- 
							
								Guillem Perarnau
							
              						
 
											- 
							
								Oriol Serra
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Lonely Runner Conjecture															
			
			
										
					
Abstract
					The Lonely Runner Conjecture, posed independently by Wills and by Cusick, states that for any set of runners running along the unit circle with constant different speeds and starting at the same point, there is a time where all of them are far enough from the origin. We study the correlation among the time that runners spend close to the origin. By means of these correlations, we improve a result of Chen on the gap of loneliness. In the last part, we introduce dynamic interval graphs to deal with a weak version of the conjecture thus providing a new result related to the invisible runner theorem of Czerwinski and Grytczuk.