
T
he

pd
fT

EX
us

er
m

an
ua

l%PDF-1.4
%ÐÔÅØ
3 0 obj <<
/Length 147
>>
stream
BT
/F51 9.963 Tf 91.925 759.927
Td[(W)80(elcome)-250(to)-250(pdfT)]TJ
67.818
-2.241 Td[(E)]TJ 4.842 2.241 Td[(X!)]TJ
138.924 -654.747 Td[(1)]TJ
ET
endstream
endobj
2 0 obj <<
/Type /Page
/Contents 3 0 R
/Resources 1 0 R
/MediaBox [0 0 595.276 841.89]
/Parent 5 0 R
>> endobj
1 0 obj <<
/Font << /F51 4 0 R >>
/ProcSet [/PDF /Text]
>> endobj
6 0 obj <<
/Type /Encoding
/Differences[0/.notdef1/dotaccent
/fi/fl/fraction/hungarumlaut/Lslash
/lslash/ogonek/ring10/.notdef11
/breve/minus13/.notdef14/Zcaron
/zcaron/caron/dotlessi/dotlessj/ff
/ffi/ffl/notequal/infinity/lessequal
/greaterequal/partialdiff/summation
/product/pi/grave/quotesingle/space
/exclam/quotedbl/numbersign/dollar
/percent/ampersand/quoteright/parenleft
/parenright/asterisk/plus/comma/hyphen
/period/slash/zero/one/two/three
/four/five/six/seven/eight/nine/colon
/semicolon/less/equal/greater/question
/at/A/B/C/D/E/F/G/H/I/J/K/L
/M/N/O/P/Q/R/S/T/U/V/W/X/Y
/Z/bracketleft/backslash/bracketright
/asciicircum/underscore/quoteleft
/a/b/c/d/e/f/g/h/i/j/k/l/m
/n/o/p/q/r/s/t/u/v/w/x/y/z
/braceleft/bar/braceright/asciitilde
127/.notdef128/Euro/integral
/quotesinglbase/florin/quotedblbase
/ellipsis/dagger/daggerdbl/circumflex
/perthousand/Scaron/guilsinglleft/OE
/Omega/radical/approxequal144/.notdef
147/quotedblleft/quotedblright/bullet
/endash/emdash/tilde/trademark/scaron
/guilsinglright/oe/Delta/lozenge
/Ydieresis160/.notdef161/exclamdown
/cent/sterling/currency/yen/brokenbar
/section/dieresis/copyright/ordfeminine
/guillemotleft/logicalnot/hyphen
/registered/macron/degree/plusminus
/twosuperior/threesuperior/acute

/mu/paragraph/periodcentered/cedilla
/onesuperior/ordmasculine/guillemotright
/onequarter/onehalf/threequarters
/questiondown/Agrave/Aacute/Acircumflex
/Atilde/Adieresis/Aring/AE/Ccedilla
/Egrave/Eacute/Ecircumflex/Edieresis
/Igrave/Iacute/Icircumflex/Idieresis
/Eth/Ntilde/Ograve/Oacute/Ocircumflex
/Otilde/Odieresis/multiply/Oslash
/Ugrave/Uacute/Ucircumflex/Udieresis
/Yacute/Thorn/germandbls/agrave/aacute
/acircumflex/atilde/adieresis/aring/ae
/ccedilla/egrave/eacute/ecircumflex
/edieresis/igrave/iacute/icircumflex
/idieresis/eth/ntilde/ograve/oacute
/ocircumflex/otilde/odieresis/divide
/oslash/ugrave/uacute/ucircumflex
/udieresis/yacute/thorn/ydieresis]
>>endobj
4 0 obj <<
/Type /Font
/Subtype /Type1
/Encoding 6 0 R
/BaseFont /Times-Roman
>> endobj
5 0 obj <<
/Type /Pages
/Count 1
/Kids [2 0 R]
>> endobj
7 0 obj <<
/Type /Catalog
/Pages 5 0 R
>> endobj
8 0 obj <<
/Producer (pdfeTeX-1.30.4)
/Creator (TeX)
/CreationDate (D:20051024013807+02’00’)
/PTEX.Fullbanner (This is pdfeTeX, Version
3.141592-1.30.4-2.2 (Web2C 7.5.5) kpathsea
version 3.5.5)
>> endobj
xref
0 9
0000000000 65535 f
0000000330 00000 n
0000000219 00000 n
0000000015 00000 n
0000002284 00000 n
0000002372 00000 n
0000000398 00000 n
0000002429 00000 n
0000002478 00000 n
trailer
<< /Size 9
/Root 7 0 R
/Info 8 0 R
/ID [<DEDA359EDAD4320634FF9A471637DD88>
<DEDA359EDAD4320634FF9A471637DD88>] >>
startxref
2682
%%EOF

The pdfTEX user manual

Hàn Thế Thành
Sebastian Rahtz

Hans Hagen
Hartmut Henkel
Paweł Jackowski

October 23, 2005

Rev. 1.624

The title page of this manual
represents the plain TEX coded

text “Welcome to pdfTEX!”

\pdfoutput=1
\pdfcompresslevel=0
\font\tenrm=ptmr8r

\tenrm
Welcome to pdf\TeX!

\bye

The pdfTEX user manual

1

Contents
1 Introduction . 1
2 About PDF . 2
3 Getting started . 3
4 Macro packages supporting PDFTEX . . 9
5 Setting up fonts . 10
6 Formal syntax specification 14
7 PDFTEX primitives 17
8 Graphics and color 34

9 Character translation 35
10 Limitations of PDFTEX 36

Abbreviations . 36
Examples of HZ and protruding 37
Additional PDF keys 38
Colophon . 39
GNU Free Documentation License 40

1 Introduction
The main purpose of the pdfTEX project is to create and maintain an extension of TEX that can produce
pdf directly from TEX source files and improve/enhance the result of TEX typesetting with the help of pdf.
When pdf output is not selected, pdfTEX produces normal dvi output, otherwise it generates pdf output
that looks identical to the dvi output. An important aspect of this project is to investigate alternative
justification algorithms (e. g. a font expansion algorithm akin to the hz micro--typography algorithm by
Prof. Hermann Zapf), optionally making use of multiple master fonts.

pdfTEX is based on the original TEX sources and Web2c, and has been successfully compiled on Unix,
Win32 and MSDos systems. It is under active development, with new features trickling in. Great care is
taken to keep new pdfTEX versions backward compatible with earlier ones.

For some years there has been a ‘moderate’ successor to TEX available, called ε-TEX. Because mainstream
macro packages such as LATEX have started supporting this welcome extension, pdfTEX also is available
as pdfeTEX. Although in this document we will speak of pdfTEX, we advise users to use pdfeTEX when
available. That way they get the best of all worlds and are ready for the future. Starting with TEX Live
2004, that future has arrived: pdfeTEX is now the primary TEX engine.

Other extensions to pdfTEX are MLTEX and encTEX; recent pdfTEX engines have these often included.

pdfTEX is maintained by Hàn Thế Thành, Martin Schröder, Hans Hagen, Hartmut Henkel, and others.
The pdfTEX homepage is http://www.pdftex.org. Please send pdfTEX comments and bug reports to
the mailing list pdftex@tug.org.

We thank all readers who send us corrections and suggestions. We also wish to express the hope that
pdfTEX will be of as much use to you as it is to us. Since pdfTEX is still being improved and extended, we
suggest you to keep track of updates.

1.1 About this manual
This manual revision (1.624) tries to keep track with the recent pdfTEX development up to version
1.30.4. Main text updates were done regarding the new configuration scheme, font mapping, and new or
updated primitives. The primary repository for the manual and its sources is at http://sarovar.org
/projects/pdftex/. Copies in pdf format can also be found at the CTAN network in directory ctan:
systems/pdftex.

Thanks to Karl Berry for proof reading and submitting a long changes list. New errors might have slipped
in afterwards by the editor. Please send questions or suggestions by email to pdftex@tug.org.

1.2 Legal Notice

Copyright C© 1996--2005 Hàn Thế Thành. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
mailto:pdftex@tug.org
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
mailto:pdftex@tug.org

The pdfTEX user manual

2

published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

2 About PDF
The cover of this manual lists an almost minimal pdf file generated by pdfTEX, with the corresponding
source file on the next page. Unless compression is enabled, such a pdf file is rather verbose and readable.
The first line specifies the version used; currently pdfTEX produces level 1.4 output by default. pdf
viewers are supposed to silently skip over all elements they cannot handle.

A pdf file consist of objects. These objects can be recognized by their number and keywords:

7 0 obj << /Type /Catalog /Pages 5 0 R >> endobj

Here 7 0 obj ... endobj is the object capsule. The first number is the object number. Later we will
see that pdfTEX gives access to this number. One can for instance create an object by using \pdfobj after
which \pdflastobj returns the number. So

\pdfobj{/Type /Catalog /Pages 5 0 R}

inserts an object into the file, while \pdflastobj returns the number pdfTEX assigned to this object.
The sequence 5 0 R is an object reference, a pointer to another object (no. 5). The second number (here
a zero) is currently not used in pdfTEX; it is the version number of the object. It is for instance used by pdf
editors, when they replace objects by new ones. The version numbers permit a roll--back. (An example of
a graphic editor that uses pdf as storage format is the Adobe Illustrator.)

In general this rather direct way of pushing objects in the files is not very useful, and only makes sense
when implementing, say, fill--in field support or annotation content reuse. We will come to that later.
Unless such direct objects are part of something larger, they will end up as isolated entities, not doing
any harm but not doing any good either.

When a viewer opens a pdf file, it first goes to the end of the file. There it finds the keyword startxref,
the signal where to look for the so called ‘object cross reference table’. This table provides fast access to
the objects that make up the file. The actual starting point of the file is defined after the trailer. The
/Root entry points to the catalog. In this catalog the viewer can find the page list. In our example we
have only one page. The trailer also holds an /Info entry, which tells a bit more about the document.
Just follow the thread:

/Root −→ object 7 −→ /Pages −→ object 5 −→ /Kids −→ object 2 −→ /Contents −→ object 3

As soon as we add annotations, a fancy word for hyperlinks and the like, some more entries are present
in the catalog. We invite users to take a look at the pdf code of this file to get an impression of that.

The page content is a stream of drawing operations. Such a stream can be compressed, where the level
of compression can be set with \pdfcompresslevel. Let’s take a closer look at this stream in object 3.
Often there is a transformation matrix, six numbers followed by cm. As in PostScript, the operator comes
after the operands. Between BT and ET comes the text. A font is selected by a Tf operator, which is
given a resource name /F.. and the font size. The actual text goes into () bracket pairs so that it creates
a PostScript string. The numbers inbetween bracket pairs provide fine glyph positioning (kerning). When
one analyzes a file produced by a less sophisticated typesetting engine, whole sequences of words can be
recognized. In pdf files generated by pdfTEX however, the words comes out rather fragmented, mainly
because a lot of kerning takes place. pdf viewers in search mode simply ignore the kerning information
in these text streams. When a document is searched, the search engine reconstructs the text from these
(string) snippets.

This one page example uses an Adobe Times--Roman font. This is one of the 14 so--called standard fonts
that are always present in the viewer application, and therefore need not be embedded in the pdf file.

The pdfTEX user manual

3

However, when we use for instance Computer Modern Roman, we have to make sure that this font is
available, and the best way to do this is to embed it. Just let your eyes follow the object thread and see
how a font is described. The only thing removed from this example is the (partially) embedded glyph
description file, which for the 14 standard fonts is not needed.

In this simple file, we don’t specify in what way the file should be opened, for instance full screen or
clipped. A closer look at the page object no. 2 (/Type /Page) shows that a mediabox (/MediaBox) is
part of the page description. A mediabox acts like the (high-resolution) bounding box in a PostScript file.
pdfTEX users can add dictionary stuff to page objects by the \pdfpageattr primitive.

Although in most cases macro packages will shield users from these internals, pdfTEX provides access to
many of the entries described here, either automatically by translating the TEX data structures into pdf
ones, or manually by pushing entries to the catalog, page, info or self created objects. Those who, after
this introduction, feel unsure how to proceed, are advised to read on but skip section 7. Before we come
to that section, we will describe how to get started with pdfTEX.

3 Getting started
This section describes the steps needed to get pdfTEX running on a system where pdfTEX is not yet
installed. Nowadays virtually all TEX distributions have pdfTEX as a component, such as TEX Live, teTEX,
fpTEX, MikTeX, and CMacTEX. The ready to run TEX Live distribution comes with pdfTEX versions for
many Unix, Win32, and Mac OS X systems; more information can be found at http://www.tug.org
/tex-live/. teTEX by Thomas Esser is a source distribution with an automated compilation process
for Unix systems; see http://www.tug.org/teTeX/. For Win32 systems there are also two separate
distributions that contain pdfTEX, both in ctan:systems/win32: fpTEX by Fabrice Popineau and MikTeX
by Christian Schenk. So when you use any of these distributions, you don’t need to bother with the
pdfTEX installation procedure in the next sections.

If there is no precompiled binary of pdfTEX for your system, or the version coming with a distribution
is not the current one and you would like to try out a fresh pdfTEX immediately, you will need to build
pdfTEX from sources; read on. You should already have a working TEX system, e. g. teTEX, into which
the freshly compiled pdfTEX will be integrated. Note that the installation description in this manual is
Web2c--specific.

3.1 Getting sources and binaries
The latest sources of pdfTEX are currently distributed for compilation on Unix systems (including Linux),
and Win32 systems (Windows 95, 98, NT, 2000, XP). The primary location where one can fetch the latest
released code is at the developers’ homepage http://sarovar.org/projects/pdftex/, where you
also find bug tracking information, and the manual sources. Download the pdfTEX archive from there.

The pdfTEX sources can also be found at their canonical place in the CTAN network, ctan:systems
/pdftex. Separate pdfTEX binaries for various systems might also be available, check out the subdirecto-
ries below ctan:systems.

3.2 Compiling
The compilation is expected to be easy on Unix--like systems and can be described best by example.
Assuming that the file pdftex.zip is downloaded to some working directory, e. g. $HOME/pdftex, on
a Unix system the following steps are needed to compile pdfTEX:

cd $HOME/pdftex
unzip pdftex-1.30.4.zip

http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/tex-live/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
http://www.tug.org/teTeX/
ctan:systems/win32
ctan:systems/win32
ctan:systems/win32
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
http://sarovar.org/projects/pdftex/
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems/pdftex
ctan:systems
ctan:systems

The pdfTEX user manual

4

cd pdftex-1.30.4
./Build

The binaries pdftex and pdfetex are then built in the subdirectory build/texk/web2c. In the same
directory also the corresponding pool files pdftex.pool and pdfetex.pool are generated, that are
needed for creating formats.

3.3 Placing files
The next step is to put the freshly compiled binaries and pool files into their proper places within the tds
structure of the TEX system. Put the files pdftex and pdfetex into the directory (e. g. for a typical teTEX
system) /usr/local/teTeX/bin/i686-pc-linux-gnu, and the pool files into /usr/local/teTeX
/share/texmf/web2c.

Don’t forget to do a texconfig-sys init afterwards, so that all formats are regenerated system-wide
with the fresh binaries.

3.4 Setting search paths
Web2c--based programs, including pdfTEX, use the Web2c run--time configuration file called texmf.
cnf. The location of this file is the appropriate position within the tds tree relative to the place of the
pdfTEX binary; on a teTEX system, file texmf.cnf typically is located either in directory texmf/web2c
or texmf-local/web2c. The path to file texmf.cnf can also be set up by the environment variable
TEXMFCNF.

