- 
							
								Teresa X.S. Li
							
              						
 
											- 
							
								Melissa Y.F. Miao
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Foata’s second fundamental transformation, 													Han’s bijection, 													Bruhat order, 													principal order ideal															
			
			
										
					
Abstract
					Let $\Phi$ denote  Foata's second fundamental transformation on permutations. For a permutation $\sigma$ in the symmetric group $S_n$, let $\widetilde{\Lambda}_{\sigma}=\{\pi\in S_n\colon\pi\leq_{w} \sigma\}$ be the principal order ideal generated by $\sigma$  in the weak order $\leq_{w}$. Björner and Wachs have shown that $\widetilde{\Lambda}_{\sigma}$ is invariant under $\Phi$ if and only if $\sigma$ is a 132-avoiding permutation. In this paper, we consider the invariance property of  $\Phi$ on the principal order ideals ${\Lambda}_{\sigma}=\{\pi\in S_n\colon \pi\leq \sigma\}$ with respect to the Bruhat order $\leq$.  We obtain a characterization  of permutations $\sigma$ such that ${\Lambda}_{\sigma}$ are invariant under $\Phi$. We also consider the invariant principal order  ideals with respect to the Bruhat order  under Han's bijection $H$. We find  that ${\Lambda}_{\sigma}$ is invariant under the bijection $H$ if and only if it is invariant under the transformation $\Phi$.