- 
							
								James Alexander
							
              						
 
											- 
							
								Jonathan Cutler
							
              						
 
											- 
							
								Tim Mink
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Independent set enumeration															
			
			
										
					
Abstract
					The enumeration of independent sets in graphs with various restrictions has been a topic of much interest of late.  Let $i(G)$ be the number of independent sets in a graph $G$ and let $i_t(G)$ be the number of independent sets in $G$ of size $t$.  Kahn used entropy to show that if $G$ is an $r$-regular bipartite graph with $n$ vertices, then $i(G)\leq i(K_{r,r})^{n/2r}$.  Zhao used bipartite double covers to extend this bound to general $r$-regular graphs.  Galvin proved that if $G$ is a graph with $\delta(G)\geq \delta$ and $n$ large enough, then $i(G)\leq i(K_{\delta,n-\delta})$.  In this paper, we prove that if $G$ is a bipartite graph on $n$ vertices with $\delta(G)\geq\delta$ where $n\geq 2\delta$, then $i_t(G)\leq i_t(K_{\delta,n-\delta})$ when $t\geq 3$.  We note that this result cannot be extended to $t=2$ (and is trivial for $t=0,1$).  Also, we use Kahn's entropy argument and Zhao's extension to prove that if $G$ is a graph with $n$ vertices, $\delta(G)\geq\delta$, and $\Delta(G)\leq \Delta$, then $i(G)\leq i(K_{\delta,\Delta})^{n/2\delta}$.