Next you might need to edit texmf.cnf so that pdfTEX can find all necessary files, but the texmf.cnf
files coming with the major TEX distributions should already be set up for normal use. You might check
into the file texmf.cnf to see where the various bits and pieces are going.

pdfTEX uses the search path variables shown in table 1.

used for texmf.cnf

output files TEXMFOUTPUT
input files, images TEXINPUTS
format files TEXFORMATS
text pool files TEXPOOL
encoding files ENCFONTS
font map files TEXFONTMAPS
tfm files TFMFONTS
virtual fonts VFFONTS
type1 fonts T1FONTS
TrueType fonts TTFONTS
pixel fonts PKFONTS

Table 1 The Web2c variables.

TEXMFOUTPUT Normally, pdfTEX puts its output files in the current directory. If any output file
cannot be opened there, it tries to open it in the directory specified in the environment
variable TEXMFOUTPUT. There is no default value for that variable. For example, if you
type pdfetex paper and the current directory is not writable, if TEXMFOUTPUT has
the value /tmp, pdfTEX attempts to create /tmp/paper.log (and /tmp/paper.pdf,
if any output is produced.)

TEXINPUTS This variable specifies where pdfTEX finds its input files. Image files are considered
input files and searched for along this path.

The pdfTEX user manual

5

TEXFORMATS Search path for format (.fmt) files.

TEXPOOL Search path for pool (.pool) files.

ENCFONTS Search path for encoding (.enc) files.

TEXFONTMAPS Search path for font map (.map) files.

TFMFONTS Search path for font metric (.tfm) files.

VFFONTS Search path for virtual font (.vf) files. Virtual fonts are fonts made up of other fonts.
Because pdfTEX produces the final output code, it must consult those files.

T1FONTS Search path for Type 1 font files (.pfa and .pfb). These outline (vector) fonts are
to be preferred over bitmap pk fonts. In most cases Type 1 fonts are used and this
variable tells pdfTEX where to find them.

TTFFONTS Search path for TrueType font (.ttf) files. Like Type 1 fonts, TrueType fonts are also
outlines.

PKFONTS Search path for packed (bitmap) font (.pk) files. Unfortunately bitmap fonts are still
displayed poorly by some pdf viewers, so when possible one should use outline
fonts. When no outline is available, pdfTEX tries to locate a suitable pk font (or invoke
a process that generates it).

3.5 The PDFTEX configuration
One has to keep in mind that, as opposed to TEX with its dvi output, the pdfTEX program does not
require a separate postprocessing stage to transform the TEX input into a pdf file. As a consequence,
all data needed for building a ready pdf page must be available during the pdfTEX run, in particular
information on media dimensions and offsets, graphics files for embedding, and font information (font
files, encodings).

When TEX builds a page, it places items relative to the top left page corner (the dvi reference point).
Separate dvi postprocessors allow specifying the paper size (e. g. ‘A4’ or ‘letter’), so that this reference
point is moved to the correct position on the paper, and the text ends up at the right place.

In pdf, the paper dimensions are part of the page definition, and pdfTEX therefore requires that they be
defined at the beginning of the pdfTEX run. As with pages described by PostScript, the pdf reference
point is in the lower--left corner.

Formerly, these dimensions and other pdfTEX parameters were read in from a configuration file named
pdftex.cfg, which had a special (non-TEX) format, at the start of processing. Nowadays such a file is
ignored by pdfTEX. Instead, the page dimensions and offsets, as well as many other parameters, can be
set by pdfTEX primitives during the pdfTEX format building process, so that the settings are dumped into
the fresh format and consequently will be used when pdfTEX is later called with that format. All settings
from the format can still be overridden during a pdfTEX run by using the same primitives. This new
configuration concept is a more unified approach, as it avoids the configuration file with a special format.

A list of pdfTEX primitives relevant for setting up the pdfTEX engine is given in table 2. All primitives are
described in detail within later sections. Figure 1 shows a recent configuration file (pdftexconfig.tex)
in TEX format, using the primitives from table 2, which typically is read in during the format building
process. It enables pdf output, sets paper dimensions and the default pixel density for pk font inclusion.
The default values are chosen so that pdfTEX often can be used (e. g. in -ini mode) even without setting
any parameters.

Independent of whether such a configuration file is read or not, the first action in a pdfTEX run is that the
program reads the global Web2c configuration file (texmf.cnf), which is common to all programs in the
web2C system. This file mainly defines file search paths, the memory layout (e. g. pool and hash size),
and other general parameters.

The pdfTEX user manual

6

internal name type default comment

\pdfoutput integer 0 dvi
\pdfadjustspacing integer 0 off
\pdfcompresslevel integer 9 best
\pdfdecimaldigits integer 4 max.
\pdfimageresolution integer 72 dpi
\pdfpkresolution integer 0 72 dpi
\pdfpkmode token reg. empty mode set in mktex.cnf
\pdfuniqueresname integer 0
\pdfprotrudechars integer 0
\pdfminorversion integer 4 pdf 1.4
\pdfforcepagebox integer 0
\pdfinclusionerrorlevel integer 0
\pdfhorigin dimension 1 in
\pdfvorigin dimension 1 in
\pdfpagewidth dimension 0 pt
\pdfpageheight dimension 0 pt
\pdflinkmargin dimension 0 pt
\pdfdestmargin dimension 0 pt
\pdfthreadmargin dimension 0 pt
\pdfmapfile text pdftex.map not dumped

Table 2 The set of pdfTEX configuration parameters.

% Set pdfTeX parameters for pdf mode (replacing pdftex.cfg file).
% Thomas Esser, 2004. public domain.
\pdfoutput=1
\pdfpagewidth=210 true mm
\pdfpageheight=297 true mm
\pdfpkresolution=600
\endinput

Figure 1 A typical configuration file (pdftexconfig.tex).

3.6 Creating format files
Both pdfTEX and pdfeTEX engines allow building formats for dvi and pdf output in the same way as the
classical TEX engine does for dvi. Format generation is enabled by the -ini option. The default mode
(dvi or pdf) can be chosen either on the command line by setting the option -output-format to dvi or
pdf, or by setting the \pdfoutput parameter. The format file then inherits this setting, so that a later
call to pdfTEX with this format starts in the preselected mode (which still can be overrun then). A format
file can be read in only by the engine that has generated it; a format incompatible with an engine leads
to a fatal error. Often the pdfTEX program is a mere link to the pdfeTEX engine; then also a pdfTEX call
generates an extended format.

It is customary to package the configuration and macro file input into a .ini file. E. g., the file etex.ini
in figure 2 is for generating an ε-TEX format with dvi output (it contains a few comparisons to be safe
also for TEX engines). A similar file pdflatex.ini can be used for generating a LATEX format with pdf
output; refer to figure 3. One can see how the primitive \pdfoutput is used to override the output mode
set by file pdftexconfig.tex. The corresponding pdfTEX calls for format generation are:

pdfetex -ini *etex.ini
pdftex -ini pdflatex.ini

The pdfTEX user manual

7

% Thomas Esser, 1998, 2004. public domain.
\ifx\pdfoutput\undefined
\else

\ifx\pdfoutput\relax
\else

\input pdftexconfig
\pdfoutput=0

\fi
\fi
\input etex.src
\dump
\endinput

Figure 2 File etex.ini for ε-TEX format with dvi output.

\ifx\pdfoutput\undefined
\else

\ifx\pdfoutput\relax
\else

\input pdftexconfig
\pdfoutput=1

\fi
\fi
\scrollmode
\input latex.ltx
\endinput

Figure 3 File pdflatex.ini for LATEX format with pdf output.

These calls produce format files etex.fmt and pdflatex.fmt, as the default format file name is taken
from the input file name. You can overrule this with the -jobname option. The asterisk * in the first
example line tells the pdfeTEX engine to go into extended -ini mode; otherwise it stays in non--extended
mode. The pdfTEX engine can’t be brought into extended mode at all; it interprets an asterisk * in front
of a file name as part of the file name. So, if you want a pdfLATEX format with pdf output and ε-TEX
extensions available (format file pdfelatex.fmt), you would need to type e. g.:

pdfetex -ini -jobname=pdfelatex *pdflatex.ini

In ConTEXt the generation depends on the interface used. A format using the English user interface is
generated with

pdfetex -ini cont-en

When properly set up, one can also use the ConTEXt command line interface TEXexec to generate one or
more formats, like:

texexec --make en

for an English format, or

texexec --make en de

for an English and German one. Most users will simply say:

texexec --make --all [--alone]

and so generate the TEX and METAPOST related formats that ConTEXt needs. Whatever macro package
used, the formats should be placed in the TEXFORMATS path.

The pdfTEX user manual

8

3.7 Testing the installation
When everything is set up, you can test the installation. In the distribution there is a plain TEX test file
example.tex. Process this file by typing:

pdftex example

If the installation is ok, this run should produce a file called example.pdf. The file example.tex is also
a good place to look for how to use pdfTEX’s primitives.

3.8 Common problems
The most common problem with installations is that pdfTEX complains that something cannot be found.
In such cases make sure that TEXMFCNF is set correctly, so pdfTEX can find texmf.cnf. The next best
place to look/edit is the file texmf.cnf. When still in deep trouble, set KPATHSEA_DEBUG=255 before
running pdfTEX or run pdfTEX with option -k 255. This will cause pdfTEX to write a lot of debugging
information that can be useful to trace problems. More options can be found in the Web2c documentation.

Variables in texmf.cnf can be overwritten by environment variables. Here are some of the most common
problems you can encounter when getting started:

• I can’t read pdftex.pool; bad path?

TEXMFCNF is not set correctly and so pdfTEX cannot find texmf.cnf, or TEXPOOL in texmf.cnf
doesn’t contain a path to the pool file pdftex.pool or pdfetex.pool when you use pdfeTEX.

• You have to increase POOLSIZE.

pdfTEX cannot find texmf.cnf, or the value of pool_size specified in texmf.cnf is not large enough
and must be increased. If pool_size is not specified in texmf.cnf then you can add something like

pool_size=500000

• I can’t find the format file ‘pdftex.fmt’!
I can’t find the format file ‘pdflatex.fmt’!

The format file is not created (see above how to do that) or is not properly placed. Make sure that
TEXFORMATS in texmf.cnf contains the path to pdftex.fmt or pdflatex.fmt.

• ---! xx.fmt was written by tex
Fatal format file error; I’m stymied

This appears e. g. if you forgot to regenerate the .fmt files after installing a new version of the pdfTEX
binary and pdftex.pool. The first line tells by which engine the offending format was generated.

• TEX.POOL doesn’t match; TANGLE me again!
TEX.POOL doesn’t match; TANGLE me again (or fix the path).

This might appear if you forgot to install the proper pdftex.pool when installing a new version of
the pdfTEX binary. E. g. under teTEX then run texconfig-sys init.

• ! I can’t find file ‘*pdftex.ini’.
<*> *pdftex.ini

This typically appears when you try to generate an extended format with the pdfTEX engine (it does
not know about the special asterisk * notation). Use the pdfeTEX engine instead.

• pdfTEX cannot find one or more map files (*.map), encoding vectors (*.enc), virtual fonts, Type 1
fonts, TrueType fonts or some image file.

Make sure that the required file exists and the corresponding variable in texmf.cnf contains a path
to the file. See above which variables pdfTEX needs apart from the ones TEX uses.

The pdfTEX user manual

9

When you have installed new fonts, and your pdf viewer complains about missing fonts, you should
take a look at the log file produced by pdfTEX. Missing fonts, map files, encoding vectors as well as
missing characters (glyphs) are reported there.

Normally the page content takes one object. This means that one seldom finds more than a few hundred
objects in a simple file. This document for instance uses about 900 objects. In demanding applications this
number can grow quite rapidly, especially when one uses a lot of widget annotations, shared annotations
or other shared things. In these situations in texmf.cnf one can enlarge pdfTEX’s internal object table by
adding a line in texmf.cnf, for instance:

obj_tab_size=400000

4 Macro packages supporting PDFTEX
As pdfTEX generates the final pdf output without help of a postprocessor, macro packages that take care of
these pdf features have to be set up properly. Typical tasks are handling color, graphics, hyperlink support,
threading, font--inclusion, as well as page imposition and manipulation. All these pdf--specific tasks
can be commanded by pdfTEX’s own primitives (a few also by a pdfTEX--specific \special{pdf: ...}
primitive). Any other \special{} commands, like the ones defined for various dvi postprocessors, are
simply ignored by pdfTEX when in pdf output mode; a warning is given only for non--empty \special{}
commands.

When a macro package already written for classical TEX with dvi output is to be modified for use with
pdfTEX, it is very helpful to get some insight to what extent pdfTEX--specific support is needed. This info
can be gathered e. g. by outputting the various \special commands as \message. Simply type

\pdfoutput=1 \let\special\message

or, if this leads to confusion,

\pdfoutput=1 \def\special#1{\write16{special: #1}}

and see what happens. As soon as one ‘special’ message turns up, one knows for sure that some kind of
pdfTEX specific support is needed, and often the message itself gives a indication of what is needed.

Currently all mainstream macro packages offer pdfTEX support, with automatic detection of pdfTEX as
engine. So there is normally no need to turn on pdfTEX support explicitly.

• For LATEX users, Sebastian Rahtz’ and Heiko Oberdiek’s hyperref package has substantial support
for pdfTEX and provides access to most of its features. In the simplest and most common case, the
user merely needs to load hyperref, and all cross--references will be converted to pdf hypertext links.
pdf output is automatically selected, compression is turned on, and the page size is set up correctly.
Bookmarks are created to match the table of contents.

• The standard LATEX graphics, graphicx, and color packages also have automatic pdfTEX support,
which allow use of color, text rotation, and graphics inclusion commands.

• The ConTEXt macro package by Hans Hagen has very full support for pdfTEX in its generalized
hypertext features. Support for pdfTEX is implemented as a special driver, and is invoked by typing
\setupoutput[pdftex] or feeding TEXexec with the --pdf option.

• pdf from Texinfo documents can be created by running pdfTEX on the Texinfo file, instead of TEX.
Alternatively, run the shell command texi2pdf instead of texi2dvi.

• A small modification of webmac.tex, called pdfwebmac.tex, allows production of hyperlinked pdf
versions of the program code written in web.

Some nice samples of pdfTEX output can be found at http://www.pdftex.org, http://www.
pragma-ade.com, and http://www.tug.org/texshowcase.

http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pdftex.org
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase
http://www.tug.org/texshowcase

The pdfTEX user manual

10

5 Setting up fonts
pdfTEX can work with Type 1 and TrueType fonts, but a source must be available for all fonts used in
the document, except for the 14 standard fonts supplied by the pdf reader (Times, Helvetica, Courier,
Symbol and Dingbats). It is possible to use METAFONT--generated fonts in pdfTEX — but it is strongly
recommended not to use these fonts if an equivalent is available in Type 1 or TrueType format, if only
because bitmap Type 3 fonts render very poorly in (older versions of) Adobe Reader. Given the free
availability of Type 1 versions of all the Computer Modern fonts, and the ability to use standard PostScript
fonts, there is rarely a need to use bitmap fonts in pdfTEX.

5.1 Map files
Font map files provide the connection between TEX tfm font files and the outline font file names. They
contain also information about re--encoding arrays, partial downloading, and character transformation
parameters (like SlantFont and ExtendFont). Those map files were first created for dvi postprocessors.
But, as pdfTEX in pdf output mode includes all pdf processing steps, it also needs to know about font
mapping, and therefore reads in one or more map files. Map files are not read in when pdfTEX is in dvi
mode. Pixel fonts can be used without being listed in the map file.

By default, pdfTEX reads the map file pdftex.map. In Web2c, map files are searched for using the
TEXFONTMAPS config file value and environment variable. By default, the current directory and various
system directories are searched.

