〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

is an abbreviation for the special (and probably most used) case

〈core model〉,〈div〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

with the following definition (requiring a non-zero sum of all 〈dec〉κ coefficients):

〈div〉 := 〈dec〉1 + 〈dec〉2 + · · · + 〈dec〉k 6= 0.

Examples: ‘rgb:red,1’, ‘cmyk:red,1;-green!25!blue!60,11.25;blue,-2’.

Colors Finally, 〈color〉 is the ‘umbrella’ argument, covering the different con-〈color〉
cepts of specifying colors. This means, whenever there is a 〈color〉 argument, the
full range of names and expressions, as explained above, may be used.

2.3.2 Meaning of standard color expressions

We explain now how an expression

〈prefix 〉〈name〉!〈pct〉1!〈name〉1!〈pct〉2! . . . !〈pct〉n!〈name〉n〈postfix 〉

is being interpreted and processed:

1. First of all, the model and color parameters of 〈name〉 are extracted to
define a temporary color 〈temp〉. If 〈postfix 〉 has the form ‘!![〈num〉]’,
then 〈temp〉 will be the corresponding (direct-accessed) color 〈num〉 from
the series 〈name〉.

2. Then a color mix, consisting of 〈pct〉1% of color 〈temp〉 and (100− 〈pct〉1)%
of color 〈name〉1 is computed; this is the new temporary color 〈temp〉.

3. The previous step is being repeated for all remaining parameter pairs
(〈pct〉2,〈name〉2), . . . , (〈pct〉n,〈name〉n).

xcolor v2.06 (2005/10/15) 14

4. If 〈prefix 〉 consists of an odd number of minus signs ‘-’, then 〈temp〉 will be
changed into its complementary color.

5. If 〈postfix 〉 has the form ‘!!+’, ‘!!++’, ‘!!+++’, etc., a number of step com-
mands (= number of ‘+’ signs) are performed on the underlying color series
〈name〉. This has no consequences for the color 〈temp〉.

6. Now the color 〈temp〉 is being displayed or serves as an input for other
operations, depending on the invoking command.

Note that in a typical step 2 expression 〈temp〉!〈pct〉ν!〈name〉ν , if 〈pct〉ν=100
resp. 〈pct〉ν=0, the color 〈temp〉 resp. 〈name〉ν is used without further transfor-
mations. In the true mix case, 0 <〈pct〉ν< 100, the two involved colors may have
been defined in different color models, e.g., \definecolor{foo}{rgb}{...} and
\definecolor{bar}{cmyk}{...}. In general, the second color, 〈name〉ν , is trans-
formed into the model of the first color, 〈temp〉, then the mix is calculated within
that model. 5 Thus, 〈temp〉!〈pct〉ν!〈name〉ν and 〈name〉ν!〈100−pct〉ν!〈temp〉,
which should be equivalent theoretically, will not necessarily yield identical vi-
sual results.
Figures 5 to 6 on page 30 show some first applications of colors and expressions.
More examples are given in figure 3 on page 29. Over and above that, a large set
of color examples can be found in [7].

2.3.3 Meaning of extended color expressions

An extended color expression

〈core model〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

mimes color mixing as painters do it: specify a list of colors, each with a 〈dec〉
factor attached to. For such an 〈ext expr〉, each standard color expression 〈expr〉κ
will be converted to 〈core model〉, then the resulting vector is multiplied by
〈dec〉κ/〈div〉, where

〈div〉 := 〈dec〉1 + 〈dec〉2 + · · · + 〈dec〉k.

Afterwards the sum of all of these vectors is calculated.
Example: mixing 4 parts of red, 2 parts of green, and 1 part of
yellow , we get by saying \color{rgb:red,4;green,2;yellow,1}. Trying
the same with −1 parts of yellow instead, we get . Note that this mechanism
can also be used to display an individual color (expression) in a certain color
model: \color{rgb:yellow,1} results in such a conversion. The general form

〈core model〉,〈div〉:〈expr〉1,〈dec〉1;〈expr〉2,〈dec〉2;...;〈expr〉k!〈dec〉k

does the same operation with the only difference that the divisor 〈div〉 is being
specified instead of calculated. In the above example, we get a shaded version

5Exception: in order to avoid strange results, this rule is being reversed if 〈temp〉 origins from
the gray model; in this case it is converted into the underlying model of 〈name〉ν .

xcolor v2.06 (2005/10/15) 15

by saying \color{rgb,9:red,4;green,2;yellow,1}. Note that it is not
forbidden to specify a 〈div〉 argument which is smaller than the sum of all 〈dec〉κ,
such that one or more of the final color specification parameters could be outside
the interval [0, 1]. However, the mapping of equation (6) takes care of such cases.

2.4 Predefined colors

2.4.1 Colors that are always available

Within xcolor.sty, the following color names are defined: red, green,
blue, cyan, magenta, yellow , orange, violet, purple,
brown, pink, olive, black, darkgray , gray , lightgray ,
white.

This base set of colors can be used without restrictions in all kinds of color ex-
pressions, as explained in section 2.3 on page 10.

2.4.2 Additional sets of colors

There are also sets of color names that may be loaded by xcolor via package
options, available in two variants: a ‘normal’ version (e.g., dvipsnames) and a
‘starred’ version (e.g., dvipsnames*). The first variant simply defines all the colors
immediately, whereas the second applies the mechanism of deferred definition. In
the latter case, individual color names have to be activated by \definecolors or
\providecolors commands, as described in section 2.5.4 on page 18, before they
can be applied in a document.

• dvipsnames/dvipsnames* loads a set of 68 cmyk colors as defined in the
dvips driver. However, these colors may be used in all supported drivers.

• svgnames/svgnames* loads a set of 147 rgb color names6 according to the
SVG 1.1 specification [14]7.

The color names and corresponding displays are listed in section 6 on page 50.
Note that — due to some overlap in the names — the option order is important,
if you plan to use more than one of these sets. See also [7] for a systematic set of
color and mix examples.

2.5 Color definition

2.5.1 Ordinary and named colors

In the color package there is a distinction between ‘colors’ (defined by the com-
mand \definecolor) and ‘named colors’ (defined by \DefineNamedColor, which
is allowed only in the preamble). Whenever an ordinary color is being used in
a document, it will be translated into a \special command that contains a —

6In fact, these names represent 138 different colors.
7Actually, the cited specification lists only lowercase names, and the original definitions are

given in RGB parameters, converted to rgb by the author.

xcolor v2.06 (2005/10/15) 16

driver-specific — numerical description of the color which is written to the .dvi

file. On the other hand, named colors offer the opportunity to store numerical
values at a central place whereas during usage, colors may be identified by their
names, thus enabling post-processing if required by the output device.
All drivers delivered with the standard graphics package support the formalism
of defining and invoking ‘named colors’. However, real support for the concept
behind that, i.e. employing names instead of parameters, ranges from ‘none’ to
‘complete’. We demonstrate the current situation for three different drivers:

• dvips has very good support for the ‘named’ concept; the PostScript equiv-
alents to the color names defined by dvipsnames are being loaded – unless
switched off – by dvips automatically. However, additional names have to be
made known to the PostScript interpreter by some kind of header file. Since
version 2.01, xcolor offers an integrated solution for this task: by invoking
the package option prologue, a PostScript header file xcolor.pro is loaded
by dvips. Additionally, under this option every color definition command8

(\definecolor, \colorlet, etc.) will generate some PostScript code that
is written to an auxiliary file with the extension .xcp (shortcut for xcolor
prologue). This file is as well loaded by dvips as a prologue, thus making
all color names available to the PostScript interpreter. Of course, the .xcp

file may be edited before dvips is applied, making it easy to change device-
specific color parameters at a central place. Note that the PostScript code
is designed similar to color.pro: only new names are defined. This allows
to preload other prologue files with color definitions that are not being de-
stroyed by xcolor. On the other hand, it requires the user to take care about
redefining color names.
Example: \colorlet{foo}{red}\colorlet{foo}{blue}\color{foo} will
switch to blue in the usual xcolor logic, however the .ps file would display
red (unless foo had been defined differently before).
It should be stressed that this mechanism is only employed by the prologue
option. Without that, the predefined ‘named’ colors activated by the
dvipsnames option (without employing any tints, shades, color expressions,
etc.) may be used in this way, all other ‘named’ colors are unknown to
PostScript.

• dvipdfm supports only the standard dvipsnames colors since these are hard-
coded in the dvipdfm program itself; there seems to be no way to load any
user-defined prologue files.

• pdftex does not offer conceptual support, all ‘named’ colors are converted
immediately to their numerical representation. It therefore allows unre-
stricted definition and usage of named colors (although offering no added
value through this).

Typically, a .dvi viewer will have difficulties to display user-defined ‘named’ col-
ors. For example, MiKTEX’s viewer Yap currently displays only ‘named’ colors

8This is not only true for the document preamble, but for the document body as well.

xcolor v2.06 (2005/10/15) 17

from the dvipsnames set. Thus, whenever the prologue option is invoked to-
gether with dvips, all other colors will appear black. However, after employing
dvips, a PostScript viewer should display the correct colors.

2.5.2 Color definition in xcolor

[〈type〉]{〈name〉}{〈model-list〉}{〈spec-list〉}9\definecolor

This is one of the commands that may be used to assign a 〈name〉 to a specific color.
Afterwards, this color is known to the system (in the current group) and may be
used in color expressions, as explained in section 2.3 on page 10. It replaces both
color’s \DefineNamedColor and \definecolor. Note that an already existing
color 〈name〉 will be overwritten. The variable \tracingcolors controls whether
such an overwriting will be logged or not (see section 2.13 on page 26 for details).
The arguments are described in section 2.3 on page 10. Hence, valid expressions
for color definitions are

• \definecolor{red}{rgb}{1,0,0},

• \definecolor{red}{rgb/cmyk}{1,0,0/0,1,1,0},

• \definecolor[named]{Black}{cmyk}{0,0,0,1},

• \definecolor{myblack}{named}{Black},

where the last command is equivalent to \colorlet{myblack}{Black} (see be-
low); the second command defines red in the rgb or cmyk model, depending on
the current setting of the target model. Note that there is a special pstricks version
as described in section 2.11 on page 25.

[〈type〉]{〈name〉}{〈model-list〉}{〈spec-list〉}\providecolor

Similar to \definecolor, but the color 〈name〉 is only defined if it does not exist
already.

[〈type〉]{〈name〉}[〈num model〉]{〈color〉}\colorlet

Copies the actual color which results from 〈color〉 to 〈name〉. If 〈num model〉 is
non-empty, 〈color〉 is first transformed to the specified model, before 〈name〉 is
being defined. The pseudo model ‘named’ is not allowed here, it may, however,
be specified in the 〈type〉 argument. Note that an already existing color 〈name〉
will be overwritten.
Example: we said \colorlet{tableheadcolor}{gray!25} in the preamble of
this document. In most of the tables we then formatted the first row by using the
command \rowcolor{tableheadcolor}.

2.5.3 Defining sets of colors

[〈type〉]{〈model-list〉}{〈head〉}{〈tail〉}{〈set spec〉}\definecolorset

This command facilitates the construction of color sets, i.e. (possibly large) sets

9Prior to version 2.00, this command was called \xdefinecolor, the latter name still being
available for compatibility reasons.

xcolor v2.06 (2005/10/15) 18

of individual colors with common underlying 〈model-list〉 and 〈type〉. Here, 〈set
spec〉 = 〈name〉1,〈spec-list〉1;. . . ;〈name〉l,〈spec-list〉l (l ≥ 1 name/specification-list
pairs). Individual colors are being constructed by single

\definecolor[〈type〉]{〈head〉〈name〉λ〈tail〉}{〈model-list〉}{〈spec-list〉λ}

commands, λ = 1, . . . , l. For example,

• \definecolorset{rgb}{}{}{red,1,0,0;green,0,1,0;blue,0,0,1}

could be used to define the basic colors red, green, and blue;10

• \definecolorset{rgb}{x}{10}{red,1,0,0;green,0,1,0;blue,0,0,1}

would define the colors xred10, xgreen10, and xblue10.

[〈type〉]{〈model-list〉}{〈head〉}{〈tail〉}{〈set spec〉}\providecolorset

Similar to \definecolorset, but based on \providecolor, thus the individual
colors are defined only if they do not exist already.

2.5.4 Immediate and deferred definitions

Traditionally, the definition of a color as described above leads to the immediate
construction of a command that holds at least the information needed by the driver
to display the desired color. Thus, defining 300 colors, e.g., by loading a huge set
of predefined colors, will result in 300 new commands, although most of them —
except for the purpose of displaying lists of colors — will hardly ever be used within
a document. Along the development of computer memory — increasing in size,
decreasing in price — recent TEX implementations have increased their provisions
for internal memory stacks that are available for strings, control sequences, etc.
However, as memory continues to be finite, it may still be useful (or occasionally
necessary) to have a method at hand that allows to reduce memory requirements a
bit. This is the point where deferred color definition comes into play. Its principle
is simple: for every definition of this type (e.g., via \preparecolor), all necessary
information is saved on a specific global definition stack, where it can be taken from
later (e.g., via \definecolors) in order to construct the actual color command.
Note that the following commands are only to be used in the document preamble,
since the definition stack of colors for deferred definitions is deleted at the begin
of the document body — in order to save memory.

