Keywords:
				
				
																		Symmetric groups, 													Characters, 													Partitions															
			
			
										
					
Abstract
					A conjugacy class $C$ of a finite group $G$ is a sign conjugacy class if every irreducible character of $G$ takes value 0, 1 or -1 on $C$. In this paper we classify the sign conjugacy classes of the symmetric groups and thereby verify a conjecture of Olsson.
				
			
			
																																
					
													Author Biography
											
																		
								
																																							Lucia Morotti, RWTH Aachen University
																	
								
									Lehrstuhl D für Mathematik