Within the map file, each font is listed on an individual line. The syntax of each line is upward--compatible
with dvips map files and can contain the following fields (some are optional; explanations follow):

tfmname basename fontflags special encodingfile fontfile

It is mandatory that tfmname is the first field. If a basename is given, it must be the second field. Similarly
if fontflags is given it must be the third field (if basename is present) or the second field (if basename is
left out). It is possible to mix the positions of special, encodingfile, and fontfile, however the first three
fields must be given in fixed order.

tfmname sets the name of the tfm file for a font — the name TEX sees. This name must always be given.

basename sets the base (PostScript) font name. The basename field is checked against the BaseName
entry of fonts coming with embedded pdf files. If there is a match, the font will be removed from the
embedded file, and a local font is opened, which will contain the glyphs from the embedded file. This
collecting mechanism helps keeping the resulting pdf file size small, if many files with similar fonts are
to be embedded. Therefore it is recommended always to set the basename field.

If a basename field is given, also a fontfile field must be there, unless the basename matches one of the
14 standard font names; then the fontfile field is optional. If the fontfile name is given, this font will be
embedded (depending on flags, see below). If the fontfile name for a standard font is missing, the font
will be quietly left out, which is fine, as pdf viewers will later render the text with their own versions of
the font.

fontflags specify some characteristics of the font. The following description of these flags is taken, with
slight modification, from the pdf Reference Manual (the section on font descriptor flags). Viewers can
adapt their rendering to these flags, especially when they substitute a replacements for not embedded
fonts.

The value of the flags key in a font descriptor is a 32--bit integer that contains a collection of
boolean attributes. These attributes are true if the corresponding bit is set to 1. Table 3 specifies
the meanings of the bits, with bit 1 being the least significant. Reserved bits must be set to zero.

The pdfTEX user manual

11

bit position semantics

1 Fixed--width font
2 Serif font
3 Symbolic font
4 Script font
5 Reserved
6 Uses the Adobe Standard Roman Character Set
7 Italic

8–16 Reserved
17 All--cap font
18 Small--cap font
19 Force bold at small text sizes

20–32 Reserved

Table 3 The meaning of flags in the font descriptor.

All characters in a fixed--width font have the same width, while characters in a proportional font
have different widths. Characters in a serif font have short strokes drawn at an angle on the
top and bottom of character stems, while sans serif fonts do not have such strokes. A symbolic
font contains symbols rather than letters and numbers. Characters in a script font resemble
cursive handwriting. An all--cap font, which is typically used for display purposes such as titles
or headlines, contains no lowercase letters. It differs from a small--cap font in that characters in
the latter, while also capital letters, have been sized and their proportions adjusted so that they
have the same size and stroke weight as lowercase characters in the same typeface family.

Bit 6 in the flags field indicates that the font’s character set conforms to the Adobe Standard Roman
Character Set, or a subset of that, and that it uses the standard names for those characters.

Finally, bit 19 is used to determine whether or not bold characters are drawn with extra pixels
even at very small text sizes. Typically, when characters are drawn at small sizes on very low
resolution devices such as display screens, features of bold characters may appear only one pixel
wide. Because this is the minimum feature width on a pixel--based device, ordinary non--bold
characters also appear with one--pixel wide features, and thus cannot be distinguished from bold
characters. If bit 19 is set, features of bold characters may be thickened at small text sizes.

If the font flags are not given, pdfTEX treats it as being 4, a symbolic font. If you do not know the correct
value, it is best not to specify it at all, as specifying a bad value of font flags may cause troubles in viewers.
On the other hand this option is not absolutely useless because it provides backward compatibility with
older map files (see the fontfile description below).

special instructions can be used to manipulate fonts similar to the way dvips does. Currently
only the keywords SlantFont and ExtendFont are interpreted, other instructions (as ReEncodeFont
with parameters, see encoding below) are just ignored. The permitted SlantFont range is −1..1; for
ExtendFont it’s −2..2. The block of special instruction must be enclosed by double quotes ".

encoding specifies the name of the file containing the external encoding vector to be used for the font.
The file name may be preceded by a <, but the effect is the same. The format of the encoding vector is
identical to that used by dvips. If no encoding is specified, the font’s built--in default encoding is used.
It may be omitted if you are sure that the font resource has the correct built--in encoding. In general this
option is highly preferred and is required when subsetting a TrueType font.

fontfile sets the name of the font source file. This must be a Type 1 or TrueType font file. The font file
name can be preceded by one or two special characters, which says how the font file should be handled.

• If the font file name is preceded by a < the font file will be partially downloaded, meaning that only
used glyphs (characters) are embedded to the font. This is the most common use and is strongly

The pdfTEX user manual

12

recommended for any font, as it ensures the portability and reduces the size of the pdf output. Partial
fonts are included in such a way that name and cache clashes are minimized.

• If the font file name is preceded by a double <<, the font file will be included entirely — all glyphs of
the font are embedded, including the ones that are not used in the document. Apart from causing
large size pdf output, this option may cause troubles with TrueType fonts, so it is not recommended.
It might be useful in case the font is atypical and can not be subsetted well by pdfTEX. Beware: some
font vendors forbid full font inclusion.

• If nothing precedes the font file name, the font file is read but nothing is embedded, only the font
parameters are extracted to generate the so--called font descriptor, which is used by the pdf reader to
simulate the font if needed. This option is useful only when you do not want to embed the font (i. e. to
reduce the output size), but wish to use the font metrics and let the pdf reader generate instances
that look close to the used font in case the font resource is not installed on the system where the pdf
output will be viewed or printed. To use this feature the font flags must be specified, and it must have
the bit 6 set on, which means that only fonts with the Adobe Standard Roman Character Set can be
simulated. The only exception is the case of a Symbolic font, which is not very useful.

When one suffers from invalid lookups, for instance when pdfTEX tries to open a .pfa file instead of
a .pfb one, one can add the suffix to the filename. In this respect, pdfTEX completely relies on the
kpathsea libraries.

If a used font is not present in the map files, first pdfTEX will look for a source with suffix .pgc, which
is a so--called pgc source (pdf Glyph Container)1. If no pgc source is available, pdfTEX will try to use
pk fonts as dvi drivers do, creating pk fonts on--the--fly if needed.

Lines containing nothing apart from tfmname stand for scalable Type 3 fonts. For scalable fonts as Type 1,
TrueType and scalable Type 3 font, all the fonts loaded from a tfm at various sizes will be included only
once in the pdf output. Thus if a font, let’s say csr10, is described in one of the map files, then it will be
treated as scalable. As a result the font source for csr10 will be included only once for csr10, csr10 at
12pt etc. So pdfTEX tries to do its best to avoid multiple downloading of identical font sources. Thus
vector pgc fonts should be specified as scalable Type 3 in map files like:

csr10

It doesn’t hurt much if a scalable Type 3 font is not given in map files, except that the font source will
be downloaded multiple times for various sizes, which causes a much larger pdf output. On the other
hand if a font in the map files is defined as scalable Type 3 font and its pgc source is not scalable or not
available, pdfTEX will use pk fonts instead; the pdf output is still valid but some fonts may look ugly
because of the scaled bitmap.

To summarize this rather confusing story, we include a some example lines. First we use two fonts from
the 14 standard fonts with font--specific encoding, i. e. no external encoding is given. In the first line, the
fontfile is missing, so viewers will use their own font. The ZapfDingbats font is taken from the given font
file.

psyr Symbol
pzdr ZapfDingbats <pzdr.pfb

Similarly, two standard fonts with an external encoding. The < preceding the encoding file name may be
left out.

ptmr8r Times-Roman <8r.enc
ptmri8r Times-Italic <8r.enc <ptmri8a.pfb

This is a text file containing a pdf Type 3 font, created by METAPOST using some utilities by Hans Hagen. In general pgc files can1

contain whatever is allowed in a pdf page description, which may be used to support fonts that are not available in METAFONT.
pgc fonts are not widely useful, as vector Type 3 fonts are not displayed very well in older versions of Acrobat Reader, but may
be more useful when better Type 3 font handling is more common.

The pdfTEX user manual

13

A SlantFont is specified similarly as for dvips. The SlantFont or ExtendFont entries work only with
embedded font files.

psyro ".167 SlantFont" <usyr.pfb
pcrr8rn Courier ".85 ExtendFont" <8r.enc <pcrr8a.pfb

Partially download a font without re--encoding:

pgsr8a GillSans <pgsr8a.pfb

Download a font entirely without re--encoding:

pgsr8a GillSans <<pgsr8a.pfb

Partially download a font with re--encoding:

pgsr8r GillSans <8r.enc <pgsr8a.pfb

Entirely download a font with re--encoding:

pgsr8r GillSans <8r.enc <<pgsr8a.pfb

Sometimes we do not want to include a font, but need to extract parameters from the font file and re--
encode the font as well. This only works for fonts with Adobe Standard Encoding. The font flags specify
how such a font looks like, so e. g. the Adobe Reader can generate a similar instance if the font resource is
not available on the target system.

pgsr8r GillSans 32 <8r.enc pgsr8a.pfb

Do not embed the font — only extract the font parameters:

pgsr8a GillSans pgsr8a.pfb

A TrueType font can be used in the same way as a Type 1 font:

verdana8r Verdana <8r.enc <verdana.ttf

5.2 TrueType fonts
As mentioned above, pdfTEX can work with TrueType fonts. Defining TrueType fonts is similar to Type 1.
The only extra thing to do with TrueType is to create a tfm file. There is a program called ttf2afm in the
pdfTEX distribution which can be used to extract afm from TrueType fonts (another conversion program
is ttf2pt1). Usage of ttf2afm is simple:

ttf2afm -e <encoding vector> -o <afm outputfile> <ttf input file>

A TrueType file can be recognized by its suffix ttf. The optional encoding specifies the encoding, which
is the same as the encoding vector used in map files for pdfTEX and dvips. If the encoding is not given,
all the glyphs of the afm output will be mapped to /.notdef. ttf2afm writes the output afm to standard
output. If we need to know which glyphs are available in the font, we can run ttf2afm without encoding
to get all glyph names. The resulting afm file can be used to generate a tfm one by applying afm2tfm.

To use a new TrueType font the minimal steps may look like below. We suppose that test.map is used.

ttf2afm -e 8r.enc -o times.afm times.ttf
afm2tfm times.afm -T 8r.enc
echo "times TimesNewRomanPSMT <8r.enc <times.ttf" >>test.map

There are a few limitations with TrueType fonts in comparison with Type 1 fonts:

a. The special effects SlantFont/ExtendFont cannot be used.
b. To subset a TrueType font, the font must be specified as re--encoded, therefore an encoding vector

must be given.
c. TrueType fonts coming with embedded pdf files are kept untouched; they are not replaced by local

ones.

The pdfTEX user manual

14

6 Formal syntax specification
This section formally specifies the pdfTEX specific extensions to the TEX macro programming language.
All primitives are prefixed by pdf except for \efcode, \lpcode, \rpcode, \leftmarginkern, and
\rightmarginkern. The general definitions and syntax rules follow after the list of primitives.

Integer registers

\pdfoutput (integer)
\pdfminorversion (integer)
\pdfcompresslevel (integer)
\pdfdecimaldigits (integer)
\pdfimageresolution (integer)
\pdfpkresolution (integer)
\pdftracingfonts (integer)
\pdfuniqueresname (integer)
\pdfadjustspacing (integer)
\pdfprotrudechars (integer)
\efcode 〈font〉 〈8-bit number〉 (integer)
\lpcode 〈font〉 〈8-bit number〉 (integer)
\rpcode 〈font〉 〈8-bit number〉 (integer)
\pdfforcepagebox (integer)
\pdfoptionalwaysusepdfpagebox (integer)
\pdfinclusionerrorlevel (integer)
\pdfoptionpdfinclusionerrorlevel (integer)
\pdfimagehicolor (integer)
\pdfimageapplygamma (integer)
\pdfgamma (integer)
\pdfimagegamma (integer)

Dimen registers

\pdfhorigin (dimen)
\pdfvorigin (dimen)
\pdfpagewidth (dimen)
\pdfpageheight (dimen)
\pdflinkmargin (dimen)
\pdfdestmargin (dimen)
\pdfthreadmargin (dimen)

Token registers

\pdfpagesattr (tokens)
\pdfpageattr (tokens)
\pdfpageresources (tokens)
\pdfpkmode (tokens)

Expandable commands

\pdftexrevision (expandable)
\pdftexbanner (expandable)

The pdfTEX user manual

15

\pdfcreationdate (expandable)
\pdfpageref 〈page number〉 (expandable)
\pdfxformname 〈object number〉 (expandable)
\pdffontname 〈font〉 (expandable)
\pdffontobjnum 〈font〉 (expandable)
\pdffontsize 〈font〉 (expandable)
\pdfincludechars 〈font〉 〈general text〉 (expandable)
\leftmarginkern 〈box number〉 (expandable)
\rightmarginkern 〈box number〉 (expandable)
\pdfescapestring 〈general text〉 (expandable)
\pdfescapename 〈general text〉 (expandable)
\pdfescapehex 〈general text〉 (expandable)
\pdfunescapehex 〈general text〉 (expandable)
\pdfuniformdeviate 〈number〉 (expandable)
\pdfnormaldeviate (expandable)
\pdfmdfivesum [file] 〈general text〉 (expandable)
\pdffilemoddate 〈general text〉 (expandable)
\pdffilesize 〈general text〉 (expandable)
\pdffiledump [offset 〈number〉] [length 〈number〉] 〈general text〉 (expandable)

Read--only integers

\pdftexversion (read--only integer)
\pdflastobj (read--only integer)
\pdflastxform (read--only integer)
\pdflastximage (read--only integer)
\pdflastximagepages (read--only integer)
\pdflastannot (read--only integer)
\pdflastxpos (read--only integer)
\pdflastypos (read--only integer)
\pdflastdemerits (read--only integer)
\pdfelapsedtime (read--only integer)
\pdfrandomseed (read--only integer)
\pdfshellescape (read--only integer)

General commands

\pdfobj 〈object type spec〉 (h, v, m)
\pdfrefobj 〈object number〉 (h, v, m)
\pdfxform [〈xform attr spec〉] 〈box number〉 (h, v, m)
\pdfrefxform 〈object number〉 (h, v, m)
\pdfximage [〈image attr spec〉] 〈general text〉 (h, v, m)
\pdfrefximage 〈object number〉 (h, v, m)
\pdfannot 〈annot type spec〉 (h, v, m)
\pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉 (h, m)
\pdfendlink (h, m)
\pdfoutline 〈outline spec〉 (h, v, m)
\pdfdest 〈dest spec〉 (h, v, m)
\pdfthread 〈thread spec〉 (h, v, m)
\pdfstartthread 〈thread spec〉 (v, m)
\pdfendthread (v, m)

The pdfTEX user manual

16

\pdfsavepos (h, v, m)
\pdfinfo 〈general text〉
\pdfcatalog 〈general text〉 [〈open-action spec〉]
\pdfnames 〈general text〉
\pdfmapfile 〈map spec〉
\pdfmapline 〈map spec〉
\pdffontattr 〈font〉 〈general text〉
\pdftrailer 〈general text〉
\pdffontexpand 〈font〉 〈expand spec〉
\vadjust [〈pre spec〉] 〈filler〉 { 〈vertical mode material〉 } (h, m)
\pdfliteral [direct] 〈general text〉 (h, v, m)
\special 〈pdfspecial spec〉
\pdfresettimer
\pdfsetrandomseed 〈number〉
\pdfnoligatures 〈font〉

General definitions and syntax rules

〈general text〉 → { 〈balanced text〉 }
〈attr spec〉 → attr 〈general text〉
〈resources spec〉 → resources 〈general text〉
〈rule spec〉 → (width | height | depth) 〈dimension〉 [〈rule spec〉]
〈object type spec〉 → reserveobjnum |