[〈type〉]{〈name〉}{〈model-list〉}{〈spec-list〉}\preparecolor

Similar to \definecolor, but the color 〈name〉 is not yet being defined: the ar-
guments 〈model-list〉 and 〈spec-list〉 are evaluated immediately, then all necessary
parameters (i.e. 〈type〉, 〈name〉, 〈model〉, 〈spec〉) are put onto the definition stack
for later usage.

[〈type〉]{〈model-list〉}{〈head〉}{〈tail〉}{〈set spec〉}\preparecolorset

\ifdefinecolors Similar to \definecolorset, but depending on the \ifdefinecolors switch: if

10Actually, xcolor uses a more complicated variant to provide the basic colors for different
underlying models (see the source code for the full command):
\definecolorset{rgb/hsb/cmyk/gray}{}{}{red,1,0,0/0,1,1/0,1,1,0/.3;green,...}.

xcolor v2.06 (2005/10/15) 19

set to ‘true’, to each element of the set the command \definecolor (i.e. im-
mediate definition) is applied; if set to ‘false’, \preparecolor (i.e. deferred de-
finition) is applied. For example, the package option svgnames performs some-
thing like \definecolorstrue\preparecolorset, whereas svgnames* acts like
\definecolorsfalse\preparecolorset. Both options set \definecolorstrue

at the end, in order to have a proper starting point for other color sets.

{〈type〉}{〈name〉}{〈model-list〉}{〈spec-list〉} is provided mainly for compatibil-\DefineNamedColor

ity reasons, especially to support the predefined colors in dvipsnam.def. It is
the same as 〈cmd〉[〈type〉]{〈name〉}{〈model〉}{〈spec〉}, where 〈cmd〉 is either
\definecolor or \preparecolor, depending on the state of \ifdefinecolors.
Note that color’s restriction to allow \DefineNamedColor only in the document
preamble has been abolished in xcolor.

{〈id-list〉}\definecolors

Recall that 〈id-list〉 has the form 〈ext id〉1,...,〈ext id〉l where each 〈ext id〉λ
is either an identifier 〈id〉λ or an assignment 〈id〉λ′=〈id〉λ. We consider the first
case to be an abbreviation for 〈id〉λ=〈id〉λ and describe the general case: the
definition stack is searched for the name 〈id〉λ and its corresponding color para-
meters; if there is no match, nothing happens; if the name 〈id〉λ is on the stack
and its color parameters are 〈type〉λ, 〈model〉λ, and 〈spec〉λ, then the command
\definecolor[〈type〉λ]{〈id〉λ′}{〈model〉λ}{〈spec〉λ} is executed. Thus, the user
may control by which names the prepared colors are to be used in the document.
Note that the entry 〈id〉λ is not removed from the stack, such that it can be used
several times (even within the same \definecolors command).

{〈id-list〉}\providecolors

Similar to \definecolors, but based on \providecolor, thus the individual col-
ors are defined only if they do not exist already.

2.5.5 Global color definitions

By default, definitions via \definecolor, \providecolor, . . . are available only\ifglobalcolors

within the current group. By setting \globalcolorstrue, all such definitions are
being made globally available — until the current group ends.11 Another method\xglobal

to specify that an individual color definition is to be made global is to prefix it by
\xglobal, e.g., \xglobal\definecolor{foo}....

2.6 Color application

2.6.1 Standard color commands

Here is the list of user-level color commands, as known from the color package,
but with an extended syntax for the colors:
{〈color〉}\color

[〈model〉]{〈spec〉}
{〈color〉}{〈text〉}\textcolor

11The switch may also be set in the preamble in order to control the whole document.

xcolor v2.06 (2005/10/15) 20

[〈model〉]{〈spec〉}{〈text〉}
{〈color〉}{〈text〉}\colorbox

[〈model〉]{〈spec〉}{〈text〉}
{〈frame color〉}{〈background color〉}{〈text〉}\fcolorbox

[〈model〉]{〈frame spec〉}{〈background spec〉}{〈text〉}
{〈color〉}\pagecolor

[〈model〉]{〈spec〉}
Hence, the formal difference to the color package is that color expressions may be
used instead of pure color names. A previous section explains how color expres-
sions are constructed.
Remark: all of these commands except \color require that the 〈color〉 resp. 〈spec〉
arguments are put into curly braces {}, even if they are buried in macros.
For example, after \def\foo{red}, one may say \color\foo, but one should
always write \textcolor{\foo}{bar} instead of \textcolor\foo{bar} in order
to avoid strange results.
Note that color-specific commands from other packages may give unexpected re-
sults if directly confronted with color expressions (e.g., soul’s \sethlcolor and
friends). However, one can turn the expression into a name via \colorlet and
try to use that name instead.

2.6.2 Using the current color

Within a color expression, ‘.’ serves as a placeholder for the current color. See
figure 7 on page 30 for an example.
It is also possible to save the current color for later use, e.g., via the command
\colorlet{foo}{.}.
Note that in some cases the current color is of rather limited use, e.g., the con-
struction of an \fcolorbox implies that at the time when the 〈background color〉
is evaluated, the current color equals the 〈frame color〉; in this case ‘.’ does not
refer to the current color outside the box.

2.6.3 Color testing

[〈num models〉]testcolors

This is a simple tabular environment in order to test (display) colors in different
models, showing both the visual result and the model-specific parameters. The
optional 〈num models〉 argument is a comma-separated list of numerical color
models (as usual without spaces) which form the table columns; the default list is
rgb,cmyk,hsb,HTML.
{〈color〉}\testcolor

[〈model〉]{〈spec〉}
Each \testcolor command generates a table row, containing a display sam-
ple plus the respective parameters for each of the models. If the column-model
matches the model of the color in question, its parameters are underlined. Note
that this command is only available within the testcolors environment. See
figure 2 on page 28 for an example.

xcolor v2.06 (2005/10/15) 21

2.7 Color blending

The purpose of color blending is to add some mixing color (expression) to all
subsequent explicit color commands. Thus, it is possible to perform such a mix
(or blend) operation for many colors without touching the individual commands.

{〈mix expr〉}\blendcolors

{〈mix expr〉}\blendcolors*

Initialises all necessary parameters for color blending. The actual (completed)
color blend expression is stored in \colorblend. In the starred version, the argu-
ment will be appended to a previously defined blend expression. An empty 〈mix
expr〉 argument will switch blending off.
Example: after \blendcolors{!50!yellow}, the colors are trans-
formed into , an additional \blendcolors*{!50} yields .
In order to achieve global scope, \blendcolors may be prefixed by \xglobal.\xglobal

Remark: color blending is applied only to explicit color commands, i.e. \color,
\fcolorbox and the like. In the previous example the frames are not being blended
because their color is set by an driver-internal command (switching back to the
‘current color’). Thus, to influence these implicit colors as well, we have to set
the current color after the blending: \blendcolors{!50!yellow}\color{black}
results in , an additional \blendcolors*{!50}\color{black} yields

.

2.8 Color masks and separation

The purpose of color separation is to represent all colors that appear in the doc-
ument as a combination of a finite subset of base colors and their tints. Most
prominent is cmyk separation, where the base colors are cyan, magenta, yellow ,
and black, as required by the printers. This can be done by choosing the pack-
age option cmyk, such that all colors will be converted in this model, and post-
processing the output file. We describe now another — and more general —
solution: color masking. How does it work? Color masking is based on a speci-
fied color model 〈m-model〉 and a parameter vector 〈m-spec〉. Whenever a color
is to be displayed in the document, it will first be converted to 〈m-model〉, af-
terwards each component of the resulting color vector will be multiplied by the
corresponding component of 〈m-spec〉. For example, let’s assume that 〈m-model〉
equals cmyk, and 〈m-spec〉 equals (µc, µm, µy, µk). Then an arbitrary color foo will
be transformed according to

foo 7→ (c,m, y, k) 7→ (µc · c, µm · m,µy · y, µk · k) (4)

Obviously, color separation is a special case of masking by the vectors (1, 0, 0, 0),
(0, 1, 0, 0), etc. An interesting application is to shade or tint all colors by masking
them with (x, x, x) in the rgb or cmy model, see the last two rows in figure 9 on
page 32.

[〈num model〉]{〈color〉}\maskcolors

xcolor v2.06 (2005/10/15) 22

Initialises all necessary parameters for color masking: if 〈num model〉 is not spec-
ified (or empty), 〈m-model〉 will be set to the natural model of 〈color〉, other-
wise to 〈num model〉; the color specification of 〈color〉 is extracted to define
〈m-spec〉. Additionally, \maskcolorstrue is performed. Color masking can be\ifmaskcolors

switched off temporarily by \maskcolorsfalse, or — in a more radical way —
by \maskcolors{}, which in addition clears the initialisation parameters. In gen-\xglobal

eral, the scope of \maskcolors is the current group (unless it is prefixed by the
\xglobal command), but it may be used in the document preamble as well. The
final remark of the color blending section applies here similarly.
Now it is easy to separate a complete document without touching the source code:
latex \def\xcolorcmd{\maskcolors[cmyk]{cyan}}\input{a} will do the cyan
part of the job for a.tex.
Caution: xcolor has no idea about colors in files that are included via the command\colormask

\includegraphics, e.g., images of type .eps, .pdf, .jpg, or .png. Such files
have to be separated separately. Nevertheless, xcolor offers some basic support by
storing the mask color in \colormask, which can be used to decide which file is
to be included:

\def\temp{cyan}\ifx\colormask\temp \includegraphics{foo_c}\else

\def\temp{magenta}\ifx\colormask\temp \includegraphics{foo_m}\else

...

\fi\fi

2.9 Color series

Automatic coloring may be useful in graphics or chart applications, where a —
potentially large and unspecified — number of colors are needed, and the user does
not want or is not able to specify each individual color. Therefore, we introduce
the term color series, which consists of a base color and a scheme, how the next
color is being constructed from the current color.
The practical application consists of three parts: definition of a color series (usu-
ally once in the document), initialisation of the series (potentially several times),
and application — with or without stepping — of the current color of the series
(potentially many times).

2.9.1 Definition of a color series

{〈name〉}{〈core model〉}{〈method〉}[〈b-model〉]{〈b-spec〉}[〈s-model〉]{〈s-spec〉}\definecolorseries

Defines a color series called 〈name〉, whose calculations are performed within the
color model 〈core model〉, where 〈method〉 selects the algorithm (one of step, grad,
last, see below). The method details are determined by the remaining arguments:

• [〈b-model〉]{〈b-spec〉} specifies the base (= first) color in the algorithm,
either directly, e.g., [rgb]{1,0.5,0.5}, or as a 〈color〉, e.g., {-yellow!50},
if the optional argument is missing.

xcolor v2.06 (2005/10/15) 23

• [〈s-model〉]{〈s-spec〉} specifies how the step vector is calculated in the al-
gorithm, according to the chosen 〈method〉:

– step, grad: the optional argument is meaningless, and 〈s-spec〉 is a
parameter vector whose dimension is determined by 〈core model〉, e.g.,
{0.1,-0.2,0.3} in case of rgb, cmy, or hsb.

– last: the last color is specified either directly, e.g., [rgb]{1,0.5,0.5},
or as a 〈color〉, e.g., {-yellow!50}, if the optional argument is missing.

This is the general scheme:

color1 := base, colorn+1 := U
(

colorn + step
)

(5)

for n = 1, 2, . . . , where U maps arbitrary real m-vectors into the unit m-cube:

U(x1, . . . , xm) = (u(x1), . . . , u(xm)), u(x) =

{

1 if x = 1

x − [x] if x 6= 1
(6)

Thus, every step of the algorithm yields a valid color with parameters from the
interval [0, 1].

Now, the different methods use different schemes to calculate the step vector:

• step, grad: the last argument, {〈s-spec〉}, defines the directional vector grad.

• last: {〈s-spec〉} resp. [〈s-model〉]{〈s-spec〉} defines the color parameter vec-
tor last.

Then, during \resetcolorseries, the actual step vector is calculated:

step :=















grad if 〈method〉 = step

1
〈div〉 · grad if 〈method〉 = grad

1
〈div〉 · (last − base) if 〈method〉 = last

(7)

Please note that it is also possible to use the current color placeholder ‘.’ within the
definition of color series. Thus, \definecolorseries{foo}{rgb}{last}{.}{-.}
will set up a series that starts with the current color and ends with its complement.
Of course, similar to TEX’s \let primitive, the current definition of the current
color at the time of execution is used, there is no relation to current colors in any
later stage of the document.

2.9.2 Initialisation of a color series

[〈div〉]{〈name〉}\resetcolorseries

This command has to be applied at least once, in order to make use of the color
series 〈name〉. It resets the current color of the series to the base color and calcu-
lates the actual step vector according to the chosen 〈div〉, a non-zero real number,
for the methods grad and last, see equation (7). If the optional argument is\colorseriescycle

xcolor v2.06 (2005/10/15) 24

empty, the value stored in the macro \colorseriescycle is applied. Its default
value is 16, which can be changed by \def\colorseriescycle{〈div〉}, applied be-
fore the xcolor package is loaded (similar to \rangeRGB and friends). The optional
argument is ignored in case of the step method.

