- 
							
								Neal Madras
							
              						
 
											- 
							
								Lerna Pehlivan
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Random permutation, 													Monotone pattern-avoiding permutation, 													Left-to-right minimum, 													Large deviations															
			
			
										
					
Abstract
					For a given permutation $\tau$, let $P_N^{\tau}$ be the uniform probability distribution on the set of $N$-element permutations $\sigma$ that avoid the pattern $\tau$. For $\tau=\mu_k:=123\ldots k$, we consider $P_N^{\mu_k}(\sigma_I=J)$ where $I\sim \gamma N$ and $J\sim \delta N$ for $\gamma, \delta \in (0,1)$. If $\gamma+ \delta \neq 1$, then we are in the large deviations regime with the probability decaying exponentially, and we calculate the limiting value of $P_N^{\mu_k}(\sigma_I=J)^{1/N}$. We also observe that for $\tau = \lambda_{k,\ell} := 12\ldots\ell k(k-1)\ldots(\ell+1)$ and $\gamma+\delta<1$, the limit of $P_N^{\tau}(\sigma_I=J)^{1/N}$ is the same  as for $\tau=\mu_k$.