[useobjnum 〈number〉]
[stream [〈attr spec〉]] 〈object contents〉

〈annot type spec〉 → reserveobjnum |
[useobjnum 〈number〉] [〈rule spec〉] 〈general text〉

〈object contents〉 → 〈file spec〉 | 〈general text〉
〈xform attr spec〉 → [〈attr spec〉] [〈resources spec〉]
〈image attr spec〉 → [〈rule spec〉] [〈attr spec〉] [〈page spec〉] [〈colorspace spec〉] [〈pdf box spec〉]
〈outline spec〉 → [〈attr spec〉] 〈action spec〉 [count 〈number〉] 〈general text〉
〈action spec〉 → user 〈user-action spec〉 | goto 〈goto-action spec〉 |

thread 〈thread-action spec〉
〈user-action spec〉 → 〈general text〉
〈goto-action spec〉 → 〈numid〉 |

[〈file spec〉] 〈nameid〉 |
[〈file spec〉] [〈page spec〉] 〈general text〉 |
〈file spec〉 〈nameid〉 〈newwindow spec〉 |
〈file spec〉 [〈page spec〉] 〈general text〉 〈newwindow spec〉

〈thread-action spec〉 → [〈file spec〉] 〈numid〉 | [〈file spec〉] 〈nameid〉
〈open-action spec〉 → openaction 〈action spec〉
〈colorspace spec〉 → colorspace 〈number〉
〈pdf box spec〉 → mediabox | cropbox | bleedbox | trimbox | artbox
〈map spec〉 → { [〈map modifier〉] 〈balanced text〉 }
〈map modifier〉 → + | = | -
〈numid〉 → num 〈number〉
〈nameid〉 → name 〈general text〉
〈newwindow spec〉 → newwindow | nonewwindow
〈dest spec〉 → 〈numid〉 〈dest type〉 | 〈nameid〉 〈dest type〉
〈dest type〉 → xyz [zoom 〈number〉] | fitr 〈rule spec〉 |

fitbh | fitbv | fitb | fith | fitv | fit

The pdfTEX user manual

17

〈thread spec〉 → [〈rule spec〉] [〈attr spec〉] 〈id spec〉
〈id spec〉 → 〈numid〉 | 〈nameid〉
〈file spec〉 → file 〈general text〉
〈page spec〉 → page 〈number〉
〈expand spec〉 → 〈stretch〉 〈shrink〉 〈step〉 [autoexpand]
〈stretch〉 → 〈number〉
〈shrink〉 → 〈number〉
〈step〉 → 〈number〉
〈pre spec〉 → pre
〈pdfspecial spec〉 → { [〈pdfspecial id〉 [〈pdfspecial modifier〉]] 〈balanced text〉 }
〈pdfspecial id〉 → pdf: | PDF:
〈pdfspecial modifier〉 → direct:

A 〈general text〉 is expanded immediately, like \special in traditional TEX, unless explicitly mentioned
otherwise.

Some of the object and image related primitives can be prefixed by \immediate. More about that in the
next sections.

7 PDFTEX primitives
Here follows a short description of the primitives added by pdfTEX to the original TEX engine (other
extensions by MLTEX and encTEX are not listed). One way to learn more about how to use these new
primitives is to have a look at the file samplepdf.tex in the pdfTEX distribution.

Note that if the output is dvi then the pdfTEX specific dimension parameters are not used at all. However
some pdfTEX integer parameters can affect the dvi as well as pdf output (currently \pdfoutput and
\pdfadjustspacing).

General warning: many of these new primitives, for example \pdfdest and \pdfoutline, write their
arguments directly to the pdf output file (when producing pdf), as pdf string constants. This means
that you (or, more likely, the macros you write) must escape characters as necessary (namely \, (, and).
Otherwise, an invalid pdf file may result. The hyperref and Texinfo packages have code which may
serve as a starting point for implementing this, although it will certainly need to be adapted to any
particular situation.

7.1 Document setup

I \pdfoutput (integer)

This parameter specifies whether the output format should be dvi or pdf. A positive value means pdf
output, otherwise (default 0) one gets dvi output. This primitive is the only one that must be set to
produce pdf output (unless the commandline option -output-format=pdf is used); all other primitives
are optional. This parameter cannot be specified after shipping out the first page. In other words, if we
want pdf output, we have to set \pdfoutput before pdfTEX ships out the first page.

When pdfTEX starts complaining about specials, one can be rather sure that a macro package is not aware
of the pdf mode. A simple way of making macros aware of pdfTEX in pdf or dvi mode is:

\ifx\pdfoutput\undefined \csname newcount\endcsname\pdfoutput \fi
\ifcase\pdfoutput DVI CODE \else PDF CODE \fi

Using the ifpdf.sty file, which works with both LATEX and plain TEX, is a cleaner way of doing this.
Historically, the simple test \ifx\pdfoutput\undefined was defined; but nowadays, the pdfTEX
engine is used in distributions also for non-pdf formats (e. g. LATEX), so \pdfoutput may be defined even
when the output format is dvi.

The pdfTEX user manual

18

I \pdfminorversion (integer)

This primitive sets the pdf version of the generated file and the latest allowed pdf version of included
pdfs. E. g., \pdfminorversion=3 tells pdfTEX to set the pdf version to 1.3 and allows only included pdf
files with versions numbers up to 1.3. The default for \pdfminorversion is 4, producing files with pdf
version 1.4. If specified, this primitive must appear before any data is to be written to the generated pdf
file, so you should put it at the very start of your files. The command has been introduced in pdfTEX
1.30.0 as a shortened synonym of \pdfoptionpdfminorversion command, that is obsolete by now.

I \pdfcompresslevel (integer)

This integer parameter specifies the level of stream compression (text, in--line graphics, and embedded
png images (only if they are un- and re--compressed during the embedding process); all done by the zlib
library). Zero means no compression, 1 means fastest, 9 means best, 2..8 means something in between.
A value outside this range will be adjusted to the nearest meaningful value. This parameter is read each
time pdfTEX starts a stream. Setting \pdfcompresslevel=0 is great for pdf stream debugging.

I \pdfdecimaldigits (integer)

This integer parameter specifies the numeric accuracy of real coordinates as written to the pdf file. It gives
the maximal number of decimal digits after the decimal point. Valid values are in range 0..4. A higher
value means more precise output, but also results in a larger file size and more time to display or print.
In most cases the optimal value is 2. This parameter does not influence the precision of numbers used in
raw pdf code, like that used in \pdfliteral and annotation action specifications; also multiplication
items (e. g. scaling factors) are not affected and are always output with best precision. This parameter is
read when pdfTEX writes a real number to the pdf output.

When including huge METAPOST images using supp-pdf.tex, one can limit the accuracy to two digits
by typing: \twodigitMPoutput.

I \pdfhorigin (dimension)

This parameter can be used to set the horizontal offset the output box from the top left corner of the
page. A value of 1 inch corresponds to the normal TEX offset. This parameter is read when pdfTEX starts
shipping out a page to the pdf output.

For standard purposes, this parameter should always be kept at 1 true inch. If you want to shift text on
the page, use TEX’s own \hoffset primitive. To avoid surprises, after global magnification has been
changed by the \mag primitive, the \pdfhorigin parameter should still be 1 true inch, e. g. by typing
\pdfhorigin=1 true in after issuing the \mag command. Or, you can preadjust the \pdfhorigin
value before typing \mag, so that its value after the \mag command ends up at 1 true inch again.

I \pdfvorigin (dimension)

This parameter is the vertical companion of \pdfhorigin, and the notes above regarding \mag and
true dimensions apply. Also keep in mind that the TEX coordinate system starts in the top left corner
(downward), while pdf coordinates start at the bottom left corner (upward).

I \pdfpagewidth (dimension)

This dimension parameter specifies the page width of the pdf output (the screen, the paper, etc.). pdfTEX
reads this parameter when it starts shipping out a page. After magnification has been changed by the
\mag primitive, check that this parameter reflects the wished true page width.

If the value is set to zero, the page width is calculated as wbox being shipped out + 2 × (horigin + \hoffset).
When part of the page falls off the paper or screen, you can be rather sure that this parameter is set
wrong.

The pdfTEX user manual

19

I \pdfpageheight (dimension)

Similar to the previous item, this dimension parameter specifies the page height of the pdf output. If
set to zero, the page height will be calculated analogously to the above. After magnification has been
changed by the \mag primitive, check that this parameter reflects the wished true page height.

7.2 The document info and catalog

I \pdfinfo 〈general text〉

This primitive allows the user to add information to the document info section; if this information is
provided, it can be extracted, e. g. by the pdfinfo program, or by the Adobe Reader (version 7.0: menu
option File −→ Document Properties). The 〈general text〉 is a collection of key--value--pairs. The key
names are preceded by a /, and the values, being strings, are given between parentheses. All keys are
optional. Possible keys are /Author, /CreationDate (defaults to current date including time zone info),
/ModDate, /Creator (defaults to TeX), /Producer (defaults to pdfTeX-1.30.4 or pdfeTeX-1.30.4),
/Title, /Subject, and /Keywords.

/CreationDate and /ModDate are expressed in the form D:YYYYMMDDhhmmssTZ.., where YYYY is the
year, MM is the month, DD is the day, hh is the hour, mm is the minutes, ss is the seconds, and TZ.. is an
optional string denoting the time zone. An example of this format is shown below. For details please
refer to the pdf Reference.

Multiple appearances of \pdfinfo will be concatenated. In general, if a key is given more than once,
one may expect that the first appearance will be used. Be aware however, that this behaviour is viewer
dependent. Except expansion, pdfTEX does not perform any further operations on 〈general text〉 provided
by the user.

An example of the use of \pdfinfo is:

\pdfinfo
{ /Title (example.pdf)

/Creator (TeX)
/Producer (pdfeTeX 1.30.4)
/Author (Tom and Jerry)
/CreationDate (D:20050428154343+01’00’)
/ModDate (D:20050428155343+01’00’)
/Subject (Example)
/Keywords (mouse, cat) }

I \pdfcatalog 〈general text〉 [〈open-action spec〉]

Similar to the document info section is the document catalog, where keys are /URI, which provides the
base url of the document, and /PageMode, which determines how the pdf viewer displays the document
on startup. The possibilities for the latter are explained in Table 4:

value meaning

/UseNone neither outline nor thumbnails visible
/UseOutlines outline visible
/UseThumbs thumbnails visible
/FullScreen full--screen mode

Table 4 Supported /PageMode values.

In full--screen mode, there is no menu bar, window controls, nor any other window present. The default
setting is /UseNone.

The pdfTEX user manual

20

The 〈openaction〉 is the action provided when opening the document and is specified in the same way as
internal links, see section 7.9. Instead of using this method, one can also write the open action directly
into the catalog.

I \pdfnames 〈general text〉

This primitive inserts the 〈general text〉 to the /Names array. The text must conform to the specifications
as laid down in the pdf Reference Manual, otherwise the document can be invalid.

I \pdftrailer 〈general text〉

This command puts its argument text verbatim into the file trailer dictionary. The primitive has been
introduced in pdfTEX 1.11a.

7.3 Fonts

I \pdfpkresolution (integer)

This integer parameter specifies the default resolution of embedded pk fonts and is read when pdfTEX
downloads a pk font during finishing the pdf output. As bitmap fonts are still rendered poorly by some
pdf viewers, it is best to use Type 1 fonts when available.

I \pdffontexpand 〈font〉 〈stretch〉 〈shrink〉 〈step〉 [autoexpand]

This extension to TEX’s font definitions controls a pdfTEX automatism called font expansion. We describe
this by an example:

\font\somefont=sometfm at 10pt
\pdffontexpand\somefont 30 20 10 autoexpand
\pdfadjustspacing=2

The 30 20 10 means this: “hey TEX, when line breaking is going badly, you may stretch the glyphs in
this font as much as 3 % or shrink them by 2 %”. Because pdfTEX uses internal data structures with fixed
widths, each additional width also means an additional font. For practical reasons pdfTEX uses discrete
steps, in this example, 1 %. This means that for font sometfm up to 6 differently scaled alternatives may
be used. When no step is specified, 0.5 % steps are used.

Roughly spoken, the trick is as follows. Consider a text typeset in triple column mode. When TEX cannot
break a line in the appropriate way, the unbreakable parts of the word will stick into the margin. When
pdfTEX notes this, it will try to scale (shrink) the glyphs in that line using fixed steps, until the line fits.
When lines are too spacy, the opposite happens: pdfTEX starts scaling (stretching) the glyphs until the
white space gaps is acceptable. This glyph stretching and shrinking is called font expansion.

The additional expanded fonts get artificial names by adding the font expansion value to the tfmname
of the base font, e. g. sometfm+10 for 1 % stretch or sometfm-15 for 1.5 % shrink. If the autoexpand
option is not given, tfm files with these names and appropriate dimensions must be available. So, each
expanded variant of a font must have its own tfm file! Expanded tfm names like sometfm+10 must not
be mentioned in the map file (but the tfm name of the base font without expansion must be there). When
no tfm file can be found, pdfTEX will try to generate it by executing the script mktextfm, where available
and supported.

The font expansion is greatly simplified, if the autoexpand option is there. Then no expanded tfm file
versions are needed; instead, pdfTEX generates expanded copies of the unexpanded tfm data structures
and keeps them in its memory.

pdfTEX requires only unexpanded Type 1 font files for font expansion, from which all expanded font
versions are internally generated and included (subsetted) into the pdf output file. To enable font
expansion, don’t forget to set \pdfadjustspacing to a value greater than zero.

The pdfTEX user manual

21

The font expansion mechanism is inspired by an optimization first introduced by Prof. Hermann Zapf,
which in itself goes back to optimizations used in the early days of typesetting: use different glyphs to
optimize the grayness of a page. So, there are many, slightly different a’s, e’s, etc. For practical reasons
pdfTEX does not use such huge glyph collections; it uses horizontal scaling instead. This is sub--optimal,
and for many fonts, possibly offensive to the design. But, when using pdf, it’s not illogical: pdf viewers
use so--called Multiple Master fonts when no fonts are embedded and/or can be found on the target
system. Such fonts are designed to adapt their design to the different scaling parameters. It is up to the
user to determine to what extent mixing slightly remastered fonts can be used without violating the
design. Think of an O: when geometrically stretched, the vertical part of the glyph becomes thicker, and
looks incompatible with an unscaled original. With a multiple master situation, one can stretch while
keeping this thickness compatible.

I \pdfadjustspacing (integer)

This primitive provides a switch for enabling font expansion. By default, \pdfadjustspacing is set
to 0; then font expansion is disabled, so that the pdfTEX output is identical to that from the original TEX
engine.

Font expansion can be activated in two modes. When \pdfadjustspacing is set to 1, font expansion is
applied after TEX’s normal paragraph breaking routines have broken the paragraph into lines. In this
case, line breaks are identical to standard TEX behaviour.

When set to 2, the width changes that are the result of stretching and shrinking are taken into account
while the paragraph is broken into lines. In this case, line breaks are likely to be different from those of
standard TEX. In fact, paragraphs may even become longer or shorter.

Both alternatives require a collection of tfm files that are related to the 〈stretch〉 and 〈shrink〉 settings for
the \pdffontexpand primitive, unless this is given with the autoexpand option.