2.9.3 Application of a color series

There are two ways to display the current color of a color series: any of the
color expressions in section 2.3 on page 10 used within a \color, \textcolor,
. . . command will display this color according to the usual syntax of such ex-
pressions. However, in the cases when 〈postfix 〉 equals ‘!!+’, \color{〈name〉!!+}
etc., will not only display the color, but it will also perform a step operation.
Thus, the current color of the series will be changed in that case. An expression
\color{〈name〉!![〈num〉]} enables direct access to an element of a series, where
〈num〉 = 0, 1, 2, . . . , starting with 0 for the base color. See figure 8 on page 31 for
a demonstration of different methods.

2.9.4 Differences between colors and color series

Although they behave similar if applied within color expressions, the objects
defined by \definecolor and \definecolorseries are fundamentally different
with respect to their scope/availability: like color’s original \definecolor com-
mand, \definecolor generates local colors, whereas \definecolorseries gener-
ates global objects (otherwise it would not be possible to use the stepping mech-
anism within tables or graphics conveniently). E.g., if we assume that bar is an
undefined color, then after saying

\begingroup

\definecolorseries{foo}{rgb}{last}{red}{blue}

\resetcolorseries[10]{foo}

\definecolor{bar}{rgb}{.6,.5,.4}

\endgroup

commands like \color{foo} or \color{foo!!+} may be used without restrictions,
whereas \color{bar} will give an error message. However, it is possible to say
\colorlet{bar}{foo} or \colorlet{bar}{foo!!+} in order to save the current
color of a series locally — with or without stepping.

2.10 Border colors for hyperlinks

The hyperref package offers all kinds of support for hyperlinks, pdfmarks etc. There
are two standard ways to make hyperlinks visible (see the package documentation
[12] for additional information on how to set up these features):

• print hyperlinks in a different color than normal text, using the keys cite-
color , filecolor , linkcolor , menucolor , pagecolor , runcolor , urlcolor with color
expressions, e.g., \hypersetup{urlcolor=-green!50};

xcolor v2.06 (2005/10/15) 25

• display a colored border around hyperlinks, using the keys citebordercolor ,
filebordercolor , linkbordercolor , menubordercolor , pagebordercolor , runbor-
dercolor , urlbordercolor with explicit numerical rgb parameter specification,
e.g., \hypersetup{urlbordercolor={1 0.5 0.25}}.

Obviously, the second method is somewhat inconvenient since it does not allow
for color names or even color expressions. Therefore, xcolor provides — via the
package option hyperref — a set of extended keys xcitebordercolor , xfilebor-
dercolor , xlinkbordercolor , xmenubordercolor , xpagebordercolor , xrunbordercolor ,
xurlbordercolor which are being used in conjunction with color expressions, e.g.,
\hypersetup{xurlbordercolor=-green!50}.
Another new key, xpdfborder , provides a way to deal with a dvips-related prob-
lem: for most of the drivers, a setting like pdfborder={0 0 1} will determine
the width of the border that is drawn around hyperlinks in points. However, in
the dvips case, the numerical parameters are interpreted in relation to the chosen
output resolution for processing the .dvi file into a .ps file. Unfortunately, at
the time when the .dvi is constructed, nobody knows if and at which resolution
a transformation into .ps will take place afterwards. Consequently, any default
value for pdfborder may be useful or not. Within hyperref, the default for dvips

is pdfborder={0 0 12}, which works fine for a resolution of 600 or 1200 dpi, but
which produces an invisible border for a resolution of 8000 dpi, as determined by
the command-line switch -Ppdf. On the other hand, setting pdfborder={0 0 80}

works fine for dvips at 8000 dpi, but makes a document unportable, since other
drivers (or even dvips in a low resolution) will draw very thick boxes in that case.
This is were the xpdfborder key comes in handy: it rescales its arguments for the
dvips case by a factor 80 (ready for 8000 dpi) and leaves everything unchanged
for other drivers. Thus one can say xpdfborder={0 0 1} in a driver-independent
way.

2.11 Additional color specification in the pstricks world

For pstricks users, there are different ways of invoking colors within command
option keys:

• \psset{linecolor=green!50}

• \psset{linecolor=[rgb]{0.5,1,0.5}}

• \psframebox[linecolor={[rgb]{0.5,1,0.5}}]{foo}

Note the additional curly braces in the last case; without them, the optional
argument of \psframebox would be terminated too early.
[ps]{〈name〉}{〈core model-list〉}{〈code〉}\definecolor

Stores PostScript 〈code〉 — that should not contain slash ‘/’ characters — within
a color. Example: after \definecolor[ps]{foo}{rgb}{bar}, the pstricks com-
mand \psline[linecolor=foo]... inserts ‘bar setrgbcolor’ where the line-
color information is required — at least in case of the dvips driver. See also
xcolor2.tex for an illustrative application.

xcolor v2.06 (2005/10/15) 26

2.12 Color in tables

[〈commands〉]{〈row〉}{〈odd-row color〉}{〈even-row color〉}\rowcolors

[〈commands〉]{〈row〉}{〈odd-row color〉}{〈even-row color〉}\rowcolors*

One of these commands has to be executed before a table starts. 〈row〉 tells the
number of the first row which should be colored according to the 〈odd-row color〉
and 〈even-row color〉 scheme. Each of the color arguments may also be left empty
(= no color). In the starred version, 〈commands〉 are ignored in rows with inactive
rowcolors status (see below), whereas in the non-starred version, 〈commands〉 are
applied to every row of the table. Such optional commands may be \hline or
\noalign{〈stuff 〉}.
The rowcolors status is activated (i.e., use coloring scheme) by default and/or\showrowcolors

\hiderowcolors \showrowcolors, it is inactivated (i.e., ignore coloring scheme) by the command
\hiderowcolors. The counter \rownum may be used within such a table to access\rownum

the current row number. An example is given in figure 10 on page 32. These
commands require the table option (which loads the colortbl package).
Note that table coloring may be combined with color series. This method was
used to construct the examples in figure 8 on page 31.

2.13 Color information

{〈color〉}{〈cmd〉}\extractcolorspec

Extracts the color specification of 〈color〉 and puts it into 〈cmd〉; equivalent to
\def\cmd{{〈model〉}{〈spec〉}}.
{〈color〉}{〈model-cmd〉}{〈color-cmd〉}\extractcolorspecs

Extracts the color specification of 〈color〉 and puts it into 〈model-cmd〉 and
〈color-cmd〉, respectively.

=〈int〉\tracingcolors

Controls the amount of information that is written into the log file:

• 〈int〉 ≤ 0: no specific color logging.

• 〈int〉 ≥ 1: ignored color definitions due to \providecolor are logged.

• 〈int〉 ≥ 2: multiple (i.e. overwritten) color definitions are logged.

• 〈int〉 ≥ 3: every command that defines a color will be logged.

• 〈int〉 ≥ 4: every command that sets a color will be logged.

Like TEX’s \tracing... commands, this command may be used globally (in the
document preamble) or locally/block-wise. The package sets \tracingcolors=0

as default. Remark: since registers are limited and valuable, no counter is wasted
for this issue.
Note that whenever a color is used that has been defined via color’s \definecolor
command rather than xcolor’s new \definecolor and friends, a warning message
‘Incompatible color definition’ will be issued.12

12This should not happen since usually there is no reason to load color in parallel to xcolor.

xcolor v2.06 (2005/10/15) 27

2.14 Color conversion

{〈model〉}{〈spec〉}{〈target model〉}{〈cmd〉}\convertcolorspec

Converts a color, given by the 〈spec〉 in model 〈model〉, into 〈target model〉 and
stores the new color specification in \cmd. 〈target model〉 must be of type 〈num
model〉, whereas 〈model〉 may also be ‘named’, in which case 〈spec〉 is simply the
name of the color.

2.15 Problems and solutions

2.15.1 Page breaks and pdfTEX

Since pdfTEX does not maintain a color stack — in contrast to dvips — a typical
problem is the behaviour of colors in the case of page breaks, as illustrated by the
following example:

\documentclass{minimal}

\usepackage{xcolor}

\begin{document}

black\color{red}red1\newpage red2\color{black}black

\end{document}

This works as expected with dvips, i.e., ‘red1’ and ‘red2’ being red, however,
with pdftex, ‘red2’ is displayed in black. The problem may be solved by using
the fixpdftex option which simply loads Heiko Oberdiek’s pdfcolmk package [11].
However, its author also lists some limitations:

• Mark limitations: page breaks in math.

• LaTeX’s output routine is redefinded.

– Changes in the output routine of newer versions of LaTeX are not de-
tected.

– Packages that change the output routine are not supported.

• It does not support several independent text streams like footnotes.

xcolor v2.06 (2005/10/15) 28

3 Examples

Figure 1: Color spectrum

360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800

\newcount\WL \unitlength.75pt

\begin{picture}(460,60)(355,-10)

\sffamily \tiny \linethickness{1.25\unitlength} \WL=360

\multiput(360,0)(1,0){456}%

{{\color[wave]{\the\WL}\line(0,1){50}}\global\advance\WL1}

\linethickness{0.25\unitlength}\WL=360

\multiput(360,0)(20,0){23}%

{\picture(0,0)

\line(0,-1){5} \multiput(5,0)(5,0){3}{\line(0,-1){2.5}}

\put(0,-10){\makebox(0,0){\the\WL}}\global\advance\WL20

\endpicture}

\end{picture}

Figure 2: Color testing

color rgb cmyk hsb HTML gray

olive 0.5 0.5 0 0 0 1 0.5 0.16667 1 0.5 808000 0.39

red!50!green 0.5 0.5 0 0 0 0.5 0.5 0.16667 1 0.5 808000 0.445

-cyan!50!magenta 0.5 0.5 0 0 0 0.5 0.5 0.16667 1 0.5 808000 0.445

[cmyk]0,0,1,0.5 0.5 0.5 0 0 0 1 0.5 0.16667 1 0.5 808000 0.39

[cmyk]0,0,.5,.5 0.5 0.5 0 0 0 0.5 0.5 0.16667 1 0.5 808000 0.445

\sffamily

\begin{testcolors}[rgb,cmyk,hsb,HTML,gray]

\testcolor{olive}

\testcolor{red!50!green}

\testcolor{-cyan!50!magenta}

\testcolor[cmyk]{0,0,1,0.5}

\testcolor[cmyk]{0,0,.5,.5}

\end{testcolors}

xcolor v2.06 (2005/10/15) 29

Figure 3: Progressing from one to another color

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

MyGreen! !white

MyGreen-rgb! !white

MyGreen-cmy! !white

MyGreen-hsb! !white

MyGreen-gray! !white

MyGreen! !gray

MyGreen-rgb! !gray

MyGreen-cmy! !gray

MyGreen-hsb! !gray

MyGreen-gray! !gray

MyGreen! !black

MyGreen-rgb! !black

MyGreen-cmy! !black

MyGreen-hsb! !black

MyGreen-gray! !black

MyGreen! !red

MyGreen-rgb! !red

MyGreen-cmy! !red

MyGreen-hsb! !red

MyGreen-gray! !red

MyGreen! !blue

MyGreen-rgb! !blue

MyGreen-cmy! !blue

MyGreen-hsb! !blue

MyGreen-gray! !blue

MyGreen! !yellow

MyGreen-rgb! !yellow

MyGreen-cmy! !yellow

MyGreen-hsb! !yellow

MyGreen-gray! !yellow

Color Definition/representation (dvips driver)

MyGreen {cmyk 0.92 0 0.87 0.09}{cmyk}{0.92,0,0.87,0.09}

MyGreen-rgb {rgb 0 0.91 0.04001}{rgb}{0,0.91,0.04001}

MyGreen-cmy {cmyk 1 0.09 0.95999 0}{cmy}{1,0.09,0.95999}

MyGreen-hsb {hsb 0.34065 1 0.91}{hsb}{0.34065,1,0.91}

MyGreen-gray {gray 0.5383}{gray}{0.5383}

xcolor v2.06 (2005/10/15) 30

Figure 4: Target color model

\selectcolormodel

...{natural}

...{rgb}

...{cmy}

...{cmyk}

...{hsb}

...{gray}

Figure 5: Standard color expressions

red -red

red!75 -red!75

red!75!green -red!75!green

red!75!green!50 -red!75!green!50

red!75!green!50!blue -red!75!green!50!blue

red!75!green!50!blue!25 -red!75!green!50!blue!25

red!75!green!50!blue!25!gray -red!75!green!50!blue!25!gray

Figure 6: Standard color expressions

\fboxrule6pt

\fcolorbox

{red!70!green}% outer frame

{yellow!30!blue}% outer background

{\fcolorbox

{-yellow!30!blue}% inner frame

{-red!70!green}% inner background

{Test\textcolor{red!72.75}{Test}\color{-green}Test}}

TestTestTest

Figure 7: Current color

\def\test{current, \textcolor{.!50}{50\%},

\textcolor{-.}{complement},

\textcolor{yellow!50!.}{mix}}

\textcolor{blue}{\test}\\

and \textcolor{red}{\test}\\

\def\Test{\color{.!80}Test}

\textcolor{blue}{\Test\Test\Test\Test\Test}\\

and \textcolor{red}{\Test\Test\Test\Test\Test}

current, 50%, complement, mix
and current, 50%, complement, mix

TestTestTestTestTest
and TestTestTestTestTest

xcolor v2.06 (2005/10/15) 31

Figure 8: Color series

S1 S2 G1 G2 L1 L2 L3 L4 L5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Individual definitions

