- 
							
								Anita Pasotti
							
              						
 
											- 
							
								Marco Antonio Pellegrini
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Hamiltonian path, 													Complete graph, 													Edge-length.															
			
			
										
					
Abstract
					In this paper we investigate a problem proposed by Marco Buratti, Peter Horak and Alex Rosa (denoted by BHR-problem) concerning Hamiltonian paths in the complete graph with prescribed edge-lengths. In particular we solve BHR$(\{1^a, 2^b, t^c\})$ for any even integer $t \geq 4$,  provided that $a+b \geq t-1$. Furthermore, for $t=4, 6, 8$ we present a complete solution of BHR$(\{ 1^a,2^b,t^c \})$ for any positive integer $a,b,c$.
				
			
			
																																																
					
													Author Biographies
											
																		
								
																																							Anita Pasotti, Università degli Studi di Brescia
																	
								
									DICATAM - Sez. Matematica
								
							 
																								
								
																																							Marco Antonio Pellegrini, Università Cattolica del Sacro Cuore
																	
								
									Dipartimento di Matematica e Fisica