I \efcode 〈font〉 (integer)

We didn’t yet tell the whole story. One can imagine that some glyphs are visually more sensitive to stretch-
ing or shrinking than others. Then the \efcode primitive can be used to influence the expandability of
individual glyphs within a given font, as a factor to the expansion setting from the \pdffontexpand
primitive. The syntax is similar to \sfcode (but with the 〈font〉 required), and it defaults to 1000, meaning
100 % expandability. The given integer value is clipped to the range 0..1000, corresponding to a usable
expandability range of 0..100 %. Example:

\efcode\somefont‘A=800
\efcode\somefont‘O=0

Here an A may stretch or shrink only by 80 % of the current expansion value for that font, and expansion
for the O is disabled. The actual expansion is still bound to the steps as defined by \pdffontexpand
primitive, otherwise one would end up with more possible font inclusions than would be comfortable.

I \pdfprotrudechars (integer)

Yet another way of optimizing paragraph breaking is to let certain characters move into the margin
(‘character protrusion’). When \pdfprotrudechars=1, the glyphs qualified as such will make this
move when applicable, without changing the line-breaking. When \pdfprotrudechars=2 (or greater),
character protrusion will be taken into account while considering breakpoints, so line-breaking might
be changed. This qualification and the amount of shift are set by the primitives \rpcode and \lpcode.
Character protrusion is disabled when \pdfprotrudechars=0 (or negative).

If you want to protrude some item other than a character (e. g. a \hbox), you can do so by padding the
item with an invisible zero--width character, for which protrusion is activated.

I \rpcode 〈font〉 (integer)

The amount that a character from a given font may shift into the right margin (‘character protrusion’) is set
by the primitive \rpcode. The protrusion distance is the integer value given to \rpcode, multiplied with

The pdfTEX user manual

22

0.001 em from the current font. The given integer value is clipped to the range −1000..1000, corresponding
to a usable protrusion range of −1 em..1 em. Example:

\rpcode\somefont‘,=200
\rpcode\somefont‘-=150

Here the comma may shift by 0.2 em into the margin and the hyphen by 0.15 em. All these small bits and
pieces will help pdfTEX to give you better paragraphs (use \rpcode judiciously; don’t overdo it).

Remark: old versions of pdfTEX use the character width as measure. This was changed to a proportion of
the em-width after Hàn Thế Thành finished his master’s thesis.

I \lpcode 〈font〉 (integer)

This is similar to \rpcode, but affects the amount by which characters may protrude into the left margin.
Also here the given integer value is clipped to the range −1000..1000.

I \leftmarginkern 〈box number〉 (expandable)

The \leftmarginkern 〈box number〉 primitive expands to the width of the margin kern at the left side
of the horizontal list stored in \box 〈box number〉 . The expansion string includes the unit pt. E. g., when
the left margin kern of \box0 amounts to −10 pt, \leftmarginkern0 will expand to -10pt. A similar
primitive \rightmarginkern exists for the right margin. The primitive has been introduced in pdfTEX
1.30.0.

These are auxiliary primitives to make character protrusion more versatile. When using the TEX primitive
\unhbox or \unhcopy, the margin kerns at either end of the unpackaged hbox will be removed (e. g.
to avoid weird effects if several hboxes are unpackaged behind each other into the same horizontal
list). These \unhbox or \unhcopy are often used together with \vsplit for dis- and re--assembling of
paragraphs, e. g. to add line numbers. Paragraphs treated like this do not show character protrusion by
default, as the margin kerns have been removed during the unpackaging process.

The \leftmarginkern and \rightmarginkern primitives allow to access the margin kerns and store
them away before unpackaging the hbox. E. g. the following code snipplet restores margin kerning of
a horizontal list stored in \box\testline, resulting in a hbox with proper margin kerning (which is
then done by ordinary kerns).

\dimen0=\leftmarginkern\testline
\dimen1=\rightmarginkern\testline
\hbox to\hsize{\kern\dimen0\unhcopy\testline\kern\dimen1}

I \rightmarginkern 〈box number〉 (expandable)

The \rightmarginkern 〈box number〉 primitive expands to the width of the margin kern at the right
side of the horizontal list stored in \box 〈box number〉 . See \leftmarginkern for more details. The
primitive has been introduced in pdfTEX 1.30.0.

I \pdffontattr 〈font〉 〈general text〉

This primitive inserts the 〈general text〉 to the /Font dictionary. The text must conform to the specifica-
tions as laid down in the pdf Reference Manual, otherwise the document can be invalid.

I \pdffontname 〈font〉 (expandable)

In pdf files produced by pdfTEX one can recognize a font resource by the prefix /F followed by a number,
for instance /F12 or /F54. For a given TEX 〈font〉 , this primitive expands to the number from the corre-
sponding font resource name. E. g., if /F12 corresponds to some TEX font \foo, the \pdffontname\foo
expands to the number 12.

In the current implementation, when \pdfuniqueresname (see below) is set to a positive value, the
\pdffontname still returns only the number from the font resource name, but not the appended random
string.

The pdfTEX user manual

23

I \pdffontobjnum 〈font〉 (expandable)

This command is similar to \pdffontname, but it returns the pdf object number of the font dictionary
instead of the number from the font resource name. E. g., if the font dictionary (/Type /Font) in pdf
object 3 corresponds to some TEX font \foo, the \pdffontobjnum\foo gives the number 3.

Use of \pdffontname and \pdffontobjnum allows users full access to all the font resources used in the
document.

I \pdffontsize 〈font〉 (expandable)

This primitive expands to the font size of the given font, with unit pt. E. g., when using the plain TEX
macro package, the call \pdffontsize\tenrm expands to 10.0pt.

I \pdfincludechars 〈font〉 〈general text〉

This command causes pdfTEX to treat the characters in 〈general text〉 as if they were used with 〈font〉,
which means that the corresponding glyphs will be embedded into the font resources in the pdf output.
Nothing is appended to the list being built.

I \pdfuniqueresname (integer)

When this primitive is assigned a positive number, pdf resource names will be made reasonably unique
by appending a random string consisting of six ascii characters.

I \pdfmapfile 〈map spec〉

This primitive is used for managing font map files, to make them known to pdfTEX so that they can
be read in. If no \pdfmapfile primitive is given, the default map file pdftex.map will be read in by
pdfTEX.

Normally there is no need for the pdfTEX user to bother about the \pdfmapfile primitive, as the main
TEX distributions provide nice helper tools that automatically assemble the default font map file. One
prominent tool example is the script updmap coming with teTEX.

The operation mode of the \pdfmapfile primitive is selected by a flag letter (+, =, -, or omitted). This
flag defines how a map file is going to be handled, and how a collision between an existing map entry
and a newer one is resolved; either ignoring a later entry, or replacing or deleting an existing entry. But in
any case, map entries of fonts already in use are kept untouched. The companion primitive \pdfmapline
allows something similar, only that a single map line for one font (instead of a map file name) is given as
argument. Here are two examples:

\pdfmapfile{+myfont.map}
\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

The general map handling function is that map items, which are either map file names or single font map
lines (in case of the \pdfmapline primitive) are put into an auxiliary list of pending map items. During
the next page shipout, this list is processed and all pending map items are sequentially scanned for their
map entries, and an internal map entry database is updated, using one of the modes described below.
Then the list of pending map items is cleared. All \pdfmapfile and \pdfmapline commands can also
be given after shipout of the first page.

If your map file isn’t in the current directory (or a standard system directory), you will need to set the
TEXFONTMAPS variable (in Web2c) or give an explicit path so that it will be found.

\pdfmapfile{foo.map} (+/=/- flags omitted) clears the list of pending map items and starts a new
list with the only pending file foo.map. When the file foo.map is scanned, duplicate map entries are
ignored and a warning is issued. When this command is given at the beginning of a TEX run, the default
map file pdftex.map will not be read in. This is compatible with the former behaviour.

If you want to add support for a new font through an additional font map file while keeping all the existing
mappings, don’t use this version of command, but instead type either \pdfmapfile{+myfont.map} or
\pdfmapfile{=myfont.map}, as described below.

The pdfTEX user manual

24

\pdfmapfile {+foo.map} puts the file foo.map into the list of pending map items. When the file
foo.map is scanned, duplicate map entries are ignored and a warning is issued. This is compatible with
the former behaviour.

\pdfmapfile {=foo.map} puts the file foo.map into the list of pending map items. When the file
foo.map is scanned, matching map entries in the database are replaced by new entries from foo.map.

\pdfmapfile {-foo.map} puts the file foo.map into the list of pending map items. When the file
foo.map is scanned, matching map entries are deleted from the database.

\pdfmapfile {} clears the list of pending map items. It does not affect map entries already registered
into the database. This is compatible with the former behaviour. When this command is given at the
beginning of a pdfTEX run, the default map file pdftex.map will not be read in. This may help with
quick program startup, if no fonts are required.

If you want to use a base map file name other than pdftex.map, or change its processing options through
a pdfTEX format, you can do this by appending the \pdfmapfile command to the \everyjob{} token
list for the -ini run, e. g.:

\everyjob\expandafter{\the\everyjob\pdfmapfile{+myspecial.map}}
\dump

I \pdfmapline 〈map spec〉

Similar to \pdfmapfile, but here you can give a single map line (like the ones in map files) as an
argument. The modifiers (+-=) have the same effect as with \pdfmapfile; see also the description above.
Example:

\pdfmapline{+ptmri8r Times-Italic <8r.enc <ptmri8a.pfb}

This primitive (especially the \pdfmapline{=...} variant) allows quick checks of a new font map entry,
before writing it into a map file.

\pdfmapline {} clears the list of pending map items a similar way as \pdfmapfile{} does. The
primitive has been introduced in pdfTEX 1.20a.

I \pdftracingfonts (integer)

This integer parameter specifies the level of verbosity for info about expanded fonts given in the log,
e. g. when \tracingoutput=1. If \pdftracingfonts=0, which is the default, the log shows the actual
non-zero signed expansion value for each expanded letter within brackets, e. g.:

...\xivtt (+20) t

If \pdftracingfonts=1, also the name of the tfm file is listed, together with the font size, e. g.:

...\xivtt (cmtt10+20@14.0pt) t

Setting \pdftracingfonts to a value other than 0 or 1 is not recommended, to allow future extensions.
The primitive has been introduced in pdfTEX 1.30.0.

I \pdfmovechars (integer)

Since pdfTEX version 1.30.0 the primitive \pdfmovechars is obsolete, and its use merely leads to a warn-
ing. (This primitive specified whether pdfTEX should try to move characters in range 0..31 to higher slots;
its sole purpose was to remedy certain bugs of early pdf viewers.)

I \pdfpkmode (tokens)

The \pdfpkmode is a token register that sets the METAFONT mode for pixel font generation. The contents
of this register is dumped into the format, so one can (optionally) preset it e. g. in pdftexconfig.tex.
The primitive has been introduced in pdfTEX 1.30.0.

I \pdfnoligatures 〈font〉

This diables all ligatures in the loaded font 〈font〉 . The primitive has been introduced in pdfTEX 1.30.0.

The pdfTEX user manual

25

7.4 PDF objects

I \pdfobj 〈object type spec〉

This command creates a raw pdf object that is written to the pdf file as 1 0 obj . . . endobj. The object
is written to pdf output as provided by the user. When 〈object type spec〉 is not given, pdfTEX does not
any longer create a dictionary object with contents 〈general text〉 , as it was in the past.

When however 〈object type spec〉 is given as 〈attr spec〉 stream , the object will be created as a stream
with contents 〈general text〉 and additional attributes in 〈attr spec〉.

When 〈object type spec〉 is given as 〈attr spec〉 file , then the 〈general text〉 will be treated as a file name
and its contents will be copied into the stream contents.

When 〈object type spec〉 is given as reserveobjnum, just a new object number is reserved. The number
of the reserved object is accessible via \pdflastobj. The object can later be filled with contents by
\pdfobj useobjnum 〈number〉 { 〈balanced text〉 }. But the reserved object number can already be be
used before by other objects, which provides a forward--referencing mechanism.

The object is kept in memory and will be written to the pdf output only when its number is referred to by
\pdfrefobj or when \pdfobj is preceded by \immediate. Nothing is appended to the list being built.
The number of the most recently created object is accessible via \pdflastobj.

I \pdflastobj (read--only integer)

This command returns the object number of the last object created by \pdfobj.

I \pdfrefobj 〈object number〉

This command appends a whatsit node to the list being built. When the whatsit node is searched at
shipout time, pdfTEX will write the object 〈object number〉 to the pdf output if it has not been written yet.

7.5 Page and pages objects

I \pdfpagesattr (tokens)

pdfTEX expands this token list when it finishes the pdf output and adds the resulting character stream to
the root Pages object. When defined, these are applied to all pages in the document. Some examples of
attributes are /MediaBox, the rectangle specifying the natural size of the page, /CropBox, the rectangle
specifying the region of the page being displayed and printed, and /Rotate, the number of degrees (in
multiples of 90) the page should be rotated clockwise when it is displayed or printed.

\pdfpagesattr
{ /Rotate 90 % rotate all pages by 90 degrees

/CropBox [0 0 612 792] } % the crop size of all pages (in bp)

I \pdfpageattr (tokens)

This is similar to \pdfpagesattr, but has priority over it. It can be used to override any attribute given
by \pdfpagesattr for individual pages. The token list is expanded when pdfTEX ships out a page. The
contents are added to the attributes of the current page.

I \pdfpageref 〈page number〉 (expandable)

This primitive expands to the number of the page object that contains the dictionary for page 〈page
number〉 . If the page 〈page number〉 does not exist, a warning will be issued, a fresh unused pdf object
will be generated, and \pdfpageref will expand to that object number.

E. g., if the dictionary for page 5 of the TEX document is contained in pdf object no. 18, \pdfpageref5
expands to the number 18.

The pdfTEX user manual

26

7.6 Form XObjects

The next three primitives support a pdf feature called ‘object reuse’ in pdfTEX. The idea is first to create
a ‘form XObject’ in pdf. The content of this object corresponds to the content of a TEX box; it can contain
pictures and references to other form XObjects as well. After creation, the form XObject can be used
multiple times by simply referring to its object number. This feature can be useful for large documents
with many similar elements, as it can reduce the duplication of identical objects.

These commands behave similarly to \pdfobj, \pdfrefobj and \pdflastobj, but instead of taking
raw pdf code, they handle text typeset by TEX.

I \pdfxform [〈attr spec〉] [〈resources spec〉] 〈box number〉

This command creates a form XObject corresponding to the contents of the box 〈box number〉 . The box
can contain other raw objects, form XObjects, or images as well. It can however not contain annotations
because they are laid out on a separate layer, are positioned absolutely, and have dedicated housekeeping.
\pdfxform makes the box void, as \box does.

When 〈attr spec〉 is given, the text will be written as additional attribute into the form XObject dictionary.
The 〈resources spec〉 is similar, but the text will be added to the resources dictionary of the form XObject.
The text given by 〈attr spec〉 or 〈resources spec〉 is written before other entries of the form dictionary
and/or the resources dictionary and takes priority over later ones.

I \pdfrefxform 〈object number〉

The form XObject is kept in memory and will be written to the pdf output only when its object number
is referred to by \pdfrefxform or when \pdfxform is preceded by \immediate. Nothing is append-
ed to the list being built. The number of the most recently created form XObject is accessible via
\pdflastxform.

When issued, \pdfrefxform appends a whatsit node to the list being built. When the whatsit node is
searched at shipout time, pdfTEX will write the form 〈object number〉 to the pdf output if it is not written
yet.

I \pdflastxform (read--only integer)

The object number of the most recently created form XObject is accessible via \pdflastxform.

As said, this feature can be used for reusing information. This mechanism also plays a role in typesetting
fill--in forms. Such widgets sometimes depends on visuals that show up on user request, but are hidden
otherwise.

I \pdfxformname 〈object number〉 (expandable)

In pdf files produced by pdfTEX one can recognize a form Xobject by the prefix /Fm followed by a number,
for instance /Fm2. For a given form XObject number, this primitive expands to the number in the
corresponding form XObject name. E. g., if /Fm2 corresponds to some form XObject with object number 7,
the \pdfxformname7 expands to the number 2. The primitive has been introduced in pdfTEX 1.30.0.