S1 \definecolorseries{test}{rgb}{step}[rgb]{.95,.85,.55}{.17,.47,.37}

S2 \definecolorseries{test}{hsb}{step}[hsb]{.575,1,1}{.11,-.05,0}

G1 \definecolorseries{test}{rgb}{grad}[rgb]{.95,.85,.55}{3,11,17}

G2 \definecolorseries{test}{hsb}{grad}[hsb]{.575,1,1}{.987,-.234,0}

L1 \definecolorseries{test}{rgb}{last}[rgb]{.95,.85,.55}[rgb]{.05,.15,.55}

L2 \definecolorseries{test}{hsb}{last}[hsb]{.575,1,1}[hsb]{-.425,.15,1}

L3 \definecolorseries{test}{rgb}{last}{yellow!50}{blue}

L4 \definecolorseries{test}{hsb}{last}{yellow!50}{blue}

L5 \definecolorseries{test}{cmy}{last}{yellow!50}{blue}

Common definitions

\resetcolorseries[12]{test}

\rowcolors[\hline]{1}{test!!+}{test!!+}

\begin{tabular}{c}

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\number\rownum\\ \number\rownum\\ \number\rownum\\ \number\rownum\\

\end{tabular}

xcolor v2.06 (2005/10/15) 32

Figure 9: Color masking

\maskcolors

...{}

...[cmyk]{cyan}

...[cmyk]{magenta}

...[cmyk]{yellow}

...[cmyk]{black}

...[cmyk]{red}

...[cmyk]{green}

...[cmyk]{blue}

...[rgb]{red}

...[rgb]{green}

...[rgb]{blue}

...[hsb]{red}

...[hsb]{green}

...[hsb]{blue}

...[rgb]{gray}

...[cmy]{gray}

Figure 10: Alternating row colors in tables: \rowcolors vs. \rowcolors*

\rowcolors[\hline]{3}{green!25}{yellow!50} \arrayrulecolor{red!75!gray}

\begin{tabular}{ll}

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

test & row \number\rownum\\

\arrayrulecolor{black}

test & row \number\rownum\\

test & row \number\rownum\\

\rowcolor{blue!25}

test & row \number\rownum\\

test & row \number\rownum\\

\hiderowcolors

test & row \number\rownum\\

test & row \number\rownum\\

\showrowcolors

test & row \number\rownum\\

test & row \number\rownum\\

\multicolumn{1}%

{>{\columncolor{red!12}}l}{test} & row \number\rownum\\

\end{tabular}

test row 1

test row 2

test row 3

test row 4

test row 5

test row 6

test row 7

test row 8

test row 9

test row 10

test row 11

test row 12

test row 13

test row 1

test row 2

test row 3

test row 4

test row 5

test row 6

test row 7

test row 8

test row 9

test row 10

test row 11

test row 12

test row 13

xcolor v2.06 (2005/10/15) 33

4 Technical Supplement

4.1 Color models supported by drivers

Since some of the drivers only pretend to support the hsb model, we included some
code to bypass this behaviour. The models actually added by xcolor are shown in
the log file. Table 5 lists mainly the drivers that are part of current MiKTEX [9]
distributions and their color model support. Probably, other distributions behave
similarly.

Table 5: Drivers and color models

Driver Version rgb cmy cmyk hsb gray RGB HTML HSB Gray

dvipdf 1999/02/16 v3.0i d n d n d i n n n

dvips 1999/02/16 v3.0i d n d d d i n n n

dvipsone 1999/02/16 v3.0i d n d d d i n n n

pctex32 1999/02/16 v3.0i d n d d d i n n n

pctexps 1999/02/16 v3.0i d n d d d i n n n

pdftex 2002/06/19 v0.03k d n d n d i n n n

dvipdfm 1998/11/24 vx.x 1 d n d a d i n n n

dvipdfm 1999/9/6 vx.x 2 d n d a d i n n n

dvipdfmx ? d n d f d i n n n

textures 1997/5/28 v0.3 d n d a i n n n n

vtex 1999/01/14 v6.3 d n d n i i n n n

xetex 2004/05/09 v0.7 i n i i i i d n n

tcidvi 1999/02/16 v3.0i i n i n i d n n n

truetex 1999/02/16 v3.0i i n i n i d n n n

dviwin 1999/02/16 v3.0i n n n n n n n n n

emtex 1999/02/16 v3.0i n n n n n n n n n

pctexhp 1999/02/16 v3.0i n n n n n n n n n

pctexwin 1999/02/16 v3.0i n n n n n n n n n

dviwindo = dvipsone; oztex = dvips; xdvi = dvips + monochrome
1 part of graphics package 2 additionally distributed with MiKTEX

Driver’s color model support: d = direct, i = indirect, a = alleged, n = none, f= faulty

4.2 How xcolor handles driver-specific color models

Although there is a variety of drivers that implement different approaches to color
visualisation, they all have some features in common, as defined by the origi-
nal color package. One of these features is that any color model ‘foo’ requires a
\color@foo{〈cmd〉}{〈spec〉} command in order to translate the ‘foo’-dependent
color 〈spec〉 into some driver-specific code that is stored in 〈cmd〉. Therefore,
xcolor in general detects driver-support for the ‘foo’ model via the existence of
\color@foo.

xcolor v2.06 (2005/10/15) 34

By this mechanism, xcolor can also change the behaviour of certain models with-
out touching the driver file itself. A good example is the \substitutecolormodel
command which is used during the package initialisation process to provide sup-
port for models that are not covered by the actual driver (like hsb for pdftex) or
that have incorrect implementations (like hsb for dvipdfm).

4.3 Behind the scenes: internal color representation

Every definition of a color in order to access it by its name requires an internal
representation of the color, i.e. a macro that contains some bits of information
required by the driver to display the color properly.
color’s \definecolor{foo}{...}{...} generates a command \\color@foo13

which contains the color definition in a driver-dependent way; therefore it is pos-
sible but non-trivial to access the color model and parameters afterwards (see the
colorinfo package [10] for a solution).
color’s \DefineNamedColor{named}{foo}{...}{...} generates \col@foo14 which
again contains some driver-dependent information. In this case, an additional
\\color@foo will only be defined if the package option usecolors is active.
xcolor’s \definecolor{foo}{...}{...} generates15 a command \\color@foo as
well, which combines the features of the former commands and contains both
the driver-dependent and driver-independent information, thus making it possible
to access the relevant parameters in a standardised way. Although it has now
a different syntax, \\color@foo expands to the same expression as the original
command. On the other hand, \col@foo commands are no longer needed and
therefore not generated in the ‘named’ case: xcolor works with a single color data
structure (as described).
Table 6 on the following page shows some examples for the two most prominent
drivers. See also figure 3 on page 29 which displays the definitions with respect to
the driver that was used to process this document.

4.4 A remark on accuracy

Since the macros presented here require some computation, special efforts were
made to ensure a maximum of accuracy for conversion and mixing formulas — all
within TEX’s limited numerical capabilities.16 We decided to develop and include
a small set of commands to improve the quality of division and multiplication
results, instead of loading one of the packages that provide multi-digit arithmetic
and a lot more, like realcalc or fp. The marginal contribution of the latter packages
seems not to justify their usage for our purposes. Thus, we stay within a sort of

13The double backslash is intentional.
14The single backslash is intentional.
15This was introduced in version 1.10; prior to that, a command \\xcolor@foo with a different

syntax was generated.
16For example, applying the ‘transformation’ \dimen0=0.〈int〉pt \the\dimen0 to all 5-digit

numbers 〈int〉 of the range 00000. . . 99999, exactly 34464 of these 100000 numbers don’t survive
unchanged. We are not talking about gobbled final zeros here . . .

xcolor v2.06 (2005/10/15) 35

Table 6: Driver-dependent internal color representation

dvips driver

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) color

->rgb .5 0 1.

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {}{rgb 0.5 0 1}{rgb}{0.5,0,1}.

\col@Plum=macro: (\DefineNamedColor{Plum}{rgb}{.5,0,1}) color

->\@nil .

\\color@Plum=macro: (with option usenames)

-> Plum.

\\color@Plum=macro: (\definecolor[named]{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {named}{ Plum}{rgb}{0.5,0,1}.

pdftex driver

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) color

->.5 0 1 rg .5 0 1 RG.

\\color@Plum=macro: (\definecolor{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {}{0.5 0 1 rg 0.5 0 1 RG}{rgb}{0.5,0,1}.

\col@Plum=macro: (\DefineNamedColor{Plum}{rgb}{.5,0,1}) color

->.5 0 1 rg .5 0 1 RG.

\\color@Plum=macro: (with option usenames)

->.5 0 1 rg .5 0 1 RG.

\\color@Plum=macro: (\definecolor[named]{Plum}{rgb}{.5,0,1}) xcolor

->\xcolor@ {}{0.5 0 1 rg 0.5 0 1 RG}{rgb}{0.5,0,1}.

fixed-point arithmetic framework, providing at most 5 decimal digits via TEX’s
dimension registers.

xcolor v2.06 (2005/10/15) 36

5 The Formulas

5.1 Color mixing

In general, we use linear interpolation for color mixing:

mix(C,C ′, p) = p · C + (1 − p) · C ′ (8)

Note that there is a special situation in the hsb case: if saturation = 0 then
the color equals a gray color of level brightness, independently of the hue value.
Therefore, to achieve smooth transitions of an arbitrary color to a specific gray
(like white or black), we actually use the formulas

tint hsb(C, p) = p · C + (1 − p) ·
(

hue, 0, 1
)

(9)

shade hsb(C, p) = p · C + (1 − p) ·
(

hue, 0, 0
)

(10)

tone hsb(C, p) = p · C + (1 − p) ·
(

hue, 0, 1
2

)

(11)

where C = (hue, saturation, brightness).
From equation (8) and the way how color expressions are being interpreted, as
described in section 2.3 on page 10, it is an easy proof by induction to verify that
a color expression

C0!P1!C1!P2! . . .!Pn!Cn (12)

with n ∈ {0, 1, 2, . . . }, colors C0, C1, . . . , Cn, and percentages P1, . . . , Pn ∈ [0, 100]
will result in a parameter vector

C =

n
∑

ν=0

(

n
∏

µ=ν+1

pµ

)

(1 − pν) · Cν

= pn · · · p1 · C0

+ pn · · · p2(1 − p1) · C1

+ pn · · · p3(1 − p2) · C2

+ . . .

+ pn(1 − pn−1) · Cn−1

+ (1 − pn) · Cn

(13)

where p0 := 0 and pν := Pν/100 for ν = 1, . . . , n. We note also a split formula:

C0!P1!C1! . . .!Pn+k!Cn+k = pn+k · · · pn+1 · C0!P1!C1! . . .!Pn!Cn

− pn+k · · · pn+1 · Cn

+ Cn!Pn+1!Cn+1! . . .!Pn+k!Cn+k

(14)

5.2 Conversion between integer and real models

We fix a positive integer n and define the sets In := {0, 1, . . . , n} and R := [0, 1].
The complement of ν ∈ In is n − ν, the complement of x ∈ R is 1 − x.

xcolor v2.06 (2005/10/15) 37

Table 7: Color constants

model/constant white black gray

rgb (1, 1, 1) (0, 0, 0) (1
2 , 1

2 , 1
2)

cmy (0, 0, 0) (1, 1, 1) (1
2 , 1

2 , 1
2)

cmyk (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 1
2)

hsb (h, 0, 1) (h, 0, 0) (h, 0, 1
2)

gray 1 0 1
2

RGB (L,L,L) (0, 0, 0) (⌊L+1
2 ⌋, ⌊L+1

2 ⌋, ⌊L+1
2 ⌋)

HTML FFFFFF 000000 808080

HSB (H, 0,M) (H, 0, 0) (H, 0, ⌊M+1
2 ⌋)

Gray N 0 ⌊N+1
2 ⌋

Table 8: Color conversion pairs

from/to rgb cmy cmyk hsb gray RGB HTML HSB Gray

rgb id ∗ (cmy) ∗ ∗ ∗ ∗ (hsb) (gray)

cmy ∗ id ∗ (rgb) ∗ (rgb) (rgb) (rgb) (gray)

cmyk (cmy) ∗ id (cmy) ∗ (cmy) (cmy) (cmy) (gray)

hsb ∗ (rgb) (rgb) id (rgb) (rgb) rgb ∗ (rgb)

gray ∗ ∗ ∗ ∗ id ∗ ∗ ∗ ∗

RGB ∗ (rgb) (rgb) (rgb) (rgb) id (rgb) (rgb) (rgb)

HTML ∗ (rgb) (rgb) (rgb) (rgb) (rgb) id (rgb) (rgb)

HSB (hsb) (hsb) (hsb) ∗ (hsb) (hsb) (hsb) id (hsb)

Gray (gray) (gray) (gray) (gray) ∗ (gray) (gray) (gray) id

wave (hsb) (hsb) (hsb) ∗ (hsb) (hsb) (hsb) (hsb) (hsb)

id = identity function; ∗ = specific conversion function;

(model) = conversion via specified model

xcolor v2.06 (2005/10/15) 38

5.2.1 Real to integer conversion

The straightforward mapping for this case is

Γn : R → In, x 7→ round(n · x, 0) =
⌊

1
2 + n · x

⌋

(15)

where round(r, d) rounds the real number r to d ≥ 0 decimal digits. This mapping
nearly always preserves complements, as shown in the next lemma.

