- 
							
								Antonio Cossidente
							
              						
 
											- 
							
								Francesco Pavese
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Finite classical polar space, 													Maximal partial spread, 													Singer cycle, 													Segre variety															
			
			
										
					
Abstract
					Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for $n \ge 1$, $\mathcal{H}(4n-1,q^2)$ has a maximal partial spread of size $q^{2n}+1$, $\mathcal{H}(4n+1,q^2)$ has a maximal partial spread of size $q^{2n+1}+1$ and, for $n \ge 2$, $\mathcal{Q}^+(4n-1,q)$, $\mathcal{Q}(4n-2,q)$, $\mathcal{W}(4n-1,q)$, $q$ even, $\mathcal{W}(4n-3,q)$, $q$ even, have a maximal partial spread of size $q^n+1$.
				
			
			
																																																
					
													Author Biographies
											
																		
								
																																							Antonio Cossidente, Università degli Studi della Basilicata
																	
								
									Dipartimento di Matematica Informatica ed Economia
								
							 
																								
								
																																							Francesco Pavese, Politecnico di Bari
																	
								
									Dipartimento di Meccanica Matematica e Management