7.7 Graphics inclusion
pdf provides a mechanism for embedding graphic and textual objects: form XObjects. In pdfTEX this
mechanism is accessed by means of \pdfxform, \pdflastxform and \pdfrefxform. A special kind of
XObjects are bitmap graphics and for manipulating them similar commands are provided.

I \pdfximage [〈rule spec〉] [〈attr spec〉] [〈page spec〉] [〈colorspace spec〉] [〈pdf box spec〉] 〈gener-
al text〉

This command creates an image object. The dimensions of the image can be controlled via 〈rule spec〉.
The default values are zero for depth and ‘running’ for height and width. If all of them are given, the

The pdfTEX user manual

27

image will be scaled to fit the specified values. If some (but not all) are given, the rest will be set to
a value corresponding to the remaining ones so as to make the image size to yield the same proportion of
width : (height + depth) as the original image size, where depth is treated as zero. If none are given then
the image will take its natural size.

An image inserted at its natural size often has a resolution of \pdfimageresolution (see below) given
in dots per inch in the output file, but some images may contain data specifying the image resolution,
and in such a case the image will be scaled to the correct resolution. The dimensions of an image can be
accessed by enclosing the \pdfrefximage command to a box and checking the dimensions of the box:

\setbox0=\hbox{\pdfximage{somefile.png}\pdfrefximage\pdflastximage}

Now we can use \wd0 and \ht0 to question the natural size of the image as determined by pdfTEX. When
dimensions are specified before the {somefile.png}, the graphic is scaled to fit these. Note that, unlike
the e. g. \input primitive, the filename is supplied between braces.

The image type is specified by the extension of the given file name: .png stands for png image, .jpg for
jpeg, and .pdf for pdf file. But once pdfTEX has opened the file, it checks the file type first by looking
to the magic number at the file start, which gets precedence over the file name extension. This gives
a certain degree of fault tolerance, if the file name extension is stated wrongly.

Similarly to \pdfxform, the optional text given by 〈attr spec〉will be written as additional attributes of
the image before other keys of the image dictionary. One should be aware, that slightly different type of
PDF object is created while including png or jpeg bitmaps and pdf images.

While working with pdf image, 〈page spec〉 allows to decide which page of the document is to be included.
Starting from pdfTEX 1.11 one may also decide which pdf page box of the image is to be treated as a final
bounding box. If 〈pdf box spec〉 is present, overrides default behaviour specified by \pdfforcepagebox
parameter. Both options are irrelevant for non--pdf inclusions.

Starting from pdfTEX 1.21, \pdfximage command supports colorspace keyword followed by an object
number (user--defined colorspace for the image being included). This feature works for jpeg images only.
pngs are rgb palettes and pdf images have always self--contained color space information.

I \pdfrefximage 〈integer〉

The image is kept in memory and will be written to the pdf output only when its number is referred to
by \pdfrefximage or \pdfximage is preceded by \immediate. Nothing is appended to the list being
built.

\pdfrefximage appends a whatsit node to the list being built. When the whatsit node is searched at
shipout time, pdfTEX will write the image with number 〈integer〉 to the pdf output if it has not been
written yet.

I \pdflastximage (read--only integer)

The number of the most recently created XObject image is accessible via \pdflastximage.

I \pdflastximagepages (read--only integer)

This read--only register returns the highest page number from a file previously accessed via the
\pdfximage command. This is useful only for pdf files; it always returns 1 for png or jpeg files.

I \pdfimageresolution (integer)

The integer \pdfimageresolution parameter (unit: dots per inch, dpi) is a last resort value, used only
for bitmap (jpeg, png) images, but not for pdfs. The priorities are as follows: Often one image dimension
(width or height) is stated explicitely in the TEX file. Then the image is properly scaled so that the
aspect ratio is kept. If both image dimensions are given, the image will be stretched accordingly, whereby
the aspect ratio might get distorted. Only if no image dimension is given in the TEX file, the image size
will be calculated from its width and height in pixels, using the x and y resolution values normally

The pdfTEX user manual

28

contained in the image file. If one of these resolution values is missing or weird (either < 0 or > 65535),
the \pdfimageresolution value will be used for both x and y resolution, when calculating the image
size. And if the \pdfimageresolution is zero, finally a default resolution of 72 dpi would be taken.
The \pdfimageresolution is read when pdfTEX creates an image via \pdfximage. The given value is
clipped to the range 0..65535 [dpi].

Currently this parameter is used particularily for calculating the dimensions of jpeg images in exif format
(unless at least one dimension is stated explicitely); the resolution values coming with exif files are
currently ignored.

I \pdfforcepagebox (integer)

When pdf files are included, the command \pdfximage allows the selection of which pdf page box to
use in the optional field 〈image attr spec〉. The integer primitive \pdfforcepagebox allows to globally
override this choice by giving them one of the following values: (1) media box, (2) crop box, (3) bleed
box, (4) trim box, and (5) artbox. The command is available starting from pdfTEX 1.30.0, as a shortened
synonym of obsolete \pdfoptionalwaysusepdfpagebox instruction.

I \pdfinclusionerrorlevel (integer)

This controls the behaviour of pdfTEX when a pdf file is included that has a newer version than
the one specified by this primitive: If it is set to 0, pdfTEX gives only a warning; if it’s 1, pdfTEX
raises an error. The command has been introduced in pdfTEX 1.30.0 as a shortened synonym of
\pdfoptionpdfinclusionerrorlevel, that is now obsolete.

I \pdfimagehicolor (integer)

This primitive, when set to 1, enables embedding of png images with 16 bit wide color channels at their
full color resolution. As such an embedding mode is defined only from pdf version 1.5 onwards, the
\pdfimagehicolor functionality is automatically disabled in pdfTEX if \pdfminorversion < 5; then
each 16 bit color channel is reduced to a width of 8 bit by stripping the lower 8 bits before embedding. The
same stripping happens when \pdfimagehicolor is set to 0. For \pdfminorversion ≥ 5 the default
value of \pdfimagehicolor is 1. If specified, the parameter must appear before any data is written to
the pdf output. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfimageapplygamma (integer)

This primitive, when set to 1, enables gamma correction while embedding png images, taking the values
of the primitives \pdfgamma as well as the gamma value embedded in the png image into account. When
\pdfimageapplygamma is set to 0, no gamma correction is performed. If specified, the parameter must
appear before any data is written to the pdf output. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfgamma (integer)

This primitive defines the ‘device gamma’ for pdfTEX. Values are in promilles (same as for \mag). The
default value of this primitive is 1000, defining a device gamma value of 1.0.

When \pdfimageapplygamma is set to 1, then whenever a png image is included, pdfTEX applies
a gamma correction. This correction is based on the value of the \pdfgamma primitive and the ‘assumed
device gamma’ that is derived from the value embedded in the actual image. If no embedded value
can be found in the png image, then the value of \pdfimagegamma is used instead. If specified, the
parameter must appear before any data is written to the pdf output. The primitive has been introduced
in pdfTEX 1.30.0.

I \pdfimagegamma (integer)

This primitive gives a default ‘assumed gamma’ value for png images. Values are in promilles (same as
for \pdfamma). The default value of this primitive is 2200, implying an assumed gamma value of 2.2.

When pdfTEX is applying gamma corrections, images that do not have an embedded ‘assumed gamma’
value are assumed to have been created for a device with a gamma of 2.2. Experiments show that this

The pdfTEX user manual

29

default setting is correct for a large number of images; however, if your images come out too dark, you
probably want to set \pdfimagegamma to a lower value, like 1000. If specified, the parameter must
appear before any data is written to the pdf output. The primitive has been introduced in pdfTEX 1.30.0.

7.8 Annotations
pdf 1.4 provides four basic kinds of annotations:

• hyperlinks, general navigation
• text clips (notes)
• movies
• sound fragments

The first type differs from the other three in that there is a designated area involved on which one can
click, or when moved over some action occurs. pdfTEX is able to calculate this area, as we will see later.
All annotations can be supported using the next two general annotation primitives.

I \pdfannot 〈annot type spec〉

This command appends a whatsit node corresponding to an annotation to the list being built. The
dimensions of the annotation can be controlled via the 〈rule spec〉 . The default values are running
for all width, height and depth. When an annotation is written out, running dimensions will take the
corresponding values from the box containing the whatsit node representing the annotation. The 〈general
text〉 is inserted as raw pdf code to the contents of annotation. The annotation is written out only if the
corresponding whatsit node is searched at shipout time.

I \pdflastannot (read--only integer)

This primitive returns the object number of the last annotation created by \pdfannot. These two
primitives allow users to create any annotation that cannot be created by \pdfstartlink (see below).

7.9 Destinations and links
The first type of annotation, mentioned above, is implemented by three primitives. The first one is used
to define a specific location as being referred to. This location is tied to the page, not the exact location on
the page. The main reason for this is that pdf maintains a dedicated list of these annotations —and some
more when optimized— for the sole purpose of speed.

I \pdfdest 〈dest spec〉

This primitive appends a whatsit node which establishes a destination for links and bookmark outlines;
the link is identified by either a number or a symbolic name, and the way the viewer is to display the
page must be specified in 〈dest type〉, which must be one of those mentioned in table 5.

keyword meaning

fit fit the page in the window
fith fit the width of the page
fitv fit the height of the page
fitb fit the ‘Bounding Box’ of the page
fitbh fit the width of ‘Bounding Box’ of the page
fitbv fit the height of ‘Bounding Box’ of the page
xyz goto the current position (see below)

Table 5 Options for display
of outline and destinations.

The pdfTEX user manual

30

The specification xyz can optionally be followed by zoom 〈integer〉 to provide a fixed zoom--in. The 〈in-
teger〉 is processed like TEX magnification, i. e. 1000 is the normal page view. When zoom 〈integer〉 is
given, the zoom factor changes to 0.001 of the 〈integer〉 value, otherwise the current zoom factor is kept
unchanged.

The destination is written out only if the corresponding whatsit node is searched at shipout time.

I \pdfstartlink [〈rule spec〉] [〈attr spec〉] 〈action spec〉

This primitive is used along with \pdfendlink and appends a whatsit node corresponding to the start
of a hyperlink. The whatsit node representing the end of the hyperlink is created by \pdfendlink.
The dimensions of the link are handled in the similar way as in \pdfannot. Both \pdfstartlink and
\pdfendlink must be in the same level of box nesting. A hyperlink with running width can be multi--
line or even multi--page, in which case all horizontal boxes with the same nesting level as the boxes
containing \pdfstartlink and \pdfendlink will be treated as part of the hyperlink. The hyperlink is
written out only if the corresponding whatsit node is searched at shipout time.

Additional attributes, which are explained in great detail in the pdf Reference Manual, can be given
via 〈attr spec〉. Typically, the attributes specify the color and thickness of any border around the link.
Thus /C [0.9 0 0] /Border [0 0 2] specifies a color (in rgb) of dark red, and a border thickness of
2 points.

While all graphics and text in a pdf document have relative positions, annotations have internally hard--
coded absolute positions. Again this is for the sake of speed optimization. The main disadvantage is that
these annotations do not obey transformations issued by \pdfliteral’s.

The 〈action spec〉 specifies the action that should be performed when the hyperlink is activated while
the 〈user-action spec〉 performs a user--defined action. A typical use of the latter is to specify a url, like
/S /URI /URI (http://www.tug.org/), or a named action like /S /Named /N /NextPage.

A 〈goto-action spec〉 performs a GoTo action. Here 〈numid〉 and 〈nameid〉 specify the destination iden-
tifier (see below). The 〈page spec〉 specifies the page number of the destination, in this case the zoom
factor is given by 〈general text〉. A destination can be performed in another pdf file by specifying 〈file
spec〉, in which case 〈newwindow spec〉 specifies whether the file should be opened in a new window.
A 〈file spec〉 can be either a (string) or a dictionary. The default behaviour of the 〈newwindow
spec〉 depends on the browser setting.

A 〈thread-action spec〉 performs an article thread reading. The thread identifier is similar to the destina-
tion identifier. A thread can be performed in another pdf file by specifying a 〈file spec〉.

I \pdfendlink

This primitive ends a link started with \pdfstartlink. All text between \pdfstartlink and
\pdfendlink will be treated as part of this link. pdfTEX may break the result across lines (or pages), in
which case it will make several links with the same content.

I \pdflinkmargin (dimension)

This dimension parameter specifies the margin of the box representing a hyperlink and is read when
a page containing hyperlinks is shipped out.

I \pdfdestmargin (dimension)

Margin added to the dimensions of the rectangle around the destinations.

7.10 Bookmarks

I \pdfoutline [〈attr spec〉] 〈action spec〉 [count 〈integer〉] 〈general text〉

This primitive creates an outline (or bookmark) entry. The first parameter specifies the action to be
taken, and is the same as that allowed for \pdfstartlink. The 〈count〉 specifies the number of direct

The pdfTEX user manual

31

subentries under this entry; specify 0 or omit it if this entry has no subentries. If the number is negative,
then all subentries will be closed and the absolute value of this number specifies the number of subentries.
The 〈text〉 is what will be shown in the outline window. Note that this is limited to characters in the pdf
Document Encoding vector. The outline is written to the pdf output immediately.

7.11 Article threads

I \pdfthread [〈rule spec〉] [〈attr spec〉] 〈id spec〉

Defines a bead within an article thread. Thread beads with same identifiers (spread across the document)
will be joined together.

I \pdftstarthread [〈rule spec〉] [〈attr spec〉] 〈id spec〉

This uses the same syntax as \pdfthread, apart that it must be followed by a \pdfendthread.
\pdfstartthread and the corresponding \pdfendthread must end up in vboxes with the same nest-
ing level; all vboxes between them will be added into the thread. Note that during output runtime if
there are other newly created boxes which have the same nesting level as the vbox/vboxes containing
\pdfstartthread and \pdfendthread, they will be also added into the thread, which is probably not
what you want. To avoid such unconsidered behaviour, it’s often enough to wrap boxes that shouldn’t
belong to the thread by a box to change their box nesting level.

I \pdfendthread

This ends an article thread started before by \pdfstartthread.

I \pdfthreadmargin (dimension)

Specifies a margin to be added to the dimensions of a bead within an article thread.

7.12 Literals and specials

I \pdfliteral [direct] 〈general text〉

Like \special in normal TEX, this command inserts raw pdf code into the output. This allows support
of color and text transformation. This primitive is heavily used in the METAPOST inclusion macros.
Normally pdfTEX ends a text section in the pdf output and resets the transformation matrix before
inserting 〈general text〉, however this can be turned off by giving the optional keyword direct . This
command appends a whatsit node to the list being built. 〈general text〉 is expanded when the whatsit
node is created and not when it is shipped out, as with \special.

I \special {pdf: 〈text〉 }

This is equivalent to \pdfliteral { 〈text〉 }.

I \special {pdf:direct: 〈text〉 }

This is equivalent to \pdfliteral direct { 〈text〉 }.

7.13 Strings

I \pdfescapestring 〈general text〉

Starting from version 1.30.0, pdfTEX provides a mechanism for converting a general text into pdf string.
Many characters that may be needed inside such a text (especially parenthesis), have a special meaning
inside a pdf string object and thus, can’t be used literally. The primitive replaces each special pdf character
by its literal representation by inserting a backslash before that character. Some characters (e. g.space) are
also converted into 3--digit octal number. In example, \pdfescapestring{Text (1)} will be expanded

The pdfTEX user manual

32

to Text\040\(1\). This ensures a literal interpretation of the text by the pdf viewer. The primitive has
been introduced in pdfTEX 1.30.0.