Lemma 1 (Preservation of complements). For x ∈ R,

Γn(x) + Γn(1 − x) = n ⇐⇒ x /∈ R◦
n :=

{

1
n

(

ν − 1
2

)
∣

∣ ν = 1, 2, . . . , n
}

. (16)

Proof. Let ν := Γn(x), then from − 1
2 ≤ η := n · x − ν < 1

2 we conclude

Γn(1 − x) = round(n(1 − x), 0) = round(n − ν − η, 0) =

{

n − ν if η 6= − 1
2

n − ν + 1 if η = − 1
2

Now, η = − 1
2 ⇐⇒ x = 1

n

(

ν − 1
2

)

⇐⇒ x ∈ I ′
n.

Remark: the set R◦
n is obviously identical to the set of points where Γn is not

continuous.

5.2.2 Integer to real conversion

The straightforward way in this case is the function

∆∗
n : In → R, ν 7→

ν

n
. (17)

This is, however, only one out of a variety of solutions: every function ∆n : In → R
that obeys the condition

ν ∈ In ⇒ Γn

(

∆n(ν)
)

= ν (18)

which is equivalent to

ν ∈ In ⇒ ν +
1

2
> n · ∆n(ν) ≥ ν −

1

2
(19)

does at least guarantee that all integers ν may be reconstructed from ∆n(ν) via
multiplication by n and rounding to the nearest integer. Preservation of comple-
ments means now

ν ∈ In ⇒ ∆n(ν) + ∆n(n − ν) = 1 (20)

which is obviously the case for ∆n = ∆∗
n. If we consider, more generally, a

transformation

∆n(ν) =
ν + α

n + β
(21)

xcolor v2.06 (2005/10/15) 39

with β 6= −n, then the magic inequality (19) is equivalent to

1

2
>

αn − βν

n + β
≥ −

1

2
(22)

which is obeyed by the function

∆′
n : In → R, ν 7→

{

ν
n+1 if ν ≤ n+1

2

ν+1
n+1 if ν > n+1

2

(23)

that has the nice feature ∆′
n

(

n+1
2

)

= 1
2 for odd n.

Lemma 2 (Preservation of complements). For odd n and each ν ∈ In,

∆′
n(ν) + ∆′

n(n − ν) = 1 ⇐⇒ ν /∈ I◦
n :=

{

n−1
2 , n+1

2

}

. (24)

Proof. The assertion is a consequence of the following arguments:

• ν < n−1
2 ⇐⇒ n − ν > n+1

2 and n−1
2 + n+1

2 = n;

• ν < n−1
2 ⇒ ∆′

n(ν) + ∆′
n(n − ν) = ν

n+1 + n−ν+1
n+1 = 1;

• ν = n−1
2 ⇒ ∆′

n(ν) + ∆′
n(n − ν) = n−1

2(n+1) + 1
2 = n

n+1 6= 1.

For the time being, we choose ∆n := ∆∗
n as default transformation function.

Another variant — which is probably too slow for large-scale on-the-fly calculations
— may be used for constructing sets of predefined colors. The basic idea is to
minimize the number of decimal digits in the representation while keeping some
invariance with respect to the original resolution:

∆′′
n : In → R, ν 7→ round

(

ν
n
, dn(ν

n
)
)

(25)

where

dn : [0, 1] → IN, x 7→ min
{

d ∈ IN
∣

∣ Γn

(

round(∆∗
n(Γn(x)), d)

)

= Γn(x)
}

(26)

In the most common case n = 255 it turns out that we end up with at
most 3 decimal digits; preservation of complements is only violated for ν ∈
{25, 26, 76, 77, 127, 128, 178, 179, 229, 230} where the corresponding set of decimal
numbers is {0.098, 0.1, 0.298, 0.3, 0.498, 0.5, 0.698, 0.7, 0.898, 0.9}.

5.3 Color conversion and complements

We collect here the specific conversion formulas between the supported color mod-
els. Table 8 on page 37 gives an overwiew of how each conversion pair is handled.
In general, PostScript (as described in [1]) is used as a basis for most of the cal-
culations, since it supports the color models rgb, cmyk, hsb, and gray natively.
Furthermore, Alvy Ray Smith’s paper [13] is cited in [1] as reference for hsb-related
formulas.
First, we define a constant which is being used throughout the conversion formulas:

E := (1, 1, 1) (27)

xcolor v2.06 (2005/10/15) 40

5.3.1 The rgb model

Conversion rgb to cmy Source: [1], p. 475.

(cyan,magenta, yellow) := E − (red, green, blue) (28)

Conversion rgb to hsb (1) We set

x := max{red, green, blue} (29)

y := med{red, green, blue} (30)

z := min{red, green, blue} (31)

(32)

where ‘med’ denotes the median of the values. Then,

brightness := x (33)

Case x = z:

saturation := 0 (34)

hue := 0 (35)

Case x 6= z:

saturation :=
x − z

x
(36)

f :=
x − y

x − z
(37)

hue :=
1

6
·











































1 − f if x = red ≥ green ≥ blue = z

1 + f if x = green ≥ red ≥ blue = z

3 − f if x = green ≥ blue ≥ red = z

3 + f if x = blue ≥ green ≥ red = z

5 − f if x = blue ≥ red ≥ green = z

5 + f if x = red ≥ blue > green = z

(38)

This is based on [13], RGB to HSV Algorithm (Hexcone Model), which reads

xcolor v2.06 (2005/10/15) 41

(slightly reformulated):

r :=
x − red

x − z
, g :=

x − green

x − z
, b :=

x − blue

x − z
(39)

hue :=
1

6
·











































5 + b if red = x and green = z

1 − g if red = x and green > z

1 + r if green = x and blue = z

3 − b if green = x and blue > z

3 + g if blue = x and red = z

5 − r if blue = x and red > z

(40)

Note that the singular case x = z is not covered completely in Smith’s original
algorithm; we stick here to PostScript’s behaviour in real life.
Because we need to sort three numbers in order to calculate x, y, z, several com-
parisons are involved in the algorithm. We present now a second method which is
more suited for TEX.

Conversion rgb to hsb (2) Let β be a function that takes a Boolean expression
as argument and returns 1 if the expression is true, 0 otherwise; set

i := 4 · β(red ≥ green) + 2 · β(green ≥ blue) + β(blue ≥ red), (41)

and

(hue, saturation, brightness) :=























































Φ(blue, green, red, 3, 1) if i = 1

Φ(green, red, blue, 1, 1) if i = 2

Φ(green, blue, red, 3,−1) if i = 3

Φ(red, blue, green, 5, 1) if i = 4

Φ(blue, red, green, 5,−1) if i = 5

Φ(red, green, blue, 1,−1) if i = 6

(0, 0, blue) if i = 7

(42)

where

Φ(x, y, z, u, v) :=
(u · (x − z) + v · (x − y)

6(x − z)
,
x − z

x
, x
)

(43)

The singular case x = z, which is equivalent to red = green = blue, is covered here
by i = 7.

It is not difficult to see that this algorithm is a reformulation of the previous
method. The following table explains how the transition from equation (38) to
equation (42) works:

xcolor v2.06 (2005/10/15) 42

6 · hue Condition red ≥ green green ≥ blue blue ≥ red i

1 − f red ≥ green ≥ blue 1 1 ∗ 6/7

1 + f green ≥ red ≥ blue ∗ 1 ∗ 2/3/6/7

3 − f green ≥ blue ≥ red ∗ 1 1 3/7

3 + f blue ≥ green ≥ red ∗ ∗ 1 1/3/5/7

5 − f blue ≥ red ≥ green 1 ∗ 1 5/7

5 + f red ≥ blue ≥ green 1 ∗ ∗ 4/5/6/7

Here, ∗ denotes possible 0 or 1 values. Bold i values mark the main cases where
all ∗ values of a row are zero. The slight difference to equation (38) in the last
inequality is intentional and does no harm.

Conversion rgb to gray Source: [1], p. 474.

gray := 0.3 · red + 0.59 · green + 0.11 · blue (44)

Conversion rgb to RGB As described in section 5.2.1 on page 38.

Red := ΓL(red) (45)

Green := ΓL(green) (46)

Blue := ΓL(blue) (47)

Conversion rgb to HTML As described in section 5.2.1 on page 38. Convert
to hexadecimal afterwards.

RR := ΓL(red)hex (48)

GG := ΓL(green)hex (49)

BB := ΓL(blue)hex (50)

Complement of rgb color We simply take the complementary vector:

(red∗, green∗, blue∗) := E − (red, green, blue) (51)

5.3.2 The cmy model

Conversion cmy to rgb This is simply a reversion of the rgb → cmy case, cf.
section 5.3.1 on page 40.

(red, green, blue) := E − (cyan,magenta, yellow) (52)

Conversion cmy to cmyk This is probably the hardest of our conversion tasks:
many sources emphasize that there does not exist any universal conversion algo-
rithm for this case because of device-dependence. The following algorithm is an

xcolor v2.06 (2005/10/15) 43

extended version of the one given in [1], p. 476.

k := min{cyan,magenta, yellow} (53)

cyan := min{1,max{0, cyan − UCRc(k)}} (54)

magenta := min{1,max{0,magenta − UCRm(k)}} (55)

yellow := min{1,max{0, yellow − UCRy(k)}} (56)

black := BG(k) (57)

Here, four additional functions are required:

UCRc,UCRm,UCRy : [0, 1] → [−1, 1] undercolor-removal

BG : [0, 1] → [0, 1] black-generation

These functions are device-dependent, see the remarks in [1]. Although there are
some indications that they should be chosen as nonlinear functions, as long as we
have no further knowledge about the target device we define them linearly:

UCRc(k) := βc · k (58)

UCRm(k) := βm · k (59)

UCRy(k) := βy · k (60)

BG(k) := βk · k (61)

where the parameters are given by \def\adjustUCRBG{〈βc〉,〈βm〉,〈βy〉,〈βk〉} at\adjustUCRBG

any point in a document, defaulting to {1, 1, 1, 1}.

Conversion cmy to gray This is derived from the conversion chain cmy →
rgb → gray.

gray := 1 − (0.3 · cyan + 0.59 · magenta + 0.11 · yellow) (62)

Complement of cmy color We simply take the complementary vector:

(cyan∗,magenta∗, yellow∗) := E − (cyan,magenta, yellow) (63)

5.3.3 The cmyk model

Conversion cmyk to cmy Based on [1], p. 477, in connection with rgb → cmy

conversion.

cyan := min{1, cyan + black} (64)

magenta := min{1,magenta + black} (65)

yellow := min{1, yellow + black} (66)

Conversion cmyk to gray Source: [1], p. 475.

gray := 1 − min{1, 0.3 · cyan + 0.59 · magenta + 0.11 · yellow + black} (67)

xcolor v2.06 (2005/10/15) 44

Complement of cmyk color The simple vector complement does not yield
useful results. Therefore, we first convert C = (cyan,magenta, yellow, black) to
the cmy model, calculate the complement there, and convert back to cmyk.

5.3.4 The hsb model

Conversion hsb to rgb

(red, green, blue) := brightness · (E − saturation · F) (68)

with

i := ⌊6 · hue⌋ , f := 6 · hue − i (69)

and

F :=























































(0, 1 − f, 1) if i = 0

(f, 0, 1) if i = 1

(1, 0, 1 − f) if i = 2

(1, f, 0) if i = 3

(1 − f, 1, 0) if i = 4

(0, 1, f) if i = 5

(0, 1, 1) if i = 6

(70)

This is based on [13], HSV to RGB Algorithm (Hexcone Model), which reads
(slightly reformulated):

m := 1 − saturation (71)

n := 1 − f · saturation (72)

k := 1 − (1 − f) · saturation (73)

(red, green, blue) := brightness ·











































(1, k,m) if i = 0, 6

(n, 1,m) if i = 1

(m, 1, k) if i = 2

(m,n, 1) if i = 3

(k,m, 1) if i = 4

(1,m, n) if i = 5

(74)

Note that the case i = 6 (which results from hue = 1) is missing in Smith’s
algorithm. Because of

lim
f→1

(0, 1, f) = (0, 1, 1) = lim
f→0

(0, 1 − f, 1) (75)

xcolor v2.06 (2005/10/15) 45

it is clear that there is only one way to define F for i = 6 in order to get a
continuous function, as shown in equation (70). This has been transformed back
to equation (74). A similar argument shows that F indeed is a continuous function
of hue over the whole range [0, 1].

