- 
							
								Victoria de Quehen
							
              						
 
											- 
							
								Hamed Hatami
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Additive basis, 													Sumset, 													Finite field															
			
			
										
					
Abstract
					We prove that if $G$ is an Abelian group and $A_1,\ldots,A_k \subseteq G$ satisfy $m A_i=G$ (the $m$-fold sumset), then $A_1+\cdots+A_k=G$ provided that $k \ge c_m \log \log |G|$. This generalizes a result of Alon, Linial, and Meshulam [Additive bases of vector spaces over prime fields. J. Combin. Theory Ser. A, 57(2):203—210, 1991] regarding so-called additive bases.