I \pdfescapename 〈general text〉

In analogy to \pdfescapestring, \pdfescapename replaces each special pdf character inside the gener-
al text by its hexadecimal representation preceded by # character. This ensures the proper interpretation
of the text if used as a pdf name object. In example, Text (1) will be replaced by Text#20#281#29.
The primitive has been introduced in pdfTEX 1.30.0.

I \pdfescapehex 〈general text〉

This command converts each character of 〈general text〉 into its hexadecimal representation. Each charac-
ter of the argument becomes a pair of hexadecimal digits. The primitive has been introduced in pdfTEX
1.30.0.

I \pdfunescapehex 〈general text〉

This command treats each character pair of 〈general text〉 as a hexadecimal number and returns an ascii
character of this code. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfmdfivesum 〈general text〉 (expandable)

This command expands to the md5 of 〈general text〉 in uppercase hexadecimal format (same as
\pdfescapehex). The primitive has been introduced in pdfTEX 1.30.0.

7.14 Timekeeping

I \pdfelapsedtime (read--only integer)

The command expands to a number that represents the time elapsed from the moment of run start. The
elapsed time is returned in ‘scaled seconds’, that means seconds divided by 65536, e. g. pdfTEX has run
for 3803347 ‘scaled seconds’ when this paragraph was typeset. Obviously, the command will never return
a value greater than the highest number available in TEX: if the time exceeds 32767 seconds, the constant
value 231

− 1 will be returned. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfresettimer

The command resets the internal timer so that \pdfelapsedtime starts returning micro--time from 0
again. The primitive has been introduced in pdfTEX 1.30.0.

7.15 Random numbers

I \pdfuniformdeviate 〈number〉 (expandable)

The commands generates a uniformly distributed random integer value between 0 (inclusive) and 〈num-
ber〉 (exclusive). This primitive expands to a list of tokens. The primitive has been introduced in pdfTEX
1.30.0.

I \pdfnormaldeviate (expandable)

The commands generates a random integer value with a mean of 0 and a unit of 65 536, e. g. 17773. This
primitive expands to a list of tokens. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfrandomseed (read--only integer)

You can use \the\pdfrandomseed to query the current seed value, so you can e. g. write the value to the
log file. The initial value of the seed is derived from the system time, and is not more than 1 000 999 999
(this ensures that the value can be used with commands like \count). The primitive has been introduced
in pdfTEX 1.30.0.

The pdfTEX user manual

33

I \pdfsetrandomseed 〈number〉

This sets the random seed (\pdfrandomseed) to a specific value, allowing you to re-play sequences of
semi-randoms at a later moment. The primitive has been introduced in pdfTEX 1.30.0.

7.16 Files

I \pdffilemoddate 〈general text〉 (expandable)

Expands to the modification date of file 〈general text〉 in the same format as for \pdfcreationdate, e. g.
it’s D:20051024013705+02’00’ for the source of this manual. The primitive has been introduced in
pdfTEX 1.30.0.

I \pdffilesize 〈general text〉 (expandable)

Expands to the size of file 〈general text〉 , e. g. it’s 191629 for the source of this manual. The primitive has
been introduced in pdfTEX 1.30.0.

I \pdfmdfivesum file 〈general text〉 (expandable)

Expands to the md5 of file 〈general text〉 in uppercase hexadecimal format (same as \pdfescapehex),
e. g. it’s 88537D3DA1FA4188F445F91F8886736E for the source of this manual. The primitive has been
introduced in pdfTEX 1.30.0.

I \pdffiledump [offset 〈number〉] [length 〈number〉] 〈general text〉 (expandable)

Expands to the dump of the file 〈general text〉 in uppercase hexadecimal format (same as
\pdfescapehex), starting at offset 〈number〉 or 0 with length 〈number〉 , if given. The first ten bytes of
the source of this manual are 2520696E746572666163. The primitive has been introduced in pdfTEX
1.30.0.

7.17 Miscellaneous

I \vadjust [〈pre spec〉] 〈filler〉 { 〈vertical mode material〉 }

The \vadjust implementation of pdfTEX adds an optional qualifier 〈pre spec〉 (which is the string pre)
to the original TEX primitive with the same name. As long as there is no pre given, \vadjust behaves
exactly as the original (see the TEXbook, p. 281); it appends an adjustment item created from 〈vertical
mode material〉 to the current list after the line in which \vadjust appears. However with the qualifier
pre, the adjustment item is put before the line in which \vadjust pre appears.

I \pdfsavepos

This primitive marks the current absolute (x, y) position on the media, with the reference point in the
lower left corner. It is active only during page shipout, when the page is finally assembled. The position
coordinates can then be retrieved by the \pdflastxpos and \pdflastypos primitives, and e. g. written
out to some auxiliary file. The coordinates can be used only after the current \shipout has been finalized,
therefore normally two pdfTEX runs are required to utilize these primitives.

I \pdflastxpos (read--only integer)

This primitive returns an integer number representing the absolute x coordinate of the last point marked
by \pdfsavepos. The unit is ‘scaled points’ (sp).

I \pdflastypos (read--only integer)

This primitive works similar to \pdflastxpos, only it returns the y coordinate.

I \pdftexversion (read--only integer)

Returns the version of pdfTEX multiplied by 100, e. g. for pdfTEX version 1.30.4 used to produce this
document, it returns 130.

The pdfTEX user manual

34

I \pdftexrevision (expandable)

Returns the revision letter of pdfTEX, e. g. for pdfTEX version 1.30.4 used to produce this document, it
returns the letter 4.

I \pdftexbanner (expandable)

Returns the pdfTEX banner message, e. g. for the version used here: This is pdfeTeX, Version
3.141592-1.30.4-2.2 (Web2C 7.5.5) kpathsea version 3.5.5. The primitive has been intro-
duced in pdfTEX 1.20a.

I \pdfcreationdate (expandable)

Expands to the date string pdfTEX uses in the info dictionary of the document, e. g. for this file
D:20051024014222+02’00’. The primitive has been introduced in pdfTEX 1.30.0.

I \pdfshellescape (read--only integer)

This primitive is 1 if \write18 is enabled, 0 otherwise. \write18 was not enabled when this manual
was typeset. The primitive has been introduced in pdfTEX 1.30.0.

8 Graphics and color
pdfTEX supports inclusion of pictures in png, jpeg, and pdf format; a few differences between these are
discussed below. The most common technique with TEX —the inclusion of eps figures— is replaced by
pdf inclusion. eps files can be converted to pdf by Ghostscript, Adobe Distiller or other PostScript--to--
pdf converters.

The pdf format is currently the most versatile source format for graphics embedding. pdfTEX allows to
insert arbitrary pages from pdf files with their own fonts, graphics, and pixel images into a document.
The cover page of this manual is an example of such an insert, being a one page document generated by
pdfTEX.

By default pdfTEX takes the BoundingBox of a pdf file from its CropBox if available, otherwise from
its MediaBox. This can be influenced by the 〈pdf box spec〉 option to the \pdfximage primitive, or by
setting the \pdfforcepagebox primitive to a value corresponding to the wanted box type.

To get the right BoundingBox from a eps file, before converting to pdf, it is necessary to transform the eps
file so that the start point is at the (0,0) coordinate and the page size is set exactly corresponding to the
BoundingBox. A Perl script (epstopdf) for this purpose has been written. The TEXutil utility script and
the PStoPDF program that comes with Ghostscript can so a similar job. (Concerning this conversion, they
can handle complete directories, remove some garbage from files, takes precautions against duplicate
conversion, etc.)

The lossless compressing png format is great for embedding crisp pixel graphics (e. g. line scans, screen
shots). Since pdfTEX 1.30.0 also the alpha-channel of png images is processed if available; this allows
embedding of images with simple transparency. The png format does not support the CMYK color model,
which is sometimes required for print media (this often can be replaced by four component jpeg in high
quality or lossless compression mode). Photos in png format have a rather weak compression; here the
jpeg format is preferable.

Embedding png images in the general case requires pdfTEX to uncompress the pixel array and to re--
compress it to the pdf requirements; this process often takes a noticeable amount of time. Since pdfTEX
1.30.0 there is now a fast png embedding mode that goes without uncompressing; the image data are
directly copied into the pdf stream, resulting in a much higher embedding speed. However this mode is
only activated, if the image array structure of the png file is compatible with the pdf image structure (e. g.
an interlaced png image requires uncompressing to re--arrange the image lines). Luckily it seems that the
most common png files also allow fast copying. The use of gamma correction disables fast copying, as it

The pdfTEX user manual

35

requires calculations with individual pixels. Whether the fast copy mode is used for a png image can be
seen from the log file, which then shows the string ‘(PNG copy)’ after the png file name.

The jpeg format is normally used in lossy mode; then it’s ideal for embedding photos; it’s not recom-
mended for crisp images from synthetic sources with a limited amount of colors.

Other options for graphics in pdfTEX are:

LATEX picture mode Since this is implemented simply in terms of font characters, it works in exactly the
same way as usual.

Xy--pic If the PostScript back--end is not requested, Xy--pic uses its own Type 1 fonts, and needs no
special attention.

tpic The ‘tpic’ \special commands (used in some macro packages) can be redefined to produce literal
pdf, using some macros written by Hans Hagen.

METAPOST Although the output of METAPOST is PostScript, it is in a highly simplified form, and
a METAPOST to pdf conversion (mptopdf, written by Hans Hagen and Tanmoy Bhattacharya) is imple-
mented as a set of macros which reads METAPOST output and supports all of its features.

For new work, the METAPOST route is highly recommended. For the future, Adobe has announced that
they will define a specification for ‘encapsulated pdf’.

The inclusion of raw PostScript commands —a technique utilized by for instance the pstricks package—
cannot directly be supported. Although pdf is direct a descendant of PostScript, it lacks any programming
language commands, and cannot deal with arbitrary PostScript.

9 Character translation
Characters that are input to pdfTEX are subject to optional TEX character translation (tcx) under control of
a tcx file. The tcx maps the input character codes (e. g. from \input or \read) to the character codes as
seen by pdfTEX. This mapping takes place before the characters enter pdfTEX’s ‘mouth’. If no tcx file is
read, the input characters enter pdfTEX directly; no mapping is done.

tcx files consist of lines each containing one or two integer numbers in the range 0..255, either in decimal
or hex notation. A comment sign % in a tcx line starts a comment until the end of line. The first number in
each line is for matching the input character code, the second, optional number is the corresponding TEX
character code. If a line contains only one number, characters with this code enter pdfTEX unchanged; no
mapping is done.

tcx mapping also influences pdfTEX output streams for \message and \write. Without tcx mapping,
only characters that are within the range 32..126 are flagged as ‘printable’, meaning that these characters
are output directly by \message and \write primitives. Characters outside the range 32..126 are instead
output in escaped form, e. g. as ^^A for a character with code 0x01. When a character code is mentioned
in the 2nd column of the tcx file, or as the only value in a line, it is flagged as ‘printable’. During \message
and \write, output characters are mapped in reverse direction: they are looked up in the 2nd column of
the tcx file and the corresponding values from the 1st column are output. Again, if a pdfTEX character
code is found as the only number in a line, no mapping is done. Mentioning a character code as the only
number on a line has the sole purpose to flag this code ‘printable’; remember that character within the
range 32..126 are ‘printable’ anyway.

The characters output into the pdf file, e. g. by \pdfliteral or \special primitives, are not subject to
tcx output remapping.

Beware: Character translation interferes with the encTEX primitives; to avoid surprises, don’t use encTEX
and tcx mapping at the same time. Further details about tcx file loading can be found in the teTEX manual.

The pdfTEX user manual

36

10 Limitations of PDFTEX
pdfTEX currently lacks a colorstack. This can be overcome by the pdfcolmk package.

Abbreviations
In this document we used a few abbreviations. For convenience we mention their meaning here.

afm Adobe Font Metrics
ascii American Standard Code for Information Interchange
CMacTEX Macintosh Web2c distribution
ConTEXt general purpose macro package
dvi native TEX Device Independent file format
encTEX encTEX extension to TEX
eps Encapsulated PostScript
epstopdf eps to pdf conversion tool
ε-TEX an extension to TEX
exif Exchangeable Image File format (JPEG file variant)
fpTEX Win32 Web2c distribution
Ghostscript ps and pdf language interpreter
hz Hermann Zapf optimization
jpeg Joint Photographic Expert Group
LATEX general purpose macro package
Mac OS X Macintosh operating system version 10
md5 MD5 message-digest algorithm
METAFONT graphic programming environment, bitmap output
METAPOST graphic programming environment, vector output
MikTeX Win32 distribution
MLTEX MLTEX extension to TEX
mptopdf METAPOST to pdf conversion tool
MSDos Microsoft DOS platform (Intel)
pdf Portable Document Format
pdfeTEX ε-TEX extension producing pdf output
pdfLATEX TEX extension producing pdf output (LATEX format loaded)
pdfTEX TEX extension producing pdf output
Perl Perl programming environment
pgc pdf Glyph Container
pk Packed bitmap font
png Portable Network Graphics
PostScript PostScript
PStoPDF PostScript to pdf converter (on top of GhostScript)
rgb Red Green Blue color specification
tcx TEX Character Translation
tds TEX Directory Standard
teTEX TEX distribution for Unix (based on Web2c)
TEX typographic language and program
TEXexec ConTEXt command line interface
Texinfo generate typeset documentation from info pages
TEX Live TEX-Live distribution (multiple platform)
TEXutil ConTEXt utility tool
tfm TEX Font Metrics
Unix Unix platform

The pdfTEX user manual

37

url Uniform Resource Locator
web literate programming environment
Web2c official multi--platform web environment
Win32 Microsoft Windows platform

Examples of HZ and protruding
In the following sections we will demonstrate pdfTEX’s protruding and hz features, using a text from
E. Tufte. This sample text has a lot of punctuation and often needs hyphenation. Former pdfTEX versions
had sometimes problems with combining these features, but from version 1.21a on it should be ok. If
you still encounter problems, please try to prepare a small test file that demonstrates the problem and
send it to one of the maintainers.

Normal
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of
our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, ide-
alize, isolate, discriminate, distinguish, screen, pi-

geonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, ap-
proximate, cluster, aggregate, outline, summarize,
itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumer-
ate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

HZ
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because
of our marvelous and everyday capacity to se-
lect, edit, single out, structure, highlight, group,
pair, merge, harmonize, synthesize, focus, orga-
nize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen,

pigeonhole, pick over, sort, integrate, blend, in-
spect, filter, lump, skip, smooth, chunk, average,
approximate, cluster, aggregate, outline, summa-
rize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff
and separate the sheep from the goats.

Protruding
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense,

The pdfTEX user manual

38

reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of
our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair,
merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract, scan, look into, ide-
alize, isolate, discriminate, distinguish, screen, pi-

geonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approxi-
mate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance
into, leaf through, skim, refine, enumerate, glean,
synopsize, winnow the wheat from the chaff and
separate the sheep from the goats.

Both
We thrive in information--thick worlds because of our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump, skip,
smooth, chunk, average, approximate, cluster, aggregate, outline, summarize, itemize, review, dip into,
flip through, browse, glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow the
wheat from the chaff and separate the sheep from the goats.

We thrive in information--thick worlds because of
our marvelous and everyday capacity to select, edit,
single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense,
reduce, boil down, choose, categorize, catalog, clas-
sify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick

over, sort, integrate, blend, inspect, filter, lump,
skip, smooth, chunk, average, approximate, cluster,
aggregate, outline, summarize, itemize, review, dip
into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep
from the goats.

Additional PDF keys
This section is based on the manual on keys written by Martin Schröder, one of the maintainers of pdfTEX.