Conversion hsb to HSB As described in section 5.2.1 on page 38. Convert to
hexadecimal afterwards.

Hue := ΓM (hue) (76)

Saturation := ΓM (saturation) (77)

Brightness := ΓM (brightness) (78)

Complement of hsb color We have not found a formula in the literature,
therefore we give a short proof afterwards.

Lemma 3. The hsb-complement can be calculated by the following formulas:

hue∗ :=







hue + 1
2 if hue < 1

2

hue − 1
2 if hue ≥ 1

2

(79)

brightness∗ := 1 − brightness · (1 − saturation) (80)

saturation∗ :=











0 if brightness∗ = 0

brightness · saturation

brightness∗
if brightness∗ 6= 0

(81)

Proof. Starting with the original color C = (h, s, b), we define color C∗ =
(h∗, s∗, b∗) by the given formulas, convert both C and C∗ to the rgb model and
show that

Crgb + C∗
rgb = b · (E − s · F) + b∗ · (E − s′ · F ∗)

!
= E, (82)

which means that Crgb is the complement of C∗
rgb. First we note that the pa-

rameters of C∗ are in the legal range [0, 1]. This is obvious for h∗, b∗. From
b∗ = 1 − b · (1 − s) = 1 − b + b · s we derive b · s = b∗ − (1 − b) ≤ b∗, therefore
s∗ ∈ [0, 1], and

b∗ = 0 ⇔ s = 0 and b = 1.

Thus, equation (82) holds in the case b∗ = 0. Now we assume b∗ 6= 0, hence

Crgb + C∗
rgb = b · (E − s · F) + b∗ ·

(

E −
b · s

b∗
· F ∗

)

= b · E − b · s · F + b∗ · E − b · s · F ∗

= E − b · s · (F + F ∗ − E)

xcolor v2.06 (2005/10/15) 46

since b∗ = 1 − b + bs. Therefore, it is sufficient to show that

F + F ∗ = E. (83)

From

h < 1
2 ⇒ h∗ = h + 1

2 ⇒ 6h∗ = 6h + 3 ⇒ i∗ = i + 3 and f∗ = f

it is easy to see from (70) that equation (83) holds for the cases i = 0, 1, 2.
Similarly,

h ≥ 1
2 ⇒ h∗ = h − 1

2 ⇒ 6h∗ = 6h − 3 ⇒ i∗ = i − 3 and f∗ = f

and again from (70) we derive (83) for the cases i = 3, 4, 5. Finally, if i = 6 then
f = 0 and F + F ∗ = (0, 1, 1) + (1, 0, 0) = E.

5.3.5 The gray model

Conversion gray to rgb Source: [1], p. 474.

(red, green, blue) := gray · E (84)

Conversion gray to cmy This is derived from the conversion chain gray →
rgb → cmy.

(cyan,magenta, yellow) := (1 − gray) · E (85)

Conversion gray to cmyk Source: [1], p. 475.

(cyan,magenta, yellow, black) := (0, 0, 0, 1 − gray) (86)

Conversion gray to hsb This is derived from the conversion chain gray →
rgb → hsb.

(hue, saturation, brightness) := (0, 0, gray) (87)

Conversion gray to Gray As described in section 5.2.1 on page 38.

Gray := ΓN (gray) (88)

Complement of gray color This is similar to the rgb case:

gray∗ := 1 − gray (89)

5.3.6 The RGB model

Conversion RGB to rgb As described in section 5.2.2 on page 38.

(red, green, blue) :=
(

∆L(Red),∆L(Green),∆L(Blue)
)

(90)

xcolor v2.06 (2005/10/15) 47

5.3.7 The HTML model

Conversion HTML to rgb As described in section 5.2.2 on page 38: starting
with RRGGBB set

(red, green, blue) :=
(

∆255(RRdec),∆255(GGdec),∆255(BBdec)
)

(91)

5.3.8 The HSB model

Conversion HSB to hsb As described in section 5.2.2 on page 38.

(hue, saturation, brightness) :=
(

∆M (Hue),∆M (Saturation),∆M (Brightness)
)

(92)

5.3.9 The Gray model

Conversion Gray to gray As described in section 5.2.2 on page 38.

gray := ∆N (Gray) (93)

5.3.10 The wave model

Conversion wave to rgb Source: based on Dan Bruton’s algorithm [2]. Let λ
be a visible wavelength, given in nanometers (nm), i.e., λ ∈ [380, 780]. We assume
further that γ > 0 is a fixed number (γ = 0.8 in [2]). First set

(r, g, b) :=















































































(440 − λ

440 − 380
, 0, 1

)

if λ ∈ [380, 440[

(

0,
λ − 440

490 − 440
, 1
)

if λ ∈ [440, 490[

(

0, 1,
510 − λ

510 − 490

)

if λ ∈ [490, 510[

(λ − 510

580 − 510
, 1, 0

)

if λ ∈ [510, 580[

(

1,
645 − λ

645 − 580
, 0
)

if λ ∈ [580, 645[

(1, 0, 0) if λ ∈ [645, 780]

(94)

then, in order to let the intensity fall off near the vision limits,

f :=























0.3 + 0.7 ·
λ − 380

420 − 380
if λ ∈ [380, 420[

1 if λ ∈ [420, 700]

0.3 + 0.7 ·
780 − λ

780 − 700
if λ ∈]700, 780]

(95)

xcolor v2.06 (2005/10/15) 48

and finally

(red, green, blue) :=
(

(f · r)γ , (f · g)γ , (f · b)γ
)

(96)

The intermediate colors (r, g, b) at the interval borders of equation (94) are well-
known: for λ = 380, 440, 490, 510, 580, 645 we get magenta, blue, cyan, green,
yellow , red, respectively. These turn out to be represented in the hsb model
by hue = 5

6 , 4
6 , 3

6 , 2
6 , 1

6 , 0
6 , whereas saturation = brightness = 1 throughout the

6 colors. Furthermore, these hsb representations are independent of the actual
γ value. Staying within this model framework, we observe that the intensity
fall off near the vision limits — as represented by equation (95) — translates into
decreasing brightness parameters towards the margins. A simple calculation shows
that the edges λ = 380, 780 of the algorithm yield the colors magenta!0.3γ!black,
red!0.3γ!black, respectively. We see no reason why we should not extend these
edges in a similar fashion to end-up with true black on either side. Now we are
prepared to translate everything into another, more natural algorithm.

Conversion wave to hsb Let λ > 0 be a wavelength, given in nanometers (nm),
and let

̺ : IR → [0, 1] , x 7→
(

min{1,max{0, x}})γ (97)

with a fixed correction number γ > 0. Then

hue :=
1

6
·















































































4 + ̺
(λ − 440

380 − 440

)

if λ < 440

4 − ̺
(λ − 440

490 − 440

)

if λ ∈ [440, 490[

2 + ̺
(λ − 510

490 − 510

)

if λ ∈ [490, 510[

2 − ̺
(λ − 510

580 − 510

)

if λ ∈ [510, 580[

0 + ̺
(λ − 645

580 − 645

)

if λ ∈ [580, 645[

0 if λ ≥ 645

(98)

saturation := 1 (99)

brightness :=



























̺
(

0.3 + 0.7 ·
λ − 380

420 − 380

)

if λ < 420

1 if λ ∈ [420, 700]

̺
(

0.3 + 0.7 ·
λ − 780

700 − 780

)

if λ > 700

(100)

xcolor v2.06 (2005/10/15) 49

For the sake of completeness we note that, independent of γ,

(hue, saturation, brightness) =







(

5
6 , 1, 0

)

if λ ≤ 380 − 3·(420−380)
7 = 362.857 . . .

(

0, 1, 0
)

if λ ≥ 780 + 3·(780−700)
7 = 814.285 . . .

What is the best (or, at least, a good) value for γ? In the original algorithm [2], γ =
0.8 is chosen. However, we could not detect significant visible difference between
the cases γ = 0.8 and γ = 1. Thus, for the time being, xcolor’s implementation
uses the latter value which implies a pure linear approach. In the pstricks examples
file xcolor2.tex, there is a demonstration of different γ values.

xcolor v2.06 (2005/10/15) 50

6 Colors by Name

6.1 Base Colors

black

blue

brown

cyan

darkgray

gray

green

lightgray

magenta

olive

orange

pink

purple

red

violet

white

yellow

6.2 Colors via dvipsnames

Apricot

Aquamarine

Bittersweet

Black

Blue

BlueGreen

BlueViolet

BrickRed

Brown

BurntOrange

CadetBlue

CarnationPink

Cerulean

CornflowerBlue

Cyan

Dandelion

DarkOrchid

Emerald

ForestGreen

Fuchsia

Goldenrod

Gray

Green

GreenYellow

JungleGreen

Lavender

LimeGreen

Magenta

Mahogany

Maroon

Melon

MidnightBlue

Mulberry

NavyBlue

OliveGreen

Orange

OrangeRed

Orchid

Peach

Periwinkle

PineGreen

Plum

ProcessBlue

Purple

RawSienna

Red

RedOrange

RedViolet

Rhodamine

RoyalBlue

RoyalPurple

RubineRed

Salmon

SeaGreen

Sepia

SkyBlue

SpringGreen

Tan

TealBlue

Thistle

Turquoise

Violet

VioletRed

White

WildStrawberry

Yellow

YellowGreen

YellowOrange

6.3 Colors via svgnames

AliceBlue

AntiqueWhite

Aqua

Aquamarine

Azure

Beige

Bisque

Black

BlanchedAlmond

Blue

BlueViolet

Brown

BurlyWood

CadetBlue

Chartreuse

Chocolate

Coral

CornflowerBlue

Cornsilk

Crimson

Cyan

DarkBlue

DarkCyan

DarkGoldenrod

DarkGray

DarkGreen

DarkGrey

DarkKhaki

DarkMagenta

DarkOliveGreen

DarkOrange

DarkOrchid

DarkRed

DarkSalmon

DarkSeaGreen

DarkSlateBlue

DarkSlateGray

DarkSlateGrey

DarkTurquoise

DarkViolet

DeepPink

DeepSkyBlue

DimGray

DimGrey

DodgerBlue

FireBrick

FloralWhite

ForestGreen

Fuchsia

Gainsboro

GhostWhite

Gold

Goldenrod

Gray

Grey

Green

GreenYellow

Honeydew

HotPink

IndianRed

Indigo

Ivory

Khaki

Lavender

LavenderBlush

LawnGreen

LemonChiffon

LightBlue

LightCoral

LightCyan

LightGoldenrodYellow

LightGray

LightGreen

LightGrey

LightPink

LightSalmon

LightSeaGreen

LightSkyBlue

LightSlateGray

LightSlateGrey

LightSteelBlue

LightYellow

Lime

LimeGreen

Linen

Magenta

Maroon

MediumAquamarine

xcolor v2.06 (2005/10/15) 51

MediumBlue

MediumOrchid

MediumPurple

MediumSeaGreen

MediumSlateBlue

MediumSpringGreen

MediumTurquoise

MediumVioletRed

MidnightBlue

MintCream

MistyRose

Moccasin

NavajoWhite

Navy

OldLace

Olive

OliveDrab

Orange

OrangeRed

Orchid

PaleGoldenrod

PaleGreen

PaleTurquoise

PaleVioletRed

PapayaWhip

PeachPuff

Peru

Pink

Plum

PowderBlue

Purple

Red

RosyBrown

RoyalBlue

SaddleBrown

Salmon

SandyBrown

SeaGreen

Seashell

Sienna

Silver

SkyBlue

SlateBlue

SlateGray

SlateGrey

Snow

SpringGreen

SteelBlue

Tan

Teal

Thistle

Tomato

Turquoise

Violet

Wheat

White

WhiteSmoke

Yellow

YellowGreen

Duplicate colors: Aqua = Cyan, Fuchsia = Magenta; Gray = Grey, DarkGray = DarkGrey,
LightGray = LightGrey, SlateGray = SlateGrey, DarkSlateGray = DarkSlateGrey,
LightSlateGray = LightSlateGrey, DimGray = DimGrey.

xcolor v2.06 (2005/10/15) 52

References

[1] Adobe Systems Incorporated: “PostScript Language Reference Manual”. Addison-Wesley,
third edition, 1999. http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

[2] Dan Bruton: “Approximate RGB values for Visible Wavelengths”, 1996.
http://www.physics.sfasu.edu/astro/color/spectra.html

[3] David P. Carlisle: “Packages in the ‘graphics’ bundle”, 1999.
CTAN/macros/latex/required/graphics/grfguide.*

[4] David P. Carlisle: color package, “1999/02/16 v1.0i Standard LATEX Color”.
CTAN/macros/latex/required/graphics/color.*

[5] David P. Carlisle: colortbl package, “2001/02/13 v0.1j Color table columns”.
CTAN/macros/latex/contrib/carlisle/colortbl.*

