- 
							
								Naiomi T. Cameron
							
              						
 
											- 
							
								Kendra Killpatrick
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Signed permutations, 													Pattern avoiding permutations, 													Inversion statistic, 													Major index, 													Generating function															
			
			
										
					
Abstract
					We consider the classical Mahonian statistics on the set $B_n(\Sigma)$ of signed permutations in the hyperoctahedral group $B_n$ which avoid all patterns in $\Sigma$, where $\Sigma$ is a set of patterns of length two.  In 2000, Simion gave the cardinality of $B_n(\Sigma)$ in the cases where $\Sigma$ contains either one or two patterns of length two and showed that $\left|B_n(\Sigma)\right|$ is constant whenever $\left|\Sigma\right|=1$, whereas in most but not all instances where $\left|\Sigma\right|=2$, $\left|B_n(\Sigma)\right|=(n+1)!$.  We answer an open question of Simion by providing bijections from $B_n(\Sigma)$ to $S_{n+1}$ in these cases where $\left|B_n(\Sigma)\right|=(n+1)!$.  In addition, we extend Simion's work by providing a combinatorial proof in the language of signed permutations for the major index on $B_n(21, \bar{2}\bar{1})$ and by giving the major index on $D_n(\Sigma)$ for $\Sigma =\{21, \bar{2}\bar{1}\}$ and $\Sigma=\{12,21\}$.  The main result of this paper is to give the inversion generating functions for $B_n(\Sigma)$ for almost all sets $\Sigma$ with $\left|\Sigma\right|\leq2.$