A pdf document should contain only the structures and attributes defined in the pdf specification.
However, the specification allows applications to insert additional keys, provided they follow certain
rules.

The most important rule is that developers have to register with Adobe prefixes for the keys they want to
insert. Hans Hagen has registered the prefix PTEX for pdfTEX.

pdfTEX generates an XObject for every included pdf. The dictionary of this object contains these additional
keys:

key type meaning

PTEX.FileName string The name of the included file as seen by pdfTEX.
PTEX.InfoDict dictionary The document information dictionary of the included pdf (an indirect

object).
PTEX.PageNumber integer The page number of the included file.

The pdf reference manual says: “Although viewer applications can store custom metadata in the docu-
ment information dictionary, it is inappropriate to store private content or structural information there;
such information should be stored in the document catalog instead.”

The pdfTEX user manual

39

Although it would seem more natural to put this infomation in the document information dictionary,
we have to obey the rules laid down in the pdf reference. The following key ends up in the document
catalog.

key type meaning

PTEX.Fullbanner string The full version of the binary that produced the file as displayed
by pdftex --version, e. g. This is pdfeTeX, Version 3.141592-
1.30.4-2.2 (Web2C 7.5.5) kpathsea version 3.5.5. This is ne-
cessary because the string in the Producer key in the info dictionary is
rather short, e. g. pdfeTeX-1.30.4.

Colophon
This manual is typeset in ConTEXt. One can generate an A4 version from the source code by typing:

texexec --result=pdftex-a.pdf pdftex-t

Or in letter size:

texexec --mode=letter --result=pdftex-l.pdf pdftex-t

Given that the A4 version is typeset, one can generate an A5 booklet by typing:

texexec --pdfarrange --paper=a5a4 --print=up --addempty=1,2
--result=pdftex-b.pdf pdftex-a

Odd and even page sets for non-duplex printers can be generated using --pages=odd and --
pages=even options (which might require some disciplined shuffling of sheet).

This also demonstrates that pdfTEX can be used for page imposition purposes (given that pdfTEX and the
fonts are set up properly).

The pdfTEX user manual

40

GNU Free Documentation License
Version 1.2, November 2002
Copyright C© 2000, 2001, 2002
Free Software Foundation, Inc.
59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute
verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a man-
ual, textbook, or other functional and useful
document “free” in the sense of freedom: to
assure everyone the effective freedom to copy
and redistribute it, with or without modifying
it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author
and publisher a way to get credit for their work,
while not being considered responsible for mod-
ifications made by others.

This License is a kind of “copyleft”, which
means that derivative works of the document
must themselves be free in the same sense. It
complements the GNU General Public License,
which is a copyleft license designed for free
software.

We have designed this License in order to use
it for manuals for free software, because free
software needs free documentation: a free pro-
gram should come with manuals providing the
same freedoms that the software does. But this
License is not limited to software manuals; it
can be used for any textual work, regardless
of subject matter or whether it is published as
a printed book. We recommend this License
principally for works whose purpose is instruc-
tion or reference.

APPLICABILITY AND
DEFINITIONS

This License applies to any manual or other
work, in any medium, that contains a notice
placed by the copyright holder saying it can
be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work
under the conditions stated herein. The “Doc-
ument”, below, refers to any such manual or
work. Any member of the public is a licensee,
and is addressed as “you”. You accept the li-
cense if you copy, modify or distribute the work
in a way requiring permission under copyright
law.

A “Modified Version” of the Document means
any work containing the Document or a portion
of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix
or a front-matter section of the Document that
deals exclusively with the relationship of the
publishers or authors of the Document to the
Document’s overall subject (or to related mat-
ters) and contains nothing that could fall di-

rectly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics,
a Secondary Section may not explain any math-
ematics.) The relationship could be a matter of
historical connection with the subject or with
related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary
Sections whose titles are designated, as being
those of Invariant Sections, in the notice that
says that the Document is released under this
License. If a section does not fit the above de-
finition of Secondary then it is not allowed to
be designated as Invariant. The Document may
contain zero Invariant Sections. If the Docu-
ment does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages
of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that
the Document is released under this License.
A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means
a machine-readable copy, represented in a for-
mat whose specification is available to the gen-
eral public, that is suitable for revising the doc-
ument straightforwardly with generic text edi-
tors or (for images composed of pixels) generic
paint programs or (for drawings) some widely
available drawing editor, and that is suitable
for input to text formatters or for automatic
translation to a variety of formats suitable for
input to text formatters. A copy made in an oth-
erwise Transparent file format whose markup,
or absence of markup, has been arranged to
thwart or discourage subsequent modification
by readers is not Transparent. An image format
is not Transparent if used for any substantial
amount of text. A copy that is not “Transpar-
ent” is called “Opaque”.

Examples of suitable formats for Transparent
copies include plain ASCII without markup,
Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, Post-
Script or pdf designed for human modification.
Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited
only by proprietary word processors, SGML
or XML for which the DTD and/or process-
ing tools are not generally available, and the
machine-generated HTML, PostScript or pdf
produced by some word processors for output
purposes only.

The ”Title Page” means, for a printed book, the
title page itself, plus such following pages as
are needed to hold, legibly, the material this
License requires to appear in the title page. For
works in formats which do not have any title
page as such, “Title Page” means the text near
the most prominent appearance of the work’s

title, preceding the beginning of the body of the
text.

A section “Entitled XYZ” means a named sub-
unit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a sec-
tion when you modify the Document means
that it remains a section “Entitled XYZ” accord-
ing to this definition.

The Document may include Warranty Dis-
claimers next to the notice which states that
this License applies to the Document. These
Warranty Disclaimers are considered to be in-
cluded by reference in this License, but only as
regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may
have is void and has no effect on the meaning
of this License.

VERBATIM COPYING

You may copy and distribute the Document
in any medium, either commercially or non-
commercially, provided that this License, the
copyright notices, and the license notice saying
this License applies to the Document are repro-
duced in all copies, and that you add no other
conditions whatsoever to those of this License.
You may not use technical measures to obstruct
or control the reading or further copying of
the copies you make or distribute. However,
you may accept compensation in exchange for
copies. If you distribute a large enough number
of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same con-
ditions stated above, and you may publicly dis-
play copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in me-
dia that commonly have printed covers) of the
Document, numbering more than 100, and the
Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover
Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher
of these copies. The front cover must present
the full title with all words of the title equal-
ly prominent and visible. You may add other
material on the covers in addition. Copying
with changes limited to the covers, as long as
they preserve the title of the Document and sat-
isfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too vo-
luminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the ac-

The pdfTEX user manual

41

tual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies
of the Document numbering more than 100,
you must either include a machine-readable
Transparent copy along with each Opaque
copy, or state in or with each Opaque copy
a computer-network location from which the
general network-using public has access to
download using public-standard network pro-
tocols a complete Transparent copy of the Doc-
ument, free of added material. If you use the
latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transpar-
ent copy will remain thus accessible at the stat-
ed location until at least one year after the last
time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you con-
tact the authors of the Document well before
redistributing any large number of copies, to
give them a chance to provide you with an up-
dated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Ver-
sion of the Document under the conditions of
sections 2 and 3 above, provided that you re-
lease the Modified Version under precisely this
License, with the Modified Version filling the
role of the Document, thus licensing distribu-
tion and modification of the Modified Version
to whoever possesses a copy of it. In addition,
you must do these things in the Modified Ver-
sion:

A. Use in the Title Page (and on the covers, if
any) a title distinct from that of the Docu-
ment, and from those of previous versions
(which should, if there were any, be listed in
the History section of the Document). You
may use the same title as a previous version
if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or
more persons or entities responsible for au-
thorship of the modifications in the Modi-
fied Version, together with at least five of
the principal authors of the Document (all
of its principal authors, if it has fewer than
five), unless they release you from this re-
quirement.

C. State on the Title page the name of the pub-
lisher of the Modified Version, as the pub-
lisher.

D. Preserve all the copyright notices of the Doc-
ument.

E. Add an appropriate copyright notice for
your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright no-
tices, a license notice giving the public per-
mission to use the Modified Version under
the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of
Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Pre-

serve its Title, and add to it an item stating
at least the title, year, new authors, and pub-
lisher of the Modified Version as given on
the Title Page. If there is no section Entitled
“History” in the Document, create one stat-
ing the title, year, authors, and publisher
of the Document as given on its Title Page,
then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given
in the Document for public access to a Trans-
parent copy of the Document, and likewise
the network locations given in the Docu-
ment for previous versions it was based on.
These may be placed in the “History” sec-
tion. You may omit a network location for
a work that was published at least four years
before the Document itself, or if the original
publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledge-
ments” or “Dedications”, Preserve the Title
of the section, and preserve in the section all
the substance and tone of each of the contrib-
utor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Doc-
ument, unaltered in their text and in their
titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”.
Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be En-
titled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-
matter sections or appendices that qualify as
Secondary Sections and contain no material
copied from the Document, you may at your
option designate some or all of these sections as
invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorse-
ments”, provided it contains nothing but en-
dorsements of your Modified Version by var-
ious parties–for example, statements of peer
review or that the text has been approved by an
organization as the authoritative definition of
a standard.

You may add a passage of up to five words as
a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the
list of Cover Texts in the Modified Version. On-
ly one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the
Document already includes a cover text for the
same cover, previously added by you or by
arrangement made by the same entity you are
acting on behalf of, you may not add another;
but you may replace the old one, on explicit per-
mission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document
do not by this License give permission to use
their names for publicity for or to assert or im-
ply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other doc-
uments released under this License, under the
terms defined in section 4 above for modified
versions, provided that you include in the com-
bination all of the Invariant Sections of all of the
original documents, unmodified, and list them
all as Invariant Sections of your combined work
in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy
of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If
there are multiple Invariant Sections with the
same name but different contents, make the
title of each such section unique by adding at
the end of it, in parentheses, the name of the
original author or publisher of that section if
known, or else a unique number. Make the
same adjustment to the section titles in the list
of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sec-
tions Entitled “History” in the various original
documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Enti-
tled “Dedications”. You must delete all sections
Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the
Document and other documents released under
this License, and replace the individual copies
of this License in the various documents with
a single copy that is included in the collection,
provided that you follow the rules of this Li-
cense for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such
a collection, and distribute it individually un-
der this License, provided you insert a copy of
this License into the extracted document, and
follow this License in all other respects regard-
ing verbatim copying of that document.

AGGREGATION WITH
INDEPENDENT WORKS

A compilation of the Document or its deriva-
tives with other separate and independent doc-
uments or works, in or on a volume of a stor-
age or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compi-
lation is not used to limit the legal rights of the
compilation’s users beyond what the individual
works permit. When the Document is included
in an aggregate, this License does not apply to
the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is ap-
plicable to these copies of the Document, then

The pdfTEX user manual

42

if the Document is less than one half of the en-
tire aggregate, the Document’s Cover Texts may
be placed on covers that bracket the Document
within the aggregate, or the electronic equiva-
lent of covers if the Document is in electronic
form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modifica-
tion, so you may distribute translations of the
Document under the terms of section 4. Replac-
ing Invariant Sections with translations requires
special permission from their copyright holders,
but you may include translations of some or
all Invariant Sections in addition to the origi-
nal versions of these Invariant Sections. You
may include a translation of this License, and
all the license notices in the Document, and any
Warranty Disclaimers, provided that you also
include the original English version of this Li-
cense and the original versions of those notices
and disclaimers. In case of a disagreement be-

tween the translation and the original version
of this License or a notice or disclaimer, the orig-
inal version will prevail.

If a section in the Document is Entitled “Ac-
knowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the
actual title.

TERMINATION

You may not copy, modify, sublicense, or distrib-
ute the Document except as expressly provided
for under this License. Any other attempt to
copy, modify, sublicense or distribute the Docu-
ment is void, and will automatically terminate
your rights under this License. However, par-
ties who have received copies, or rights, from
you under this License will not have their licens-
es terminated so long as such parties remain in
full compliance.

FUTURE REVISIONS OF THIS
LICENSE

The Free Software Foundation may publish
new, revised versions of the GNU Free Doc-
umentation License from time to time. Such
new versions will be similar in spirit to the
present version, but may differ in detail to
address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distin-
guishing version number. If the Document spec-
ifies that a particular numbered version of this
License “or any later version” applies to it, you
have the option of following the terms and con-
ditions either of that specified version or of any
later version that has been published (not as
a draft) by the Free Software Foundation. If the
Document does not specify a version number of
this License, you may choose any version ever
published (not as a draft) by the Free Software
Foundation.

	Introduction
	About this manual
	Legal Notice

	About PDF
	Getting started
	Getting sources and binaries
	Compiling
	Placing files
	Setting search paths
	The PDFTEX configuration
	Creating format files
	Testing the installation
	Common problems

	Macro packages supporting PDFTEX
	Setting up fonts
	Map files
	TrueType fonts

	Formal syntax specification
	PDFTEX primitives
	Document setup
	\pdfoutput
	\pdfminorversion
	\pdfcompresslevel
	\pdfdecimaldigits
	\pdfhorigin
	\pdfvorigin
	\pdfpagewidth
	\pdfpageheight

	The document info and catalog
	\pdfinfo
	\pdfcatalog
	\pdfnames
	\pdftrailer

	Fonts
	\pdfpkresolution
	\pdffontexpand
	\pdfadjustspacing
	\efcode
	\pdfprotrudechars
	\rpcode
	\lpcode
	\leftmarginkern
	\rightmarginkern
	\pdffontattr
	\pdffontname
	\pdffontobjnum
	\pdffontsize
	\pdfincludechars
	\pdfuniqueresname
	\pdfmapfile
	\pdfmapline
	\pdftracingfonts
	\pdfmovechars
	\pdfpkmode
	\pdfnoligatures

	PDF objects
	\pdfobj
	\pdflastobj
	\pdfrefobj

	Page and pages objects
	\pdfpagesattr
	\pdfpageattr
	\pdfpageref

	Form XObjects
	\pdfxform
	\pdfrefxform
	\pdflastxform
	\pdfxformname

	Graphics inclusion
	\pdfximage
	\pdfrefximage
	\pdflastximage
	\pdflastximagepages
	\pdfimageresolution
	\pdfforcepagebox
	\pdfinclusionerrorlevel
	\pdfimagehicolor
	\pdfimageapplygamma
	\pdfgamma
	\pdfimagegamma

	Annotations
	\pdfannot
	\pdflastannot

	Destinations and links
	\pdfdest
	\pdfstartlink
	\pdfendlink
	\pdflinkmargin
	\pdfdestmargin

	Bookmarks
	\pdfoutline

	Article threads
	\pdfthread
	\pdfstartthread
	\pdfendthread
	\pdfthreadmargin

	Literals and specials
	\pdfliteral
	\special
	\special direct

	Strings
	\pdfescapestring
	\pdfescapename
	\pdfescapehex
	\pdfunescapehex
	\pdfmdfivesum

	Timekeeping
	\pdfelapsedtime
	\pdfresettimer

	Random numbers
	\pdfuniformdeviate
	\pdfnormaldeviate
	\pdfrandomseed
	\pdfsetrandomseed

	Files
	\pdffilemoddate
	\pdffilesize
	\pdfmdfivesum file
	\pdffiledump

	Miscellaneous
	\vadjust
	\pdfsavepos
	\pdflastxpos
	\pdflastypos
	\pdftexversion
	\pdftexrevision
	\pdftexbanner
	\pdfcreationdate
	\pdfshellescape

	Graphics and color
	Character translation
	Limitations of PDFTEX
	Abbreviations
	Examples of HZ and protruding
	Normal
	HZ
	Protruding
	Both

	Additional PDF keys
	Colophon
	GNU Free Documentation License