[6] David P. Carlisle: pstcol package, “2001/06/20 v1.1 PSTricks color compatibility”.
CTAN/macros/latex/required/graphics/pstcol.*

[7] Uwe Kern: “Chroma: a reference book of LATEX colors”. CTAN/info/colour/chroma/ and
http://www.ukern.de/tex/chroma.html

[8] Uwe Kern: xcolor package, “LATEX color extensions”. CTAN/macros/latex/contrib/xcolor/
and http://www.ukern.de/tex/xcolor.html

[9] MiKTEX Project: http://www.miktex.org/

[10] Rolf Niepraschk: colorinfo package, “2003/05/04 v0.3c Info from defined colors”.
CTAN/macros/latex/contrib/colorinfo/

[11] Heiko Oberdiek: pdfcolmk package, “2005/07/09 v0.7”.
CTAN/macros/latex/contrib/oberdiek/pdfcolmk.sty

[12] Sebastian Rahtz: hyperref package, “2003/11/30 v6.74m Hypertext links for LATEX”.
CTAN/macros/latex/contrib/hyperref/

[13] Alvy Ray Smith: “Color Gamut Transform Pairs”. Computer Graphics (ACM SIGGRAPH),
Volume 12, Number 3, August 1978. http://alvyray.com/Papers/PapersCG.htm

[14] World Wide Web Consortium: “Scalable Vector Graphics (SVG) 1.1 Specification — Basic
Data Types and Interfaces”. http://www.w3.org/TR/SVG11/types.html#ColorKeywords

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.physics.sfasu.edu/astro/color/spectra.html
http://www.ctan.org/tex-archive/macros/latex/required/graphics/
http://www.ctan.org/tex-archive/macros/latex/required/graphics/
http://www.ctan.org/tex-archive/macros/latex/contrib/carlisle/
http://www.ctan.org/tex-archive/macros/latex/required/graphics/
http://www.ctan.org/tex-archive/info/colour/chroma/
http://www.ukern.de/tex/chroma.html
http://www.ctan.org/tex-archive/macros/latex/contrib/xcolor/
http://www.ukern.de/tex/xcolor.html
http://www.miktex.org/
http://www.ctan.org/tex-archive/macros/latex/contrib/colorinfo/
http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/pdfcolmk.sty
http://www.ctan.org/tex-archive/macros/latex/contrib/hyperref/
http://alvyray.com/Papers/PapersCG.htm
http://www.w3.org/TR/SVG11/types.html#ColorKeywords

xcolor v2.06 (2005/10/15) 53

Appendix

Acknowledgement

This package is based on and contains code
copied from [4] (Copyright (C) 1994–1999
David Carlisle), which is part of the Stan-
dard LATEX ‘Graphics Bundle’. Although many
commands and features have been added and
most of the original color commands have been
rewritten or adapted within xcolor, the latter
package would not exist without color. Thus,
the author is grateful to David Carlisle for hav-
ing created color and its accompanying files.

Trademarks

Trademarks appear throughout this documen-
tation without any trademark symbol; they
are the property of their respective trademark
owner. There is no intention of infringement;
the usage is to the benefit of the trademark
owner.

Known Issues

• \rowcolors[\hline]... does not work
with longtable.

History

2005/10/15 v2.06

• New features:

– color model wave for (approximate)
visualisation of light wavelengths, still
somewhat experimental;

– pseudo-model ‘ps’ for colors defined by
literal PostScript code in conjunction
with pstricks and dvips; an illustrative
example for a γ-correction approach is
given in xcolor2.tex;

– \substitutecolormodel command for
replacement of missing or faulty
driver-specific color models;

– improved detection and handling of
driver-specific color models;

– dvipdfmx and xetex options to support
these drivers;

– generic driver test file xcolor4.tex.

• Changes:

– \XC@strip@comma doesn’t generate a
trailing space anymore, which improves
also the output of the testcolors

environment.

2005/09/30 v2.05

• New features:

– testcolors environment helps to test
colors in different models, showing both
the visual result and the model-specific
parameters;

– \extractcolorspecs puts model/color
specification into two separate
commands, as opposed to
\extractcolorspec;

– color names pink and olive added to the
set of predefined colors.

• Bugfixes:

– \definecolor{foo}{named}{bar} did
not work in v2.04.

2005/09/23 v2.04

• New features:

– preparation for usage of additional –
driver-provided – color models;

– pstricks users may now specify explicit
color parameters within \psset and
related commands, e.g.,
\psset{linecolor=[rgb]{1,0,0}}; an
illustrative example is given in
xcolor2.tex.

• Changes:

– color model names sanitized (i.e., turned
to catcode 12) throughout the package;

xcolor v2.06 (2005/10/15) 54

– \@namelet command deprecated because
of name clash with memoir – please use
\XC@let@cc instead (more \XC@let@..

commands are available as well);

– simplified color conversion code by using
the new \XC@ifxcase command;

– some minor changes to internal macros.

2005/06/06 v2.03

• New features:

– fixpdftex option loads pdfcolmk

package in order to improve pdfTEX’s
color behaviour during page breaks.

• Changes:

– some minor changes to internal macros.

• Bugfixes:

– due to an incorrect \if statement within
\XC@info, \colorlet caused trouble
whenever its second argument started
with two identical letters, e.g.,
\colorlet{rab}{oof};

– argument processing of \XC@getcolor
caused incompatibility with msc package;

– prologue option caused incompatibility
with preview package.

2005/03/24 v2.02

• New features:

– \aftergroupedef command to
reproduce \aftergroupdef’s behaviour
prior to v2.01;

– xcolor’s homepage
www.ukern.de/tex/xcolor.html now
provides also a ready-to-run
TDS-compliant archive containing all
required files.

• Changes:

– \rowcolors and friends are solely
enabled by the table option;

– \@ifxempty changed back to more
robust variant of v2.00.

• Bugfixes:

– \psset{linecolor=\ifcase\foo

red\or green\or blue\fi} did not
work with pstricks (error introduced in
v2.01).

2005/03/15 v2.01

• New features:

– prologue option for comprehensive
‘named’ color support in conjunction
with dvips: on-the-fly generation of
PostScript prologue files with all color
definitions, ready for dvips inclusion
and/or post-processing with
device-specific parameters (e.g., spot
colors);

– dvips prologue file xcolor.pro to
support additional ‘named’ colors;

– \colorlet may now also be used to
create named colors from arbitrary color
expressions;

– enhanced color definition syntax to allow
for target-model specific color
parameters, e.g., \definecolor
{red}{rgb/cmyk}{1,0,0/0,1,1,0},
facilitating the usage of tailor-made
colors both for displays and printers;

– ‘deferred definition’ of colors:
\preparecolor and \definecolors

enable decoupling of color specification
and control sequence generation,
especially useful (= memory saving) for
large lists of colors, of which only a few
names are actually used;

– dvipsnames* and svgnames* options to
support deferred definition.

• Changes:

– higher accuracy: most complement
calculations are now exact for all 5-digit
decimals;

– \rangeRGB and similar variables may now
be changed at any point in a document;

– \aftergroupdef now performs only a
first-level expansion of its code argument;

http://www.ukern.de/tex/xcolor.html

xcolor v2.06 (2005/10/15) 55

– \XCfileversion and similar internal
constants removed from .sty and .def

files;

– improved memory management (reduced
generation of ‘multiletter control
sequences’ by \@ifundefined tests);

– several internal macros improved and/or
renamed.

• Bugfixes:

– \XC@getcolor could cause unwanted
spaces when \psset was used inside
pspicture environments (pstricks);

– arithmetic overflow could happen when
too many decimal digits were used within
color parameters, e.g., as a result of fp

calculations.

2004/07/04 v2.00

• New features:

– extended functionality for color
expressions: mix colors like a painter;

– support for color blending: specify color
mix expressions that are being blended
with every displayed color;

– \xglobal command for selective control
of globality for color definitions, blends,
and masks;

– multiple step operations (e.g.,
\color{foo!!+++}) and access to
individual members (e.g.,
\color{foo!![7]}) in color series;

– \providecolor command to define only
non-existent colors;

– \definecolorset and
\providecolorset commands to
facilitate the construction of color sets
with common underlying color model;

– additional 147 predefined color names
according to SVG 1.1 specification;

– xpdfborder key for setting the width of
hyperlink borders in a more
driver-independent way if dvips is used.

• Changes:

– color package now completely integrated
within xcolor;

– override, usenames, nodvipsnames
options and \xdefinecolor command no
longer needed;

– dvips and dvipsnames options now
independent of each other;

– \tracingcolors’s behaviour changed to
make it more versatile and reduce log file
size in standard cases;

– \rdivide’s syntax made more flexible
(divide by numbers and/or dimensions);

– code restructured, some internal
commands renamed;

– documentation rearranged and enhanced.

• Bugfixes:

– \definecolor{foo}{named}{bar} did
not work (error introduced in v1.11);

– more robust behaviour of conditionals
within pstricks key-values.

2004/05/09 v1.11

• New features:

– switch \ifglobalcolors to control
whether color definitions are global or
local;

– option hyperref provides color
expression support for the border colors
of hyperlinks, e.g., \hypersetup
{xurlbordercolor=red!50!yellow};

– internal hooks \XC@bcolor, \XC@mcolor,
and \XC@ecolor for additional code that
has to be executed immediately
before/after the current color is being
displayed.

• Changes:

– \XC@logcolor renamed to \XC@display,
which is now the core color display
command;

– improved interface to pstricks.

xcolor v2.06 (2005/10/15) 56

2004/03/27 v1.10

• New features:

– support for ‘named’ model;

– support for dvips colors (may now be
used within color expressions);

– internal representation of ‘ordinary’ and
‘named’ colors merged into unified data
structure;

– allow multiple ‘-’ signs at the beginning
of color expressions.

• Bugfixes:

– commands like \color[named]{foo}

caused errors when color masking or
target model conversion were active;

– incompatibility with soul package:
commands \hl, \ul, etc. could yield
unexpected results.

• Documentation:

– added formula for general color
expressions;

– enhanced text and index;

– removed dependence of index generation
on local configuration file.

2004/02/16 v1.09

• New features:

– color model HTML, a 24-bit hexadecimal
RGB variant; allows to specify colors like
\color[HTML]{AFFE90};

– color names orange, violet, purple, and
brown added to the set of predefined
colors.

• New xcolor homepage:
www.ukern.de/tex/xcolor.html

• Bugfix: \xdefinecolor sometimes did not
normalise its parameters.

• Changes:

– slight improvements of the
documentation;

– example file xcolor1.tex reorganised
and abridged.

2004/02/04 v1.08

• New commands:

– \selectcolormodel to change the target
model within a document;

– \adjustUCRBG to fine-tune
undercolor-removal and black-generation
during conversion to cmyk.

• Bugfix: color expressions did not work
correctly in connection with active ‘!’
character, e.g., in case of
\usepackage[frenchb]babel}.

• Code re-organisation:

– \XC@xdefinecolor merged into
\xdefinecolor, making the first
command obsolete;

– several internal commands
improved/streamlined.

2004/01/20 v1.07

• New feature: support for color masking and
color separation.

• New commands:

– \rmultiply to multiply a dimension
register by a real number;

– \xcolorcmd to pass commands that are
to be executed at the end of the package.

• Changes:

– more consistent color handling: extended
colors now always take precedence over
standard colors;

– several commands improved by using
code from the LATEX kernel.

• Documentation: some minor changes.

• Example files: additional pstricks examples
(file xcolor2.tex).

http://www.ukern.de/tex/xcolor.html

xcolor v2.06 (2005/10/15) 57

2003/12/15 v1.06

• New feature: extended color expressions,
allowing for cascaded mix operations, e.g.,
\color{red!30!green!40!blue}.

• Documentation: new section on color
expressions.

• Bugfix: color series stepping did not work
correctly within non-displaying commands
like \extractcolorspec{foo!!+} (this
bug was introduced in v1.05).

• Renamed commands: \ukfileversion and
similar internal constants renamed to
\XCfileversion etc.

• Removed commands: \ifXCpst and
\ifXCtable made obsolete by a simple
trick.

2003/11/21 v1.05

• Bugfixes:

– package option hideerrors should now
work as expected;

– usage of ‘.’ in the first color expression in
a document caused an error due to
incorrect initialisation.

• Code re-organisation: \extractcolorspec
now uses \XC@splitcolor, making
\XC@extract obsolete.

2003/11/09 v1.04

• New feature: easy access to current color
within color expressions.

• New option: override to replace
\definecolor by \xdefinecolor.

• New command: \tracingcolors for
logging color-specific information.

2003/09/21 v1.03

• Change: bypass strange behaviour of some
drivers.

• New feature: driver-sharing with hyperref.

2003/09/19 v1.02

• Change: \extractcolorspec and
\colorlet now also accept color series as
arguments.

2003/09/15 v1.01

• New feature: \definecolorseries and
friends.

• Documentation: removed some doc-related
side-effects.

• Code re-organisation: all
calculation-related tools put to one place.

• Bugfixes:

– \@rdivide: added \relax to fix problem
with negative numerators;

– \rowc@l@rs: replaced \@ifempty by
\@ifxempty.

