On Bipartite $Q$-Polynomial Distance-Regular Graphs with $c_2 \le 2$
				
										Keywords:
				
				
																		Distance-regular graphs, 													Q-polynomial property, 													Equitable partitions															
			
			
										Abstract
Let $\Gamma$ denote a bipartite $Q$-polynomial distance-regular graph with diameter $D \ge 4$, valency $k \ge 3$ and intersection number $c_2 \le 2$. We show that $\Gamma$ is either the $D$-dimensional hypercube, or the antipodal quotient of the $2D$-dimensional hypercube, or $D=5$.