- 
							
								Shan-Shan Du
							
              						
 
											- 
							
								Hui-Qin Cao
							
              						
 
											- 
							
								Zhi-Wei Sun
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		additive combinatorics, 													sumsets															
			
			
										
					
Abstract
					Let $A$ be a finite set of integers. We show that if $k$ is a prime power or a product of two distinct primes then \[ |A+k\cdot A|\geq(k+1)|A|-\lceil k(k+2)/4\rceil \] provided $|A|\geq (k-1)^{2}k!$, where $A+k\cdot A=\{a+kb:\ a,b\in A\}$. We also establish the inequality $|A+4\cdot A|\geq5|A|-6 $ for $|A|\geq5$.