2003/09/09 v1.00

• First published release.

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers
underlined refer to the code line of the definition; numbers in roman refer to the code lines where
the entry is used.

A

\adjustUCRBG 7, 43

arguments

〈color〉 11, 13

〈core model〉 11, 12

〈dec〉 10, 11

〈div〉 10, 11

〈empty〉 10, 11

xcolor v2.06 (2005/10/15) 58

〈expr〉 11, 12

〈ext expr〉 11, 13

〈ext id〉 11

〈id-list〉 11

〈id〉 11

〈int〉 10, 11

〈minus〉 10, 11

〈mix expr〉 11, 12

〈model-list〉 11, 12

〈model〉 11, 12

〈name〉 10, 11

〈num model〉 11, 12

〈num〉 10, 11

〈pct〉 10, 11

〈plus〉 10, 11

〈postfix〉 11, 12

〈prefix 〉 11, 12

〈spec-list〉 11, 12

〈spec〉 11, 12

〈type〉 11, 12

B

\blendcolors 21

\blendcolors* 21

C

\color 19

color expression 17

color models

Gray 7–9, 12, 33, 37, 46, 47

HSB 7–9, 12, 33, 37, 45, 47

HTML 7–
9, 12, 33, 37, 42, 47, 56

RGB 7–9,
12, 15, 33, 37, 42, 46, 56

cmyk 4,
5, 7–9, 12, 15, 17, 21,
33, 37, 39, 42–44, 46, 56

cmy 8, 9, 12,
21, 33, 37, 40, 42–44, 46

gray . . . 5, 8, 9, 12, 14,
33, 37, 39, 42, 43, 46, 47

hsb 4, 8, 9, 12, 33,
34, 36, 37, 39–41, 44–48

rgb 5, 8, 9, 12, 15,
17, 21, 25, 33, 37, 39–47

wave . . 9, 12, 37, 47, 48, 53

‘named’ 12, 17, 56

‘ps’ 12, 53

color names
AliceBlue 50
AntiqueWhite 50
Apricot 50
Aquamarine 50
Aqua 50, 51
Azure 50
Beige 50
Bisque 50
Bittersweet 50
Black 50
BlanchedAlmond 50
BlueGreen 50
BlueViolet 50
Blue 50
BrickRed 50
Brown 50
BurlyWood 50
BurntOrange 50
CadetBlue 50
CarnationPink 50
Cerulean 50
Chartreuse 50
Chocolate 50
Coral 50
CornflowerBlue 50
Cornsilk 50
Crimson 50
Cyan 50, 51
Dandelion 50
DarkBlue 50
DarkCyan 50
DarkGoldenrod 50
DarkGray 50, 51
DarkGreen 50
DarkGrey 50, 51
DarkKhaki 50
DarkMagenta 50
DarkOliveGreen 50
DarkOrange 50
DarkOrchid 50
DarkRed 50
DarkSalmon 50
DarkSeaGreen 50
DarkSlateBlue 50
DarkSlateGray 50, 51
DarkSlateGrey 50, 51
DarkTurquoise 50
DarkViolet 50
DeepPink 50

DeepSkyBlue 50
DimGray 50, 51
DimGrey 50, 51
DodgerBlue 50
Emerald 50
FireBrick 50
FloralWhite 50
ForestGreen 50
Fuchsia 50, 51
Gainsboro 50
GhostWhite 50
Goldenrod 50
Gold 50
Gray 50, 51
GreenYellow 50
Green 50
Grey 50, 51
Honeydew 50
HotPink 50
IndianRed 50
Indigo 50
Ivory 50
JungleGreen 50
Khaki 50
LavenderBlush 50
Lavender 50
LawnGreen 50
LemonChiffon 50
LightBlue 50
LightCoral 50
LightCyan 50
LightGoldenrodYellow . 50
LightGray 50, 51
LightGreen 50
LightGrey 50, 51
LightPink 50
LightSalmon 50
LightSeaGreen 50
LightSkyBlue 50
LightSlateGray 50, 51
LightSlateGrey 50, 51
LightSteelBlue 50
LightYellow 50
LimeGreen 50
Lime 50
Linen 50
Magenta 50, 51
Mahogany 50
Maroon 50
MediumAquamarine . . 50

xcolor v2.06 (2005/10/15) 59

MediumBlue 51
MediumOrchid 51
MediumPurple 51
MediumSeaGreen 51
MediumSlateBlue 51
MediumSpringGreen . . 51
MediumTurquoise 51
MediumVioletRed 51
Melon 50
MidnightBlue 50, 51
MintCream 51
MistyRose 51
Moccasin 51
Mulberry 50
NavajoWhite 51
NavyBlue 50
Navy 51
OldLace 51
OliveDrab 51
OliveGreen 50
Olive 51
OrangeRed 50, 51
Orange 50, 51
Orchid 50, 51
PaleGoldenrod 51
PaleGreen 51
PaleTurquoise 51
PaleVioletRed 51
PapayaWhip 51
PeachPuff 51
Peach 50
Periwinkle 50
Peru 51
PineGreen 50
Pink 51
Plum 50, 51
PowderBlue 51
ProcessBlue 50
Purple 50, 51
RawSienna 50
RedOrange 50
RedViolet 50
Red 50, 51
Rhodamine 50
RosyBrown 51
RoyalBlue 50, 51
RoyalPurple 50
RubineRed 50
SaddleBrown 51
Salmon 50, 51

SandyBrown 51
SeaGreen 50, 51
Seashell 51
Sepia 50
Sienna 51
Silver 51
SkyBlue 50, 51
SlateBlue 51
SlateGray 51
SlateGrey 51
Snow 51
SpringGreen 50, 51
SteelBlue 51
Tan 50, 51
TealBlue 50
Teal 51
Thistle 50, 51
Tomato 51
Turquoise 50, 51
VioletRed 50
Violet 50, 51
Wheat 51
WhiteSmoke 51
White 50, 51
WildStrawberry 50
YellowGreen 50, 51
YellowOrange 50
Yellow 50, 51
black 5,

7, 8, 15, 21, 27, 48, 50
blue . . 5, 15, 16, 18, 48, 50
brown 15, 50, 56
cyan . . . 15, 21, 22, 48, 50
darkgray 15, 50
foo 16, 21
gold 5
gray 5, 15, 50
green 4, 5, 14, 15, 18, 48, 50
lightgray 15, 50
magenta . . . 15, 21, 48, 50
olive 15, 50, 53
orange 15, 50, 56
pink 15, 50, 53
purple 15, 50, 56
red 4, 5, 7, 14–18, 27, 48, 50
silver 5
violet 15, 50, 56
white 5, 15, 50
yellow . 4, 14, 15, 21, 48, 50

color set 17

color stack 27
\colorbox 20
\colorlet 17
\colormask 22
\colorseriescycle 23
\convertcolorspec 27

D

\definecolor 17, 25
\definecolors 19
\definecolorseries 22
\definecolorset 17
\DefineNamedColor 19
definition stack 18, 19

E

environments:testcolors
testcolors 20

\extractcolorspec 26
\extractcolorspecs 26

F

\fcolorbox 20
files

.def 6, 55

.dvi 16, 25

.eps 22

.jpg 22

.pdf 22

.png 22

.ps 16, 25

.sty 55

.xcp 8, 16
color.pro 16
dvipsnam.def 19
pstricks.sty 6, 9
xcolor.pro 6, 16, 54
xcolor.sty 6, 15
xcolor2.tex 25, 49, 53, 56
xcolor4.tex 53

G

\GetGinDriver 6
\GinDriver 6

H

\hiderowcolors 26
HKS 5

I

\ifconvertcolorsD 10

xcolor v2.06 (2005/10/15) 60

\ifconvertcolorsU 10
\ifdefinecolors 18
\ifglobalcolors 19
\ifmaskcolors 22

K

keys
citebordercolor 25
citecolor 24
filebordercolor 25
filecolor 24
linkbordercolor 25
linkcolor 24
menubordercolor 25
menucolor 24
pagebordercolor 25
pagecolor 24
pdfborder 25
runbordercolor 25
runcolor 24
urlbordercolor 25
urlcolor 24
xcitebordercolor 25
xfilebordercolor 25
xlinkbordercolor 25
xmenubordercolor 25
xpagebordercolor 25
xpdfborder 25, 55
xrunbordercolor 25
xurlbordercolor 25

M

\maskcolors 21
MiKTEX 16

P

package options
Gray 6, 8, 10
HSB 6, 8, 10
HTML 6, 8, 10
RGB 6, 8, 10
cmyk 6, 8, 10, 21
cmy 6, 8, 10
dvipdfmx 6, 33, 53
dvipdfm 6, 16, 33, 34
dvipdf 6, 33
dvipsnames* . . 6, 8, 15, 54
dvipsnames

. . . . 6–8, 15–17, 50, 55
dvipsone 6, 33
dvips 6, 7, 16,

17, 25, 29, 33, 35, 53–55

dviwindo 6, 33
dviwin 6, 33
emtex 6, 33
fixpdftex . . 6, 8, 9, 27, 54
gray 6, 8, 10
hideerrors 6, 8, 57
hsb 6, 8, 10
hyperref 6, 8, 25, 55
hypertex 7
monochrome 6, 33
natural 6, 8, 10
nodvipsnames 6, 55
override 6, 55, 57
oztex 6, 33
pctex32 6, 33
pctexhp 6, 33
pctexps 6, 33
pctexwin 6, 33
pdftex 6, 16, 33–35
prologue . 6, 8, 16, 17, 54
pst 6, 8, 9
rgb 6, 8, 10
showerrors 6, 8
svgnames* . 6, 8, 15, 19, 54
svgnames . 6, 8, 15, 19, 50
table 6, 8, 9, 26, 54
tcidvi 6, 33
textures 6, 33
truetex 6, 33
usecolors 34
usenames 6, 35, 55
vtex 6, 33
xdvi 6, 33
xetex 6, 33, 53

packages
colorinfo 34, 52
colortbl 8, 9, 26, 52
color 4–9, 15, 17, 19, 20,

24, 26, 33–35, 52, 53, 55
doc 57
fp 34, 55
graphics 16, 33
hyperref 6–9, 24, 25, 52, 57
longtable 53
memoir 54
msc 54
pdfcolmk . . 8, 9, 27, 52, 54
preview 54
pstcol 6, 8, 9, 52
pstricks 8, 17, 25, 49, 53–56
realcalc 34

soul 20, 56
xcolor 1, 4–

7, 9, 10, 12, 15–19, 22,
24–26, 33–35, 49, 52–56

\pagecolor 20
Pantone 5
people

Bruton, Dan 47
Carlisle, David 53
Smith, Alvy Ray 39

PostScript . 12, 16, 17, 25, 54
\preparecolor 18
\preparecolorset 18
programs

Yap 16
dvipdfm 16
dvips

. 6, 16, 17, 25, 27, 54–56
\providecolor 17
\providecolors 19
\providecolorset 18

R

\rangeGray 7
\rangeHSB 7
\rangeRGB 7
\resetcolorseries 23
\rowcolors 26
\rowcolors* 26
\rownum 26

S

\selectcolormodel 10
shade 5
\showrowcolors 26
spot color 5
\substitutecolormodel . . . 9
SVG 8, 15, 55

T

\testcolor 20
testcolors (environment) . 20
\textcolor 19
tint 5
tone 5
\tracingcolors 26

X

\xcolorcmd 7
\xglobal 19, 21, 22

	Contents
	Introduction
	Purpose of this package
	Color tints, shades, tones, and complements
	Color models

	The User Interface
	Preparation
	Package installation
	Package options
	Executing additional initialisation commands

	Color models
	Supported color models
	Substituting individual color models
	Changing the target color model within a document

	Arguments and terminology
	Additional remarks and restrictions on arguments
	Meaning of standard color expressions
	Meaning of extended color expressions

	Predefined colors
	Colors that are always available
	Additional sets of colors

	Color definition
	Ordinary and named colors
	Color definition in xcolor
	Defining sets of colors
	Immediate and deferred definitions
	Global color definitions

	Color application
	Standard color commands
	Using the current color
	Color testing

	Color blending
	Color masks and separation
	Color series
	Definition of a color series
	Initialisation of a color series
	Application of a color series
	Differences between colors and color series

	Border colors for hyperlinks
	Additional color specification in the pstricks world
	Color in tables
	Color information
	Color conversion
	Problems and solutions
	Page breaks and pdfTeX

	Examples
	Technical Supplement
	Color models supported by drivers
	How xcolor handles driver-specific color models
	Behind the scenes: internal color representation
	A remark on accuracy

	The Formulas
	Color mixing
	Conversion between integer and real models
	Real to integer conversion
	Integer to real conversion

	Color conversion and complements
	The rgb model
	The cmy model
	The cmyk model
	The hsb model
	The gray model
	The RGB model
	The HTML model
	The HSB model
	The Gray model
	The wave model

	Colors by Name
	Base Colors
	Colors via dvipsnames
	Colors via svgnames

	References
	Appendix
	Acknowledgement
	Trademarks
	Known Issues
	History

	Index

